2/12

1 #4771 REVISIO	ON 1
-----------------	------

- 2 Revised January 13, 2014
- 3 Original manuscript submitted October 15, 2013
- 4

- 6 ROCK DIATREME, UTAH
- 7
- 8 Daniel J. Schulze
- 9 Department of Earth Sciences and Department of Chemical and Physical Sciences,
- 10 University of Toronto, Mississauga, Ontario, Canada L5L 1C6
- 11 Roberta L. Flemming
- 12 Department of Earth Sciences, Western University, London, Ontario, Canada N6A 5B7
- 13 Patrick H.M. Shepherd
- 14 Department of Earth Sciences, Western University, London, Ontario, Canada N6A 5B7
- 15 Herwart Helmstaedt
- 16 Department of Geological Sciences and Geological Engineering, Queen's University,
- 17 Kingston, Ontario, Canada K7L 3N6
- 18
- 19
- 20
- 21

2/12

22 Abstract

23	Guyanaite, naturally occurring β -CrOOH, has been identified in a xenolith of Cr-rich
24	omphacitite from the Moses Rock diatreme in the Navajo Volcanic Field of the southwestern
25	United States. It occurs as the dominant phase in small clusters of accessory minerals,
26	intergrown with kosmochlor-rich omphacite, zincian chromite, eskolaite and carmichaelite. The
27	assemblage is interpreted as the result of metasomatism of chromite-bearing serpentinite by slab-
28	derived fluids during subduction of the Farallon Plate in Laramide time. At the time of
29	entrainment of the xenolith, the rock was undergoing prograde metamorphism, with guyanaite
30	dehydrating to eskolaite plus water. This reaction, and the coeval dehydration of the inferred
31	accompanying host serpentinites (which would have been much more volumetrically
32	significant), provided water for hydration of the subcontinental upper mantle, contributing to
33	uplift of the Colorado Plateau. Recognition of guyanaite as a component of a subducted slab
34	supports recent proposals, based on laboratory experiments, that high-pressure polymorphs of
35	common crustal oxy-hydroxide minerals such as boehmite and goethite (i.e., high-pressure δ -
36	AlOOH and ϵ -FeOOH) can transport and store water into the upper mantle.
37	
38	Key words: guyanaite, upper mantle, xenolith, subduction, jade, kosmochlor, carmichaelite,
39	Colorado Plateau
40	
41	
42	
43	

44 Introduction

45	Guyanaite, a polymorph of CrOOH, is a rare mineral, previously described from only
46	three locations. It is named for the type locality in Guyana where it occurs as a component of so-
47	called "merumite" pebbles in gold and diamond placer deposits in the Merume River (Milton
48	and Narain, 1969; Milton et al., 1976), intergrown with two other polymorphs of CrOOH
49	(bracewellite and grimaldiite), eskolaite (Cr ₂ O ₃), mcconnellite (CrOOCu), chromian gahnite and
50	gold.
51	Here we describe guyanaite in a mantle-derived omphacitic clinopyroxenite xenolith
52	from the Moses Rock diatreme in the Navajo Volcanic Field in southeast Utah, USA (Watson,
53	1967). Its presence in an upper mantle setting is significant, as the synthetic equivalent, β -
54	CrOOH, has recently been shown to be stable to great depths in the mantle (pressures up to at
55	least 13.5 GPa; Jahn et al., 2012) and thus is a potentially significant repository for water in the
56	upper mantle.
57	
58	Petrography
59	The sample we studied (#12-97-50) is a xenolith 6 cm in maximum dimension dominated
60	by pale emerald green clinopyroxene with small clots of dark accessory minerals (clots to 2 mm)
61	around which the clinopyroxene is more intensely green in hand sample and in thin section. Fig.

62 1 is a back-scatter electron (BSE) image of a portion of one of the clusters of accessory minerals.

- 63 The clusters are dominated by lamellar intergrowths of guyanaite and clinopyroxene. Stringers
- of eskolaite traverse the guyanaite or occur at the guyanaite-clinopyroxene interfaces. Patches of
- 65 chromite are interspersed in some of the guyanaite-dominated clusters and consist of lamellar

66	intergrowths of two texturally different types of chromite, intergrown at the same scale as are the
67	guyanaite and clinopyroxene. In reflected light and BSE images one type of chromite has a
68	"spongy" texture and a darker BSE response due to lower average atomic number and the other
69	appears "clean" and brighter due to a higher average atomic number (Fig. 1). A few grains of
70	carmichaelite (a hydrous titanate mineral) occur in the clusters. Though similar in reflectivity
71	and BSE response to guyanaite, all carmichaelite grains larger than approximately 10 microns
72	have prominent cleavage (Fig. 1).
73	
74	Mineral Compositions
75	Minerals were analysed at Queen's University with a JEOL Superprobe, employing
76	standard wavelength dispersive methods and PAP corrections, using a combination of synthetic
77	and natural standards. Representative compositions given in Table 1 (average compositions and
78	standard deviations).
79	In this sample guyanaite, nominally CrOOH with 89.4 wt% Cr ₂ O ₃ , is inhomogeneous
80	(64.0 - 78.0 wt% Cr_2O_3) and contains substantial quantities of Fe_2O_3 (6.6 - 9.3 wt%) and TiO_2
81	(2.4 - 10.2 wt%) and smaller quantities of MgO $(0.4 - 1.8 wt%)$ and Al ₂ O ₃ $(1.3 - 1.6 wt%)$ as the
82	main impurities. Cr_2O_3 content is negatively correlated with Fe_2O_3 and TiO_2 .
83	Chromite is the only other accessory mineral in this rock that is significantly
84	inhomogeneous, as the two texturally distinct chromite varieties ("clean" and "spongy") are also
85	compositionally distinct from one another, though homogeneous within each group. The darker
86	grains with the "spongy" texture (chromite I) have greater Al_2O_3 and lower Cr_2O_3
87	(approximately 5.8 and 55.8 wt%, respectively) than do the lighter, "clean" chromites (chromite

