Determination of the concentration of asbestos minerals in highly contaminated mine tailings. The example of the abandoned mine waste of Crètaz and Èmarese (Valle d’Aosta, Italy).

Alessandro F. Gualtieri,1,* Simone Pollastri,1 Nicola Bursi Gandolfi,1 Francesco Ronchetti,1 Carlo Albonico,2 Alessandro Cavallo,3 Giovanna Zanetti,4 Paola Marini,4 and Orietta Sala5

1Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, I-41121 Modena, Italy
2A.R.P.A. Valle d’Aosta, I-11020 Saint Christophe Aosta, Italy
3Dipartimento di Scienze dell’ambiente e del territorio e di Scienze della terra, Università di Milano-Bicocca, I-20126 Milano, Italy
4Dipartimento di Ingegneria delle Materie Prime DIATI - Politecnico di Torino, I-10129 Torino, Italy
5A.R.P.A. Emilia Romagna, Sezione Provinciale di Reggio Emilia I-42122, Reggio Emilia, Italy

Submitted to The American Mineralogist

*Corresponding author.
Phone: +39 059 2055810; Fax: +39 059 2055887
E-mail address: alessandro.gualtieri@unimore.it
ABSTRACT

For the first time, this work reports concentration maps of asbestos minerals in contaminated mine tailings drawn using the results of Rietveld quantitative phase analysis (QPA). The investigated sites are located in the Valle d’Aosta region (Italy): Crètaz, the most important Italian magnetite mine, active until 1979 and Emarèse, one of the most important chrysotile asbestos mines in Italy, active until 1968. The results of the study permit to draw the spatial distribution of the asbestos (chrysotile and tremolite in this specific case) concentration, useful to plan reclamation of the sites, with priority given to the areas with the highest asbestos concentration. Because of the complexity of the mineral assemblage which includes, among the others, antigorite, chlorite, talc, and tremolite, the concentration of chrysotile was cross-checked using different experimental techniques such as X-Ray powder diffraction (XRPD), Fourier Transform Infra-Red (FTIR) spectroscopy, scanning electron microscopy (SEM), Polarized light Optical Microscopy (PCOM), and differential thermal analysis (DTA). The accuracy of the results was validated by analyzing standard samples with known concentrations of chrysotile and tremolite. The comparison allowed to point out the advantages and disadvantages of each experimental method.

At Crètaz, chrysotile ranges from 4.4 to 22.8 wt% and tremolite from 1.0 to 10.3 wt% whereas at Emarèse the concentration of chrysotile varies from 3.3 to 39.5 wt% and tremolite from 5.9 to 12.4 wt%. Antigorite and chlorite are the major accompanying phases with variable amounts of other accessory minerals including magnetite, carbonates, talc, olivine, pyroxene, talc, and brucite. The results of our study are of key importance for the local environmental policies as the knowledge of the spatial...
distribution of the asbestos concentration allows to plan a detailed reclamation agenda of
the contaminated sites. The spots with the highest surface contamination of both
chrysotile and tremolite were identified and classified as priority area in the reclamation
plan.

Keywords: Chrysotile, tremolite, serpentine, mine tailings, quantitative determination

INTRODUCTION

Commercial asbestos minerals are classified into two groups: serpentine and
amphibole asbestos, both sharing the same fibrous-asbestiform crystal habit but different
structural arrangements at the molecular scale (Bailey 1988). The fibrous-asbestiform
variety of serpentine is chrysotile (white asbestos) with ideal chemical formula
Mg₃(OH)₄Si₂O₅. The amphibole asbestos family includesfive minerals: actinolite,
amosite (fibrous variety of grunerite, brown asbestos), anthophyllite, crocidolite (fibrous
variety of riebeckite, blue asbestos), and tremolite. Amphiboles’ have general formula
AB₂C₅T₈O₂₂W₂ with A = Ca, K, Li, Na; B = Ca, Fe²⁺, Li, Mg, Mn²⁺, Na; C = Fe²⁺,
Fe³⁺, Li, Mg, Mn²⁺, Mn³⁺, Ti⁴⁺; T = Al, Si, Ti⁴⁺; W = Cl, F, O²⁻, (OH). The ideal
(approximated) formulas of the five asbestos species are: actinolite A = , B = Ca, C =
(Fe²⁺, Mg), T = Si; W = (OH); amosite A = , B = C = Fe²⁺, T = Si; W = (OH);
anthophyllite A = , B = C = Mg, T = Si; W = (OH); crocidolite A = , B = Na, C =
(Fe²⁺, Fe³⁺, Mg), T = Si; W = (OH); tremolite A = , B = Ca, C = Mg, T = Si; W = (OH).

