1 Revision 1

2	Formation of SiH ₄ and H ₂ O by the dissolution of quartz in H ₂ fluid under high
3	pressure and temperature
4	Ayako Shinozaki ^a , Hiroyuki Kagi ^a , Naoki Noguchi ^{a*} , Hisako Hirai ^b , Hiroaki Ohfuji ^b ,
5	Taku Okada ^c , Satoshi Nakano ^d , and Takehiko Yagi ^b
6	^a Geochemical Research Center, Graduate School of Science, The University of Tokyo,
7	Hongo, Tokyo 113-0033, Japan
8	^b Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime,
9	790-8577, Japan
10	^c Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa,
11	Chiba 277-8581, Japan
12	^d National Institute for Materials Science, Namiki, Tsukuba, Ibaraki 305-0044
13	

- 14 Corresponding author: Ayako Shinozaki
- 15 Phone number: +81-3-5841-4450
- 16 E-mail address: shinozaki@eqchem.s.u-tokyo.ac.jp
- 17 Full postal address: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- 18
- 19 *Present address: Department of Applied Chemistry, Graduate School of Engineering,
- 20 Hiroshima University, Hiroshima, 739-8527, Japan

22 Abstract

23	Species dissolved in H ₂ fluid were investigated in a SiO ₂ -H ₂ system. Raman and
24	infrared (IR) spectra were measured at high pressure and room temperature after heating
25	experiments conducted at two pressure and temperature conditions: 2.0 GPa, 1700 K
26	and 3.0 GPa, 1500 K. With the dissolution of quartz, a SiH vibration mode assignable to
27	SiH ₄ was detected from Raman spectra of the fluid phase. Furthermore, an OH vibration
28	mode was observed at 3260 cm ⁻¹ from the IR spectra at 3.0 GPa. With decreasing
29	pressure, the OH vibration frequencies observed between 3.0 GPa and 2.1 GPa
30	correspond to that of ice VII, and those observed at 1.4 GPa and 1.1 GPa correspond to
31	that of ice VI. These results indicate that the chemical reaction between dissolved SiO_2
32	components and H_2 fluid caused the formation of H_2O and SiH ₄ , which was contrastive
33	to that observed in SiO ₂ –H ₂ O fluid. Results imply that a part of H ₂ is oxidized to form
34	$\mathrm{H}_2\mathrm{O}$ when SiO_2 components of mantle minerals dissolve in H_2 fluid, even in an
35	iron-free system.
36	Key words: H ₂ -H ₂ O fluid; dissolution; Raman; IR; laser-heated diamond anvil cell

- 37
- 38

39 Introduction

40	Fluids in the Earth's mantle influence phase relations, melting temperatures,
41	chemical compositions, and physical properties of co-existing silicate minerals.
42	Consequently, fluids in the mantle play an important role in elemental transportation,
43	melt formation, and mantle dynamics. Stability and phase relations of silicate minerals
44	depend on the Mg/Si ratio of silicate components dissolved in the coexisting fluid. For
45	example, the silicate composition dissolving in H2O fluid changes sharply from
46	SiO ₂ -rich to MgO-rich around 3 GPa, providing a change of the thermodynamically
47	stable phase in MgSiO ₃ -H ₂ O system from enstatite+forsterite+fluid to enstatite+fluid
48	(e.g. Zhang and Frantz 2000; Stalder et al. 2001; Mibe et al. 2002; Kawamoto et al.
49	2004). Such a change of Mg/Si ratio is regarded as induced by a change of the
50	dissolution species of silicate components in H ₂ O fluid. The dissolution of silica in H ₂ O
51	fluids has been extensively studied over a wide range of pressures and temperatures; the
52	silica species observed in $\mathrm{H}_2\mathrm{O}$ fluids are SiOH groups such as $\mathrm{H}_4\mathrm{SiO}_4$ and $\mathrm{H}_6\mathrm{Si}_2\mathrm{O}_7$
53	below 3 GPa (e.g. Anderson and Burnham, 1965; Manning, 1994; Shen and Keppler,
54	1995; Zotov and Keppler, 2000; Zotov and Keppler, 2002; Newton and Manning, 2003;
55	Newton and Manning, 2008; Mysen, 2009; Mysen, 2010). At pressures higher than 3

56 GPa, the existence of MgOH groups was reported from an investigation of the hydrous

57 silicate melt structure (Yamada et al., 2011).

