	Ms 4726	REVISION 1
1		A New UHP Metamorphic Complex In The ~1.8 Gya
2		Nagssugtoqidian Orogen Of West Greenland
3		
4	William I	E. Glassley ^{1,2} , John A. Korstgård ² , Kai Sørensen ³ and Steen W. Platou ⁴
5		
6		
7 8	¹ De	partment of Geology, University of California, Davis, California 95616, U.S.A.
9	² Ľ	Department of Geoscience, Aarhus University, 8000 Århus C, Denmark
10	³ Geol	ogical Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
11		⁴ Deceased
12		
13		Abstract
14	The Nagssugto	oqidian Orogen is a ca. 1.8 Gya belt of east-west trending, highly deformed
15	rocks that bise	cts central Greenland. Although a variety of data have suggested this belt
16	marks the loca	tion of a continent-continent collision zone, evidence of subduction has
17	been lacking.	We report here mineralogical evidence from four samples within a well-
18	defined litholc	gic unit of metabasic and metasedimentary ocean floor rocks of a
19	previously unr	recognized UHP metamorphic episode. The UHP episode is recorded by
20	remnants of or	thopyroxene exsolved from majoritic garnet, graphitized diamond,
21	exsolution of r	rutile from garnet and pyroxenes, exsolution of magnetite from olivine, and
22	complex exsol	ution textures in ortho- and clinopyroxenes (including omphacite).
23	Associated with	th these mineralogical features is an unusual occurrence of quartz needles
24	in Mn-rich fay	alite. From textural characteristics, we infer that the quartz needles

REVISION 1

25 exsolved from the fayalite. To our knowledge, olivine with exsolved silica has not been 26 reported. We note, however, that experimental studies have shown that β -spinel can 27 incorporate excess silica. We therefore speculate these quartz needles may be silica that 28 exsolved from Mn-rich ahrensite, the Fe analogue of ringwoodite, upon decompression 29 and inversion to fayalite. If correct, this occurrence would be the first reported sample of 30 naturally occurring olivine (fayalite) that inverted from ahrensite. Corroborating an early 31 UHP history are reaction relationships that delineate a path through high-pressure and 32 high temperature conditions during decompression. P-T conditions inferred for the UHP episode are \sim 7 GPa at \sim 975 °C. The unusually low T for this UHP system at \sim 1.8 Gya 33 34 may reflect either very rapid subduction rates at that time, or unexpectedly cool mantle 35 conditions. Preservation of the UHP assemblages probably is due, in large part, to the 36 exceptionally low a_{H2O} during decompression and cooling. These UHP rocks establish 37 that the location of the subduction and suture zones that must have existed prior to and 38 during the collision of continents was along what is now the northern edge of the Nordre 39 Strømfjord shear zone.

40

41 Keywords: UHP metamorphism, majorite, diamonds, Nagssugtoqidian, pigeonite,

42 ahrensite, Paleoproterozoic, exsolution

43

Ms 4726

47 **INTRODUCTION**

44

45

46

48 Since the first discovery (Chopin 1984) of coesite in alpine metamorphic rocks, 49 ultra-high pressure (UHP) metamorphism has been recognized in more than twenty 50 localities around the world (see summaries in Chopin, 2003, and Ernst and Liou, 2008). 51 All of these sites are within metamorphic terrains younger than 1,000 million years, 52 reflecting the rarity of preserving mineral assemblages that are inherently highly 53 thermodynamically unstable. Even though rare and of minuscule areal extent, these sites 54 have profoundly affected conceptual models of global geodynamic processes, and have 55 raised important new questions regarding the behavior of continental crust during 56 continent-continent collisions, the representativeness of modern day tectonic structures 57 and collisions, and the mechanics of subduction and exhumation (Ernst and Liou, 2008). 58 However, recognizing such sites is fraught with challenges. In most instances the remnant 59 mineralogy providing evidence of UHP metamorphism is preserved only at the micron 60 scale, and is ambiguous unless associated with multiple UHP indicators.

61

We report here multiple lines of evidence that establish the presence of a UHP metamorphic complex in the Nordre Strømfjord shear zone (NSSZ), which is located within the Nagssugtoqidian Mobile Belt of West Greenland. Prior to this discovery, this mobile belt had been considered a classic example of upper amphibolite to granulite facies deep crustal regional metamorphism (Davidson, 1979; Hansen, 1979; Glassley and

Ms	4726
----	------

67	Sørensen, 1980; Glassley, 1983; Mengel, 1983). Although that regional metamorphic
68	model does reflect the last significant metamorphic event these rocks experienced, the
69	UHP mineralogy we describe here unequivocally demonstrates that, for at least some of
70	the lithologies within the NSSZ, a significant chapter in the metamorphic history has
71	been missed.
72	
73	In addition, these results demonstrate that the metamorphic and tectonic processes
74	that result in UHP metamorphism extend at least as far back as ca. 1.8 Gya. Finally, we
75	report observations that may be evidence of the first terrestrial example of Fe-rich
76	ringwoodite in a UHP terrain.
77	
78	GFOLOGIC SETTING
/0	
79	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably
79 80	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the
79 80 81	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into
79 80 81 82	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into lithologically coherent belts that are separated by major shear zones (Escher, 1970; Bak
 79 80 81 82 83 	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into lithologically coherent belts that are separated by major shear zones (Escher, 1970; Bak et al., 1975a,b; Korstgård, 1979 and papers therein; Garde and Kalsbeek, 2006 and papers
 79 80 81 82 83 84 	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into lithologically coherent belts that are separated by major shear zones (Escher, 1970; Bak et al., 1975a,b; Korstgård, 1979 and papers therein; Garde and Kalsbeek, 2006 and papers therein). The most northern shear zone is the Nordre Strømfjord shear zone (NSSZ) (Bak
 79 80 81 82 83 84 85 	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into lithologically coherent belts that are separated by major shear zones (Escher, 1970; Bak et al., 1975a,b; Korstgård, 1979 and papers therein; Garde and Kalsbeek, 2006 and papers therein). The most northern shear zone is the Nordre Strømfjord shear zone (NSSZ) (Bak et al., 1975a; Sørensen, 1983).
 79 80 81 82 83 84 85 86 	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into lithologically coherent belts that are separated by major shear zones (Escher, 1970; Bak et al., 1975a,b; Korstgård, 1979 and papers therein; Garde and Kalsbeek, 2006 and papers therein). The most northern shear zone is the Nordre Strømfjord shear zone (NSSZ) (Bak et al., 1975a; Sørensen, 1983).
 79 80 81 82 83 84 85 86 87 	The Nagssugtoqidian Orogen (NO) is a ca. 200 km wide complex of variably deformed rocks that extend across southern Greenland (Fig. 1). This belt lies along the northern margin of the main Archaean block in south Greenland and is divided into lithologically coherent belts that are separated by major shear zones (Escher, 1970; Bak et al., 1975a,b; Korstgård, 1979 and papers therein; Garde and Kalsbeek, 2006 and papers therein). The most northern shear zone is the Nordre Strømfjord shear zone (NSSZ) (Bak et al., 1975a; Sørensen, 1983). Kalsbeek et al (1987) were the first to propose that the NO "contains a cryptic

89 interpretation of a ca. 1921 My calc-alkaline complex as an oceanic arc remnant and 2)

Ms 4726

the presence of Paleoproterozoic metasediments that were metamorphosed and deformed
around 1850 my and which are interleaved with Archaean rocks. However, they noted
that "the suture itself has not been located", although they speculated that the suture lay
southeast of the NSSZ.

94

95 Over the following 15 years a growing body of field, chemical and isotopic data 96 documented that the period of calc-alkaline igneous activity persisted for about 50 my 97 (1920-1870 my). This work also demonstrated that several belts of predominantly 98 Paleoproterozoic supracrustal rocks are present within the mobile belt, among them 99 supracrustal rocks within the NSSZ (Kalsbeek and Nutman, 1996; Scott et al., 1998; 100 Whitehouse et al., 1998; Nutman et al., 1999; Connelly and Mengel, 2000; Connelly et 101 al., 2000; van Gool et al., 2002). 102 103 Metamorphism within this orogeny was dated at 1860-1840 Mya, with late stage 104 metamorphic mineral growth extending to ca. 1780 Mya (Hickman and Glassley, 1984; 105 Kalsbeek et al., 1987; Taylor and Kalsbeek, 1990; Kalsbeek and Nutman, 1996; Connelly 106 et al., 2000; Willigers et al., 2001; Mazur et al., 2012), and has been interpreted to be the 107 last consequence of continent-continent suturing. Maximum metamorphic conditions, 108 based on a variety of geothermometers and geobarometers, were reported to be ca. 800°C 109 - 850°C and ca. 1.0 GPa (Davidson, 1979; Hansen, 1979; Glassley and Sørensen, 1980; 110 Glassley, 1983; Mengel, 1983; Mazur et al., 2012).

111

REVISION 1

112	Glassley et al. (2007) reported discovery of a high-pressure mineral assemblage
113	(sample 492042E, a garnet-olivine-spinel-clinopyroxene gneiss; T ca. 785°C and P ca. 21
114	kb) located within a mapped supracrustal belt (Fig.1) in the western portion of the NSSZ
115	and near its northern border, indicating that the metamorphic history of this region was
116	likely more complex than hitherto assumed. However, although indicative of unusually
117	high pressures, sample 492042E, in and of itself, could not provide a definitive answer to
118	the "cryptic suture" enigma of Kalsbeek et al. (1987).
119	
120	Following discovery and analysis of sample 492042E, we re-examined hundreds
121	of thin sections archived at Aarhus University from mapping campaigns in the late
122	1960's and 1970's. Two additional samples were identified that contained the
123	metamorphic mineral assemblage garnet-olivine (123220, collected by Steen Platou in
124	1969; and 159966 collected by Flemming Mengel and Kai Sørensen in 1976). These were
125	collected approximately 30 km west-southwest of sample 492042E and, like it, were
126	within supracrustal units along and near the northern shear zone border. Two additional
127	samples of striking mineralogy (540521b and 540599) were collected by us in 2012 in an
128	area within a few kilometers of the location of sample 123220 (Figs. 1 and 2). The
129	remainder of this paper describes the mineralogy and P-T history of these four samples.
130	
131	ANALYTICAL METHODS
132	

Electron microprobe analyses: All of the analyses reported here were conducted atelectron microprobe (EMP) facilities at Aarhus University, Denmark and the University

135	of California, Davis, USA. The EMP at Aarhus University is a JEOL JXA 8200. The
136	EMPA at UC Davis is a Cameca SX-100. Both instruments have 5 wavelength-
137	dispersive, computer driven spectrometers for quantitative analyses and an EDS
138	capability for qualitative analyses. Analyses at both facilities were conducted using the
139	same protocol, i.e., an accelerating potential of 15 kV, and a beam current of between 10
140	and 20 nA, using natural, well characterized mineral standards and matrix matching. Spot
141	size was varied, depending upon mineral properties, in order to avoid beam damage and
142	minimize volatilization. The raw data were corrected for deadtime, drift and matrix
143	effects using standard commercial software specific to each instrument.
144	
145	Raman spectra were obtained using a Renishaw RM1000 Research Laser Raman
146	Microscope at the Keck Spectral Imaging Facility at the University of California, Davis.
147	Excitation of the sample was accomplished using an argon-ion laser (514 nm; 2.4121 ev).
148	A 25% transmission filter provided about 500uW in the laser spot using a 50X objective.
149	Raman signals were collected through hard laser filters (dual holographic Rayleigh
150	filters), providing access to the Stokes side of the Raman emission. Spectral analysis was
151	conducted using the GRAMS spectra analysis application (from Thermo Scientific) The
152	spectra presented here were slightly smoothed using 2-point running averages.
153	
154	In-situ quadrupole LA-ICP-MS analyses were performed using a Photon
155	Instruments laser ablation sample introduction system coupled to an Agilent 7700 ICP-
156	MS. NIST 612 was used as a calibration standard and NIST 610 was incorporated in the
157	sample run to test data reproducibility. NIST 612 and NIST 610 standards were analyzed

Ms 4	1726
------	------

158	twice at the beginning and twice at the end of the sample run. Laser spots were located in
159	close proximity to previous electron microprobe (EMP) analyses. Calcium results from
160	the corresponding EMP analyses were used as an internal standard. A laser spot size of
161	65 microns was used for each point analysis. The laser was operated at 50% power, 10
162	Hz repetition rate, and fluence of 4.45 joules/cm ² . Each spot was ablated and measured
163	for 25 seconds, with a pause of 90 seconds between analyses to allow purging of the
164	spectrometer and baseline stabilization. ICP-MS output data were corrected and
165	converted into part-per-million (ppm) concentrations using Iolite data reduction software
166	(Paton et al., 2011).
167	The nomenclature and abbreviations for minerals follows that of Whitney and
168	Evans (2010) unless otherwise noted.
169	
170	RESULTS
171	Samples 123220, 159966 and 540521b occur within belts of complexly
172	interleaved rocks that are mapped as undifferentiated metasedimentary/metavolcanic
173	rocks and amphibolite (Map Sheet Agto 67 V 1.Nord, 1:100,000; 1987; Fig. 1). Sample
174	540599 is a single garnet crystal (approximately 6 cm x 5 cm) that was plucked from a
175	quartzo-feldspathic garnet-sillimanite-graphite schist a few hundred meters southwest
176	from 540521b. Large (maximum dimensions of up to 10 cm) garnet porphyroblasts made
177	up in excess of 60 volume percent of the outcrop of this unit. This schist bounds the
178	southern edge of the metasedimentary/metavolcanic and amphibolite unit from which the
179	other samples were collected.
180	

Ms 4726	REVISION 1
115 1/20	

181	Samples 123220 and 159966 are coarse-grained olivine (Ol)-garnet (Grt)-
182	clinopyroxene (Cpx)-orthopyroxene (Opx)-quartz (Qtz) gneisses with graphite (Gph),
183	magnetite (Mag) and ilmenite (Ilm). A very weak fabric is defined by slight elongation of
184	Grt, preferred orientation of pigeonite (Pgt) (123220) and weak compositional layering.
185	Sample 540521b is a coarse-grained garnet pyroxenite with Ilm.
186	
187	The bulk rock compositions of 123220 and 540521b (Table 1) are part of a suite
188	of seven samples that have the highest Fe and Mn compositions within a database of 219
189	bulk rock analyses we have assembled. The other characteristics of this suite are low
190	SiO ₂ (< 45%), low alkalis (Na ₂ O + K ₂ O < 1.0%), low MgO (0.95% to 4.95%), low Al ₂ O ₃
191	(0.46 to 3.88%) and high MnO/MgO (0.25 to $>$ 7). These rocks are identical chemically
192	and mineralogically to eulysites, which were first thoroughly described by Tilley (1936)
193	from western Scotland. They are interpreted as being deposited by ocean floor exhalative
194	hydrothermal processes (Coats et al., 1996). Sample 159966, of which only a polished
195	thin section remains, is likely to belong to the same suite of ocean floor exhalative
196	metasediments, based on the similarity of the mineral compositions (discussed below) to
197	those in 123220.