The six asbestos minerals exhibit outstanding chemical-physical and technological
properties exploited for various industrial applications. Chrysotile has been the most
commonly used form of asbestos. Regrettably, the unique fibrous-asbestiform crystal
habit and surface activity, responsible for the excellent technological properties, also
seem to be the cause of asbestos minerals’ potential health hazard. The history of the
epidemiological reports of asbestos related diseases is well described in Skinner et al.
(1988). Although many epidemiological studies provided evidence that amphibole
asbestos minerals are more hazardous than chrysotile (Hodgson and Darnton 2000), all
six asbestos mineral species are assumed to be harmful to human health. Exposure
through inhalation of asbestos minerals may provoke lung diseases (Skinner et al. 1988;
Dilek and Newcomb 2003) and during the 1980s, asbestos minerals were declared proven
human carcinogens by the US Environmental Protection Agency, the International
Agency for Research on cancer (IARC) of the World Health Organization and the
National Toxicology Program (Nicholson 1986; IARC 1977; Collegium Ramazzini
2010). Later, many countries worldwide banned or restricted the use of asbestos
containing materials (ACMs). In the countries where asbestos minerals are banned,
ACMs have been progressively removed from the environment to minimize exposure of
the population (Gualtieri 2012). Despite the huge efforts to entirely remove asbestos from
the living environment, some issues are still matter of concern. One of these regards the
correct evaluation of the health hazard associated with abandoned asbestos mines
(especially dumps and tailings) and natural occurring asbestos (NOA). Mining of
asbestos and asbestos associated minerals (e.g., iron oxides) generated vast amounts of
residue material, chemically not very different from the original rock (Meyer 1980). An
important difference is the fineness of the residue material composing the dumps, making
it more prone to weathering or erosion by wind, with subsequent release of fibers in air or
in the percolating surface hydrological system. With this premise, Viti et al. (2011)
suggested that the correct evaluation of the hazard associated with serpentinite outcrops
(and asbestos containing mine tailings) would require a careful geo-statistical and geo-
mechanical investigation of the fracturing/vein system, followed by careful qualitative
and quantitative determinations. Unfortunately, the accomplishment of accurate and
precise quantitative figures of the actual asbestos minerals content is made difficult by
two major factors: (1) asbestos bearing serpentinite textures typically consist of fine-to-
ultrafine intergrowths of fibrous and non-fibrous minerals, often difficult to identify by
conventional methods, such as X-ray diffraction or microanalytical approaches. To this
aim, DTA seems to be an effective and promising tool of analysis although only a case
study has been reported so far (Viti et al. 2011) and further experimental evidence is
needed; (2) asbestos and asbestos containing mine dumps and tailings invariably contain
high concentrations of asbestos minerals (generally higher than 1wt%). In countries like
Italy, regulated experimental techniques for massive materials (X-Ray Powder
Diffraction - XRPD, Fourier Transform Infra-red spectroscopy - FTIR, Scanning Electron
Microscopy - SEM, and Phase Contrast Optical Microscopy - PCOM) are applied to
determine whether asbestos concentration is higher than 0.1 wt% (Italian D.Lgs
10/03/2010 nr. 205 All. D). On the same line, Airborne Toxic Control Measure (ATCM)
restricted in the USA the use of serpentine and ultramafic rock aggregates for surface
applications to materials containing less than 0.25 wt% asbestos determined according to
the Californian Air Resources Board method (CARB method 435, 1991). This scenario
reveals that accuracy of these quantitative methods have not been tested for highly
contaminated massive materials.

This work was prompted by the actual need to map the concentration of asbestos
minerals in abandoned asbestos or asbestos containing open mines with dumps and
tailings possibly containing very high concentrations of asbestos fibers (well above 1
wt%). Because the costly reclamation of these sites usually conflicts with the tight
budgets of the regional/national funds allocated to such expense items, a step by step long
term plan must be proposed with priority given to the reclamation of the areas with the
highest asbestos concentration. Therefore, the knowledge of the spatial distribution of the
asbestos concentration in such sites is relevant from an economic standpoint as it may
permit to prioritize the most hazardous areas within a long term reclamation plan. For the
first time, we report the mapping of the concentration of asbestos minerals (chrysotile and
tremolite) in abandoned sites with highly contaminated mine tailings. The sites under
investigation are located in the Valle d’Aosta region in Italy: Crétaz is situated near the
town of Cogne where the most important Italian magnetite mine was active until 1979;
Emarèse was one the most important chrysotile asbestos mines in Italy, now abandoned
since 1968.