88	II, approximately 1.9 and 64.9 wt%, respectively). Chromite II is more reduced than chromite I
89	$(Fe^{2+}/\Sigma Fe = 0.91 \text{ and } 0.79, \text{ respectively, calculated based on stoichiometry and charge balance}).$
90	Both types have significant zinc contents (ZnO in the range 5.5 - 5.7 wt% ZnO, equivalent to
91	approximately 15 mole % Zn(Al,Cr,Fe ³⁺) ₂ O ₄).
92	Carmichaelite is homogeneous, and dominated by TiO_2 (50.9 wt%) and Cr_2O_3 (29.3
93	wt%) with lesser Fe ₂ O ₃ (9.3 wt%) and minor MgO (1.4 wt%) and Al ₂ O ₃ (2.2 wt%) as significant
94	minor constituents.
95	Eskolaite is homogeneous, containing approximately 83.6 wt% Cr ₂ O ₃ with substantial
96	Fe_2O_3 (8.1 wt%) and TiO ₂ (6.3 wt%) and minor MgO (1.1 wt%) and Al ₂ O ₃ (1.6 wt%).
97	In the main body of the rock, clinopyroxenes are virtually Cr-free omphacites with end-
98	member compositions of approximately 10-24 mole percent jadeite (NaAlSi ₂ O ₆) and minor (7-
99	13%) acmite (NaFe ^{$3+$} Si ₂ O ₆). Within, and immediately adjacent to, clusters of accessory
100	minerals, the omphacitic pyroxenes are bright green and enriched in Cr (to 29 mole percent
101	kosmochlor - NaCrSi ₂ O ₆). Table 1 includes analyses of omphacite with the highest Cr value,
102	and the two Cr-poor samples with the highest and lowest jadeite components.
103	
104	Micro X-ray Diffraction of Guyanaite and Associated Minerals
105	In situ micro X-ray diffraction (μ XRD) of a polished thin section and of material from an
106	accessory mineral cluster extracted from the hand specimen was undertaken with a Bruker D8
107	Discover Micro X-ray diffractometer at Western University using cobalt radiation (Co k α λ =
108	1.79026 Å), operated at 35 kV and 45 mA. The theta-theta geometry of this instrument allows
109	the sample to remain horizontal and stationary during data collection. A Göbel mirror parallel

110	optics system with a pinhole collimator snout produced a nominal beam of 100 $\mu m.$ Target areas
111	were selected using a remote-controlled XYZ sample stage combined with a microscope and
112	laser system and a CCD camera for context images (e.g., Fig. 2a). Two-dimensional XRD data
113	(e.g., Fig. 2b) were collected using a Hi Star detector with General Area Detector Diffraction
114	System (GADDS) in omega scan mode. In this mode, the source and detector were
115	simultaneously rotated clockwise through 9-20 degrees to enable more lattice planes to satisfy
116	Bragg's Law in non-polycrystalline samples. Two 2D images were collected for each target and
117	integrated and merged to produce conventional intensity vs. 20 plots for mineral identification by
118	comparison with the International Centre for Diffraction Data (ICDD) database (via Bruker's
119	DiffractPLUS EVA evaluation software).
120	The μ XRD data for the clusters of accessory minerals confirm the presence of guyanaite,
121	kosmochlor and chromite plus minor eskolaite and/or carmichaelite (Fig. 2c). Unambiguous
122	identification of the phases is difficult due to the polymineralic nature and fine grain size of the
123	clusters and the considerable overlap of diffraction lines for the various phases (e.g., Fig. 2c).
124	The data best support identification of guyanaite as the CrOOH polymorph present as the lines
125	for guyanaite are a better match for the unknown than are those of bracewellite and grimaldiite
126	(Fig. 2d).
127	Textural information from the 2D GADDS images (Fig. 2b) show that guyanaite and the
128	kosmochlor-rich omphacite have similar grain sizes. They are relatively coarse-grained
129	crystallites (the data are bright spots as opposed to complete powder rings - see Flemming,
130	2007). The streaky nature of the bright spots is probably an orientation effect due to the
131	intergrown nature of the kosmochlor-rich omphacite and guyanaite.