198

199 Majoritic Garnet

Two generations of garnets can be observed in samples 123220, 159966 and 540521b. Small, groundmass garnets that are usually inclusion free are associated with late-stage, granulite facies metamorphism. These small garnets post-date larger, elongate

203	to sub-idiomorphic, porphyroblastic garnets that are up to 0.5 cm in diameter. These
204	earlier garnets are the subject of the remainder of this section.
205	
206	The first generation garnets possess clear cores, inclusion-filled mantles and clear
207	rims (Fig. 3). They are all spessartine-rich almandines (ca. 80 mole % spessartine +
208	almandine), with 1-5 mole % pyrope and 15-17 mole % grossular (Table 1).
209	
210	EMP analyses of the larger garnets (Fig. 4a,b) exhibit consistent zoning patterns
211	in which the cores are Fe-rich. Outward from the cores, the inner mantle region exhibits
212	Ca and Mn increases at the expense of Fe and Mg, but the outer mantles tend to reverse
213	this trend with an increase in Fe and Mg. Clear, thin outer rims are enriched in Mn at the
214	expense of other cations.
215	
216	LA-ICPMS analysis shows the cores to be Cr- and Ti-rich, relative to mantles and
217	rims (Fig. 4c). These analyses also indicate a systematic zoning in the rare earth elements
218	(REE) in which the cores are strongly depleted in LREE while the mantle zone is
219	consistently enriched (by about 10x to 100x; Fig. 4d) in LREE.
220	
221	The inclusions in the mantle regions are numerous and diverse. They are usually a
222	few microns to a few tens of microns in size and are commonly the locus of
223	decompression cracks. In samples 123220 and 159966, inclusions of apatite, Mg-, Mn-
224	and Fe-carbonates, monazite, rutile and ilmenite are dispersed irregularly throughout the
225	mantles. Ilmenites, however, also occur as clusters of parallel blades and rods, which is a

226	morphology suggestive of exsolution, but for which other evidence is lacking. An Al-Si
227	phase, possibly kyanite, was observed in several inclusions, but could not be positively
228	identified because of secondary alteration. Carbon inclusions (Fig. 3a,b) are
229	predominately graphite, but contain relict diamond, based on Raman spectral analysis

- 230 (see discussion of Raman analysis below). In sample 540521b inclusions are mainly
- 231 ilmenite + qtz, aligned in well-defined trains (Fig. 3c,d).
- 232

Ms 4726

233 The most abundant and systematically distributed inclusions in 123220 and

234 159966, however, exhibit unequivocal exsolution morphologies (Fig. 3b). These

235 inclusions occur as clusters of aligned rhombohedral forms a few microns to ten microns

236 in diameter. High resolution, 3D optical image processing (Fig. 3b) shows them to be

- 237 aligned in three directions that are consistent with a {111} garnet structure orientation.
- 238

239 Although the morphologies of the inclusions in 123220 and 159966 are identical, 240 the inclusions in 123220 have been altered and oxidized and reliable EMP analyses of 241 them could not be obtained. Inclusions in 159966, although altered to finely intergrown 242 mats of Cl-bearing hydrous phases, preserve systematic compositional characteristics that 243 allow reconstruction of their original composition.

244

245 More than 80 spot analyses of the hydrated inclusions in 159966 were obtained. 246 Of these, two thirds were short, multi-spot traverses across individual inclusions. Despite 247 some scatter, three consistent compositions were observed in these analyses (Fig. 5). On

	Ms 4726 REVISION 1
248	the basis of the population statistics for each group, an anhydrous composition was
249	computed, assuming an oxygen basis of 6:
250	
251	$(Ca_{0.03}Mg_{0.09}Mn_{0.14}Fe_{1.73})_{1.99}(Al_{0.02}Si_{1.99})_{2.01}O_6.$
252	
253	For comparison, the average unaltered Opx in 159966 has the stoichiometry:
254	
255	$(Ca_{0.06}Mg_{0.24}Mn_{0.23}Fe_{1.50})_{2.03}(Al_{0.01}Si_{1.97})_{1.98}O_6,$
256	
257	which is poorer in Fe and richer in Mg, Ca and Mn. These results are consistent with one
258	Raman spectrum collected from an inclusion in porphyroblastic garnet in sample 159966
259	that had sharp, well-defined peaks matching precisely a ferrosilite standard (RRUFF data
260	base number R070387). Using variable focus optical microscopy, the measured minimum
261	volume of the Opx inclusions in the garnet was 4.0 % with a most likely value 6.0 . %.
262	
263	In contrast to the inclusions in 123220 and 159966, the inclusions in 540521b
264	occur as distinct trains that, at low magnification, define rod-like forms (Fig. 3c) that are
265	consistently oriented parallel to the {111} direction of the garnets, based on their
266	relationship to the idiomorphic form of the clear garnet cores. At higher magnification
267	(Fig. 3d,e) the inclusions that define the rod-like forms are seen to invariably be 2-phase
268	Qtz-Ilm grains. The proportion of the two phases is always the same, to the extent that
269	can be determined optically. These characteristics require that these inclusion trains once
270	were continuous, single-phase needle-like rods that segmented during recrystallization,

1/29

Ms 4726	REVISION 1

271	likely driven by surface-energy minimization requirements. Additionally, upon
272	segmentation, the individual grains must have consisted of a homogeneous phase that
273	later decomposed to the bi-mineral assemblage Ilm and Qtz. The original exsolved phase
274	was some form of $Fe_2(Si_x,Ti_{2-x})_2O_6$, possibly with additional Ti substituting for Fe (see
275	discussion below).
276	
277	
278	Reconstructing the pre-exsolution garnet compositions
279	Several hundred spot analyses on the first generation garnets in samples 123220,
280	159966 and 540521b define compositional fields that are distinct from the garnet
281	analyses from nearly forty other samples within the NSSZ that we have analyzed over the
282	years (Fig. 6). These three samples define fields that are consistently lower in Al, at a
283	given Si, and fall parallel to, and overlap with, the trend defined for majoritic garnets that
284	have been analyzed from experimental studies and field samples (Haggerty and Sautter,
285	1990; Sautter et al., 1991; Ono, 1998). For 123220 and 159966, remixing the inferred
286	exsolved Opx composition (TABLE 1) with the composition of the garnet mantle zones
287	results in majorite-like compositions that are consistent with pressures of \sim 7.5 to 8.0 GPa
288	(Table 1; see discussion below regarding P-T conditions).
289	
290	Reconstructing the garnet composition for sample 540521b is complicated by the
291	unusual composition of the exsolved phase. We hypothesize that the following multi-step
• • •	

recrystallization sequence is required to explain the observed phase relationships in thesegarnets:

294	1. Exsolution of Fe- and Ti-rich Opx needles from a majoritic garnet
295	2. Recrystallization of the Opx needles to segmented rods, thermodynamically
296	driven by surface energy minimization
297	3. Decomposition of the segmented rods to Qtz + Ilm.
298	Although this sequence is consistent with the textural requirements dictated by the
299	phase morphologies, the stoichiometry of the reactant Opx cannot be reconciled with the
300	Qtz + Ilm product assemblage, since the reactant Opx generally would have insufficient
301	TiO_2 to generate the product assemblage. This problem may be resolved either through a
302	coupled substitution of Ti + vacancy for 2 Fe in the M1 and M2 sites in the exsolved
303	Opx, or through reaction of the exsolved opx with TiO_2 dissolved in the Grt but which
304	was no longer thermodynamically stable in that cubic silicate structure. The former
305	postulate is consistent with the observations in these samples of exsolved rutile (Rt)
306	needles in Opx (discussed below), while the latter is consistent with observed Rt and Ilm
307	lamellae in garnets in 123220 and 159966. Regardless of which mechanism is responsible
308	for the observed phase relationships, a precursor majorite phase is necessary to account
309	for the exsolution of Opx.
310	
311	
312	Diamond
313	
314	Samples 123220 and 159966 have micron-scale carbon inclusions that occur
315	within the inclusion-rich mantles of porphyroblastic garnets. These inclusions are
316	optically flat in reflected light, without any indication of pleochroism, in contrast to

REVISION 1

bladed graphite crystals that are a common accessory mineral phase in rocks of the
supracrustal belts. These inclusions have a distinctive morphology (Fig. 7), only occur in
the mantle zones of garnets, and consistently have cubic symmetry and faceted,
pyramidal forms.

321

322 Raman spectra were collected on several of these grains (Fig. 8) in garnets from 323 both samples. The grains in both samples consistently had well defined graphite modes (G and D peaks at primary wave numbers of ~ 1580 cm⁻¹ and ~ 1355 cm⁻¹, respectively; 324 325 Smith and Goddard, 2103). Also noted was a graphene (i.e., single graphite layer) peak at \sim 1420 cm⁻¹ in some samples (Tiwari et al., 2012). In sample 123220 unambiguous peaks 326 were also observed at 1335 cm^{-1} , which is the characteristic spectral peak for diamond. 327 328 However, the diamond peak was not seen in all C inclusions in this sample, nor 329 throughout a single inclusion. For example, for the larger inclusion (Figs. 7 & 8), "grain 5 330 large" two Raman spectra were collected in adjacent locations, one near the edge and one in the interior of the grain. The latter exhibited a well-defined diamond peak at 1335 cm⁻¹ 331 332 while the former did not. The presence of this characteristic peak unequivocally indicates 333 the presence of crystalline diamond, since there are no other phases that share that mode. 334 335 To assure we were not detecting contamination from polish media, numerous

other Raman spectra were collected in other types of inclusions, along grain boundaries and in late-stage graphite-hematite-magnetite veins. No peaks were observed at the characteristic diamond spectral location. In addition, the sample was re-polished using Cfree polish media, in order to excavate the carbon inclusions to determine their 3-D

340	morphology. Since platy forms would be expected for primary graphite blades, while
341	cubic symmetry would be expected for primary diamond grains, distinguishing between
342	these original forms allows determination of the original carbon crystallography (Chopin,
343	2003). The images obtained of these "cleaned" inclusions show them to be non-platy,

344 cubic forms with faceted edges (Fig. 7), consistent with the entrapment of primary

345 diamond during majorite growth. Raman spectra obtained on these "cleaned" inclusions

346 revealed only nano-crystalline graphite, consistent with the interpretation that diamond

347 was replaced by graphite that nucleated, at least in part, along the diamond-garnet

348 interface.

Ms 4726

349

350 We conclude from these observations that micro-diamond inclusions were present 351 in first generation garnets in samples 123220 and 159966 and that they were encapsulated 352 in the garnet during the growth stage at which the mantle zone developed. Later, during 353 decompression and granulite facies metamorphism, diamond micro-inclusions were 354 recrystallized to graphite, in a process similar to that recorded by Davies et al., (1993) 355 and Smith and Godard (2013) for graphitized diamonds in the Ronda peridotite and the 356 Norwegian Western Gneiss Region, respectively. Graphitization went to completion in 357 sample 159966 but left relict micro-diamond grains during incomplete graphitization in 358 sample 123220.

359

360 **Rutile exsolution in garnet**

361

REVISION 1

Commonly reported in UHP terrains are exsolution lamellae of rutile in garnets, pyroxenes and other phases. Although the origin of such needles has been the subject of debate (see discussion in Ague and Eckert, 2012) lamellae that occur in trigonal, interpenetrating orientation can only be derived through exsolution, and not epitaxial growth. We have observed Rt exsolution lamellae (Fig. 9) in the core regions of the large (>5 cm diameter) euhedral garnet (sample 540599), which was collected from garnet-

370 biotite-graphite-sillimanite schists within a few hundred meters of the site where sample

372 to several hundreds of microns long. These needles have anomalous extinction angles of

540521b was collected. The Rt needles are ca. a few hundred nanometers thick and tens

373 up to several tens of degrees. They are always oriented with inter-penetrating angles of

374 close to 120° , consistent with crystallographically controlled exsolution along <111>, as

described by various researchers for needles exsolved from garnets in UHP terrains

elsewhere (e.g., Larsen et al., 1998; Zhang and Liou 1999; Ye et al., 2000; Mposkos and

Kostopoulos 2001; Zhang et al., 2003; Barron et al., 2005; Griffin et al., 1971; Griffin,

378 2008).