The determination of the chrysotile concentration was accomplished using all the
experimental techniques permitted by current Italian regulations for massive materials
XRPD, FTIR, SEM, and PCOM. Quantitative PCOM results were integrated by
qualitative observations in polarized light (PLOM) and with chromatic dispersion (CD).
Although the Italian D.M. 09/06/1994 suggests the use of SEM when the estimated
asbestos concentration is lower than 1wt% and MOCF, XRPD and FTIR when it is
higher than 1wt%, there is actually no indications on the upper concentration limits of
application of SEM. Hence, the analysis of samples with very high concentration of
asbestos offers a proper case study. The accuracy of the results was validated by the
analysis of especially prepared standard samples with known concentration of chrysotile
and tremolite and cross-checked by the application of the Differential Thermal Analysis
(DTA) and the Rietveld methods. The comparison allowed to point out the advantages
and disadvantages of each experimental method.

GEOLOGY OF THE INVESTIGATED AREA

The main structural lines of the Aosta valley (Fig. 1) are aligned N-W to S-E. They
represent a natural cross-section through the structural units of the Italian Alps where the
ancient European and African continental margins are divided by relict portions of the
oceanic floor. The margin of the European basement emerges in correspondence to the
crystalline massif externally represented by the Monte Bianco (Elvetico - Ultraelvetico
Domain) and internally by the Gran San Bernardo – Ruitor, the Monte Rosa and the Gran
Paradiso (Pennidico Domain). The ancient portion of the Piedmont ocean (the Piedmont
Zone with Calc-schists and Green Stones) occurs in the middle stretch of the Valley,
spanning the inner margin of the crystalline massifs. The area of the lowest valley is
mainly composed by the Pennidic and Austroalpine domains, characterized by folded
structures and marked by metamorphism in association with large thrust of the Piedmont
Zone of Calc-schists with Green Stones (ophiolites). The mining area of Cogne is found
in that formation and emerges in the localities of Aymavilles, Urtier river, and Grauson
river (Elter 1987). The rocks of that unit are known to host mineralizations of Cr, Pt, Ni
and Fe and various phases such as asbestos minerals and talc. Iron is mostly hosted in
magnetite, one of the main constituents of the serpentinite accessories, with the genesis
attributed to the processes of serpentinization (hydrothermal alteration of the original
mantle peridotites) which began probably in the oceanic environment and continued
during the Alpine orogeny (Dal Piaz 1971). The magnetite mines of Cogne, and in
particularly the site of Crétaz, are located inside the area of the Piedmont Calc-schists and
Green Stones (Diella et al. 1994). The ore mining of Cogne was both underground and
open (Di Colbertaldo et al. 1967) and the iron ore has been industrially exploited from
1900 to 1979.

The asbestos Émarèse mine is located inside the Piedmont Zone with Calc-schists and
Greenstones (ophiolites). The metabasites which occur at the Émarèse area are mainly
composed of serpentinites locally mineralized to antigorite and chrysotile. The latter
sometimes occurs in very long fibers that can reach a length of 1 m. Serpentines are
accompanied by carbonates, magnetite and talc. The mining activity regarded an open pit
and several wells and tunnels (Cavinato 1964). The Émarèse mine is abandoned since
1968.

EXPERIMENTAL PROCEDURE

Materials sampling and sample preparation

A number of representative samples were collected in the areas of Crétaz and
Emarèse. Given the extremely hazardous situation due to the proximity of the
contaminated site with the touristic town of Cogne, both surface and core sampling was
conducted at Crétaz whereas only surface sampling was conducted at Émarèse. As far as
the surface sampling is concerned, the materials were collected under a 25-30 mm thick
surface layer of soil manually removed with the aid of a shovel. All the operations were
conducted using protective equipments. Samples were collected down to a depth of about
60 mm with the aid of a manual corer. A representative amount of material, depending on
the average grain size, was sampled and manually divided with the aid of a Retsch
stainless steel sample splitter (maximum capacity = 16 l; maximum grain size = 50 mm)
to obtain about 2 Kg of homogeneous final raw product that was finally stored inside
glass bottles and sealed. At Crêtaz, core sampling was possible using a rotary core drill
with a penetration length of about 20 m. Raw core samples were divided and
homogenized using the same procedure described above for surface samples. All the
surface and core collection spots for both localities are reported in Figure 1. The figure
legend also specifies the sampling mode.

In the lab, using protective equipments and under extractor fan, raw samples were
quartered to obtained about 50 g of homogeneous representative material and
subsequently dried at 105 °C for 2 h. Powders were obtained by mechanical milling using
Retsch mm 200 SiC jars, with a capacity of 10 ml each, for 10 min at a speed of 25
oscillations/s. Further fine manual powdering was conducted using an agate mortar for 5
min.

