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Abstract 22 

 Species dissolved in H2 fluid were investigated in a SiO2–H2 system. Raman and 23 

infrared (IR) spectra were measured at high pressure and room temperature after heating 24 

experiments conducted at two pressure and temperature conditions: 2.0 GPa, 1700 K 25 

and 3.0 GPa, 1500 K. With the dissolution of quartz, a SiH vibration mode assignable to 26 

SiH4 was detected from Raman spectra of the fluid phase. Furthermore, an OH vibration 27 

mode was observed at 3260 cm-1 from the IR spectra at 3.0 GPa. With decreasing 28 

pressure, the OH vibration frequencies observed between 3.0 GPa and 2.1 GPa 29 

correspond to that of ice VII, and those observed at 1.4 GPa and 1.1 GPa correspond to 30 

that of ice VI. These results indicate that the chemical reaction between dissolved SiO2 31 

components and H2 fluid caused the formation of H2O and SiH4, which was contrastive 32 

to that observed in SiO2–H2O fluid. Results imply that a part of H2 is oxidized to form 33 

H2O when SiO2 components of mantle minerals dissolve in H2 fluid, even in an 34 

iron-free system.  35 
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 Introduction  39 

Fluids in the Earth’s mantle influence phase relations, melting temperatures, 40 

chemical compositions, and physical properties of co-existing silicate minerals. 41 

Consequently, fluids in the mantle play an important role in elemental transportation, 42 

melt formation, and mantle dynamics. Stability and phase relations of silicate minerals 43 

depend on the Mg/Si ratio of silicate components dissolved in the coexisting fluid. For 44 

example, the silicate composition dissolving in H2O fluid changes sharply from 45 

SiO2-rich to MgO-rich around 3 GPa, providing a change of the thermodynamically 46 

stable phase in MgSiO3-H2O system from enstatite+forsterite+fluid to enstatite+fluid 47 

(e.g. Zhang and Frantz 2000; Stalder et al. 2001; Mibe et al. 2002; Kawamoto et al. 48 

2004). Such a change of Mg/Si ratio is regarded as induced by a change of the 49 

dissolution species of silicate components in H2O fluid. The dissolution of silica in H2O 50 

fluids has been extensively studied over a wide range of pressures and temperatures; the 51 

silica species observed in H2O fluids are SiOH groups such as H4SiO4 and H6Si2O7 52 

below 3 GPa (e.g. Anderson and Burnham, 1965; Manning, 1994; Shen and Keppler, 53 

1995; Zotov and Keppler, 2000; Zotov and Keppler, 2002; Newton and Manning, 2003; 54 

Newton and Manning, 2008; Mysen, 2009; Mysen, 2010). At pressures higher than 3 55 
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GPa, the existence of MgOH groups was reported from an investigation of the hydrous 56 

silicate melt structure (Yamada et al., 2011).  57 

Fluids in the Earth’s mantle contain considerable amounts of H2 in addition to 58 

H2O. The ratio of H2/H2O is likely to depend on the surrounding oxidation state. In 59 

general, the crust and the shallow mantle are in an oxidizing condition (close to FMQ 60 

buffer) (Frost and McCammon, 2008). Consequently, fluids in the shallow depth contain 61 

little H2. The mantle is reduced progressively with depth. Then the oxidation state 62 

becomes close to the iron–wustite buffer at depths greater than >200 km (e.g. Woodland 63 

and Koch, 2003; McCammon and Kopylova, 2004; Rohrbach et al., 2007; Frost and 64 

McCammon, 2008; Goncharov et al., 2012). Thermodynamical calculations 65 

demonstrated that a molar fraction of H2 is expected to increase concomitantly with 66 

increasing depth and approached about 10–20% in such reduced mantle (e.g. Ballhaus, 67 

1995; Frost and McCammon, 2008; Goncharov et al., 2012). Moreover, Sokol et al. 68 

(2009) demonstrated experimentally that the molar fraction of H2 becomes >50% at 6.3 69 