379

371

The mantle zones and exterior regions of such garnets commonly have inclusion trains of sillimanite, graphite, and feldspars, but these assemblages always occur exterior to the regions of the garnets with the Rt exsolution lamellae. The Rt lamellae are not observed associated with sillimanite or graphite. The garnet composition in the vicinity of the needles is $Py_{28}Sp_2Gr_6Al_{63}$. X-ray maps generated in the vicinity of the needles did not

Ms 4726	RE
1,10 ./=0	

385	reveal evidence of compositional variation in the immediate vicinity of the needles,
386	unlike those reported by Ague and Eckert (2012). We attribute this lack of zoning to re-
387	equilibration through diffusional processes controlled by compositional gradients during
388	granulite facies metamorphism post-dating the period of exsolution.
389	
390	Pyroxenes
391	
392	Pyroxene textures in the three samples of interest are complex and diverse. Each
393	sample possesses a different suite of compositional characteristics, but together they
394	provide a record consistent with recrystallization during recovery from UHP conditions.
395	Because of their diversity and complexity, the textures of each sample will be detailed
396	separately. We present them in order of increasing complexity. Their respective
397	compositions are presented in Ca-Mg-Fe ternary diagrams in Figure 10. The
398	nomenclature that we used is that of Morimoto et al. (1988).
399	
400	159966
401	Opx and Cpx, along with Fa and Qtz, make-up the bulk of sample 159966. They
402	occur as approximately equant, anhedral millimeter-sized grains. The Cpx and Opx are
403	Mn- and Fe-rich Hd and Aug, and Fe-rich Fs, respectively. Mn content is 11%-12% of
404	the octahedral cations in the Fs and 5%-6% in the Cpx.
405	
406	Although contacts between the pyroxenes are usually irregular and slightly lobate,
407	we also observed co-planar relationships in which Opx and Cpx shared in common (100)

Ms 4726	REVISION 1
---------	-------------------

408	and (001) planes (Fig. 11a). The maximum a \square c angle is 122° , based on measurements
409	on Opx-Cpx pairs oriented with (010) in the plane of the thin section (Fig. 11a). This co-
410	planar relationship suggests these may have been a single phase that unmixed during
411	ascent from more severe P-T conditions. As discussed below, sample 540521b also
412	contains evidence of unmixing of a coarse, homogeneous pyroxene phase.
413	
414	The Cpx consistently exhibit three sets of exsolution lamellae. One set of lamellae
415	consists of sharp-edged, tabular Opx (Fs) oriented parallel to (100) of the host Cpx
416	(OpxL1 in Fig. 11b,c). These lamellae have associated with them very thin, sub-micron
417	bands oriented within a few degrees of the (001) plane, and which terminate on either
418	side of the Opx at small, round grains, resulting in a "dumbbell" morphology (red boxes
419	in Fig. 11c). These features are consistently calcite (Cc). We interpret these OpxL1 to
420	have been Pgt that initially exsolved from the Cpx during cooling and uplift, and later
421	inverted to Fs and Cc. The Cc bands occupy the volume that formed in the inverted phase
422	as a result of the volume change upon inversion.
423	

Another set of lamellae occurs as small to large blebby forms that have strong preferred orientations in both the (100) and (001) planes of the host Cpx (OpxL2 in Fig. 11b). The third set of lamellae are very thin (ca. 1 micron) and wispy, and are inclined to the (100) plane by 3° to 6° (OpxL3 in Fig. 11c). These angular relationships are very close to those described by Robinson et al. (1971) for exsolution relationships involving Cpx-Opx-Pgt. We interpret OpxL3 to be exsolved Pig, based on similarities to the "fine

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Ms 4726 REVISION 1

430 pigeonite lamallae, which orient in acute angle β of host augite" reported by Ollila et al431 (1988).

432

433 Opx contain barely discernible Cpx lamellae and prominent Mag and Ilm lamellae 434 oriented parallel to (100) (Fig. 11b,d). The oxide phases often coexist in the same lamella 435 and appear to have unmixed.

436

437 *123220*

The bulk mineralogy of 123220 is identical to that of sample 159966, except that Pgt porphyroblasts are also present as elongate, 1-10 mm-size grains that define a fabric in restricted portions of the sample. As with sample 159966, elongate garnet porphyroblasts also occur and are elongate parallel to the fabric defined by the Pig.

442

443 The Pgt porphyroblasts consistently have aligned inclusions parallel to the {001} 444 zone that are composed of Fa - Qtz - Fe-rich Aug (Fig. 12a,c). The relative proportions 445 of these three phases vary within narrow ranges among the inclusions. A few of the 446 inclusions have unequivocal idiomorphic forms (Fig. 12a,c) consistent with Opx. On the 447 basis of these observations, we interpret these inclusions to be exsolved Fs that inverted 448 to the three-phase assemblage Fa + Fe-rich Aug + Qtz. We have no quantitative 449 determination of the relative proportions of the phases, but a reaction consistent with this 450 surmise, and which honors the relative observed volumetric proportions (Ol : Qtz : $Cpx \sim$ 451 1:1:0.25) is (phase compositions based on remixed probe compositions of the reactant 452 phases):

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4726

	Ms 4726	REVISION 1
453		
454		$(Ca_{0.16}Mg_{0.06}Fe_{1.56}Mn_{0.22})_{2.0}(Al_{0.006}Si_{1.994})_{2.0}O_6$
455		(Fs)
456		\Leftrightarrow
457		$0.8 (Mg_{0.04}Fe_{1.72}Mn_{0.24})_{2.0}SiO_4$
458		(Fa)
459		+
460		$0.202\;(Ca_{0.79}Mg_{0.12}Fe_{0.93}Mn_{0.14})_{2.0}(Al_{0.03}Si_{1.97})\;_{2.0}O_{6}$
461		(Fe-rich Aug)
462		+
463		0.796 SiO ₂
464		(Qtz).
465		
466	Add	ditionally, the Pgt grains consistently have Rt exsolution lamellae that are
467	aligned par	callel to each other and lying within the plane of the dominant cleavage (Fig.
468	12b).	
469		
470	Fe-	rich Aug that is a reaction product of the breakdown of Fs, as well as
471	individual	Cpx grains in the rock matrix also consistently contain Opx exsolution
472	lamellae th	at are indistinguishable from the OpxL1 lamellae in 159966 (Fig. 12d). In
473	addition, cu	uspate grain boundaries between Fa and exsolved Opx that are aligned with
474	exsolution	features (Fig. 12d) are consistent with the model that exsolution and
475	recrystalliz	ration of the bulk rock, to some extent, were coeval. These features are very

476	similar to those reported by Holness et al. (2011) for late-stage crystallization processes
477	in the Skaergaard intrusive complex.
478	
479	The compositions of these phases are more Fe-rich than those in sample 159966
480	and 540521b (discussed below) (Fig. 10). Even so, the very close compositional
481	similarity of these minerals to those in sample 159966 suggest that they are likely to be
482	samples from lithologic units with identical precursor protoliths. The unequivocal Pgt
483	compositions preserved in this sample are relatively rare within the metamorphic
484	literature, and attest to temperatures in excess of 825°C (Lindsley, 1983; Harley, 1987;
485	Hyslop et al., 2008).
486	
487	540521b
488	The bulk mineralogy of 540521b is unusual. The bulk rock consists
489	predominantly of Opx- and Cpx, with equant Grt porphyroblasts. Minor amounts of Mag,
490	Rt, Gr, Mnz and carbonate are also present. The pyroxenes exhibit multiple exsolution
491	features that complexly relate to each other.
492	
493	The most obvious exsolution lamellae are coarse Fe-rich Hd (CpxL-1) that are 10-
494	50 microns wide and up to 1 cm long (Fig. 13a,b,c). They are rod-shaped, with undulous
495	grain boundaries and rounded terminations, thus giving the appearance they have
496	undergone some degree of recrystallization after originally exsolving from an earlier host.
497	These lamellae occur in Opx (Opx2), and form distinct sets in which members of each set
498	parallel each other and are approximately regularly spaced. They are observed to crosscut

499	other Opx exsolution features and cleavage, and occasionally lay along grain boundaries
500	between separate Opx grains. As such, they bear no systematic relationship to the
501	present-day Opx grain structure. However, based on their textural form and overall
502	characteristics, we interpret them to be Cpx exsolution lamellae from an earlier pyroxene,
503	analogous to similar Cpx exsolution from pyroxenes in the Nain Anorthosite complex
504	(Smith, 1974), Enderby Land (Harley, 1987) and the Skaergaard Intrusion (Holness et al.,
505	2011). The ternary compositions of these lamellae are plotted as the blue star in Figure 10.
506	
507	Individual host Opx grains (Opx2) also contain a younger generation (based on
508	cross-cutting relationships) of well-developed, linear, sharp-edged Cpx exsolution
509	lamellae (CpxL-2; Fig. 13b,c) parallel to (100). These lamellae cluster near the Hd - high-
510	Ca Aug (Fig. 10) range, and possess sub-micron Opx exsolution lamellae that are nearly
511	perpendicular to the long-axis of the host Cpx lamellae. Based on similarity of form and
512	relative chronology, we infer these Cpx-hosted Opx lamellae to be equivalent to the Opx
513	lamellae in 123220 (Fig. 12d).
514	
515	The bulk rock clinopyroxene grains have two distinct sets of exsolution lamellae,
516	similar in morphology and orientation to OpxL1 and OpxL3 observed in sample 159966.
517	We infer them to be of the same relative chronology and significance.
518	
519	Also observed in Opx2 are rare omphacite (Omp) + Cc lamellae. These occur as
520	well-defined lamellar structures (Fig. 13b) or as blebs at the terminations of Cpx lamellae
521	in Opx. The Omp composition was consistently within a few percent of

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4726

	Ms 4726 REVISION 1
522	
523	$(Na_{0.13}Ca_{0.44}Mg_{0.12}Fe_{0.31})_{1.00}(Mg_{0.19}Fe^{2+}_{0.51}Mn_{0.04}Al_{0.29}Ti_{0.02})_{1.03}(Al_{0.23}Si_{1.77})_{2.0}O_6.$
524	
525	This composition is unusual in that the stoichiometry appears to require a
526	substantial proportion of Mg and Fe^{2+} in the M2 site. In terms of the ternary components
527	acmite-jadeite-(diopside-hedenbergite-CaTschermakite) this Omp are sodian augite
528	(Essene and Fyfe, 1967) which are associated with type A eclogites. We interpret these
529	Na- and Al-rich pyroxenes, and the Cc with which they are always associated, to be
530	exsolved phases from the Cpx exsolution lamellae.
531	
532	The sets of coarse CpxL-1 lamellae that are discordant to later generations of
533	pyroxene lamellae and grain boundaries, must represent the remnants of an earlier
534	mineralogy. We have reconstructed the textural relationships of that mineralogy by
535	assuming that coherent sets of lamellae formed from the same grain. On this basis we re-
536	constructed the pre-existing grain boundaries, assuming that the areal limit of each
537	coherent set approximated the extent of the original grain (Fig. 14). The results show that
538	the earlier grains were significantly coarser (> 0.3 cm) than the current host pyroxene
539	grains, and they appeared to form a polygonal mosaic, rather than the irregular grain
540	geometries exhibited by the current bulk rock pyroxenes.
541	
542	Olivines and Ahrensite (Fe-Ringwoodite) (?)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

543

1/29

Ms 4	12	6
------	----	---

544	In sample 123220, three discrete generations of olivines occur. The oldest olivines
545	(Ol-1) occur as rounded inclusions in the mantle zones of first generation garnets. These
546	olivines are the most Mg-rich (~ Fo $_{3.75}$ Fa $_{85}$ Tep $_{11.25}$) of any observed in sample 123220
547	(Fig. 15). Olivine suite Ol-2 are the poorest in Mg (\sim Fo _{1.8} Fa ₈₆ Tep _{12.2}), and only occur
548	within inclusions in Pgt. These Ol-2 olivines are the reaction products from the
549	breakdown of Fs to Fa + Fe-Hd + Qtz. Olivine suite Ol-3 (~ Fo ₂ Fa ₈₆ Tep ₁₂) compose
550	the bulk of the olivines in this rock, and consistently are in contact with quartz. These
551	groundmass olivines occasionally have sets of lamellae of Mag and Fs.
552	
553	Olivines in sample 159966 appear, optically, to be of a single generation, and are
554	invariably in contact with quartz. They, too, have individual lamellae of Mag. The
555	compositional range of olivines from both samples span the same range, although there is
556	a clear clustering at higher Mg values for the olivines in sample 159966.
557	
558	An unusual feature observed in sample 123220 are very fine Qtz lamellae in the
559	core of a few Fa grains (Fig. 16a,b). These lamellae occur in small clusters and
560	commonly terminate along prominent cracks. The compositions of the hosting fayalitic
561	olivines was $Fo_2Fa_{86}Tep_{12}$, which overlaps with that of the olivines in the bulk rock. The
562	morphology of these Qtz lamellae are reminiscent of exsolution features. In addition, the
563	lamellae have a consistent crystallographic orientation with respect to each other and the
564	enclosing olivine. These characteristics strongly suggest that the Qtz lamellae exsolved
565	from the enclosing grains. We speculate that these lamellae are evidence for the earlier
566	presence of ahrensite (i.e., Fe-ringwoodite), as detailed in the Discussion section, below.