Two standard samples (labeled STD1 and STD2) with known contents of chrysotile
and tremolite asbestos and mineralogical composition similar to that of the natural
samples were prepared as weighed mixtures of artificial tailings to assess the accuracy of
the quantitative determination. The compositions of the standard samples (wt%) were:

STD1 (chrysotile 5.11, tremolite 5.11, talc 5.11, clinochlore 5.11, antigorite 8.07, calcite
40.86, dolomite 10.2, magnesite 4.09, albite 16.34); STD2 (chrysotile 10.44, tremolite
1.04, talc 5.22, clinochlore 5.22, antigorite 16.49, calcite 36.53, dolomite 10.44,
magnesite 4.18, albite 10.44). Specimens of the mineral phases talc, clinochlore, calcite,
dolomite, magnesite, and albite were taken from the mineral collection of the MUSEO
GEMMA 1786, Dipartimento di Scienze Chimiche e Geologiche of the University of
Modena e Reggio Emilia (Modena, Italy).

The asbestos samples used to prepare the weighed mixtures of artificial tailings are the
NIST chrysotile standard SRM1866a and the NIST tremolite sample SRM 1867a, the
highest purity available. Bunches of fibers were ultrasonicated and selected under optical
microscope. The antigorite sample is from a pale-green, splintery vein occurring in a
massive serpentinite from Elba Island (Italy): sample ATG18 in Viti and Mellini (1996).
The sample predominantly consists of antigorite lamellae with an average composition of
Mg$_2$.62Fe$_{2+}$0.16Fe$_{3+}$0.03(OH)$_4$Al$_{0.01}$Si$_2$O$_5$ (normalized to 2 apfu in the tetrahedral site; Loss
of Ignition (L.O.I.) of 11.9 wt%) and super-periodicity of 48.8 Å; interstitial chrysotile
occurs among antigorite lamellae. The total chrysotile content is 22.0(9) wt% (Viti et al.
2011). Obviously, the chrysotile content of antigorite was considered during the
preparation of the mixture. Sample purity of all the selected specimens was checked by
XRPD. Prior to the weighing procedure, all the specimens were dried at 105 °C for 2 h
and reduced to powders by manual grinding in an agate mortar using acetone as solvent.
After weighing the various components, the coarse powders were homogenized and
powdered in an agate mortar for 5 min.

Analytical methods

Sample selection

Two natural samples (C2 and E1) and the two standards STD1 and STD2 were
selected for the determination of the concentration of chrysotile and tremolite (when
possible) asbestos, following the experimental methods considered in the Italian D.M.
09/06/1994, differential thermal analysis (DTA) and X-ray powder diffraction (XRPD)
with the Rietveld method. All the other samples collected during the surface and core
sampling at Crètaz and Èmarese were analyzed with the Rietveld method to determine
both the concentration of chrysotile and tremolite asbestos.

Optical microscopy

As far as the optical microscopy observations are concerned, prior to the qualitative
analysis, the samples underwent a chemical attack using a very diluted HCl solution to
remove the carbonate fraction and eventually hydrated carbonate alteration products and
release the fibers from the matrix. About 0.2 mg of the powder was then suspended in a
drop of acetone on a slide, put in a bottle, and inserted in an ultrasonic bath for 15 min. A
liquid of proper refraction index is added to the powder on the slide for the polarized light
optical microscopy (PCOM) observations. The following refractive indices were used for
the identification of the asbestos fibres in the samples: 1.550 for chrysotile; 1.610-1.615
for tremolite; 1.620 for anthophyllite, and 1.640 for actinolite. The microscopes used for
the qualitative observations were a Leica DMLP and Leica DIALUX 20.

The samples for the quantitative analyses were prepared by suspending 0.1 mg of
powder in 10 ml of distilled water. The suspension was ultrasonicated for 15 min. The
suspension was filtered using a 47 mm cellulose nitrate filter to obtain an homogeneous
dispersion. The filter was subsequently diaphanized for the PCOM observation. The
observations were performed at 500x over a 1.57 mm² area of the membrane (0.5% of the
total membrane area of 152 mm²). Each regulated (length > 5 μm and aspect ratio of 3)
fiber of both chrysotile and tremolite asbestos observed on the membrane was reported
and summed up to calculate the total volume. Assuming theoretical density values of
cryotile and tremolite fibers of 2.6 g/cm3 and 3.0 g/cm3, respectively, it was possible to
calculate the total weight of both asbestos species counted on the membrane. This value
was then rescaled to the entire powdered area of the membrane and therefore to the
amount (0.1 mg) of powder on it.