GPa, 1873 K, in the iron–wustite buffer. Results of these studies show that H2 is a major 70 

component of fluids in the reduced mantle. 71 

The existence of H2 is predicted even in the shallow mantle because the oxygen 72 
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fugacity does not vary with depth only, but also with local settings (Wood et al., 1990). 73 

For example, a certain amount of H2 is producible by serpentinization in the shallow 74 

mantle (Sleep et al., 2004). In addition, H2 is estimated as a major component in the 75 

atmosphere of the early Earth (e.g. Hashimoto et al., 2007; Schaefer and Fegley, 2007). 76 

A considerable amount of H2 can be dissolved in the magma ocean (Hirschmann et al., 77 

2012). In the pressure and temperature conditions of the shallow part of the early mantle, 78 

immiscibility between H2O and H2 fluid is likely to occur (Bali et al., 2013), implying 79 

that H2 fluid exists even in high purity in such a condition. These studies indicate that H2 80 

exists even in the shallow mantle both in the present Earth and in the early Earth. 81 

Therefore, the influence of H2 on the phase relations of surrounding silicate minerals 82 

should be investigated in a wide range of pressure and temperature conditions, as well 83 

as in studies of H2O and silicate minerals.  84 

For the Mg2SiO4-H2 system, we found recently that forsterite (Mg2SiO4) 85 

decomposed to form periclase (MgO) with dissolution of SiO2 components at 2.5–15.0 86 

GPa and around 1500 K (Shinozaki et al., 2013). In addition, the quartz dissolution was 87 

observed in a SiO2-H2 system, although periclase was dissolved only slightly in a 88 

MgO-H2 system (Shinozaki et al., 2013). The decomposition of forsterite and 89 
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crystallization of periclase indicated that the Mg/Si ratio in H2 fluid is markedly lower 90 

than that in H2O fluid, in which forsterite is stable with H2O fluid up to around 10 GPa 91 

(e.g. Inoue, 1994; Stalder et al., 2001; Mibe et al., 2002; Kawamoto et al., 2004). To 92 

reveal the reason for the difference in Mg/Si composition dissolved between H2 and 93 

H2O fluids, the dissolution species in the fluid phases should be investigated. In this 94 

study, species of dissolved component in H2 fluid were investigated in a SiO2-H2 system 95 

using Raman and infrared spectroscopy under high pressure.  96 

Material and methods 97 

High-pressure and high-temperature experiments were performed using a 98 

diamond anvil cell (DAC) with 450 μm and 600 μm culets. A hole drilled in a rhenium 99 

gasket after pre-compression was used as a sample chamber. The sample chamber 100 

diameter and the thickness before the experiment were about 200 μm and about 150 μm, 101 

respectively. The sample chamber thickness became about 75 μm after the experiment. 102 

The starting materials used for this study were natural quartz (SiO2) and hydrogen gas 103 

(H2; 99.99999% purity). A few particles of quartz crystals with a grain size of about 104 

50–150 μm were polished to about 50 μm thickness from both sides and were then loaded 105 

into a sample chamber together with ruby particles. Then, H2 gas was introduced into a 106 
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sample chamber as a supercritical fluid after compression at approximately 0.13–0.18 107 

GPa at room temperature using gas-loading apparatuses (Yagi et al., 1996; Takemura et 108 

al., 2001). Pressure was measured using the ruby fluorescence method (Mao et al., 1978). 109 

Samples were first compressed to the target pressure at room temperature and 110 

were then heated from a single side using a CO2 laser. Temperature was measured using 111 

spectroradiometry. The uncertainty of the heating temperature was estimated as ± 200 K 112 

from the lateral temperature distribution in the sample chamber and the fluctuation of 113 

laser power. The heating duration was about 5–10 min. The samples were quenched to 114 

room temperature by turning off the laser. In this study, two runs were performed, 115 

respectively, at 2.0 GPa and 1700 K, and 3.0 GPa and 1500 K. 116 

Raman spectra of the samples were observed using micro-Raman spectrometry 117 

under high pressure and room temperature. The typical constitution of a Raman 118 

spectrometer is the following: an Ar+ laser (λ=514.5 nm) (about 10 mW at the sample 119 

surface), an optical microscope with objective lens (typically 20× magnification and 120 