REVISION 1

567

568 **DISCUSSION**

569

570	The presence of remnant diamonds in graphitic inclusions in garnet mantles in
571	sample 123220, and similar graphitic inclusions in sample 159966, establishes that at
572	least portions of the supracrustal belts close to the northern boundary of the NSSZ must
573	have experienced P-T conditions associated with UHP metamorphism.
574	
575	The presence of inclusions that, although recrystallized to Cl-bearing hydrous
576	phases, have integrated bulk compositions of Opx, and for which crystallographic
577	orientations are consistent with exsolution from garnet, provide strong evidence that the
578	garnets crystallized as majorite during the period of time at which the mantle regions of
579	the garnets in 123220 and 159966 grew. This is strong corroborating evidence that these
580	rocks experienced P-T conditions well within the UHP metamorphic regime. Phase
581	assemblages and compositions provide additional corroborating evidence through
582	thermobarometric models and phase equilibria calculations.
583	
584	P-T Constraints From Geothermometry, Geobarometry and Phase Equilibria
585	
586	A number of calibrations have been published for calculating temperatures from
587	co-existing Opx and Cpx, and pressures from coexisting Opx-Grt. Both assemblages are
588	common in these samples. We have chosen to use the calibration of Brey and Kohler
589	(1990) because it was dderived from fits to high pressure experimental data and provides

REVISION 1

590	the most consistent results for our samples, while also corresponding to constraints
591	derived from phase equilibria and Thermocalc (v3.36; Holland and Powell, 2011)
592	models (described below) for these rocks. However, the unusual composition of the rocks
593	we describe in this study does not directly correspond to any experimental systems
594	relevant for UHP studies. In particular, the Mn-rich nature of the phases is associated
595	with important non-ideal thermodynamic properties (e.g., Geiger and Feenstra, 1997).
596	The P-T conditions computed for these rocks, therefore, are subject to uncertainties that
597	cannot be quantified at this time and the P-T conditions that we present must be
598	considered tentative. In addition, the complex exsolution and recrystallization histories
599	recorded by these rocks require careful assessment of textural relationships to determine
600	the appropriate EMP-derived compositions to use for calculating a P and T for a
601	particular stage in the recrystallization history of these rocks.
602	
603	The appropriate compositions to use for calculating P-T conditions for the
604	inversion of majorite to Grt + Opx are the re-mixed garnet + 6% Opx compositions
605	(Table 1) and the computed Opx composition from the reconstituted alteration products
606	(Table 1) studied in detail for sample 159966. We applied the same strategy to 123220,
607	assuming the exsolved orthopyroxene had the same composition as that in 159966.
608	Although this will introduce some error in the calculation, the nearly identical
609	compositions of all phases in these two rocks make such an approach reasonable, and the
610	resulting error likely to be very minor. We also computed the re-mixed Opx and Cpx in
611	the bulk rock, and computed temperature as a function of pressure. The intersections of
612	the trajectories of P-T points for these Grt-Opx and Opx-Cpx calibrations allows P and T

1/29

REVISION 1

to be established at time of the majorite-garnet transition. These intersections shouldoccur near the lower pressure limit for majorite stability.

615

616 The resulting P and T are essentially identical for the two samples; 7.0 (+/-1.0)617 GPa, 975 (+/- 55)°C for 123220 and 6.9 (+/- 1.0) GPa, 985 (+/- 60)°C for 159966 (Fig. 618 17). These intersections fall just below the lower pressure limit for the majoritic garnets 619 of this composition, and closely correlate to conditions inferred from the mixing lines of 620 Sautter et al (1991) (Figs. 6 and 17). The consistency of these independent approaches 621 lends credence to the validity of these results. Even so, the strong disparity between the 622 compositions of these phases and the experimental systems upon which the calculations 623 are based requires that these results be viewed with caution.

624

625 Temperatures for sample 540521b were computed using the integrated 626 compositions for the coarse Opx and Cpx. Pressure was computed using the range of 627 garnet compositions in the mantle zones in which exsolution lamellae of Fs + Rt628 (inferred) was observed. We did not re-integrate the garnet compositions because of the 629 unusual Fe-Ti characteristics of that system. The computed P and T were 8.0 (+/- 0.8) 630 GPa and 1051 (+/- 80)°C, respectively. Our experience with samples 123220 and 159966 631 showed that re-integrating the garnet-orthopyroxene compositions lowered the pressures 632 by about 1 GPa, (compared to un-reintegrated compositions) which we also believe 633 would be the case if the garnet compositions of 540521b could have been re-integrated 634 for this sample.

635

Ms 4726

```
636
               We also computed the pressure-dependent Opx-Cpx temperatures for various
637
       observed compositional combinations of Cpx lamellae and Opx host, and Opx lamellae
638
       and cCpxpx hosts (dashed lines in Fig. 17). In all cases, these un-mixed compositions
639
       provide temperatures that are incompatible with constraining phase equilibria (e.g., Fs \Leftrightarrow
640
       Fa + Qtz; and Cpx-Opx-Pgt; see discussion below). We conclude that these compositions
641
       represent diffusional re-equilibration of the thin Cpx-Opx lamellae pairs during cooling
642
       and uplift.
643
644
       Constraining Phase equilibria
645
               Three phase relationships provide tight P-T constraints on the evolution of these
646
       rocks, beyond those provided by the diamond and majorite assemblages. These
647
       constraints are based on computed P-T conditions using Thermocalc (v3.36, ds61;
648
       Holland and Powell, 2011) for reactions Fs \Leftrightarrow Fa + Qtz and Fs + Rt \Leftrightarrow Ilm + Qtz; and
649
       experimental results that establish conditions for the coexistence of the 3-phase pyroxene
650
       assemblage Cpx-Opx-Pgt for the compositions we observe (Lindsley, 1983).
651
652
               Sample 123220 provides unequivocal evidence of the reaction
653
654
                                         Fs \Leftrightarrow Fa + Otz (+ Cpx)
655
656
       as inclusions in Pgt (Fig. 12). The reactant assemblage is also the common bulk-rock
657
       mineralogy of this sample, which requires that at least part of the present day Fa-Qtz
658
       assemblage that is dominant in this rock must be derivative from inversion from an
```

Ms 4726

659	earlier Fs-dominated paragenesis. For the compositions of the reaction products, the
660	conditions of formation are enclosed within the small shaded ellipse in Figure 17, i.e., 0.9
661	GPa at 885°C to 1.7 GPa at 960°C. The P-T trajectory of sample 123220 must pass
662	through this region upon decompression and cooling. Given the ubiquitous presence in
663	the rock matrix of this reactant assemblage in sample 159966, and the near-identical
664	composition of the mineral phases to those in sample 123220, sample 159966 must also
665	have followed the same P-T trajectory through this set of conditions.
666	
667	The coexistence of the 3-phase pyroxene assemblage Cpx-Opx-Pgt in sample
668	123220 also constrains P-T conditions, since this unusual assemblage will persist in a
669	narrow P-T band, for the phase compositions observed in this sample. Based on the
670	experimental data of Lindsley (1983), the linear trajectory from the high P-T conditions
671	recorded by the exsolved Opx in garnets in this sample, to the Fa + Qtz field, crosses the
672	3-pyroxene field at 2.9 (+/- 0.2) GPa at 950 (+/- 15)°C (Fig. 17).
673	
674	The assemblage of Ilm + Qtz is contained in the segmented remnants of exsolved
675	rods in the garnets in sample 540521b. The reaction
676	
677	$Fs + 2 Rt \Leftrightarrow 2 Qtz + 2 Ilm$
678	
679	constrains the the P-T conditions for the development of this assemblage since the
680	product-side of this reaction, which is the high $T - low P$ assemblage, is now the defining
681	mineralogy of the rods. We used Thermocalc to compute the conditions for this reaction

1/29

Ms 4	/26
------	-----

682	(Fig. 17). Since sample 540521b was collected approximately 2 km east of sample
683	123220, the uplift trajectory of these two samples is likely to be very similar, thus
684	suggesting that the Ilm + Qtz assemblage developed during decompression at
685	approximately 4 GPa at 980°C. We note, however, that the extremely small size of the
686	individual grains may result in some surface energy contribution to the overall energetics
687	of the reaction, and hence may bias, to some unknown extent, the actual P-T of the
688	reaction to conditions that are different from those calculated.
689	
690	Pyroxene textures, particularly in samples 159966 and 540521b, indicate that
691	these garnet pyroxenites were composed of a single pyroxene phase (coarse-grained Fe-
692	rich Aug or Fs) that coexisted with majoritic garnet. The enrichment in light rare earth
693	elements observed in the garnet mantles is consistent with the solubility of a pyroxene
694	component in garnet (i.e., majorite), since pyroxenes consistently have higher La/Yb
695	ratios than garnets (Mazzucchelli et al., 1992; Vannucci et al., 1994). Hence, these rocks,
696	at their most extreme UHP conditions, were majorite pyroxenites. In the case of sample
697	123220, ahrensite may have been present with this assemblage.
698	
699	This sequence of exsolution and phase re-equilibration suggests that
700	decompression was almost isothermal, with a ΔT of 100°C to 150°C over a ΔP of about 6
701	GPa. During this decompression, Rt needles exsolved from garnets and Omp + Cc
702	exsolved from pyroxenes. Although Rt exsolving from garnets is clearly associated with
703	UHP metamorphism (Ague and Eckert, 2012), and Omp is a common pyroxene in high-
704	pressure eclogites (Coleman et al., 1965; Ernst and Liou, 2008), their presence can only

1/29

705	be used to confirm the UHP history of these rocks, but cannot be used to specify specific
706	P-T conditions because their development can occur over a very wide P-T range.
707	
708	Are the quartz lamellae in fayalite evidence for prior ahrensite?
709	As previously noted, Qtz needles with the textural characteristics of exsolution
710	lamellae occur in a few rare olivines in sample 123220. Since these olivines are currently
711	stoichiometric Fa, the presence of lamellae of Qtz requires that a prior phase
712	accommodated excess silica. To our knowledge, exsolution of Qtz from olivine has not
713	been reported in the literature, nor have there been reports of super-silicic olivine.
714	However, Akaogi and Akimoto (1979), Irifune and Ringwood (1987) and Hazen et al.
715	(1993), have shown that the UHP wadsleyite-ringwoodite (i.e., spinel-structured olivine)
716	series can contain excess Si. Theoretically, therefore, spinel-structured olivines in the
717	wadsleyite-ringwoodite series would exsolve silica upon decompression and inversion to
718	olivine if they were initially super-silicic. We therefore speculate that the Qtz needles
719	observed in our sample might have developed in response to inversion of high-pressure
720	supersilicic ahrensite to Fa upon decompression. If this were the case, excess Si in the
721	ahrensite would have to be accommodated via a vacancy substitution mechanism in
722	which \Box SiFe ₋₂ (Day and Mulcahy, 2007) occurs. Upon inversion of ahrensite to Fa
723	during decompression, the reaction
724	
725	$(\operatorname{Fe}_{2}\operatorname{SiO}_{4} + (\operatorname{Fe}_{2}\operatorname{SiO}_{4} + \Box\operatorname{SiFe}_{-2})) \Leftrightarrow (\operatorname{Fe}_{2}\operatorname{SiO}_{4} + (\operatorname{Fe}_{2}\operatorname{SiO}_{4} + \Box\operatorname{SiFe}_{-2}))$
726	ahrensite ⇔ Fa with excess Si
727	

Ms 4726 REVISION 1

728 would result. This phase inversion would be followed (or accompanied) by exsolution of 729 Qtz lamellae via the reaction 730 731 $(Fe_2 SiO_4 + (Fe_2 SiO_4 + \Box SiFe_2)) \Leftrightarrow Fe_2 SiO_4 + 2 SiO_2.$ 732 Fa with excess Si Fa Qtz 733 734 Although highly speculative, this explanation for the Qtz lamellae are consistent 735 with exsolution lamellae of Ilm and chromite (Chr) in Ol, interpreted to have exsolved 736 during inversion of UHP spinel-structured olivine to Ol, (Dobrzhinetskaya et al., 1996, 737 2000; Bozhilov, 2003). As we noted previously, Mag lamellae in the olivines also occur 738 in 123220. These may be analogous to the Ilm and Chr lamellae reported previously, 739 which would be consistent with the Fe-rich nature of this assemblages and the 740 interpretation of the prior presence of ahrensite. 741 742 For the pure Fe-Mg system, the composition of the olivines observed in this 743 sample would require that the pressure conditions for the initial inversion would be ca. 5 744 GPa at 1200°C. For lower temperatures, a lower pressure would be required, but the 745 minimum P-T for ahrensite formation has not been established. 746 747 *Defining the prograde metamorphic path* 748 There are very few unequivocal remnants of minerals useful for defining the 749 prograde metamorphic path of these rocks. One important observation that is useful for 750 deducing the prograde path, however, is that the first mineral to form on the retrograde

1/29

Ms ·	4726
------	------

REVISION 1

751	path these rocks experience is amphibole, which replaces pyroxenes in all rocks in
752	localities in the immediate vicinity (on the scale of meters) of the samples described in
753	this report. This fact suggests that amphibole is a likely precursor mineral phase in the
754	prograde development of the mineral assemblages of interest. Consistent with this
755	observation is the fact that the normalized REE pattern values for Eu through Dy in the
756	garnets in 123220 (Fig. 4) exactly parallel the variation pattern obtained by Konrad-
757	Schmolke et al (2008) in their forward modeling of Grt growth from amphibole (Amp)
758	breakdown. The convex-upward hump in this portion of the REE pattern results from
759	breakdown of Amp and a Cpx I to Grt and a Cpx II. Their modeling also results in an
760	enrichment in the Ca-component in the Grt, which we also observed in the inner to
761	middle mantle zone in 123220 (Fig.4d).