58	Fluids in the Earth's mantle contain considerable amounts of H_2 in addition to
59	$\mathrm{H_2O}.$ The ratio of $\mathrm{H_2/H_2O}$ is likely to depend on the surrounding oxidation state. In
60	general, the crust and the shallow mantle are in an oxidizing condition (close to FMQ
61	buffer) (Frost and McCammon, 2008). Consequently, fluids in the shallow depth contain
62	little H_2 . The mantle is reduced progressively with depth. Then the oxidation state
63	becomes close to the iron-wustite buffer at depths greater than >200 km (e.g. Woodland
64	and Koch, 2003; McCammon and Kopylova, 2004; Rohrbach et al., 2007; Frost and
65	McCammon, 2008; Goncharov et al., 2012). Thermodynamical calculations
66	demonstrated that a molar fraction of H_2 is expected to increase concomitantly with
67	increasing depth and approached about 10-20% in such reduced mantle (e.g. Ballhaus,
68	1995; Frost and McCammon, 2008; Goncharov et al., 2012). Moreover, Sokol et al.
69	(2009) demonstrated experimentally that the molar fraction of H_2 becomes >50% at 6.3
70	GPa, 1873 K, in the iron–wustite buffer. Results of these studies show that H_2 is a major
71	component of fluids in the reduced mantle.

72

The existence of H₂ is predicted even in the shallow mantle because the oxygen

fugacity does not vary with depth only, but also with local settings (Wood et al., 1990).
For example, a certain amount of H ₂ is producible by serpentinization in the shallow
mantle (Sleep et al., 2004). In addition, H_2 is estimated as a major component in the
atmosphere of the early Earth (e.g. Hashimoto et al., 2007; Schaefer and Fegley, 2007).
A considerable amount of H ₂ can be dissolved in the magma ocean (Hirschmann et al.,

78	2012). In the p	pressure and	temperature	conditions	of the	shallow	part c	of the	early	mantle,
----	-----------------	--------------	-------------	------------	--------	---------	--------	--------	-------	---------

79 immiscibility between H₂O and H₂ fluid is likely to occur (Bali et al., 2013), implying

80 that H₂ fluid exists even in high purity in such a condition. These studies indicate that H₂

81 exists even in the shallow mantle both in the present Earth and in the early Earth.

82 Therefore, the influence of H_2 on the phase relations of surrounding silicate minerals

should be investigated in a wide range of pressure and temperature conditions, as well

84 as in studies of H_2O and silicate minerals.

73

74

75

76

77

For the Mg₂SiO₄-H₂ system, we found recently that forsterite (Mg₂SiO₄) decomposed to form periclase (MgO) with dissolution of SiO₂ components at 2.5–15.0 GPa and around 1500 K (Shinozaki et al., 2013). In addition, the quartz dissolution was observed in a SiO₂-H₂ system, although periclase was dissolved only slightly in a MgO-H₂ system (Shinozaki et al., 2013). The decomposition of forsterite and

90	crystallization of periclase indicated that the Mg/Si ratio in H ₂ fluid is markedly lower
91	than that in H_2O fluid, in which forsterite is stable with H_2O fluid up to around 10 GPa
92	(e.g. Inoue, 1994; Stalder et al., 2001; Mibe et al., 2002; Kawamoto et al., 2004). To
93	reveal the reason for the difference in Mg/Si composition dissolved between H_2 and
94	H ₂ O fluids, the dissolution species in the fluid phases should be investigated. In this
95	study, species of dissolved component in H_2 fluid were investigated in a SiO ₂ -H ₂ system
96	using Raman and infrared spectroscopy under high pressure.
97	Material and methods
98	High-pressure and high-temperature experiments were performed using a
99	diamond anvil cell (DAC) with 450 μm and 600 μm culets. A hole drilled in a rhenium
100	gasket after pre-compression was used as a sample chamber. The sample chamber
101	diameter and the thickness before the experiment were about 200 μm and about 150 $\mu m,$
102	respectively. The sample chamber thickness became about 75 μ m after the experiment.
103	The starting materials used for this study were natural quartz (SiO ₂) and hydrogen gas
104	(H ₂ ; 99.99999% purity). A few particles of quartz crystals with a grain size of about
105	$50150~\mu\text{m}$ were polished to about 50 μm thickness from both sides and were then loaded
106	into a sample chamber together with ruby particles. Then, H ₂ gas was introduced into a