0.35 numerical aperture), single polychromator, and CCD-detector. Scattered light was 121 

dispersed using a grating with 1200 grooves per millimeter. Raman bands of naphthalene, 122 

silicon, and neon emission lines were used for Raman shift calibration. The spectral 123 
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resolution was approximately 2 cm-1. The typical accumulation time for each 124 

measurement was approximately 60 s. IR absorption spectra were obtained at BL43IR 125 

in SPring-8 at high pressure and room temperature with synchrotron radiation as a light 126 

source, an FT-IR spectrometer (Hyperion2000; Bruker Co.), a Ge-coated KBr beam 127 

splitter, and an InSb detector. All measurements were performed in transmission mode. 128 

The aperture was 15 μm ×15 μm. The wavenumber resolution was set to 4 cm-1.  129 

3. Results 130 

Figure 1a and Figure 1b show representative Raman spectra obtained from the 131 

sample in DAC before and after heating. Before heating, the Raman spectrum was 132 

obtained from the area which both a quartz grain and H2 fluid existed. The observed 133 

frequencies of SiO vibration modes of quartz and vibration modes of H2 molecules 134 

correspond to those of quartz (Dean et al., 1982; Schmidt and Ziemann, 2000) and pure 135 

H2 fluid (Sharma et al., 1980), respectively. By laser heating at 1700 K and 2.0 GPa, 136 

quartz crystals dissolved in H2 fluid and almost disappeared from the laser heating spot, 137 

as described in a previous report (Shinozaki et al., 2013). After heating, the Raman 138 

spectra of the fluid phase were measured at the heating spot, where SiO vibration modes 139 

of quartz almost disappeared. However, peaks from hydrogen molecules were observed 140 
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without marked frequency shifts compared with those obtained before heating (Figs. 1a, 141 

1b). In the surrounding part of the laser heating spot, quartz crystals remained. Coesite, 142 

a denser phase of quartz, was not detected from the Raman spectra.  143 

Figure 2a shows representative Raman spectra collected from the heating area 144 

from 2100 cm-1 to 2300 cm-1 with decreasing pressure after heating. A peak assignable 145 

to a SiH stretching mode newly appeared at 2228 cm-1 at 2.8 GPa. The frequency of the 146 

new peak differed markedly from a stretching mode of carbon monoxide, which was 147 

observed around 2140 cm-1 at around 3 GPa (Katz et al., 1984). The peak height of the 148 

SiH vibration mode was approximately <1/17 of that of the H2 stretching mode. Figure 149 

2b shows the pressure-dependence of the SiH vibration mode frequency. The SiH 150 

vibration peak shifted to a lower frequency with decreasing pressure down to 0.4 GPa. 151 

The SiH vibration peak disappeared at ambient pressure with the release of H2 fluid 152 

from the sample chamber. The SiH vibration peak was not detected when we measured 153 

the unreacted quartz crystals. These results indicate that the SiH group existed not in the 154 

quartz crystal structure, but in the fluid phase.  155 

IR spectra were measured at room temperature and high pressure to examine 156 

the existence of OH vibration mode after heating at 1500 K and 3.0 GPa (Fig. 3). Figure 157 
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4a shows representative IR spectra with decreasing pressure, as obtained exclusively 158 

from the fluid phase smaller than 30 μm in one direction. High spatial resolution of the 159 

FT-IR with synchrotron radiation enabled the measurements, which were done in the 160 

measured area depicted in Fig. 3. An OH stretching mode was observed at 3260 cm-1 at 161 