132	Because of the relatively coarse-grained nature of the crystallites, not all of the expected
133	diffraction lines were obtained from any one location, as, even using omega scan mode, not all
134	lattice planes satisfied the diffraction condition. This added additional ambiguity to phase
135	identification. A stack plot of four targets in various orientations accounts for most of the
136	diffraction pattern for guyanaite (Fig. 2c. and 2d.).
137 138	Discussion
139	Guyanaite, identified here by its composition and crystal structure, has only been
140	described previously from three occurrences, all in crustal rocks. The occurrence in "merumite"
141	pebbles (a complex intergrowth of guyanaite, bracewellite, grimaldiite, eskoliate and other
142	minerals) in Guyana was described as having a hydrothermal origin with a possible protolith of
143	volcanic tuff (Milton and Narain, 1969; Milton et al., 1976). Guyanaite from the Outokumpu
144	massive sulfide deposit in Finland is a hydrous alteration product of eskolaite (Vourelainen et al.,
145	1968), apparently also of late-stage hydrothermal origin. Guyanaite was also mentioned as being
146	a component of lateritic alteration at the Omai mine in Guyana (Voicu and Bardot, 2002).
147	The guyanaite in this study is from a significantly different geologic setting. The
148	omphacitite xenolith in which it occurs is part of a suite of ultramafic xenoliths that includes
149	low-temperature metamorphic rocks such as lawsonite- and phengite-bearing eclogites, Cr-
150	pyrope xenocrysts with inclusions of hydrous minerals as well as hydrated peridotites and
151	pyroxenites containing minerals such as magnesian chlorite, antigorite and pargasite. All of
152	these rock types are clearly of mantle origin (e.g., McGetchin and Silver, 1972; Helmstaedt and
153	Doig, 1975; Smith, 1979, 1995). Xenoliths of omphacite rocks and jadeite clinopyroxenites
154	were interpreted by Helmstaedt and Schulze (1988) as having origins similar to those of jadeite

7

2/12

155 bodies associated with serpentinites in crustal settings.

156	As in such jadeitite bodies ("jade"), this sample is essentially monomineralic sodic
157	clinopyroxene (though not as jadeite-rich as classical jades, which typically have >90mole%
158	jadeite component in the pyroxene - Harlow and Sorensen, 2005). Enrichment of clinopyroxene
159	in the kosmochlor component adjacent to the clusters of Cr-rich minerals in our sample is also
160	similar to that occurring around chromite grains in the famous green jades of Myanmar (e.g.,
161	Yang, 1984; Shi et al., 2005). In addition, lawsonite eclogites are associated with some jadeite
162	bodies (e.g., in Guatemala - Tsujimori et al., 2006). A significant difference is that the Navajo
163	omphacitites do not contain secondary minerals such as albite and amphibole that are
164	characteristic of retrograde alteration processes that occur during transport of crustal occurrences
165	of jadeitite from their depths of formation in the mantle to Earth's surface (e.g., Harlow and
166	Sorensen, 2005).
167	The origin of jade bodies in paleo-subduction zone settings (e.g., Myanmar, Guatemala,
168	California) is thought to be due to metasomatic replacement of chromite-bearing serpentinites in
169	the mantle wedge above active subduction zones, or in bodies of serpentinized peridotite of
170	oceanic lithosphere origin dragged down the subduction zone, by fluids rich in Na, Al and Si
171	derived from prograde dehydration reactions in associated subducted slabs (e.g., Harlow and
172	Sorensen, 2005; Shi et al., 2005; Tsujimori and Harlow, 2012). Either scenario may apply to the
173	sample in this study, as serpentinized peridotites from both environments have been proposed to
174	exist in the Navajo mantle xenolith suite (Smith, 2010).
175	A serpentinite protolith for the omphacitite in our study is consistent with the presence of

176 the chromite-bearing accessory mineral clusters dominated by Cr-rich minerals, but the

177	evolutionary path from chromite to various Cr-rich minerals in the clusters is complex. The
178	peculiar texture of the lamellar intergrowths of guyanaite and kosmochlor-rich clinopyroxene
179	(Fig. 1) is reminiscent of altered spinel group minerals that have undergone exsolution and
180	oxidation resulting in skeletal intergrowths of relict oxides and alteration products (e.g.,
181	Haggerty, 1991). We interpret the accessory mineral clusters as altered Cr-rich spinels that have
182	experienced a similar history, followed by metasomatism by fluids rich in Na, Al and Si. This
183	metasomatism (the "jade-forming" process) ultimately resulted in replacement of the Al-rich
184	chromite lamellae by omphacite and the Cr-rich lamellae by guyanaite. The lamellar
185	intergrowths of two distinctly different chromites in the clusters (Fig. 1) are apparently relicts of
186	an intermediate exsolution stage between fresh chromite and the guyanaite-kosmochlor
187	intergrowths.
188	The relatively large size of the clusters of accessory minerals (to 2 mm) is inconsistent
189	with the protolith of this sample having been a basalt, as was suggested for the
190	phengite/lawsonite-bearing eclogites from these diatremes, in which the pyroxene is also
191	omphacite (e.g., Helmstaedt and Doig, 1975). Chromites in basalts are typically only tens to
192	hundreds of microns in size. The inferred parent spinels to the guyanaite-dominated
193	intergrowths (mm scale) are thus interpreted as phases in serpentinized peridotite in which spinel
194	grains are typically coarser. As spinel-group minerals in serpentinites have higher Zn contents
195	than do primary spinels in fresh peridotites (e.g., Sack and Ghiorso, 1991), the high Zn content
196	of the chromites in our sample is (15 mole% $Zn(Al,Cr,Fe^{3+})_2O_4$ component) consistent with a
197	serpentinite protolith for this rock, as opposed to direct conversion of peridotite to omphacitite
100	