107	sample chamber as a supercritical fluid after compression at approximately 0.13-0.18
108	GPa at room temperature using gas-loading apparatuses (Yagi et al., 1996; Takemura et
109	al., 2001). Pressure was measured using the ruby fluorescence method (Mao et al., 1978).
110	Samples were first compressed to the target pressure at room temperature and
111	were then heated from a single side using a CO ₂ laser. Temperature was measured using
112	spectroradiometry. The uncertainty of the heating temperature was estimated as ± 200 K
113	from the lateral temperature distribution in the sample chamber and the fluctuation of
114	laser power. The heating duration was about 5-10 min. The samples were quenched to
115	room temperature by turning off the laser. In this study, two runs were performed,
116	respectively, at 2.0 GPa and 1700 K, and 3.0 GPa and 1500 K.
117	Raman spectra of the samples were observed using micro-Raman spectrometry
118	under high pressure and room temperature. The typical constitution of a Raman
119	spectrometer is the following: an Ar^+ laser (λ =514.5 nm) (about 10 mW at the sample
120	surface), an optical microscope with objective lens (typically $20 \times$ magnification and
121	0.35 numerical aperture), single polychromator, and CCD-detector. Scattered light was
122	dispersed using a grating with 1200 grooves per millimeter. Raman bands of naphthalene,
123	silicon, and neon emission lines were used for Raman shift calibration. The spectral

124	resolution was approximately 2 cm ⁻¹ . The typical accumulation time for each
125	measurement was approximately 60 s. IR absorption spectra were obtained at BL43IR
126	in SPring-8 at high pressure and room temperature with synchrotron radiation as a light
127	source, an FT-IR spectrometer (Hyperion2000; Bruker Co.), a Ge-coated KBr beam
128	splitter, and an InSb detector. All measurements were performed in transmission mode.
129	The aperture was 15 μ m ×15 μ m. The wavenumber resolution was set to 4 cm ⁻¹ .
130	3. Results
131	Figure 1a and Figure 1b show representative Raman spectra obtained from the
132	sample in DAC before and after heating. Before heating, the Raman spectrum was
133	obtained from the area which both a quartz grain and H_2 fluid existed. The observed
134	frequencies of SiO vibration modes of quartz and vibration modes of H_2 molecules
135	correspond to those of quartz (Dean et al., 1982; Schmidt and Ziemann, 2000) and pure
136	H ₂ fluid (Sharma et al., 1980), respectively. By laser heating at 1700 K and 2.0 GPa,
137	quartz crystals dissolved in H ₂ fluid and almost disappeared from the laser heating spot,
138	as described in a previous report (Shinozaki et al., 2013). After heating, the Raman
139	spectra of the fluid phase were measured at the heating spot, where SiO vibration modes
140	of quartz almost disappeared. However, peaks from hydrogen molecules were observed

141	without marked frequency shifts compared with those obtained before heating (Figs. 1a,
142	1b). In the surrounding part of the laser heating spot, quartz crystals remained. Coesite,
143	a denser phase of quartz, was not detected from the Raman spectra.
144	Figure 2a shows representative Raman spectra collected from the heating area
145	from 2100 cm ⁻¹ to 2300 cm ⁻¹ with decreasing pressure after heating. A peak assignable
146	to a SiH stretching mode newly appeared at 2228 cm ⁻¹ at 2.8 GPa. The frequency of the
147	new peak differed markedly from a stretching mode of carbon monoxide, which was
148	observed around 2140 cm ⁻¹ at around 3 GPa (Katz et al., 1984). The peak height of the
149	SiH vibration mode was approximately $<1/17$ of that of the H ₂ stretching mode. Figure
150	2b shows the pressure-dependence of the SiH vibration mode frequency. The SiH
151	vibration peak shifted to a lower frequency with decreasing pressure down to 0.4 GPa.
152	The SiH vibration peak disappeared at ambient pressure with the release of H_2 fluid
153	from the sample chamber. The SiH vibration peak was not detected when we measured
154	the unreacted quartz crystals. These results indicate that the SiH group existed not in the
155	quartz crystal structure, but in the fluid phase.
156	IR spectra were measured at room temperature and high pressure to examine