Electron microscopy

The scanning electron microscopy (SEM) determinations were performed following
the method described in the Italian legislation (Italian Ministry of Health, 1994), which is
very similar to the International Standard Organization (ISO) Method 14966 (ISO, 2002).
The fiber-definition criteria are those cited above and are compliant with the ISO 14966
and WHO standard (WHO 1997; ISO 2002). An amount of 10 mg of each powder sample
was suspended in 200 ml of deionised and micro-filtered water with 0.1 vol.% surfactant
additive (dioctyl sodium sulfocinate, C$_{20}$H$_{37}$NaO$_7$S, CAS nr. 577-11-7), and
ultrasonicated to facilitate the particle dispersion. A volume of 3 x 2.5 ml of this
suspension was collected at different levels and put into a filtering system, allowing
random deposition of the particles on polycarbonate filters (Osmonics 25 mm diameter,
0.6 µm porosity). Filters were dried in an oven (at 55 °C), weighed using a high-precision
balance and coated with graphite. The samples were analyzed with a Vega TS Tescan
5163 XM SEM (LAB1, the University of Milan-Bicocca), in combination with an
energy-dispersive X-ray spectrometer (EDAX Genesis 400), operating at 20 kV and 200
pA, at a working distance of about 20 mm. For each sample, 1 mm2 of the filter surface
was investigated, working at 2000–6000 magnification. The technique is based on point-
counting statistics, reporting the occurrence, number, dimension and chemical
composition of asbestos fibers in each measured spot. The volume of the single fiber is approximated to that of a cylinder, and the weight is calculated assuming an average density of 2.6 g/cm³ for chrysotile and 3.0 g/cm³ for all amphibole species. The fiber-concentration \(C \) (in ppm) was then calculated as follows:

\[
C = \left[\frac{A \cdot (w_c + w_a)}{n \cdot a \cdot W} \right] \cdot 10^6
\]

with \(A \) = filter surface (mm²); \(w_c \) = total weight of counted chrysotile fibers (mg); \(w_a \) = total weight of counted amphibole fibers (mg); \(n \) = number of analyzed spots; \(a \) = spot surface (mm²); \(W \) = weight of the sample on the filter (mg).

The samples (following the protocol of LAB1) were also prepared separately and analyzed in another laboratory (LAB2, A.R.P.A. Aosta). An amount of 10 mg of each powder was suspended in 200 ml of deionised and micro-filtered water with 0.2 vol.% surfactant additive (sodium lauryl sulfate, CH₃(CH₂)₁₁OSO₃Na, CAS nr. 151-21-3), and ultrasonically treated. All the other experimental conditions were identical to those reported above. The instrument used for the observations was a Zeiss EVO MA10 with a LaB6 cathode, in combination with an EDAX system, operating at 20 kV and 200 pA, with 500–16000 magnification, at a working distance of 12 mm.

Infrared spectroscopy

For the Fourier transform Infrared (FTIR) spectroscopy measurements, pellets were prepared using 198 mg of dried KBr powder and 2 mg of dried sample powder, with a final load of 12 t for 12 s. A blank standard sample composed of KBr powder was also prepared. Prior to the analysis, a calibration curve with increasing amounts of chrysotile was prepared using the same experimental conditions to apply the Linear Calibration Curve Method (see a thorough description of the method applied to FTIR in De Stefano et
All the spectra were collected from 4000 to 600 cm\(^{-1}\) at 4 cm\(^{-1}\) resolution using a Bruker VECTO 22 spectrometer with a Globar source, aperture 3 mm, 32 scans, velocity 10 kHz, detector DTGS with a window of KBr (8000–400 cm\(^{-1}\)), Mertz correction phase, apodization function 3-term Blackman-Harris. Data were collected and analyzed using the Bruker OPUS 6.5 software. The intensity of the absorption band at 3697 cm\(^{-1}\), the stretching vibration of chrysotile non-hydrogen-bonded OH\(^-\) (Farmer 1974), was measured and plotted versus the added chrysotile weight percent. It is assumed that the detection limit is 0.01 wt\% (Foresti et al. 2003). This procedure is rather straightforward when no interference phases such as serpentine polymorphs and chlorite are present (see for example, Balducci and Valerio 1986). The presence in the investigated samples of the layer silicates antigorite and chlorite, which may overlap their absorption bands to that of chrysotile, requires a careful discrimination to obtain the intensity of the chrysotile band to plot vs. chrysotile concentration. For the investigated samples with unknown concentration of chrysotile, the intensity of the absorption band was measured as closest as possible to the ideal value of 3697 cm\(^{-1}\) (Farmer 1974), using the “R” type integration process available in the software (the value of the intensity measured above the base line taken between 3720 e 3661 cm\(^{-1}\)). The resulting values were then used to extract the chrysotile concentration from the calibration curve.