199	Although constraints on the conditions of formation of the guyanaite in this sample are
200	few, the equilibration conditions of various other members of the xenolith suite have been
201	estimated using a variety of methods. Estimated pressures of equilibration are in the
202	approximate range 1.5-3.6 GPa and temperatures are in the range 410-800°C (e.g., Helmstaedt
203	and Schulze, 1988; Smith, 1995, 2010, 2013; Wang et al., 1999; Smith et al., 2004).
204	The textural relationship between the guyanaite and eskolaite (eskolaite is present as thin
205	rims and small stringers within the dominant guyanaite - Fig. 1) is interpreted as indicating that
206	at the time of entrainment as a xenolith, the rock was undergoing prograde metamorphism and
207	guyanaite was in the process of breaking down (dehydrating) to eskolaite plus water. The
208	conditions of guyanaite stability relative to eskolaite + water determined by synthesis
209	experiments (Jahn et al., 2012) can be applied to constrain the conditions of formation of the
210	guyanaite-eskolaite intergrowths (bearing in mind that the experimental data are for end-member
211	CrOOH and the guyanaite in our sample contains considerable Ti and Fe - Table 1). Both data
212	sets (the equilibration conditions for other xenoliths and the data of Jahn et al., 2012) are shown
213	in Fig. 3, as are the estimated equilibration conditions for three phengite-bearing eclogites
214	(Smith et al., 2004). We suggest that a reasonable estimate of conditions of the beginning of the
215	breakdown of guyanaite to eskolaite in this sample is in the range 650-800°C, 2.5-3.5 GPa.
216	The discovery of eskolaite intergrown with diamond (Logvinova et al., 2008) confirms
217	that eskolaite is also stable to great pressures. There may be a genetic link between the eskolaite
218	formed by prograde metamorphism of guyanaite in our sample and eskolaite associated with
219	diamond.
220	Carmichaelite, present as a minor constituent of the accessory mineral clusters, has been

221 described previously only as inclusions in Cr-pyrope xenocrysts from the nearby Garnet Ridge 222 diatreme (Wang et al., 1999, 2000), and no data exist that bear on its stability field. Together 223 with other hydrous minerals included in Cr-pyrope xenocrysts (e.g., amphibole, chlorite, 224 titanoclinohumite), it was interpreted as having formed from fluids derived from Proterozoic 225 subduction (e.g., Hunter and Smith, 1981; Smith, 1987; Wang et al., 1999, 2000), with the 226 products encapsulated in garnets in peridotite during prograde metamorphism of subducted 227 oceanic lithosphere and incorporated into the sub-cratonic Colorado Plateau lithospheric mantle. 228 The presence of strong gradients in Fe/Mg ratios in olivine grains also encapsulated in some of 229 the pyrope xenocrysts was interpreted as due to slow cooling of these minerals, consistent with 230 the interpretation that the encapsulated minerals were formed in the Proterozoic. In a re-231 evaluation of the Cr-pyrope xenocrysts, based on comparison between their olivine inclusions 232 and olivines in hydrous peridotites, Smith (2010) expressed reservations about their Proterozoic 233 heritage. We interpret the carmichaelite in our sample as having been a stable member of the 234 accessory mineral assemblage in the omphacitite in the open system of the upper mantle, actively 235 undergoing prograde metamorphim at the time of entrainment. 236 These two types of occurrences of carmichaelite are not easily explained by a single

mode of formation, as should probably be expected given that they are the only two occurrences of this mineral, and both are in xenoliths from the same volcanic field. In contrast to the model of carmichaelite formation in the Proterozoic, we interpret the carmichaelite/guyanaite xenolith as related to subduction of the Farallon Plate, the origin suggested by Helmstaedt and Doig, (1975) for the Navajo phengite- and lawsonite-bearing eclogites. It may have been a component of the oceanic Farallon slab itself, or may have been part of the serpentinized mantle wedge

243	overlying the subducted plate, as suggested for other xenoliths in the Navajo suite (Helmstaedt
244	and Schulze, 1991; Smith, 2010). The textural relationship of the guyanaite and eskolaite is
245	suggestive of dehydration of the guyanaite to eskolaite + water as an ongoing processes at the
246	time of entrainment of the xenolith into the diatreme. At the time of eruption, this reaction was
247	"live", and indicative of prograde metamorphism during heating and increase in pressure that
248	would accompany descent of the Farallon slab (and accompanying fragments of the wedge) into
249	the sub-Colorado Plateau mantle lithosphere. If our interpretation is valid (also see Usui et al.,
250	2003), either the significance of the carmichaelite-bearing pyropes described by Wang et al.
251	(1999, 2000) should be reconsidered, or the only two known occurrences of carmichaelite have
252	distinctly different origins.
253	Both guyanaite and carmichaelite are hydrous minerals and thus potentially important
254	repositories for water in the upper mantle, as well as vehicles for transporting water during
255	subduction, potentially deep into the mantle. They are, however, rare minerals, and their
256	importance in these processes is unclear. In crustal occurrences of jade, host serpentinites are

257 much more volumetrically significant, and we suggest that large volumes of serpentinite was

transported along with the omphacitites and also dehydrated. We concur with Smith (2010) who

259 documented prograde metamorphism of antigorite-bearing meta-serpentinites and suggested that

260 water produced by the dehydration of serpentine hydrated the sub-Plateau mantle lithosphere,

261 contributing to uplift of the Colorado Plateau (also see Humphreys et al., 2003).