157 the existence of OH vibration mode after heating at 1500 K and 3.0 GPa (Fig. 3). Figure

158	4a shows representative IR spectra with decreasing pressure, as obtained exclusively
159	from the fluid phase smaller than 30 μm in one direction. High spatial resolution of the
160	FT-IR with synchrotron radiation enabled the measurements, which were done in the
161	measured area depicted in Fig. 3. An OH stretching mode was observed at 3260 cm ⁻¹ at
162	3.0 GPa. Additionally, weak peaks assignable to the vibration mode of H_2 molecules
163	were observed at 4211 cm ⁻¹ . Combination modes of the vibration mode plus the rotation
164	mode of molecular H_2 were observed at 4622 cm ⁻¹ and 4805 cm ⁻¹ (Fig. 4a) (Gush et al.,
165	1960). Absorbance of the OH vibration mode was about 0.37 at 3.0 GPa. The OH
166	vibration mode shifted to higher frequency with decreasing pressure down to 2.1 GPa
167	(Figs. 4a, 4b). At 1.4 GPa, the OH vibration peak jumped to a lower frequency at 3200
168	cm ⁻¹ . The peak shifted to higher frequency with decreasing pressure down to 1.1 GPa.
169	Below 0.6 GPa, the OH vibration peak almost disappeared along with vibrations
170	derived from H_2 molecules, indicating the release of the fluid phase from the sample
171	chamber at approximately that pressure.

172 **Discussion**

- 173 Dissolution of quartz in H₂ fluid was observed after heating in two conditions:
- 174 2.0 GPa, 1700 K and 3.0 GPa, 1500 K. The SiH vibration and OH vibration modes were

175	found from the fluid phase measured by Raman and IR spectroscopies. SiH groups were
176	found in the structure of SiO_2 glass with SiOH groups and H_2 molecules by reaction
177	between H_2 and SiO_2 glass (Schmidt et al., 1998). The report described that the SiH
178	vibration mode of SiO_2 glass appeared at around 2250 cm ⁻¹ after quenching from 0.2
179	GPa and around 1100 K to 1300 K to ambient condition (Schmidt et al., 1998). The SiH
180	frequency in the SiO_2 glass is markedly higher than that observed in the present study
181	(2188 cm ⁻¹ at 0.4 GPa, see Figure 2b). Solid silane (SiH ₄), which is the simplest
182	molecule that contains SiH groups, exhibits the SiH vibration mode at 2190 cm ⁻¹ at 1.7
183	GPa (Chen et al., 2008), which is substantially lower than the SiH vibration mode
184	observed in the present study. In case of SiH_4 coexisting with H_2 , a miscible fluid phase
185	was formed up to around 6 GPa at room temperature (Wang et al., 2009). The SiH
186	vibration mode of the SiH ₄ -H ₂ fluid shifted to higher frequencies compared with that of
187	pure silane, and the SiH vibration frequency increases concomitantly with increasing
188	H ₂ /SiH ₄ ratio (Wang et al., 2009) (see Fig. 2b). The higher SiH vibration frequency than
189	that of the pure SiH_4 was explainable by intermolecular interaction between the SiH_4
190	and surrounding H ₂ fluid (Wang et al., 2009). The present SiH frequency appeared even
191	higher than that observed by Wang et al. (2009) in the SiH_4 -H ₂ fluid with the H ₂ /SiH ₄ of