X-ray powder diffraction

The XRPD quantitative analysis of chrysotile asbestos has been long conducted using the external standard method (Klug and Alexander 1974) where the peak intensity/integrated area of the major diffraction peak of an analyte (001 peak for chrysotile) is usually plotted vs. its concentration to build a calibration curve. The
concentration of the analyte in an unknown sample requires the determination of the
correct unbiased intensity/integrated area of the major diffraction peak. Puledda and
Marconi (1990) developed a method used for chrysotile legitimated by the Italian D.M.
09/06/1994 which is based on the use of a silver membrane filter. The method also
proposes an appropriate value for the deposition area of the sample on filter, which
optimizes the diffraction response of the analyte. To apply the method described above,
the powder patterns of the samples C2, E1 and the two standards STD1 and STD2 were
collected using a Bragg–Brentano θ-θ diffractometer (PANalytical X’Pert Pro), Cu K\textalpha
radiation, 40 kV and 40 mA) equipped with a curved graphite monochromator and a gas
proportional detector. The divergence, receiving and anti-scattering slits were of 1°, 0.1
mm, and 1°, respectively. The scans were collected with a step scan of 0.02 °2\theta, and 5
s/step in the range 4-64 °2\theta. The data analysis was performed using the PANalytical
HighScore Plus software version 2.2c.

The mineralogical quantitative phase analyses (QPA) of all the Crètaz and Èmarese
samples and the two standard samples STD1 and STD2 using the Rietveld method
(Rietveld 1969) were performed through X-ray powder diffraction (XRPD). Data were
collected using a Bragg–Brentano θ-2θ diffractometer (Bruker D8 Advance, Cu K\textalpha
radiation, 40 kV and 40 mA) equipped with a Göbel mirror on the incident beam and a
solid state detector. The width of the divergence, receiving and anti-scattering slits were
of 0.6, 0.1, and 0.2 mm, respectively. The scans were collected with a step scan of 0.02
°2\theta, and 20 s/step in the range 4-65 °2\theta. QPAs were performed following the refinement
strategies described in Gualtieri (2000). Refinements were accomplished with the GSAS
Whenever the samples showed the presence of more than the maximum number of 9 phases available to the program, the procedure described by Winbur et al. (2000) was used. Although samples were prepared with the side loading technique to minimize a priori preferred orientation of crystallites, residual preferred orientation effects were modelled with the March model (Dollase 1986). The following structural models were used: albite (Downs et al. 1994) and plagioclase (Wenk et al. 1980), antigorite (Uehara 1998), calcite, dolomite, quartz (Le Saoût et al. 2011), chrysotile (Falini et al. 2004), chlinochlore (Zanazzi et al. 2009), illite (Birle 1968), magnetite (Haavik et al. 2000), microcline (Ribbe 1979) and orthoclase (Prince et al. 1973), talc (Perdikatsis and Burzlaff 1981), and tremolite (Ungaretti and Oberti 2000).

Thermal analysis

The collection of the thermal analysis curves thermogravimetry (TG), differential thermogravimetry (DTG), and DTA of the C2, E1, and the two standard samples STD1 and STD2 samples were performed using a simultaneous differential thermal analysis (SDTA) SEIKO SSC/5200 SII. Data were collected in air with a flow rate of 2 μl/min, in the range 20–1000 °C, and heating rate of 10 °C/min. Instrumental precision was checked by repeated collections on reference samples, revealing good reproducibility (instrumental theoretical precision of ±0.5 °C); theoretical weight sensitivity is down to 0.1 μg. The DTA traces of the reference samples are reported in Viti (2010). The DTA peak deconvolution has been performed following the method described in Viti et al. (2011). Fitting of the DTA peaks was performed using the deconvolution process available in PeakFit4 (PeakFit Version 4.12, SPSS Inc., AISN Software). The temperature range selected for data analysis is 550–800 °C, that is the main dehydroxylation range, in
the attempt to avoid possible interferences with the 820 °C exothermic signals (Viti 2010). The Loess algorithm was used to smooth the data and to remove local perturbations with a ratio of 5%. After that, baseline subtraction was accomplished by a second derivative test procedure.

Although it is well known that both transmission electron microscopy (TEM) and Raman are powerful diagnostic techniques for the study of asbestos containing materials, the two techniques have not been used in this work where the preference was given to the custom methods specifically developed for the determination of the concentration of asbestos minerals in massive materials.

RESULTS

This section is divided into two parts. The first part summarizes the results of each experimental technique applied to the determination of the chrysotile asbestos content in the natural samples C2 and E1, and the two especially prepared standards STD1 and STD2. The second part describes the results of the quantitative phase analysis of the samples collected at Crétaz and Emarèse sites.