262

263 Implications

264

Most of the material in the oceanic crust and upper mantle that is subducted into the

265	mantle at convergent margins disappears from the geologic record. Notable exceptions include
266	slab-derived components of arc magmas (including volatiles) and the intact examples of rocks in
267	high-pressure and ultrahigh-pressure (UHP) metamorphic terranes (e.g., Ernst and Liou, 2008).
268	The ultramafic xenoliths in the diatremes of the Navajo Volcanic Field of the south-western
269	United States appear to be an exception to this situation. The xenoliths of low-temperature
270	eclogite (some of which contain lawsonite and/or phengite) and related rocks have been
271	interpreted as fragments of the subducted Farallon Plate that were plucked from the flat
272	subduction zone in Laramide time (e.g., Helmstaedt and Doig, 1975; Helmstaedt and Schulze,
273	1988) and returned to Earth's surface without experiencing the alteration and retrograde
274	metamorphsm that is so pervasive in equivalent high-pressure metamorphic rocks preserved at
275	the sites of former convergent margins (e.g., the Franciscan Formation of California).
276	With its many similarities to jadeite bodies in serpentinites from convergent boundaries
277	in the crust, the guyanaite-bearing jadeite-rich pyroxenite strengthens this connection. The
278	evidence for the prograde reaction guyanaite = eskolaite + water supports the interpretation that
279	the zonation in the garnets of the Navajo eclogite xenoliths is evidence of prograde
280	metamorphism, as would be expected during subduction of the Farallon Plate (e.g., Helmstaedt
281	and Schulze, 1988), although others disagree with this interpretation (e.g., Smith and Zeinteck,
282	1979). The evidence of a prograde dehydration reaction also supports the suggestion that some
283	of the Navajo hydrous peridotite xenoliths are also prograde metamorphic rocks and the water
284	released on dehydration reactions in these rocks caused hydration and expansion of the
285	subcontinental mantle lithosphere, contributing to the uplift of the Colorado Plateau (Humphreys
286	et al., 2003; Smith, 2010).

287	The recognition of guyanaite in a mantle setting is perhaps even more important from a
288	global perspective. Low-temperature/pressure oxy-hydroxide minerals such as goethite
289	(FeOOH) and boehmite/diaspore (AlOOH) have recently been shown to have high-pressure
290	polymorphs (e.g., Sano-Furukawa et al., 2009 and references therein) and it has been suggested
291	that such phases, with stability to extraordinarily high pressures (e.g., Sano-Furukawa et al.,
292	2009 demonstrated stability of δ -AlOOH to 34.9 GPa), may transport water deep into the upper
293	mantle. Although guyanaite is rare (we report the fourth occurrence of this mineral), we have
294	shown that it actually exists in mantle rocks, substantiating theories based on experiments (Jahn
295	et al., 2012). The oxy-hydroxides of Al and Fe, which are much more abundant in low-pressure
296	crustal rocks than are the polymorphs of CrOOH, could certainly be important in transporting
297	water to great depths in their ultrahigh-pressure equivalents, and may yet be identified in UHP
298	rocks.
299	
300	
301	Acknowledgements
302	We thank Brian Joy, Alison Dias, Yanan Liu and George Kretschman for technical
303	assistance and Tony Mariano for providing additional microprobe standards. We benefited from
304	discussions with Peter Roeder, Doug Smith and Bjorn Mysen and reviews by Nick Sobolev and
305	Roger Mitchell. NSERC is thanked for financial support.
306	
307	References

308 Bohlen, S. R., and Boettcher, A.L. (1982) The quartz-coesite transformation: A precise

309	determination and the effects of other components. Journal of Geophysical Research, 87,
310	7073–7078.
311	Chatterjee, N. D., Johannes, W., and Leistner, H. (1984) The system CaO-Al2O3-SiO2-H2O:
312	New phase equilibria data, some calculated phase relations, and their petrological
313	applications. Contributions to Mineralogy and Petrology, 88, 1-13.
314	Ernst, W.G., and Liou, J.G. (2008) High- and ultrahigh-pressure metamorphism: Past results and
315	future prospects. American Mineralogist, 83, 1771-1796.
316	Flemming, L. (2007) Micro X-ray Diffraction (µXRD): A versatile technique for
317	characterization of Earth and planetaryn materials. Canadian Journal of Earth Sciences,
318	44, 1333-1346.
319	Haggerty, S.E. (1991) Oxide textures - A mini-atlas. In Mineralogical Society of
320	America Reviews in Mineralogy, 25, 129-219.
321	Harlow, G.E., and Sorensen, S.S. (2005) Jade (nephrite and jadeitite) and serpentinite:
322	metasomatic connections. International Geology Review, 47, 113-146.
323	Helmstaedt, H., and R. Doig (1975) Eclogite nodules from kimberlite pipes of the Colorado
324	Plateau Samples of subducted Franciscan-type oceanic lithosphere. Physics and
325	Chemistry of the Earth, 9, 95–111.
326	Helmstaedt, H., and Schulze, D.J. (1979) Garnet clinopyroxenite - chlorite eclogite transition in
327	a xenolith from Moses Rock: further evidence for metamorphosed ophiolites under
328	the Colorado Plateau. In: F.R. Boyd and H.O.A. Meyer, eds., The Mantle Sample:
329	Inclusions in Kimberlite and Other Volcanics, p. 357–365, AGU, Washington, D.C.
330	Helmstaedt, H., and Schulze, D.J. (1988) Eclogite-facies ultramafic xenoliths from Colorado