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4798

192	5. Results obtained in the present study suggest the formation of a $\rm SiH_4\text{-}H_2$ miscible
193	fluid with H_2/SiH_4 greater than 5. SiH ₄ molecules are likely to be formed with a
194	chemical reaction between dissolved SiO ₂ components and H ₂ fluid. For SiH ₄ -H ₂ fluid,
195	downshifting of the stretching mode of H ₂ molecules was reported (Wang et al., 2009),
196	although no such a shift was observed in the present study (Fig. 1b). The H_2/SiH_4 ratio
197	in the present study is considerably higher than that observed in the previous $\mathrm{SiH_4\text{-}H_2}$
198	experiment (Wang et al., 2009), and downshift of the HH stretching mode is regarded as
199	too small to be detected.
200	The OH stretch frequency with decreasing pressure from 3.0 GPa to 2.1 GPa
201	observed in this study correspond to that of ice VII, even though the OH vibration mode
202	of this study was obtained from the IR absorption spectra and that of ice VII was
203	measured using Raman spectra (Walrafen et al., 1982) (Fig. 4b). At 1.4 GPa and 1.1
204	GPa, the OH vibration frequency corresponds to that of ice VI measured using Raman
205	spectroscopy (Abebe and Walrafen, 1979). Additionally, the phase transition pressure
206	between ice VI and ice VII was reported at around 2 GPa, room temperature (Pistoriu et
207	al., 1968), which is approximately consistent with the pressure of the jump of OH
208	vibration mode observed in the present study. These facts indicate that the OH vibration

209	mode observed in this study originated from H ₂ O molecules. Molar concentration of
210	$\mathrm{H_{2}O}$ in the fluid phase was estimated roughly as 1 % using molar absorptivity for the
211	OH stretching mode of liquid water (81 liter mol ⁻¹ cm ⁻¹) (Thompson, 1965).
212	Results of the present study suggest the formation of SiH ₄ and H ₂ O by the
213	dissolution of quartz in $\mathrm{H}_2,$ indicating the chemical reaction between dissolved SiO_2
214	components and solvent H ₂ . In this case, direct bonding between H atoms and a Si atom
215	was formed. By dissolution of SiO_2 composition in H_2O fluid, SiOH groups such as
216	H ₄ SiO ₄ and/or its polymer were observed at high-pressure and high-temperature
217	conditions between about 500 and 800 cm ⁻¹ in Raman spectra (Zotov and Keppler,
218	2000; Zotov and Keppler, 2002; Mysen, 2009; Mysen, 2010). The SiOH group and CH_3
219	group were also found by reaction of SiO ₂ and CH ₄ fluid in a reduced condition where
220	CH_4 is the most abundant C-O-H fluid with $\mathrm{H}_2\mathrm{O}$ fluid and minor amount of H_2 fluid
221	(Mysen and Yamashita, 2010). In these cases, Si-H groups formation was not reported.
222	The dissolution species in H_2 fluid differs greatly from those observed in H_2O and CH_4
223	fluids. The new chemical reaction with the dissolution observed in this study might be
224	related to the high solubility of the SiO_2 composition in H_2 fluid.

225 Implications

226	The ratio of H_2/H_2O in the mantle was regarded as controlled by the surrounding
227	oxidation states (e.g. Ballhaus and Frost, 1994; Ballhaus, 1995; Frost and McCammon,
228	2008; Sokol et al., 2009), i.e., the oxidation of H_2 to H_2O is induced by the reduction of
229	iron contained in silicate minerals. However, results of the present study showed the
230	formation of H_2O molecules by the chemical reaction between SiO_2 and H_2 fluid in an
231	iron-free system. We inferred that a part of H_2 in the mantle oxidized to form $\mathrm{H}_2\mathrm{O}$ with
232	dissolution or melting of coexisting silicate minerals. The ratio of H_2/H_2O in the mantle
233	might depend not only on surrounding $Fe^{3+}/\Sigma Fe$, but also on the dissolution and melting
234	of SiO ₂ components. To ascertain the ratio of H_2/H_2O in the fluid in the mantle,
235	additional experiments should be conducted in more realistic mantle compositions, in
236	which not only $Fe^{3+}/\Sigma Fe$, but also the phase relation and melting of silicate minerals
237	should be involved.

238 Acknowledgments

This study was supported by the G-COE program Deep Earth Mineralogy and the Sasakawa Scientific Research Grant from The Japan Science Society. A. Shinozaki was supported by a JSPS Research Fellowship for Young Scientists. This study was conducted under the Visiting Researcher's Program of the Institute for Solid State Physics,

- 243 The University of Tokyo. Synchrotron radiation experiments were performed at BL43IR
- 244 of SPring-8, Japan, with the approval of the Japan Synchrotron Radiation Research
- 245 Institute (JASRI) (Proposal No. 2012B1104). We thank Dr. T. Moriwaki for supporting
- the FT-IR measurements at BL43IR, SPring-8.