Optical observations

The application of the PCOM technique to the study of our samples was of great help from a qualitative point of view as it easily permitted to identify the nature of fiber bunches thanks to the chromatic dispersion (CD) of the fibers (McCrone 1987; NIOSH 1989; EPA 1993; Moss 1994; Bellopede et al. 2009; Cavariani et al. 2010). Figure 2a,b
shows beautiful fiber aggregates of chrysotile and tremolite. From a quantitative standpoint, because the fiber counting is usually conducted at a low magnification (generally from 40 to 500x), only fibers or fiber aggregates of considerable size can be observed and counted, and it is sometimes difficult to distinguish between an asbestos fiber and crystal of different nature with acicular crystal habit (Fig. 2c). As a matter of fact, fibers with diameter smaller than 0.8-1 \(\mu \text{m} \) are not visible with optical microscopy at 500x with a resolution power of 0.2 \(\mu \text{m} \) (Cavariani et al. 2010).

SEM analyses

The SEM determinations allowed to detect even very small fibers (with a length shorter than 1-2 \(\mu \text{m} \)) invisible under optical microscope. We have observed that the sample preparation is crucial and a correct fiber counting is possible only if the stub is not overloaded, that is the case when particle aggregates are formed (see an example in Fig. 3a). Small fibers are frequent in the standard samples STD1 and STD2 which were prepared using dry powders. Figure 3b,c reports selected SEM images of the investigated samples showing the presence of fibers with heterogeneous size of both chrysotile and tremolite asbestos fibers. The use of the EDS spot analysis is essential for the correct identification and counting of the chrysotile and tremolite asbestos fibers (Fig. 3c with the relative EDS analysis in the white box). The use of this technique also permits to detect fiber aggregates with distinctive habit and texture and consequently hard to classify otherwise. One such example is portrayed in Figure 3d where an intergrowth of chrysotile-antigorite aggregate is likely observed. Such aggregates may witness low grade regional progressive metamorphism of serpentinite which involves formation of...
antigorite at expenses of chrysotile (Mellini et al. 1987). This paragenesis has already been reported for the Val Malenco serpentinites in the Italian Alps where chrysotile has been identified as antigorite precursor (Mellini et al. 1987; Wicks and O’Hanley 1988). Notwithstanding, the study of the serpentinite texture and its origin is out of the aims of this paper and should be accomplished using TEM.

FTIR data

Figure 4 portrays the selected region between 3400 and 3950 cm\(^{-1}\) of the FTIR spectra of the four investigated samples, where the absorption bands of chrysotile and interference layer silicates occur. The calculated absorbance of the stretching vibration of chrysotile and the resulting chrysotile content (wt%), using the calibration curve with equation \(y = 0.78269x\) with \(y = \text{absorbance (\%)}\) and \(x = \text{chrysotile weight fraction}\), are reported in Table 1.

XRPD and the Rietveld method

Because the quantitative analysis of chrysotile asbestos using XRPD with the external standard method (Klug and Alexander 1974) requires the determination of the peak intensity or the integrated area of the major diffraction peak of the (001) peak of chrysotile in the unknown sample, the severe peak overlap due to the interference of both antigorite and chlorite, as observed the investigated samples makes this method impracticable. The application of blind single peak fitting procedures to deconvolute each single contribution resulted in unreliable outcomes. For this reason, the use of this method for the determination of the chrysotile asbestos concentration in these matrices...
turns out to be unfeasible. On the other hand, if a more robust fitting procedure with independent observations and (crystallographic) constraints is applied, deconvolution of each contribution seemed viable. As a matter of fact, the application of the Rietveld method guarantees both the use of independent observations (it is a full profile fitting procedure where all the peaks of each phase in the system are modeled) and robust crystallographic constraints (symmetry, unit cell, profile coefficients, background and others). Accuracy of estimates for multiple serpentine minerals can be achieved because all independent reflections belonging to the different serpentine polymorphs in the collected range can be fitted during the refinement procedure. To this aim, areas where overlap of the peaks of chrysotile and antigorite is limited, with distinct observations that help constrain refinement of these phases, exists: see for example the major (13 1) peak of antigorite at 2.52 Å which is well separated from chrysotile reflections (2 0 2) and (2 0 2), at 2.45 Å and 2.55 Å, respectively. In addition, the fit of a number of peaks of each phase in the systems makes it possible to correct a posteriori any preferred orientation effect, if present, which may bias the major intensities of chrysotile, antigorite and chlorite. The result is a very good fit which allows the calculation of the weight estimates of each phase in the system including chrysotile (see the example of sample E1 in Fig 5).

As far as the four analyzed samples, agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range: $R_{wp} = 9.44-10.33\%$, $R_p = 7.07-8.02\%$, $\chi^2 = 2.709-5.397$. The Rietveld graphical outputs are shown in Figure 6 and Table 2 reports the agreement factors and quantitative phase composition.