762

763 Assuming that an Amp phase was part of earlier mineral assemblages, 764 Schmädicke and Evans (1997) calculated the locations of equilibria in ultramafic rocks 765 from Erzgebirge (Bohemian Massif) that, among other relationships, defined garnet-766 genesis reactions from amphibole-breakdown using an early version of Thermocalc 767 (Holland and Powell, 1990). The computed P-T constraints are indicated by the green 768 box in Figure 17. Konrad-Schmolke et al. (2008), calculated similar constraints for 769 eclogitic rocks from the Western Gneiss Region (Norway) using a separate forward-770 calculation approach. Their results are shown as the blue box in Figure 17. We conducted 771 phase equilibria calculations using a more recent version of Thermocalc and the bulk 772 composition for sample 123220. The results of these calculations are the blue cross in

Ms 4726 REVISION 1

773	Figure 17. All of these calculations define a broad but consistent field in P-T space
774	through which sample 123220 must have passed during subduction.
775	
776	We conclude that the overlapping P-T conditions from these diverse studies, and
777	the compositional correspondences for REE and Ca, provide strong evidence that the
778	prograde path for sample 123220 must have been close to the P-T conditions indicated by
779	the blue cross in Figure 17.
780	
781	The earliest portion of the prograde path is recorded by the Fe-rich, clear core
782	zones in the garnets where, in addition, striking enrichments in Ti and Cr were previously
783	noted. Given the high concentrations of Fe and Mn in these rocks, we speculate that the
784	initial low- to medium grade metamorphic assemblages in these rocks may have
785	contained a piemontite-like phase along with Mag/maghemite/Ilm phases. If that were the
786	case, the initial and lowest grade garnet-forming reactions may well have involved these
787	minerals, which likely would have partitioned minor and trace components such as Cr
788	and Ti into the Grt reaction products.
789	
790	Regional variations and location of the subduction complex
791	
792	Figure 17 compares the maximum P-T conditions of these UHP samples with a
793	selected suite of other trajectories deduced from other samples in the NSSZ. Sample
794	492042E is an HP Grt-Spl-Ol gneiss (Glassley et al., 2007) that is from a similarly

positioned supracrustal unit as the samples described here, but occurring more than 25

REVISION 1

796 km to the east of 159966 (see Fig. 1). Its decompression trajectory is very similar to that 797 of the UHP samples. The other trajectories are from different rock units that are 15 km to 798 the southeast (Marranguit, a sequence of marbles and pelitic schists) and >30 km east 799 (468340 and 492045, mafic gneisses) of the UHP sample sites. The contrasting P-T 800 trajectories recorded by the UHP and HP samples, relative to all other well-constrained 801 trajectories in the NO, suggest that a high degree of tectonic interleaving is required to 802 juxtapose rocks with such different pressure histories. Whether this reflects complex 803 mixing processes within a subduction channel, tectonic imbrication during continent-804 continent collision or tectonic slicing during development of the shear zone, or all three, 805 remains a question for further investigation.

806

807 These UHP conditions greatly exceed those that have long been inferred for any 808 part of the Paleoproterozoic rocks of West Greenland (e.g., Hansen, 1979; Glassley and 809 Sørensen, 1980; van Gool et al, 2002), which has experienced a well-documented upper 810 amphibolite to granulite facies metamorphism at ca. 1850 my (Hickman and Glassley, 811 1984; Taylor and Kalsbeek, 1990; Kalsbeek and Nutman, 1996; Connelly and Mengel, 812 2000; Connelly et al., 2000). We attribute this late discovery of the UHP metamorphic 813 episode to several factors. First, although two (123220 and 159966) of the four samples 814 we describe here were collected in the late 1960s and early 1970s, the significance of 815 their mineralogy could not have been established at that time because there was very little 816 experimental data that would have suggested such high pressure conditions were 817 recorded in those rocks. Second, the vast majority of rocks in this terrain have been 818 through pervasive deformation and recrystallization under typical upper amphibolite to

1/29
1110 1/20	Ms	4726
-----------	----	------

REVISION 1

819	granulite facies conditions. This deformation has been associated with influx of fluids
820	and metasomatic alteration and recrystallization (Glassley et al., 2010). Preservation of
821	UHP mineralogy is exceedingly rare, as a result, and confined to those volumetrically
822	trivial rock masses that have escaped elevated H ₂ O activity/infiltration and deformation.
823	The consistent presence of Cc with exsolved Omp, and with inverted pyroxenes may
824	imply that elevated CO ₂ activity prevented thorough hydration/recrystallization of these
825	rocks by buffering them to low a_{H2O} . Third, the unusual bulk rock composition (Fe- and
826	Mn-rich; alkali-, Mg-, Al- and Si-poor) of these samples favors development of
827	characteristic UHP mineralogies (e.g., majoritic garnets; complex pyroxene relationships,
828	etc.) at the lowest P-T range reached by these mineral assemblages. Bulk rock
829	compositions that are Mg-richer and Fe-poorer require significantly higher P-T
830	conditions for the characteristic mineralogical features to develop.
831	
832	These UHP samples resolve uncertainty that has persisted regarding the location
833	of a "cryptic" suture in this region (Kalsbeek et al., 1987; van Gool et al., 2002; Glassley
834	et al., 2010). Given that UHP conditions result from processes within subduction
835	complexes, it is clear that the subduction zone that was active in this region must have
836	been located along the northern boundary of the NSSZ, and that late stage shearing that
837	so prominently deforms these rocks represents oblique shear of the subduction mélange
838	complex during and after continent-continent collision.
839	

840 Comparison with other UHP terrains

REVISION 1

842 Figure 18 shows that the NSSZ UHP samples fall at the high pressure – low 843 temperature range of previously reported UHP locations. Given that the previous reports 844 are from much younger terrains, this set of P-T conditions is somewhat surprising. What 845 this may mean for Paleoproterozoic mantle conditions in subduction zones remains 846 unclear until more such sites are identified and studied. Either subduction rates at this 847 location were rapid enough to cool the subduction zone, resulting in deeply suppressed 848 isotherms, or mantle thermal gradients were relatively low. It is evident, however, that 849 exhumation rates must have been exceedingly high in order for thermal conditions to 850 have changed such a small amount during uplift. Even so, the trajectory in P-T space 851 follows closely that depicted by Gilotti (2013) for "hot" UHP trajectories, except at the 852 very highest pressure region where our UHP samples marginally cross into the so called "forbidden zone". 853

854

855 The interpretation we present that the delicate quartz needles preserved in olivine 856 in sample 123220 represent exsolution from a ringwoodite phase is speculative. Given 857 that the bulk of fayalite in this sample formed as a result of ferrosilite breakdown to 858 fayalite and quartz at pressures less than 2 GPa, our interpretation can be correct only if 859 the UHP assemblage was initially garnet - ringwoodite - Fe-rich augite/ferrosilite (+/-860 fayalite). Upon decompression, ringwoodite would invert to olivine with excess silica 861 through a vacancy substitution scheme. At some point below the ferrosilite-breakdown 862 reaction to fayalite plus quartz (or perhaps during that process), exsolution of the quartz 863 needles occurred. The fact that the clusters of needles are commonly sharply terminated 864 at prominent cracks in the fayalite suggests that nucleation and growth of the quartz

Ms 4726	REVISION 1
IVIS 4/20	KEVISION I

865	lamellae may have been initiated along discrete zones stressed by crystallographic
866	adjustments related to relaxation associated with the vacancy substitution scheme
867	previously noted. However, further experimental work and recovery of similar samples
868	that preserve the sequence of events we postulate is needed to evaluate this speculation.
869	
870	IMPLICATIONS
871	
872	Remnants of majoritic garnet, diamond, rutile needles exsolved from garnet and
873	pyroxenes, and complex pyroxene exsolution textures that include exsolution of
874	omphacite, along with possible evidence of ringwoodite, indicate that a previously
875	unrecognized UHP metamorphic rock sequence exists in the western region of the
876	Nagssugtoqidian shear zone near and along its northern boundary. This metamorphic
877	complex formed during Paleoproterozoic subduction and marks the location of the suture
878	that formed during continent-continent collision ca. 1850 mya. This is the first report of
879	UHP metamorphism in the Paleoproterozoic rocks of West Greenland.
880	
881	Although providing new insight into the complex tectonic history of this region,
882	further work needs to be conducted to resolve the following key outstanding issues:
883	1. Are the UHP rocks contained within a tectonic slice transported from depth and
884	interleaved into lower P-T rock units, or is there a continuous UHP terrain in this
885	region?
886	2. The unusual composition of these rocks does not directly correspond to any
887	experimental systems relevant for UHP studies. In particular, the Mn-rich nature

REVISION 1

888		of the phases is associated with important non-ideal thermodynamic properties
889		(e.g., Geiger and Feenstra, 1997). The P-T conditions computed for these rocks,
890		therefore, are subject to uncertainties that cannot be quantified at this time.
891		Further experimental and theoretical work needs to be done that would allow
892		these uncertainties to be quantitatively evaluated.
893	3.	Is the unexpectedly low T at high P for these UHP rocks representative of mantle
894		conditions during the Paleoproterozoic or are these rocks recording aberrant
895		conditions relative to the average thermal structure in subduction zones of that
896		period? Or, do these UHP rocks record very rapid subduction rates that may have
897		been characteristic for Paleoproterozoic subduction systems?
898	4.	The postulated presence of reaction products from ringwoodite breakdown is
899		speculative. Further work needs to be done to test this suggestion. If it is correct,
900		ringwoodite remnants may be present in other UHP regions in which Fe-rich
901		assemblages occur.
902		The ability to identify these unusual assemblages reflects a serendipitous
903	conflu	ence of circumstances – Fe- and Mn-rich rocks that were relatively undeformed,
904	and es	caped significant hydration during exhumation. These observations suggest that
905	such li	thologies should be considered targets for detailed investigations in regions where
906	HP or	UHP conditions may be suspected.
907		
908	Ackno	owledgements
909	Steen	Platou joined us in the field in Greenland in July and August of 2012, more than

910 forty years after his last field season, when he was there for his thesis work as a student at

REVISION 1

911	Aarhus University. His thesis work was an integral part of the mapping campaign in the
912	late 1960s and early 1970s that established the foundation for much of what we know
913	about West Greenland Nagssugtoqidian geology. During that time, he established one of
914	the first computer-oriented GIS systems, which was widely adapted for field work in
915	West Greenland. We returned to the area he mapped, with him as field guide, to relocate
916	one of the key samples for this work (123220), which he had collected so long ago. He
917	was a stalwart field companion, with a wry sense of humor. When we speculated, he
918	grounded us in skepticism; when we groused, he made us laugh. When we returned from
919	the field, he continued with his passion of refining and digitizing field maps and
920	documents. Suddenly, while involved in this compilation work, Steen died. We have lost
921	a friend and colleague, but we acknowledge with thanks the good fortune we had of
922	sharing with him a wilderness place he so dearly enjoyed.
923	
924	We also would like to acknowledge the assistance of Andrew Fowler in collecting and
925	reducing the LA-ICP-MS data; Alan Hicklin of the Keck Spectral Imaging Facility,
926	Department of Chemistry, U.C. Davis for assistance with the Raman spectrometry; Isabel
927	Montanez for assistance with and use of the 3-D imaging; and Sarah Roeske and Nick
928	Botto for their boundless support on the electron microprobe. Comments on various parts
929	of this paper by Howard Day and Robert Zierenberg are gratefully acknowledged.
930	
931	Thorough, critical reviews by W.L. Griffin, J.G. Liou and Sergio Speziale significantly
932	improved this paper, and we gratefully acknowledge their comments.