248 **References**

249	Abebe, M., and Walrafen, G.E. (1979) Raman studies of ice-VI using a diamond anvil
250	cell. Journal of Chemical Physics, 71(10), 4167-4169.
251	Anderson, G.M., and Burnham, C.W. (1965) Solubility of quartz in supercritical water
252	American Journal of Science, 263(6), 494-&.
253	Bali, E., Audétat, A., and Keppler, H. (2013) Water and hydrogen are immiscible in
254	Earth's mantle. Nature, 495(7440), 220-222.
255	Ballhaus, C. (1995) Is the upper mantle metal-saturated? Earth and Planetary Science
256	Letters, 132(1-4), 75-86.
257	Ballhaus, C., and Frost, B.R. (1994) The generation of oxidized CO ₂ -bearing basaltic
258	melts from reduced CH4-bearing upper mantle sources. Geochimica et
259	Cosmochimica Acta, 58(22), 4931-4940.
260	Chen, X.J., Struzhkin, V.V., Song, Y., Goncharov, A.F., Ahart, M., Liu, Z.X., Mao, H.,
261	and Hemley, R.J. (2008) Pressure-induced metallization of silane. Proceedings
262	of the National Academy of Sciences of the United States of America, 105(1),
263	20-23.
264	Dean, K.J., Sherman, W.F., and Wilkinson, G.R. (1982) Temperature and

265	pressure-dependence of the Raman active-mode of vibration of α -quartz.
266	Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy, 38(10),
267	1105-1108.

- Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annu. Rev.
- 269 Earth Planet. Sci., 36, 389-420.
- 270 Goncharov, A.G., Ionov, D.A., Doucet, L.S., and Pokhilenko, L.N. (2012) Thermal state,
- 271 oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle:
- 272 New data on peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth
- and Planetary Science Letters, 357, 99-110.
- Gush, H.P., Hare, W.F.J., Allin, E.J., and Welsh, H.L. (1960) The infrared fundamental
- band of liquid and solid hydrogen Canadian Journal of Physics, 38(2), 176-193.
- Hashimoto, G.L., Abe, Y., and Sugita, S. (2007) The chemical composition of the early
- 277 terrestrial atmosphere: Formation of a reducing atmosphere from CI-like
- 278 material. Journal of Geophysical Research-Planets, 112 (E5).
- 279 Hirschmann, M.M., Withers, A.C., Ardia, P., and Foley, N.T. (2012) Solubility of
- 280 molecular hydrogen in silicate melts and consequences for volatile evolution of
- terrestrial planets. Earth and Planetary Science Letters, 345, 38-48.

- Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the system Mg₂SiO₄-MgSiO₃-H₂O up to 15 GPa. Physics of the Earth and Planetary Interiors, 85(3-4), 237-263.
- 285 Katz, A.I., Schiferl, D., and Mills, R.L. (1984) New Phases and chemical-reactions in
- solid CO under pressure. Journal of Physical Chemistry, 88(15), 3176-3179.
- 287 Kawamoto, T., Matsukage, K.N., Mibe, K., Isshiki, M., Nishimura, K., Ishimatsu, N.,
- and Ono, S. (2004) Mg/Si ratios of aqueous fluids coexisting with forsterite and
- 289 enstatite based on the phase relations in the Mg_2SiO_4 -SiO₂-H₂O system.
- 290 American Mineralogist, 89(10), 1433-1437.
- 291 Manning, C.E. (1994) The solubility of quartz in H₂O in the lower crust and upper

mantle. Geochimica et Cosmochimica Acta, 58(22), 4831-4839.

- 293 Mao, H., Bell, P., Shaner, J.W., and Steinberg, D. (1978) Specific volume measurements
- 294 of Cu, Mo, Pd, and Ag and calibration of the ruby R_1 fluorescence pressure
- gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49(6), 3276-3283.
- 296 McCammon, C., and Kopylova, M.G. (2004) A redox profile of the slave mantle and
- 297 oxygen fugacity control in the cratonic mantle. Contributions to Mineralogy and
- 298 Petrology, 148(1), 55-68.