331	Plateau diatreme breccias: Comparison with eclogites in crustal environments, evaluation
332	of the subduction hypothesis, and implications for eclogite xenoliths from
333	diamondiferous kimberlites. In: D.C. Smith, ed., Eclogites and Eclogite-facies Rocks, p.
334	387-450, Elsevier, New York.
335	Helmstaedt, H. H., and Schulze, D.J. (1991) Early to mid-Tertiary inverted metamorphic
336	gradient under the Colorado Plateau: Evidence from eclogite xenoliths in ultramafic
337	microbreccias, Navajo volcanic field. Journal of Geophysical Research, 96, 13225-
338	13235.
339	Humphreys, E., Hessler, E., Dueker, K., Farmer, G.L., Erslev, E., and Atwater, T. (2003) How
340	Laramide-age hydration of North American lithosphere by the Farallon slab controlled
341	subsequent activity in the western United States. International Geology Review, 45, 575-
342	595.
343	Hunter, W. C., and Smith, D. (1981) Garnet peridotite from Colorado Plateau ultramafic
344	diatremes: Hydrates, carbonates, and comparative geothermometry. Contributions to
345	Mineralogy and Petrology, 76, 312-320.
346	Jahn, S., Wunder, B., Koch-Muller, M., Tarrieu, L., and Pohle, M. (2012) Pressure-induced
347	hydrogen bond symmetrisation in guyanaite, β -CrOOH: Evidence from spectroscopy and
348	ab initio simulations. European Journal of Mineralogy, 24, 839-850.
349	Logvinova, A.M, Wirth, R., Sobolev, N.V., Seryotkin, Y.V., Yefimova, E.S., Floss, C., and
350	Taylor, L.A. (2008) Eskolaite associated with diamond from the Udachnaya kimberlite
351	pipe, Yakutia, Russia. American Mineralogist, 93, 685-690.
352	McGetchin, T. R., and Silver, L.T. (1970) Compositional relations in minerals from kimberlite

353	and related rocks in the Moses Rock Dike, San Juan County, Utah. American
354	Mineralogist, 55,1738–1771.
355	Milton, C., and Narain, S. (1969) Merumite occurrence in Guyana. Economic Geology, 64, 910-
356	914.
357	Milton, C., Appleman, D.E., Appleman, M.H., Chao, E.C.T., Cuttitta, F., Dinnin, E.J., Dwornik,
358	B.L., Ingram, B.L., and Rose Jr., H.J. (1976) Merumite, a complex assemblage of
359	chromium minerals from Guyana. United States Geological Survey Professional Paper,
360	887, 1–29.
361	Sack, R.O., and Ghiorso, M.S. (1991) Chromite as a petrogenetic indicator. In Mineralogical
362	Society of American Reviews in Mineralogy 25, pp. 323-353.
363	Sano-Furukawa, A., Kagi, H., Nagai, T., Nakano, S., Fukura, S., Ushijima, D., Iizuka, R.,
364	Ohtani, E., and Yagi, T. (2009) Change in compressibility of δ -AlOOH and δ -AlOOD at
365	high-pressure: A study of isotope effect and hydrogen bond symmetrization. American
366	Mineralogist, 94, 1255-1261.
367	Shi, G.H., Stockhert, B., and Cui, W.Y. (2005) Kosmochlor and chromian jadeite aggregates
368	from the Myanmar jadeitite area. Mineralogical Magazine, 69, 1059-1075.
369	Smith, D. (1979) Hydrous minerals and carbonates in peridotite inclusions from theGreen Knobs
370	and Buell Park kimberlitic diatremes on the Colorado Plateau. In: F.R. Boyd and H.O.A.
371	Meyer, eds., The Mantle Sample: Inclusions in Kimberlite and Other Volcanics, p. 345-
372	356, AGU, Washington, D.C.
373	Smith, D. (1995) Chlorite-rich ultramafic reaction zones in Colorado Plateau xenoliths:
374	Recorders of sub-Moho hydration. Contributions to Mineralogy and Petrology, 121, 185-