REVISION 1

934 935

936 Figure and Table Captions

937

938	Figure 1. A. Geologic and tectonic domain map of Greenland showing the location of the
939	study region (white box) in West Greenland. B. The distribution of lithologic units,
940	structural features within the Nagssugtoqidian orogeny (NO), and the Nordre Strømfjord
941	shear zone (NSSZ). C. Sample locations for samples treated in this report. Sample
942	492042E is indicated in B, as well as the location of the study area (white box) depicted
943	in C.
944	
945	Figure 2. Field photos of outcrops for areas associated with samples 123220 (A.) and
946	540521b (C.). Thin sections of the respective samples studied in this report are shown in
947	B. and D. Also shown are the locations on the thin sections of other figures in this report.
948	
949	Figure 3. Garnets and inclusions in samples 159966 and 540521b. A. Photomicrograph
950	(plane light, true color) of garnet in 159966. Note the clear core, inclusion-rich mantle
951	and clear rim. B. Photomicrograph (plane light, black and white processed 3-D image) of
952	the inclusion-rich region shown in A. Note the aligned crystallographic form of the
953	inclusions. C. Photomicrograph (plane light, true color) of garnet in 540521b. D.
954	Photomicrograph (plane light, true color) of boxed area in C. E. Back-scattered electron
955	(BSE) image of inclusions in D. White is Ilm, black is Qtz. All inclusions in the inclusion
956	trains seen in C. consist of the same mineralogy.
957	

1/29

REVISION 1

958	Figure 4. Compositional characteristics of garnet in sample 123220. A., B. Electron
959	microprobe (EMP) point traverse for atomic proportion (based on 12 O) of Fe (A.; dots
960	and solid line), Mg (A.; circles and dashed line), Mn (B.; dots and solid line) and Ca (B.;
961	circles and dashed line). Clear core and rim regions are indicated. C. LA-ICPMS spot
962	analyses for Cr and Ti (clear core zone is indicated). Error bars are 1 sigma for Ti, based
963	on counting statistics. Error bars for Cr are smaller than the circles. The distance scale
964	uses a different origin for reference than that used in A. and B. D. LA-ICPMS analysis of
965	rare earth element (REE) distributions (normalized to chondrites; Sun and McDonough,
966	1989) for the core, mantle (range indicated by double arrow) and rim of garnet. For
967	comparison, garnet REE distributions from the Western Gneiss Region of Norway
968	(Konrad-Schmolke et al., 2008), Himalayan majorities (Scambelluri et al., 2008) and
969	South African kimberlites (Lazarov et al., 2012) are also shown. The locations of the LA-
970	ICP-MS analyses are indicted by the stars in A; the two stars linked by double arrows
971	span the mantle compositions indicated in D.
972	
973	Figure 5. EMP analyses for pyroxenes and inclusions in sample 159966. A. Variation
974	diagrams for the atomic proportions of Mg vs Fe. B. Variation diagrams for the atomic
975	proportions of Ca vs Si. Unaltered Opx are indicated by solid dots. Compositions of
976	inclusions are shown by gray dots. Boxes indicate the three end members, based on
977	clustered analyses. The star indicates the computed composition for Opx exsolved from
978	Grt, based on re-mixing of the inclusions in proportions inferred from observed relative
979	abundances of each end member.

REVISION 1

981	Figure 6. Atomic proportion of Al vs Si in Grt (on the basis of 12 O) from the indicated
982	sources. The orange crosses are sample averages for all garnet analyses obtained from
983	samples within the NSSZ since 1980. The red, green and black dots are the spot analyses
984	for samples 123220, 540521b and 159966, respectively. The gray boxes indicate the
985	garnet composition resulting from re-mixing of the indicated proportions of garnet and
986	exsolved orthpyroxene for 159966. The dashed line indicates the Haggerty and Sautter
987	(1991) trend for majorities, as a function of pressure (labeled tick marks).
988	
989	Figure 7. Carbon (C) inclusions in garnet in 123220. The upper figure is a BSE image of
990	the garnet with the C inclusions indicated by the boxes. Note that they only occur
991	throughout the mantle region of the garnet. Lower right image is a reflected light
992	photomicrograph of the large (right) and small (left) grains identified in Figure 8 as Grain
993	5 large and Grain 5 small, respectively. The middle lower figure is a photomicrograph of
994	the same grains in plane polarized transmitted light, natural color. Note the well-defined
995	faceted forms, particularly for the smaller inclusion. Lower left image is a
996	photomicrograph (3-D, transmitted plane light, processed black and white) of the same
997	inclusions as in the lower right image. The symmetry is cubic, with a well-developed
998	hexagonal cross section in the small grain resulting from the thin section surface cutting
999	the grain close to the (1.5 1.5 1.5) plane. Note also the decompression cracks radiating
1000	from the basal portion of the larger grain.
1001	

1002 Figure 8. Raman spectra of C grains 1 (5pt8), 5 small (5pt3) and 5 large (5pt4-2 and 5pt7)

1003 indicated in the garnet shown in Figure 7. Reference spectral lines for diamond (blue

REVISION 1

1004	line) and graphite (green lines) are also shown. The red line and shaded region are
1005	background garnet lines. The Raman spot spectrum for Grain 5 large (5pt4-2) was taken
1006	adjacent to the spot 5pt7, which was also in Grain 5 large.
1007	
1008	Figure 9. Photomicrographs of rutile exsolution in garnet 540599. Upper image is crossed
1009	nichols, lower image is 3-D, transmitted plane light, processed black and white image
1010	from a region near that of the upper image. The angular relationships between the three
1011	orientations of needles is shown in the upper left box of the lower image. If the section
1012	were oriented such that the symmetry axis were exactly vertical (instead of slightly
1013	inclined), the angular relationship would be 120° .
1014	
1015	Figure 10. Pyroxene ternary diagram for samples 123220, 159966 and 540521b. See text
1016	for explanation. For 123220 and 159966 Cpx are indicated by squares and Opx by circles.
1017	All pyroxene analyses from sample 540521b are shown by circles, except for the labeled
1018	stars, which are discussed in the text.
1019	
1020	Figure 11. BSE images of pyroxene textures in 159966. A. Cpx and Opx host grains
1021	detailed in B, C and D. Also shown are the linear contacts between crystals that parallel
1022	(100) and (001). B. Pyroxene lamellae OpxL1 and OpxL2 (light gray) in host Cpx (dark
1023	gray). C. Detail of pyroxene lamellae OpxL1 and OpxL3 (light gray) in host Cpx (dark

1024 gray). Also shown, for reference, are the orientations of (100) and (001). D. Detail of

1025 oxide and CpxL1 lamellae in host Opx.

1027	Figure 12. Images of pyroxene textures in 123220. A. Large Pgt grain with Rt lamellae
1028	and Fa-Qtz-(Fe-)Hd inclusions. Also shown are matrix Fa, Cpx and Qtz (plain light). B.
1029	Detail of Rt lamellae in Pgt (plain light). C. BSE detailed image of idiomorphic Fa-Qtz-
1030	(Fe-)Hd inclusion in A. Note the OpxL1 lamellae in the Fe-Hd. D. BSE detailed image of
1031	interface region between Fa and Fe-Hd with OpxL1 lamellae. Black arrow points to
1032	cuspate grain boundary discussed in text.
1033	
1034	Figure 13. Pyroxene textures in 540521b. A. Photomicrograph (crossed nicols) of coarse
1035	Cpx lamellae (ferrosalites; CpxL-1) crosscutting Opx hosts and later generation Cpx
1036	lamellae. B. BSE detail of the finer Cpx lamellae, including the Omp + Cc lamellae. C.
1037	BSE image of details of pyroxene textures in A. Note the undulose, irregular grain
1038	margins of the CpxL-1 generation of lamellae and the sharp, linear grain margins of the
1039	later Cpx lamellae.
1040	
1041	Figure 14. Reconstructed grain boundaries (upper figure) in the area depicted in Figure
1042	13A (lower image). Red lines indicate the length, location and orientation of the CpxL-1
1043	lamellae. The heavy black lines outline the original grain boundaries for the earliest
1044	homogeneous pyroxene phase required by the orientations and extent of the CpxL-1
1045	lamellae. The dashed lines are the current Opx grain boundaries.
1046	
1047	Figure 15. Olivine compositions for 123220 and 159966, in terms of Fe vs Mg (atoms per

- 1048 formula unit on the basis of 4 O). Ol-1 indicates the analyses for the olivines enclosed in
- 1049 the host garnet shown in Figure 7. Ol-2 indicates the field that encloses olivine analyses

REVISION 1

obtained for the Fa in the inclusion shown in Figure 12C. Ol-3 are analyses from olivinesin the 123220 bulk rock.

1052

1053 Figure 16. Qtz needles in Fa, 123220. A. Transmitted light, crossed nicols of Fa crystal

1054 with areas with quartz fibers (indicated). Boxed region shows area depicted in B. Also

shown are coexisting matrix Cpx and Qtz. B. Reflected light image of boxed area in A.

1056 Dark rods are Qtz fibers.

1057

1058 Figure 17. Pressure – temperature constraints for samples 123220, 159966 and 540521b.

1059 Orange and green circles are computed intersections for remixed mineral compositions

1060 using Brey and Köhler (1990) Cpx-Opx thermometry (computed as a function of

1061 pressure) and Opx-Grt barometry (computed as a function of temperature), for 123220

and 159966, respectively. The error bars bound the regions of intersections. The error

1063 bars for 540521b indicate the range of intersections for un-remixed compositions. The

1064 heavy red line is the Fs + Rt \Leftrightarrow Ilm + Qtz equilibrium, derived from Thermocalc

1065 (Holland and Powell, 2011). Also shown is the field, computed using Thermocalc, for the

1066 Fs \Leftrightarrow Fa + Qtz reaction, for the observed mineral compositions in sample 123220

1067 (detailed in text). The field for the 3-phase pyroxene assemblage for 123220 is indicated

1068 by the pink field, based on Lindsley (1983). Dashed lines are the locus of pressure-

1069 dependent temperatures from Cpx-Opx thermometry on unmixed coexisting pyroxene

1070 lamellae for the indicated samples. The univariant equilibria for diamond \Leftrightarrow graphite is

1071 shown for reference. The fields for majorite (based on Sautter et al., 1991 and Ono, 1998)

1072 and ringwoodite + fayalite, as proxy for ahrensite + fayalite (Irifune and Ringwood,

1073	1987; Akaogi and Ito, 1989; Miyahara et al., 2008) are also shown. The green- and blue-
1074	boxed areas and the blue error bars are P-T constraints derived for garnet growth at the
1075	expense of amphibole and clinopyroxene (see text discussion for details). Orange, blue
1076	and green heavy lines indicate the simplest trajectories for the samples that also
1077	correspond to phase equilibria constraints. The P-T trajectories for other regional samples
1078	(468340, 492042E, 492045 and Marranguit) are shown for comparison.
1079	
1080	Figure 18. P-T conditions for reported UHP terrains and the P-T loop for our UHP
1081	samples (red loop). The UHP trajectory for the samples described in this report are
1082	lumped together into a single trajectory (red loop), based on the assumption they
1083	experienced the same history. Gray ovals indicate discrete P-T constraints for the
1084	prograde and retrograde path, as discussed in the text. The yellow loop is the P-T
1085	trajectory for cold UHP metamorphism from Gilotti (2013). The other reported UHP
1086	terrains are: 1. Rhodope, Greece (Mposkos and Kostopoulos, 2001); 2. Saxonian
1087	Erzgebirge, Saidenbach reservoir (Massonne 2003; Hwang et al. 2007); 3. Garnet
1088	peridotite, North Qaidam, Tibetan Plateau (Song et al. 2004); 4. Garnet peridotite, Otrøy,
1089	Western Gneiss Region, Norway (Van Roermund et al. 2000); 5. Yangkou mafic-
1090	ultramafic complex, Sulu terrain, China (Zhang et al., et al. 2003); 6. Garnet peridotites,
1091	Czech Republic (Vrána, 2008); 7. Eclogite xenoliths, Premier Kimberlite (Dludla et al.
1092	2006); 8. Felsic granulites, Bohemian Massif (Kröner et al., 2000; O'Brien and Rötzler,
1093	2003; Hwang et al., 2007; Kotkavá et al. 2011); 9. Felsic granulite, Western Gneiss
1094	Region, Norway (Larsen et al., 1998); 10. Eclogite, Junan, Sulu Terrain (Zhang et al.,

1/29

	Ms 4726	REVISION 1
1095	2003); 11. Kokchetav Massif (Herma	ann et al., 2001; Korsakov and Hermann, 2006); 12.
1096	Garnet xenocrysts, Garnet Ridge, Ar	izona (Wang et al. 1999).
1097 1098 1099	Table 1. Mineral and rock composition	ons for samples 123220, 159966 and 540521b. The
1100	standard deviation (S.D.) shown for t	the LA-ICPMS analyses is the approximate average
1101	for all points analyzed.	
1102		
1103		
1104		
1105		

REVISION 1

- 1106
- 1107

1108 **REFERENCES**

- 1109
- 1110 Ague, J.J., and Eckert Jr., J.O. (2012) Precipitation of rutile and ilmenite needles in
- 1111 garnet: Implications for extreme metamorphic conditions in the Acadian Orogen, U.S.A.,
- 1112 American Mineralogist, 97, 840-855.
- 1113
- 1114 Akaogi, M., and Ito, E. (1989) Olivine-modified spinel-spinel transitions in the system
- 1115 Mg2SiO4-Fe2SiO4; Calorimetric measurements, thermochemical calculations and
- 1116 geophysical application. Journal of Geophysical Research, 94, 15,671-15,685.
- 1117
- 1118 Bak, J., Korstgård, J.A., Sørensen, K., 1975a. A major shear zone within the
- 1119 Nagssugtoqidian of West Greenland. Tectonophysics, 27, 191–209.
- 1120
- 1121 Bak, J., Sørensen, K., Grocott, J., Korstgård, J.A., Nash, D., Watterson, J., 1975b.
- 1122 Tectonic implications of Precambrian shear belts in western Greenland. Nature, 254,
- 1123 566–569.
- 1124
- 1125 Barron, B.J., Barron, L.M., and Duncan, G. (2005) Eclogitic and ultrahigh-pressure
- 1126 crustal garnets and their relationship to Phanerozoic subduction diamonds, Bingara area,
- 1127 New England Fold Belt, eastern Australia. Economic Geology, 100, 1565-1582.
- 1128

1129	Bozhilov, K.N., Green, H.W., and Dobrzhinetskaya, L.F. (2003) Quantitative 3D
1130	measurement of ilmenite abundance in Alpe Arami olivine: confirmation of high-pressure
1131	origin. American Mineralogist 88, 596–603.
1132	
1133	Brey, G.P., and Köhler, T. (1990) Geothermobarometry in Four-Phase LherzolitesII. New
1134	thermobarometers and practical assessment of existing thermobarometers. Journal of
1135	Petrology, 31, 1353-1378.
1136	
1137	Chopin, C., 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps:
1138	a first record and some consequences. Contributions to Mineralogy and Petrology, 86,
1139	107-118.
1140	
1141	Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the
1142	mantle. Earth and Planetary Science Letters, 212, 1-14.
1143	
1144	Coats, J.S., Shaw, M.H., Smith, R.T., Rollin, K.E., Smith, C.G., and Fortey, N.J. (1996)
1145	Mineral exploration for gold and base metals in the Lewisian and associated rocks of the
1146	Glenelg area, north-west Scotland. Mineral Reconnaissance Programme Report, British
1147	Geological Survey, No. 140, 75 pp.
1148	
1149	Coleman, R.G., Lee, D.E., Beatty, L.B., and Brannock, W.W. (1965) Eclogites and
1150	eclogites: their differences and similarities. Geological Society of America Bulletin, 76,
1151	483-508.