299	Mibe, K., Fujii, T., and Yasuda, A. (2002) Composition of aqueous fluid coexisting with
300	mantle minerals at high pressure and its bearing on the differentiation of the
301	Earth's mantle. Geochimica et Cosmochimica Acta, 66(12), 2273-2285.
302	Mysen, B.O. (2009) Solution mechanisms of silicate in aqueous fluid and $\mathrm{H_{2}O}$ in
303	coexisting silicate melts determined in-situ at high pressure and high
304	temperature. Geochimica et Cosmochimica Acta, 73(19), 5748-5763.
305	Mysen, B. O. (2010) Speciation and mixing behavior of silica-saturated aqueous fluid at
306	high temperature and pressure. American Mineralogist, 95(11-12), 1807-1816.
307	Mysen, B.O., and Yamashita, S. (2010) Speciation of reduced C-O-H volatiles in
308	coexisting fluids and silicate melts determined in-situ to similar to \sim 1.4 GPa and
309	800°C. Geochimica et Cosmochimica Acta, 74(15), 4577-4588.
310	Newton, R.C., and Manning, C.E. (2003) Activity coefficient and polymerization of
311	aqueous silica at 800 degrees°C, 12 kbar, from solubility measurements of
312	SiO ₂ -buffering mineral assemblages. Contributions to Mineralogy and Petrology,
313	146(2), 135-143.
314	Newton, R.C., and Manning, C.E. (2008) Thermodynamics of SiO ₂ -H ₂ O fluid near the
315	upper critical end point from quartz solubility measurements at 10 kbar. Earth

2/12

316	and Planetary Science Letters, 274(1-2), 241-249.

317	Pistoriu, C.W.F.T., Rapoport, E., and Clark, J.B. (1968) Phase diagrams of H ₂ O and
318	D ₂ O at high pressures. Journal of Chemical Physics, 48(12), 5509-5514.
319	Rohrbach, A., Ballhaus, C., Golla-Schindler, U., Ulmer, P., Kamenetsky, V.S., and
320	Kuzmin, D.V. (2007) Metal saturation in the upper mantle. Nature, 449(7161),
321	456-8.
322	Schaefer, L., and Fegley, B. (2007) Outgassing of ordinary chondritic material and some
323	of its implications for the chemistry of asteroids, planets, and satellites. Icarus,
324	186(2), 462-483.
325	Schmidt, B.C., Holtz, F.M., and Beny, J.M. (1998) Incorporation of H ₂ in vitreous silica,
326	qualitative and quantitative determination from Raman and infrared
327	spectroscopy. Journal of Non-Crystalline Solids, 240(1-3), 91-103.
328	Schmidt, C., and Ziemann, M.A. (2000) In-situ Raman spectroscopy of quartz: A
329	pressure sensor for hydrothermal diamond-anvil cell experiments at elevated
330	temperatures. American Mineralogist, 85(11-12), 1725-1734.
331	Sharma, S., Mao, H., and Bell, P. (1980) Raman measurements of hydrogen in the
332	pressure range 0.2-630 kbar at room temperature. Physical Review Letters,

333 44(13), 886-888.

334	Shen, A., and Keppler, H. (1995) Infrared spectroscopy of hydrous silicate melts to
335	1000 degrees $^{\circ}$ C and 10 kbar: Direct observation of H ₂ O speciation in a
336	diamond-anvil cell. American Mineralogist, 80(11-12), 1335-1338.
337	Shinozaki, A., Hirai, H., Ohfuji, H., Okada, T., Machida, S., and Yagi, T. (2013)
338	Influence of H ₂ fluid on the stability and dissolution of Mg ₂ SiO ₄ forsterite under
339	high pressure and high temperature. American Mineralogist, 98, 1604-1609.
340	Sleep, N.H., Meibom, A., Fridriksson, T., Coleman, R.G., and Bird, D.K. (2004) H ₂ -rich
341	fluids from serpentinization: Geochemical and biotic implications. Proceedings
342	of the National Academy of Sciences of the United States of America, 101(35),
343	12818-12823.
344	Sokol, A.G., Palyanova, G.A., Palyanov, Y.N., Tomilenko, A.A., and Melenevsky, V.N.
345	(2009) Fluid regime and diamond formation in the reduced mantle:
346	Experimental constraints. Geochimica et Cosmochimica Acta, 73(19),
347	5820-5834.
348	Stalder, R., Ulmer, P., Thompson, A., and Günther, D. (2001) High pressure fluids in the
349	system MgO-SiO ₂ -H ₂ O under upper mantle conditions. Contributions to