3.0 GPa. Additionally, weak peaks assignable to the vibration mode of H2 molecules 162 

were observed at 4211 cm-1. Combination modes of the vibration mode plus the rotation 163 

mode of molecular H2 were observed at 4622 cm-1 and 4805 cm-1 (Fig. 4a) (Gush et al., 164 

1960). Absorbance of the OH vibration mode was about 0.37 at 3.0 GPa. The OH 165 

vibration mode shifted to higher frequency with decreasing pressure down to 2.1 GPa 166 

(Figs. 4a, 4b). At 1.4 GPa, the OH vibration peak jumped to a lower frequency at 3200 167 

cm-1. The peak shifted to higher frequency with decreasing pressure down to 1.1 GPa. 168 

Below 0.6 GPa, the OH vibration peak almost disappeared along with vibrations 169 

derived from H2 molecules, indicating the release of the fluid phase from the sample 170 

chamber at approximately that pressure.  171 

Discussion  172 

Dissolution of quartz in H2 fluid was observed after heating in two conditions: 173 

2.0 GPa, 1700 K and 3.0 GPa, 1500 K. The SiH vibration and OH vibration modes were 174 
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found from the fluid phase measured by Raman and IR spectroscopies. SiH groups were 175 

found in the structure of SiO2 glass with SiOH groups and H2 molecules by reaction 176 

between H2 and SiO2 glass (Schmidt et al., 1998). The report described that the SiH 177 

vibration mode of SiO2 glass appeared at around 2250 cm-1 after quenching from 0.2 178 

GPa and around 1100 K to 1300 K to ambient condition (Schmidt et al., 1998). The SiH 179 

frequency in the SiO2 glass is markedly higher than that observed in the present study 180 

(2188 cm-1 at 0.4 GPa, see Figure 2b). Solid silane (SiH4), which is the simplest 181 

molecule that contains SiH groups, exhibits the SiH vibration mode at 2190 cm-1 at 1.7 182 

GPa (Chen et al., 2008), which is substantially lower than the SiH vibration mode 183 

observed in the present study. In case of SiH4 coexisting with H2, a miscible fluid phase 184 

was formed up to around 6 GPa at room temperature (Wang et al., 2009). The SiH 185 

vibration mode of the SiH4-H2 fluid shifted to higher frequencies compared with that of 186 

pure silane, and the SiH vibration frequency increases concomitantly with increasing 187 

H2/SiH4 ratio (Wang et al., 2009) (see Fig. 2b). The higher SiH vibration frequency than 188 

that of the pure SiH4 was explainable by intermolecular interaction between the SiH4 189 

and surrounding H2 fluid (Wang et al., 2009). The present SiH frequency appeared even 190 

higher than that observed by Wang et al. (2009) in the SiH4-H2 fluid with the H2/SiH4 of 191 
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5. Results obtained in the present study suggest the formation of a SiH4-H2 miscible 192 

fluid with H2/SiH4 greater than 5. SiH4 molecules are likely to be formed with a 193 

chemical reaction between dissolved SiO2 components and H2 fluid. For SiH4-H2 fluid, 194 

downshifting of the stretching mode of H2 molecules was reported (Wang et al., 2009), 195 

although no such a shift was observed in the present study (Fig. 1b). The H2/SiH4 ratio 196 

in the present study is considerably higher than that observed in the previous SiH4-H2 197 

experiment (Wang et al., 2009), and downshift of the HH stretching mode is regarded as 198 

too small to be detected.  199 

The OH stretch frequency with decreasing pressure from 3.0 GPa to 2.1 GPa 200 

observed in this study correspond to that of ice VII, even though the OH vibration mode 201 

of this study was obtained from the IR absorption spectra and that of ice VII was 202 

measured using Raman spectra (Walrafen et al., 1982) (Fig. 4b). At 1.4 GPa and 1.1 203 