Ms 4726 REVISION 1

1152

- 1153 Connelly, J.N., and Mengel, F.C. (2000) Evolution of Archean components of the
- 1154 Nagssugtoqidian orogen, West Greenland. Geological Society of America Bulletin, 112,
- 1155 747-763.

1156

- 1157 Connelly, J.N., van Gool, J.A.M., and Mengel, F.C. (2000) Temporal evolution of a
- 1158 deeply eroded orogen: the Nagssugtoqidian Orogen, West Greenland. Canadian Journal
- 1159 of Earth Sciences, 37, 1121-1142.

- 1161 Davidson, L.M. (1979) Nagssugtoqidian granulite facies metamorphism in the
- 1162 Holsteinsborg region, West Greenland. Grønlands Geologiske Undersøgelse Rapport 89,
- 1163 97-108.
- 1164
- 1165 Davies, G.R, Nixon, P.H., Pearson, D.G., and Obata, M. (1993) Tectonic implications of
- 1166 graphitized diamonds from the Ronda peridotite massif, southern Spain. Geology, 21,
- 1167 471-474.
- 1168
- 1169 Day, H., and Mulcahy, S. R. (2007). Excess silica in omphacite and the formation of free
- silica in eclogite. Journal of Metamorphic Geology, 25, 37-50.
- 1171
- 1172

1173	Dludla, S., le Roex, A.P., and Gurney, J.J. (2006) Eclogite xenoliths from the Premier
1174	kimberlite, South Africa: geochemical evidence for a subduction origin. South African
1175	Journal of Geology, 109, 353–368.
1176	
1177	Dobrzhinetskaya, L.F., Green, H.W., and Wang, S. (1996) Alpe Arami: A peridotite
1178	massif from depths of more than 300 km. Science, 271, 1841–1846.
1179	
1180	Dobrzhinetskaya, L.F., Bozhilov, K.N., and Green, H.W. (2000) The solubility of TiO ₂ in
1181	olivine: Implication to the mantle wedge environment. Chemical Geology, 163, 325–338.
1182	
1183	Ernst, W.G., and Liou, J.G. (2008) High- and ultrahigh-pressure metamorphism: Past
1184	results and future prospects. American Mineralogist, 93, 1771-1786.
1185	
1186	Escher, A. (1970) The general structural pattern of the Nagssugtoqidian orogenic
1187	complex between Søndre Strømfjord and Jakobshavn, West Greenland. In: Colloquim
1188	on Nagssugtoqidian Geology. Geological Institute, Aarhus University, pp. 4-8.
1189	
1190	Essene, E.J., and Fyfe, W.S. (1967) Omphacite in California metamorphic rocks.
1191	Contributions to Mineralogy and Petrology, 15, 1-23.
1192	
1193	Garde, A.A., and Kalsbeek, F. (2006) Precambrian crustal evolution and Cretaceous-
1194	Paleogene faulting in West Greenland. Geological Survey of Denmark and Greenland
1195	Bulletin 11, 204 p.

Ms 4726 **REVISION 1** 1196 1197 Geiger, C.A., and Feenstra, A. (1997) Molar volumes of mixing of almandine-pyrope and 1198 almandine-spessartine garnets and the crystal chemistry and thermodynamic-mixing 1199 properties of the aluminosilicate garnets. American Mineralogist, 82, 571-581. 1200 1201 Gilotti, J.A. (2013) The realm of ultra-high pressure metamorphism. Elements 9, 255-1202 260. 1203 1204 Glassley, W.E. (1983) Deep crustal carbonates as CO2 fluid sources: evidence from 1205 metasomatic reaction zones. Contributions to Mineralogy and Petrology, 84, 15–24. 1206 1207 Glassley, W.E. & Sørensen, K. (1980) Constant Ps-T amphibolite to granulite facies 1208 transition in Agto (West Greenland) metadolerites: implications and applications. Journal 1209 of Petrology, 21, 69–105. 1210 1211 Glassley, W.E., Korstgård, J.A., and Sørensen, K. (2007) Two tectonically significant 1212 enclaves in the Nordre Strømfjord shear zone at Ataneq, central West Greenland. 1213 Geological Survey of Denmark and Greenland Bulletin, 13, 49-52. 1214 1215 Glassley, W.E., Korstgård, J.A., and Sørensen, K. (2010) K-rich brine and chemical 1216 modification of the crust during continent-continent collision, Nagssugtogidian Orogen, 1217 West Greenland. Precambrian Research, 180, 47-62. 1218

	Ms 4726 REVI	SION 1
1219	Griffin, W.L. (2008) Major transformations	reveal Earth's deep secrets. Geology, 36, 95-
1220	96.	
1221		
1222	Griffin, W.L., Jensen, B.B. and Misra, S.N.	(1971) Anomalously elongated rutile
1223	in eclogite-facies pyroxene and garnet. Nors	sk Geologisk Tidsskrift, 51, 177–185.
1224		
1225	Haggerty, S.E., and Sautter, V. (1990) Ultra	deep (greater than 300 kilometers) ultramafic
1226	upper mantle xenoliths. Science, 248, 993-9	96.
1227		
1228	Hansen, B.F. (1979) Some charnockitic rock	ks in the Nagssugtoqidian of West Greenland.
1229	Rapport Grønlands Geologiske Undersøgels	se, 89, 85–96.
1230		
1231	Harley, S.L. (1987) A pyroxene-bearing me	ta-ironstone and other pyroxene-granulties
1232	from Tonagh Island, Enderby Land, Antarct	ica: further evidence for very high
1233	temperature (>980°C) Archaean regional me	etamorphism in the Napier Complex. Journal
1234	of Metamorphic Geology, 5, 341-356.	
1235		
1236	Hazen, R.M., Downs, R.T., Finger, L.W., an	nd Ko, J. (1993) Crystal chemistry of
1237	ferromagnesian silicate spinels: Evidence for	or Mg-Si disorder. American Mineralogist, 78,
1238	1320-1323.	
1239		
1240	Hermann, J., Rubatto, D., Korsakov, A., Sha	atsky, V.S. (2001) Multiple growth during

	Ms 4726 REVISION 1	
1241	fast exhumation of diamondiferous deeply subducted continental crust (Kokchetav	
1242	Massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141, 66-82.	
1243		
1244	Hickman, M.H., and Glassley, W.E. (1984) The role of metamorphic fluid transport in	
1245	the Rb-Sr isotopic resetting of shear zones: evidence from Nordre Strømfjord, West	
1246	Greenland. Contributions to Mineralogy and Petrology, 87, 265-281.	
1247		
1248	Holland. T.J.B. and Powell, R. (1990) An enlarged and updated internally consistent	
1249	thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-	
1250	MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology,	
1251	8, 89-124.	
1252		
1253	Holland, T., and Powell, R. (2011) An improved and extended internally consistent	
1254	thermodynamic dataset for phases of petrological interest, involving a new equation of	
1255	state for solids. Journal of Metamorphic Geology, 29, 333-383	
1256		
1257	Holness, M.B., Stripp, G., Humphreys, M.C.S., Veksler, I.V., Nielsen, T.F.D., and	
1258	Tegner, C. (2011) Silicate liquid immiscibility within the crystal mush: Late-stage	
1259	magmatic microstructures in the Skaergaard intrusion, East Greenland. Journal of	
1260	Petrology, 52, 175-222.	
1261		

Ms 4726	REVISION 1
115 1720	

- 1262 Hwang, S.L., Yui, T.F., Chu, H.T., Shen, P., Schertl, H.P., Zhang, R.Y., and Liou, J.G. 1263 (2007) On the origin of oriented rutile needles in garnet from UHP eclogites. Journal of 1264 Metamorphic Geology, 25, 349–362. 1265 1266 Hyslop, E.V. Valley, J.W., Johnson, C.M., and Beard, B.L. (2008) The effects of 1267 metamorphism on O and Fe isotope compositions in the Biwabik Iron Formation, 1268 northern Minnesota. Contributions to Mineralogy and Petrology, 155, 313-328. 1269 1270 Irifune, T., and Ringwood, A.E. (1987) Phase transformations in a harzburgite 1271 composition to 26 GPa: implications for dynamical behaviour of the subducting slab. 1272 Earth and Planetary Science Letters, 86, 365-376. 1273 1274 Kalsbeek, F., Pidgeon, R.T., and Taylor, P.N. (1987) Nagssugtoqidian mobile belt of 1275 West Greenland: a cryptic 1850 Ma suture between two Arcaean continents - chemical 1276 and isotopic evidence. Earth and Planetary Science Letters, 85, 365-385. 1277 1278 Kalsbeek, F., and Nutman, A.P. (1996) Anatomy of the Early Proterozoic 1279 Nagssugtoqidian orogen, West Greenland explored by reconnaissance SHRIMP U-Pb 1280 zircon dating. Geology, 24, 515-518. 1281 1282 Konrad-Schmolke, M., Zack, T., O'Brien, P.J., and Jacob, D.E. (2008) Combined
- 1283 thermodynamic and rare earth element modelling of garnet growth during subduction:

Ms 4726 **REVISION 1**

1284	Examples from ultrahigh-pressure eclogite of the Western Gneiss Region, Norway. Earth
1285	and Planetary Science Letters, 272, 488-498.

1286

- 1287 Korsakov, A.V., Hermann, J., 2006. Silicate and carbonate melt inclusions associated
- 1288 with diamonds in deeply subducted carbonate rocks. Earth and Planetary Science Letters,
- 1289 241, 104–118.

1290

- 1291 Korstgård, J.A. (1979) Nagssugtoqidian Geology. Grønlands Geologiske Undersøgelse
- 1292 Rapport 89, 146 p.

1293

1294 Kotkavá, J., O'Brien, P.J., and Ziemann, M.A. (2011) Diamond and coesite discovered in

1295 Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology, 39,

1296 667-670.

1297

1298 Kröner, A., O'Brien, P.J., Nemchin, A.A., and Pidgeon, R.T. (2000) Zircon ages for high

1299 pressure granulites from South Bohemia, Czech Republic, and their connection to

- 1300 Carboniferous high temperature processes. Contributions to Mineralogy and Petrology,
- 1301 138, 127–142.

1302

1303 Larsen, R.B., Eide, E.A., and Burke, E.A.J. (1998) Evolution of metamorphic volatiles

1304 during exhumation of microdiamond-bearing granulites in the Western Gneiss Region,

1305 Norway. Contributions to Mineralogy and Petrology, 133, 106-121.

1307	Lazarov, M., Brey, G.P., and Weyer, S. (2012) Evolution of the South African mantle —
1308	A case study of garnet peridotites from the Finsch diamond mine (Kaapvaal craton); part
1309	1: Inter-mineral trace element and isotopic equilibrium. Lithos, 154, 193-209.
1310	
1311	Lindsley, D.H. (1983) Pyroxene thermometry. American Mineralogist, 68, 477-493.
1312	
1313	Massonne, H.J. (2003) A comparison of the evolution of diamondiferous quartz-rich
1314	rocks from the Saxonian Erzgebirge and the Kokchetav Massif: are so-called
1315	diamondiferous gneisses magmatic rocks? Earth and Planetary Science Letters, 216, 347-

- 1316 364.
- 1317 Mazur, S., Anczkiewicz, R., Szczepanski, J., van Gool, J.A.M., and Thirlwall, M. (2012)
- 1318 Paleoproterozoic metamorphism and cooling of the northern Nagssugtoqidian orogeny,
- 1319 West Greenland. Precambrian Research, 196-197, 171-192.
- 1320 Mazzucchelli M., Rivalenti G., Vannucci R., Bottazzi P., Ottolini L., Hofmann A.W.,
- 1321 Sinigoi S., Demarchi G. (1992) Trace element distribution between clinopyroxene and
- 1322 garnet in gabbroic rocks of the deep crust: An ion microprobe study. Geochimica et
- 1323 Cosmochimica Acta, 56, 2371-2385.
- 1324 Mengel, F.C. (1983) Chemistry of coexisting mafic minerals in granulite facies
- amphibolites from West Greenland: clues to conditions of metamorphism. Neues
- 1326 Jahrbuch für Mineralogie Abhandlungen 147, 315–340.
- 1327