2/12

- 375 200.
- 376 Smith, D (1987) Genesis of carbonate in pyrope from ultramafic diatremes on the Colorado 377 Plateau, southwestern United States. Contributions to Mineralogy and Petrology, 97, 389-396. 378 379 Smith, D. (2010) Antigorite peridotite, metaserpentinite, and other inclusions within diatremes 380 on the Colorado Plateau, SW USA: Implications for the mantle wedge during low angle 381 subduction. Journal of Petrology, 51, 1355–1379. 382 Smith, D. (2013) Olivine thermometry and source constraints for mantle fragments in the Navajo 383 Volcanic Field, Colorado Plateau, southwest United States: Implications for the mantle 384 wedge. Geochemistry, Geophysics, Geosystems, 14 (3), doi:10.1002/ggge.20065 385 Smith, D., and Zeinteck, M. (1979) Mineral chemistry and zoing in eclogite inclusions from the 386 Colorado Plateau. Contributions to Mineralogy and Petrology, 69, 119-131. 387 Smith, D., Connelly, J.N., Manser, K., Moser, D.E., Housh, T.B., McDowell, F.W., and Mack, 388 L.E. (2004) Evolution of Navajo eclogites and hydration of the mantle wedge below the 389 Colorado Plateau, southwestern United States. Geochemistry Geophysics Geosystems, 5, 390 doi:10.1029/2003GC000675. 391 Tsujimori, T., and Harlow, G. (2012) Petrogenetic relationships between jadeitite and associated 392 high-pressure and low-temperature metamorphic rocks in worldwide jadeitite localities: 393 A review. European Journal of Mineralogy, 24, 371-390. 394 Tsujimori, T., Sisson, V.B., Liou, J.G., Harlow, G.E., and Sorensen, S.S. (2006) Petrologic 395 characterization of Guatemalan lawsonite eclogite: Eclogitization of subducted oceanic 396 crust in a cold subduction zone. in B.R. Hacker, W.C. McClelland, J.G. Liou, eds.,

- 397 Ultrahigh-pressure metamorphism: Deep continental subduction, Geological Society of
 398 America Special Paper, 403, 147–168.
- Usui, T., Nakamura, E., Kobayashi, K., Maruyama, S., and Helmstaedt, H.H. (2003) Fate of the
- 400 subducted Farallon plate inferred from eclogite xenoliths in the Colorado Plateau.
- 401 Geology, 31, 589-592.
- 402 Voicu, G., and Bardot, M. (2002) Geochemical behavior under tropical weathering of the
- 403 Barama-Mazaruni greenstone belt at Omai gold mine, Guiana. Applied Geochemistry,
- 404 17, 321-336.
- 405 Vuorelainen, Y., Hakli, T.A., and Kataja, M. (1968) A hydrated oxide of chromium as a
- 406 pseudomorph after eskolaite, Outokumpu, Finland. Bulletin of the Geological Society of .
 407 Finland, 40, 125–129.
- Wang, L., Essene, E.J., and Zhang, Y. (1999) Mineral inclusions in pyrope crystals from Garnet

409 Ridge, Arizona, USA: Implications for processes in the upper mantle.

- 410 Contributions to Mineralogy and Petrology, 135, 164–178.
- 411 Wang, L., Rouse, R. C., Essene, E. J., Peacor, D. R., and Zhang, Y. (2000) Carmichaelite, a new
- 412 hydroxyl-bearing titanate from Garnet Ridge, Arizona. American Mineralogist 85, 792413 800.
- Watson, K.D. (1967) Kimberlite pipes of northeastern Arizona. In: P.J. Wyllie, ed., Ultramafic
 and Related Rocks, p. 261-269, Wylie, New York.
- 416 Yang, C.M.O. (1984) A terrestrial source of ureyite. American Mineralogist, 69, 1180-1183.

417

419

420 Figure Captions

421 Figure 1. Backscatter secondary electron image of a portion of a cluster of accessory 422 minerals in sample 12-90-50. Phases labelled are guyanaite (guy), eskolaite (es), carmichaelite 423 (carm) and chromite (cht). These phases are set in a matrix of omphacite that appears very dark 424 grey in this image. The scale bar represents 20 microns. 425 Figure 2. In situ µXRD for accessory minerals from clusters in sample 12-90-50. a) 426 context image of polished thin section with target locations of the four µXRD patterns in c and d. 427 The red box represents the area of the BSE image in Fig. 1, b) two-dimensional GADDS images 428 of raw µXRD data; the bright spots indicate larger crystallites and streaks indicate slight 429 dispersion of crystallite orientation likely due to intergrowth of kosmochlor (kos) and guyanaite 430 (guy). The absence of complete Debye rings indicates that these crystallites do not occur in a 431 random distribution but in oriented mineral clusters; c) stack plot of conventional intensity vs. 20 432 diffraction patterns for four target locations (areas 1, 2, 5, 7). The best matching mineral phases 433 from the ICDD database are shown as coloured sticks below the patterns; d) stack plot of the 434 same four patterns (areas 1, 2, 5, 7) compared with ICDD patterns for the CrOOH polymorphs 435 guyanaite, bracewellite and grimaldiite. The DIF pattern of carmichaelite in c) was constructed from the data in Wang et al. (2000). (Omega scan collection conditions: Frame 1 - $\theta_1 = 14.5^{\circ}$, θ_2 436 = 18.0° , omega = 9, time = 60 minutes; Frame 2 - $\theta_1 = 31.5^{\circ}$, $\theta_2 = 40.0^{\circ}$, omega = 20, time = 60 437 438 minutes).