- 350 Mineralogy and Petrology, 140(5), 607-618.
- 351 Takemura, K., Ch., S.P., Kunii, Y., and Toma, Y. (2001) Versatile gas-loading system for
- diamond-anvil cells. Review of Scientific Instruments, 72(10), 3873-3876.
- 353 Thompson, W.K. (1965) Infra-red spectroscopic studies of aqueous systems. 1.
- Transactions of the Faraday Society, 61(516), 1635-1640.
- 355 Walrafen, G.E., Abebe, M., Mauer, F.A., Block, S., Piermarini, G.J., and Munro, R.
- 356 (1982) Raman and X-ray investigations of Ice VII to 36.0 GPa. Journal of
- 357 Chemical Physics, 77(4), 2166-2174.
- 358 Wang, S., Mao, H.K., Chen, X.J., and Mao, W.L. (2009) High pressure chemistry in the
- H₂-SiH₄ system. Proceedings of the National Academy of Sciences of the United
- 360 States of America, 106(35), 14763-14767.
- 361 Wood, B.J., Bryndzia, L.T., and Johnson, K.E. (1990) Mantle oxidation-state and its
- 362 relationship to tectonic environment and fluid speciation. Science, 248(4953),
- 363 337-345.
- 364 Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the
- 365 upper mantle beneath the Kaapvaal craton, southern Africa. Earth and Planetary
- 366 Science Letters, 214(1-2), 295-310.

367	Yagi, T., Yusa, H., and Yamakata, M. (1996) An apparatus to load gaseous materials to
368	the diamond-anvil cell. Review of Scientific Instruments, 67(8), 2981-2984.
369	Yamada, A., Inoue, T., Urakawa, S., Funakoshi, K.I., Funamori, N., Kikegawa, T., and
370	Irifune, T. (2011) In situ X-ray diffraction study on pressure-induced structural
371	changes in hydrous forsterite and enstatite melts. Earth and Planetary Science
372	Letters, 308(1-2), 115-123.
373	Zhang, Y.G., and Frantz, J.D. (2000) Enstatite-forsterite-water equilibria at elevated
374	temperatures and pressures. American Mineralogist, 85(7-8), 918-925.
375	Zotov, N., and Keppler, H. (2000) In-situ Raman spectra of dissolved silica species in
376	aqueous fluids to 900 °C and 14 kbar. American Mineralogist, 85(3-4), 600-603.
377	Zotov, N., and Keppler, H. (2002) Silica speciation in aqueous fluids at high pressures
378	and high temperatures. Chemical Geology, 184(1-2), 71-82.
379	
380	

24

382 Figure legends

- 383 Fig. 1 Representative Raman spectra of fluid + quartz at 1.7 GPa before heating and
- fluid phase at 2.0 GPa after heating in two Raman shift regions: (a) between 200 cm^{-1}
- 385 and 800 cm⁻¹ and (b) between 4100 cm⁻¹ to 4300 cm⁻¹.
- 386 Fig. 2 (a) Raman spectra of a SiH vibration mode obtained from the fluid phase after
- heating with decreasing pressure in the region from 2100 cm⁻¹ to 2300 cm⁻¹. A broad
- 388 peak at around 2200 cm⁻¹ is the secondary peak of diamond used as anvils. (b) Pressure
- 389 dependence of frequencies of the SiH vibration modes.
- 390 Fig. 3 Optical microphotograph of the sample after heating at 1500 K, 3.0 GPa. A square
- in the picture shows the measured area of the IR spectra ($15 \mu m \times 15 \mu m$).
- 392 Fig. 4(a) Representative IR absorption spectra with decreasing pressure at room
- temperature between 2700 cm⁻¹ to 5200 cm⁻¹. (b) Pressure dependence of the frequencies
- 394 of OH vibration modes. Those of ice VI and ice VII were referred from earlier reports
- 395 (Abebe and Walrafen, 1979; Walrafen et al., 1982).

Fig. 1a

Fig. 1b

Fig. 2a

Fig. 2b

Fig. 3

Fig. 4a

Fig. 4b