GPa, the OH vibration frequency corresponds to that of ice VI measured using Raman 204 

spectroscopy (Abebe and Walrafen, 1979). Additionally, the phase transition pressure 205 

between ice VI and ice VII was reported at around 2 GPa, room temperature (Pistoriu et 206 

al., 1968), which is approximately consistent with the pressure of the jump of OH 207 

vibration mode observed in the present study. These facts indicate that the OH vibration 208 
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mode observed in this study originated from H2O molecules. Molar concentration of 209 

H2O in the fluid phase was estimated roughly as 1 % using molar absorptivity for the 210 

OH stretching mode of liquid water (81 liter mol-1 cm-1) (Thompson, 1965).  211 

Results of the present study suggest the formation of SiH4 and H2O by the 212 

dissolution of quartz in H2, indicating the chemical reaction between dissolved SiO2 213 

components and solvent H2. In this case, direct bonding between H atoms and a Si atom 214 

was formed. By dissolution of SiO2 composition in H2O fluid, SiOH groups such as 215 

H4SiO4 and/or its polymer were observed at high-pressure and high-temperature 216 

conditions between about 500 and 800 cm-1 in Raman spectra (Zotov and Keppler, 217 

2000; Zotov and Keppler, 2002; Mysen, 2009; Mysen, 2010). The SiOH group and CH3 218 

group were also found by reaction of SiO2 and CH4 fluid in a reduced condition where 219 

CH4 is the most abundant C-O-H fluid with H2O fluid and minor amount of H2 fluid 220 

(Mysen and Yamashita, 2010). In these cases, Si-H groups formation was not reported. 221 

The dissolution species in H2 fluid differs greatly from those observed in H2O and CH4 222 

fluids. The new chemical reaction with the dissolution observed in this study might be 223 

related to the high solubility of the SiO2 composition in H2 fluid.  224 

Implications 225 
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The ratio of H2/H2O in the mantle was regarded as controlled by the surrounding 226 

oxidation states (e.g. Ballhaus and Frost, 1994; Ballhaus, 1995; Frost and McCammon, 227 

2008; Sokol et al., 2009), i.e., the oxidation of H2 to H2O is induced by the reduction of 228 

iron contained in silicate minerals. However, results of the present study showed the 229 

formation of H2O molecules by the chemical reaction between SiO2 and H2 fluid in an 230 

iron-free system. We inferred that a part of H2 in the mantle oxidized to form H2O with 231 

dissolution or melting of coexisting silicate minerals. The ratio of H2/H2O in the mantle 232 

might depend not only on surrounding Fe3+/∑Fe, but also on the dissolution and melting 233 

of SiO2 components. To ascertain the ratio of H2/H2O in the fluid in the mantle, 234 

additional experiments should be conducted in more realistic mantle compositions, in 235 

which not only Fe3+/∑Fe, but also the phase relation and melting of silicate minerals 236 

should be involved.  237 
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Figure legends  382 

Fig. 1 Representative Raman spectra of fluid + quartz at 1.7 GPa before heating and 383 

fluid phase at 2.0 GPa after heating in two Raman shift regions: (a) between 200 cm-1 384 

and 800 cm-1 and (b) between 4100 cm-1 to 4300 cm-1.  385 

Fig. 2 (a) Raman spectra of a SiH vibration mode obtained from the fluid phase after 386 

heating with decreasing pressure in the region from 2100 cm-1 to 2300 cm-1. A broad 387 

peak at around 2200 cm-1 is the secondary peak of diamond used as anvils. (b) Pressure 388 

dependence of frequencies of the SiH vibration modes.  389 

Fig. 3 Optical microphotograph of the sample after heating at 1500 K, 3.0 GPa. A square 390 

in the picture shows the measured area of the IR spectra (15 μm × 15 μm).  391 

Fig. 4(a) Representative IR absorption spectra with decreasing pressure at room 392 

temperature between 2700 cm-1 to 5200 cm-1. (b) Pressure dependence of the frequencies 393 

of OH vibration modes. Those of ice VI and ice VII were referred from earlier reports 394 

(Abebe and Walrafen, 1979; Walrafen et al., 1982).  395 
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