1115 4/20	Ms	4726
-----------	----	------

1328	Miyahara, M., El Gorsey, A., Ohtani, E., Nagase, T., Nishijima, M., Vashaei, Z., Ferroir,
1329	T., Gillet, P., Dubrovinsky, L., and Simionovici, A. (2008) Evidence for fractional
1330	crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained
1331	in shock-melt veins. Proceedings of the National Academy of Sciences 105, 8542-8547.
1332	
1333	Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A.,
1334	Zussman, J. Aoki, K., and Gottardi, G. (1988) Nomenclature of pyroxenes. American
1335	Mineralogist, 73, 1123-1133.
1336	
1337	Mposkos, E.D., and Kostopoulos, D.K. (2001) Diamond, former coesite and supersilicic
1338	garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure
1339	metamorphic province established. Earth and Planetary Science Letters, 192, 497-506.
1340	
1341	Nutman, A.P., Kalsbeek, F., Marker, M., van Gool, J.A.M. & Bridgwater, D. (1999) U-
1342	Pb zircon ages of Kangâmiut dykes and detrital zircons in metasediments in the
1343	Palaeoproterozoic Nagssugtoqidian Orogen (West Greenland). Clues to the pre-
1344	collisional history of the orogen. Precambrian Research, 93, 87-104.
1345	
1346	O'Brien, P.J., and Rötzler, J. (2003) High-pressure granulites: formation, recovery of
1347	peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21, 3-
1348	20.
1349	
1350	Ollila, P.W., Jaffe, H.W., and Jaffe, E.B. (1988) Pyroxene exsolution: An indicator of

1351	high-pressure igneous crystallization of pyroxene-bearing quartz syenite gneiss from the
1352	High Peaks region of the Adirondack Mountains. American Mineralogist, 73, 261-273.
1353	
1354	Ono, S., (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge
1355	basalt compositions: Implications for water transportin subduction zones. Journal of
1356	Geophysical Research, 103, 18,253-18,267.
1357	
1358	Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J. (2011) Iolite: Freeware for
1359	the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic
1360	Spectrometry, v. 26, no. 12, p. 2508.
1361	
1362	Robinson, P., Jaffe, H.W., Ross, M., and Klein, C. Jr. (1971) Orientation of exsolution
1363	lamellae in clinopyroxene and clinoamphiboles: Consideration of optimal phase
1364	boundaries. American Mineralogist, 56, 909-939.
1365	
1366	Sautter, V., Haggerty, S.E. and Field, S. (1991) Ultradeep (>300 Kilometers) ultramafic
1367	xenoliths: Pterological evidence from the transition zone. Science, 252, 827-830.
1368	
1369	Scott, D., Marker, M., Gauthier, G., Stecher, O., Whitehouse, M., Bridgwater, D., van
1370	Gool, J. & Mengel, F.C. (1998) Age of deposition, provenance and tectonic setting of
1371	metasedimentary rocks in the Paleoproterozoic Nagssugtoqidian orogen, West Greenland.
1372	Lithoprobe Report 68, 148–149.

REVISION 1

1374	Scambelluri, M., Pettke, T., and van Roermund, H.L.M. (2008) Majoritic garnets monitor
1375	deep subduction fluid flow and mantle dynamics: Geology, 36, p. 59-62.
1376	
1377	Schmädicke, E., and Evans, B.W. (1997) Garnet-bearing ultramafic rocks from the
1378	Erzgebirge, and their relation to other settings in the Bohemian Massif. Contributions to
1379	Mineralogy and Petrology, 127, 57-74.
1380	
1381	Smith, D. (1974) Pyroxene-Olivine-Quartz Assemblages in Rocks Associated with the
1382	Nain Anorthosite Massif, Labrador. Journal of Petrology, 15, 58-78.
1383	
1384	Smith, D.C., and Godard, G. (2013) A Raman spectroscopic study of diamond and
1385	disordered sp3-carbon in the coesite-bearing Straumen eclogite pod, Norway. Journal of
1386	Metamorphic Geology, 31, 19-33.
1387	
1388	Song, S., Zhang, L., and Niu, Y. (2004) Ultra-deep origin of garnet peridotite from the
1389	North Qaidam ultrahigh-pressure belt, northern Tibetan Plateau, NW China. American
1390	Mineralogist, 89, 1330–1336.
1391	
1392	Sun SS., and McDonough W. F. (1989) Chemical and isotopic systematics of oceanic
1393	basalts: implications for mantle compositions and processes. In Geol. Soc. Spec. Pub.
1394	(eds. N. M. Saunders and A. D. Norris), pp. 313–345.
1395	
1396	Sørensen, K. (1983) Growth and dynamics of the Nordre Strømfjord shear zone. Journal

1397 of Geophysical Research, 88, 3419–3437.

REVISION 1

1398

- 1399 Taylor, P.N., and Kalsbeek, F. (1990) Dating the metamorphism of Precambrian marbles:
- 1400 Examples from Proterozoic mobile belts in Greenland. Chemical Geology, 86, 21-28.

- 1402 Tilley, C.E., 1936. Eulysites and related rock types from Loch Duich, Ross-shire.
- 1403 Mineralogical Magazine, 24, 331-342.
- 1404
- 1405 Tiwari, R.N., Ishihara, M., Tiwari, J.N. and Yoshimura, M. (2012) Synthesis of grapheme
- 1406 film from fullerene rods. Chemical Communications, 48, 3003-3005.
- 1407 van Gool, J.A.M., Connelly, J.N., Marker, M., and Mengel, F.C. (2002) The
- 1408 Nagssugtoqidian Orogen of West Greenland: tectonic evolution and regional correlations
- 1409 from a West Greenland perspective. Canadian Journal of Earth Sciences, 39, 665-686
- 1410 Vannucci R., Ottolini L., Bottazzi P., Downes H., Dupuy C. (1994) INAA, IDMS and
- 1411 SIMS comparative REE investigations of clinopyroxenes from mantle xenoliths with
- 1412 different textures. Chemical Geology, 118, 85-108.
- 1413 Van Roermund, H.L.M., Drury, M.R., Barnhoorn, A., and de Ronde, A.A. (2000) Super-
- silicic garnet microstructures from an orogenic garnet peridotite, evidence for an ultra-
- 1415 deep (>6 GPa) origin. Journal of Metamorphic Geology, 18, 135-147.
- 1416
- 1417 Vrána, S. (2008) Mineral inclusions in pyrope from garnet peridotites, Kolin area, central
- 1418 Czech Republic. Journal of Geosciences 53, 17-30.
- 1419

Ms 4726 REVISION 1

- 1420 Wang, L., Essene, E.J., and Zhang, Y. (1999) Mineral inclusions in pyrope crystals from
- 1421 Garnet Ridge, Arizona, USA: Implications for processes in the upper mantle.
- 1422 Contributions to Mineralogy and Petrology, 135, 164-178.
- 1423
- 1424 Whitehouse, M.J., Kalsbeek, F., and Nutman, A.P. (1998) Crustal growth and crustal
- 1425 recycling in the Nagssugtoqidian orogen of West Greenland: Constraints from radiogenic
- 1426 isotope systematics and U-Pb zircon geochronology. Precambrian Research 91, 365-381.

1427

- 1428 Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming
- 1429 minerals. American Mineralogist, 95, 185-187.
- 1430
- 1431 Willigers, B.J.A., Krogstad, E.J., and Wijbrans, J.R. (2001) Comparison of
- 1432 thermochronometers in a slowly cooled granulite terrain: Nagssugtoqidian orogeny, West
- 1433 Greenland. Journal of Petrology, 42, 1729-1749.

- 1435 Ye, K., Cong, B., and Ye, D. (2000) The possible subduction of continental material to
- 1436 depths greater than 200 km. Nature 407, 734-736.
- 1437
- 1438 Zhang, R.Y., and Liou, J.G. (1999) Exsolution lamellae in minerals from ultrahigh-
- 1439 pressure rocks. International Geology Review 41, 981-993.
- 1440

- 1441 Zhang, R.Y., Zhai, S.M., Fei, Y.W., and Liou, J.G. (2003) Titanium solubility in
- 1442 coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved
- 1443 rutile in garnet. Earth and Planetary Science Letters, 216, 591-601.
- 1444

Glassley et al., West Greenland UHP

Figure 1

Glassley et al., West Greenland UHP

Glassley et al., West Greenland UHP

Figure 4

Figure 5

Glassley et al., West Greenland UHP

Glassley et al., West Greenland UHP

Glassley et al., West Greenland UHP

Figure 17

	123220	123220	123220	123220	123220	159966	159966
	garnet	garnet	garnet	garnet	Opx inclusion	garnet	garnet
	core	mantle	rim	e-mixed (6% Op>	re-mixed	core	mantle
SiO2	37.17	37.20	37.27	37.14	39.05	37.23	36.99
TiO2	0.04	0.03	0.02			0.05	0.05
Al2O3	19.91	20.22	20.12	18.73	0.30	19.77	19.61
FeO	27.06	26.82	24.74	28.05	56.04	25.24	24.97
MgO	0.23	0.24	0.21	0.26	0.59	0.56	0.55
MnO	9.63	9.98	11.72	9.75	3.87	11.42	11.36
CaO	6.57	6.47	6.60	6.08	0.15	6.09	6.15
Na2O							
K2O							
Cr2O3	0.078	0.036	0.02			0.033	0.018
Cl							
Total	100.69	100.994	100.704	100.01	100	100.389	99.7
Si	3.02	3.01	3.02	3.04	3.53	3.03	3.03
Ti	0.003	0.002	0.001			0.003	0.003
Al	1.9	1.93	1.92	1.8	0.04	1.89	1.89
Fe2+	1.84	1.81	1.68	1.92	3.96	1.72	1.71
Mg	0.03	0.03	0.03	0.03	0.09	0.07	0.07
Mn	0.66	0.68	0.8	0.68	0.36	0.79	0.79
Са	0.57	0.56	0.57	0.53	0.02	0.53	0.54
Na							
K							
Cr	0.005	0.003	0.001			0.002	0.001
O=	12	12	12	12	12	12	12

ppm by LAICPMS

Cr	414	128	185.3	5
V	383	385	389	10
Zn	6.93	6.99	6.78	0.6
Υ	235	233	238.7	10
Nb	0.044	0.018	0.033	0.006
Ва	0.007	0.031	0	0.2
La	0.0041	0.085	0.013	0.008
Ce	0.109	0.239	0.082	0.01
Pr	0.057	0.0492	0.043	0.01
Nd	1.017	0.69	0.83	0.08
Sm	2.12	1.79	1.66	0.2
Eu	1.254	1.119	1.02	0.07
Gd	9.92	8.95	9.19	0.5
Tb	2.88	2.74	2.77	0.2
Dy	29.2	27.7	29.35	2
Но	8.71	8.49	8.63	0.3
Er	29.36	29.4	29.6	1
Tm	4.27	4.36	4.47	0.2
Yb	29.6	29.4	29.4	1.5
Lu	3.98	4.2	4.08	0.2

159966	159966	159966	159966	159966	540521b	540521b	540521b
garnet	Орх	Срх	garnet	Opx inclusion	garnet	garnet	garnet
rim	Ave	Ave	e-mixed (6% Op>	re-mixed	core	mantle	rim
37.48	46.42	48.37	37.68	45.96	37.37	37.28	37.13
0.05		0.07			0.05	0.03	0.04
20.10	0.22	0.36	18.42	0.39	20.37	20.38	20.42
24.18	42.21	28.40	26.50	47.79	27.00	26.23	24.10
0.44	3.80	3.50	0.64	1.39	1.30	1.29	0.66
12.11	6.47	4.09	10.94	3.82	9.16	9.17	11.26
6.27	1.40	15.59	5.82	0.65	4.99	5.30	6.23
		0.13					
0.031		0.002					
100.664	100.52	100.512	100	100	100.235	99.683	99.837
3.03	1.97	1.98	3.08	1.99	3.03	3.02	3.01
0.003		0.002			,002	0.002	0.002
1.91	0.01	0.02	1.8	0.02	1.93	1.95	1.95
1.64	1.5	0.98	1.81	1.73	1.82	1.78	1.64
0.05	0.24	0.21	0.07	0.09	0.16	0.16	0.08
0.83	0.23	0.14	0.77	0.14	0.63	0.63	0.77
0.54	0.06	0.68	0.51	0.03	0.43	0.46	0.55
		0.01					
0.002		0					
12	6	6	12	6	12	12	12

540521b	540521b	540521b	540521b	123220	540521
Орх	Срх	Срх	Срх	Bulk rock	Bulk rock
integrated	integrated	Coarse lamellae	Omphacite	Wt. % (Fe2O3)	Wt. % (Fe2O3)
47.68	49.34	49.77	45.27	43.10	48.30
0.1	0.12	0.11	0.70	0.04	0.17
0.45	0.78	0.71	10.73	0.46	2.83
33.88	22.29	21.76	25.17	46.85	34.86
5.65	5.21	5.37	5.23	0.95	4.96
4.76	2.94	2.51	1.20	7.27	4.78
5.66	17.75	19.94	10.55	3.60	3.89
0.09	0.24	0.21	1.69	<0.02	<0.02
				<0.02	<0.02
		0.01			
98.27	98.67	100.39	100.54	102.27	99.79
1.99	1.99	1.98	1.77		
0.003	0.004	0.003	0.02		
0.02	0.04	0.03	0.5		40 10 15 15 20 0
1.19	0.75	0.72	0.72		
0.35	0.31	0.32	0.31		
0.17	0.1	0.08	0.04		
0.25	0.77	0.85	0.44		
0.008	0.02	0.02	0.13		
6	6	6	6		