Figure 3. Field of likely equilibration conditions of guyanaite-bearing xenolith (rounded
rectangle with dark shading). Black dots are estimated equilibration conditions of three phengite

2/12

- 441 eclogites from Smith et al. (2004). Stability field of guyanaite relative to eskolaite + water
- 442 (region with light shading represents uncertainty) is from Jahn et al. (2012). The quartz (Qz) -
- 443 coesite (Coes) transition and the reaction lawsonite = zoisite (Zo) + kyanite (Ky) + quartz (Qz) +
- 444 H₂O are from Bohlen and Boettcher (1982) and Chatterjee et al. (1984), respectively.

Table 1. Electron microprobe analyses of minerals in sample 12-97-50, weight percent oxide.

		guyanaite (9) ^a s.d. ^b		chrom	chromite I (12) chr		nromite II (11) s.d.	
				s.d.		s.d.		
	SiO2	0.05	0.01		0.07	0.04	0.04	0.02
	Al2O3	1.44	0.14		5.84	0.57	1.93	0.36
	TiO2	5.46	2.63		0.17	0.05	0.10	0.05
	Cr2O3	72.74	4.45		55.78	0.79	64.93	1.00
	V2O3	0.12	0.04		0.14	0.03	0.05	
	Nb2O5	0.01	0.01		0.02	0.02	0.01	
	Fe2O3 ^d	7.75	0.88		7.05	0.66	2.53	0.51
	FeO	nd ^e			24.36	0.21	24.63	0.17
	MnO	0.09	0.02		0.26	0.04	0.26	0.05
	MgO	1.00	0.51		2.06	0.07	1.82	0.06
	NiO	0.30	0.16		0.13	0.03	0.06	0.02
	ZnO	0.02	0.02		5.71	0.27	5.46	0.20
	CaO	0.11	0.03		0.04	0.02	0.05	0.02
	Na2O	nd		nd		nd		
	К2О	nd		nd		nd		
	Total	89.09			100.99		101.64	
formulae normalized to n cations	n =	1			3		3	
	Si4+	0.001			0.002		0.001	
	Al3+	0.024			0.244		0.082	
	Ti4+	0.058			0.005		0.003	
	Cr3+	0.808			1.562		1.847	
	V3+	0.001			0.004		0.001	
	Nb5+	0.000			0.000		0.000	
	Fe3+	0.082			0.190		0.069	
	Fe2+	nd			0.722		0.742	
	Mn2+	0.001			0.008		0.008	
	Mg2+	0.021			0.109		0.098	

	Ni2+ Zn2+	0.003 0.000	0.004 0.149	0.002 0.145
	Ca2+	0.002	0.002	0.002
	Na+	nd	nd	nd
	K+	nd	nd	nd
	Total	1.000	3.000	3.000
Fe2/(Fe2+Fe3) (molar)			0.792	0.914
Fe3:Cr:Al (molar)			0.095:0.783:0.122	0.034:0.924:0.082

^a Values in parentheses indicate number of analyses used in average

^bStandard deviation

^cAbbreviations: jd - jadeite component, ko - kosmochlor component, ac - acmite component

^d Fe reported as Fe3+ for guyanaite, carmichaelite and eskolaite. Fe2+ and Fe3+ calculated by charge balance for chromite and omphacite

^e nd - not determined

carmichaelite (5)		eskola	eskolaite (4)		Ompha	cite	Omphacite	Omphacite	
s.d.			S.	d.	highest ko ^c (1)		highest jd (1)	lowest jd (1)	
	0.10	0.06		0.12	0.05		54.63	56.21	55.55
	1.23	0.03		1.56	0.02		3.18	5.56	2.41
	50.94	0.17		6.31	0.35		0.03	0.02	0.01
	29.27	0.66		83.59	0.60		10.01	0.08	0.07
	0.20	0.03		0.13	0.04	nd		nd	nd
	0.04	0.01		0.02	0.01	nd		nd	nd
	9.30	0.17		8.09	0.10		2.60	2.49	2.45
nd			nd				2.19	3.75	3.20
	0.03	0.01		0.14	0.03		0.04	0.04	0.04
	1.40	0.06		1.05	0.08		8.79	11.36	13.92
	0.16	0.04		0.38	0.03		0.10	0.12	0.14
	0.03	0.04		0.03	0.04	nd		nd	nd
	0.26	0.10		0.17	0.04		13.07	16.66	20.47
nd			nd				6.60	4.68	2.59
nd			nd				0.00	0.01	0.00
	92.95			101.58			101.25	100.98	100.85
	1			2			4	4	4
	0.001			0.003			1.984	2.010	2.005
	0.020			0.045			0.136	0.235	0.102
	0.521			0.117			0.001	0.001	0.000
	0.315			1.628			0.287	0.002	0.002
	0.002			0.003		nd		nd	nd
	0.000			0.000		nd		nd	nd
	0.106			0.150			0.071	0.067	0.067
nd			nd				0.066	0.112	0.096
	0.000			0.003			0.001	0.001	0.001
	0.028			0.039			0.476	0.606	0.749

	0.002		0.008		0.003	0.003	0.004
	0.000		0.001	nd	nd	nd	
	0.004		0.005		0.509	0.638	0.791
nd		nd			0.465	0.324	0.182
nd		nd			0.000	0.000	0.000
	1.000		1.000		4.000	4.000	4.000
				jd 14	jd 23	jd 10	
				ko 29	ko 0	ko 0	
				ac 7	ac 7	ac 7	

Fig 1

2.a.

Fig. 3