DTA analyses
Figure 7a-d shows the DTA endothermic signals of the four investigated samples and standard pure chrysotile, due to serpentine dehydroxylation processes in the range 550–850 °C and relative result of the fitting procedure. DTA signals were fit using two peaks for chrysotile (dehydroxylation I and II, weak and strong, respectively) and one peak for antigorite (I in Viti et al. 2011). Figure 7e shows the DTA trace and result of the fitting procedure for the pure chrysotile sample. Only fits with a regression coefficient $R^2 \geq 0.990$ were considered acceptable. The calculated peak areas were reduced to area ratios (ratio between the calculated area in the unknown and that of the pure chrysotile standard) and plotted in the curve obtained by Viti et al. (2011) for antigorite+chrysotile mixtures with a calculated equation of $y = 0.0108x – 0.016$. The results of the procedure are reported in Table 3.

Mineralogical composition and asbestos concentration of the Crêtaz and Emarèse samples

Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437–8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low peak to background ratio observed in a few samples was due to the fluorescent scattering induced by the large iron content (large magnetite amounts) which excites the copper atoms of the anticathode. Table 4 reports all the quantitative phase compositions of the investigated samples. Because of the low content of magnetite determined in the investigated samples, the microabsorption effects are presumably negligible and no Brindley (1945) correction was applied during the refinement procedure.
DISCUSSION

Accuracy of the results from the various experimental techniques

The accuracy of the concentration figures of chrysotile asbestos in the abandoned sites of Crètaz and Emarèse was assessed for two selected samples C2 and E1 and the two especially prepared standards STD1 and STD2, with known asbestos concentration, using the experimental techniques permitted by the current Italian regulation for massive materials (XRPD, FTIR, SEM, and PCOM), the Rietveld method and DTA. Table 5 summarizes the resulting calculated concentration of chrysotile asbestos in the four samples.

Optical microscopy

Although the application of the PCOM technique was qualitatively very useful, the figures obtained with this technique are underestimated with respect to the values provided by the application of the other experimental methods (Table 5): an estimate of 3.7 wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 1.4 wt% for STD2 sample against an expected value of 10.44 wt%. It is possible that limited resolution power did not allow to reckon and quantify small fibers or fiber aggregates predominantly present in the fine powder standards. Analogous conclusions can be found in the literature for the analysis of both airborne and massive sample. As an example, for airborne asbestos fibers in steam tunnels, Dufresne et al. (2002) reported that concentrations found by the TEM/EDS method were higher than those determined by PCOM, especially when chrysotile fibers were present, probably because the TEM/EDS method has a higher resolution than PCOM. Airborne asbestos fibers were present in all
the steam tunnels and were barely detectable by the PCOM technique only. Our work confirms the limits of the optical methods and it is not surprising that in many countries optical microscopy was adopted only for the visual qualitative identification of asbestos fibers (see for example, EPA 1989; OSHA 1994; HSE 1994).

Electron microscopy

The chrysotile concentrations obtained from the SEM LAB1 analyses are fairly more accurate than the figures determined from the optical observations. On the other hand, the concentrations provided by SEM LAB2 evidence disagreement (see Table 5). The values provided by LAB1 laboratory are accurate and in agreement with the expected values: an estimate of 4.6 wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 13.1 wt% for STD2 sample against an expected value of 10.44 wt%. Both calculated weights of natural samples C2 and E1 are also in agreement with the values provided by other methods. The values provided by the SEM LAB2 laboratory are largely underestimated as far as the standards are concerned.

Due to the higher resolution power and larger field depth, SEM allows to detect small fibers invisible using the optical microscope. The standards were prepared using chrysotile powders with fine chrysotile fibers hard to detect with an optical microscope even at 500x but clearly visible at 2000x with an electron microscope. This may explain the underestimation in the chrysotile concentration determined with the PCOM technique. The difference in the performance of the two microscopic techniques in favor of the SEM method have already been reported by Cavariani et al. (2010). Cavallo and Rimoldi (2013) who studied similar matrices (asbestos serpentinite quarries in Valmalenco, Central Alps, Northern Italy) reported that the small thickness of chrysotile
fibrils produced during quarrying activities, and the abundance of pseudo-fibrous antigorite cleavage fragments proved the SEM-EDS analytical procedure to be the most suitable.

Concerning the results provide by LAB2, Davies et al. (1996) have previously reported that the method for quantitative analysis of asbestos with SEM for both airborne and massive samples presents difficulties, primarily because of the complexity in standardizing the many operating parameters that are controlled. Although some modern SEMs are capable of resolving surface features at the angstrom level, there is still much difficulty in obtaining adequate images of unit fibrils. Such images are necessary to perform quantitative analyses. Moreover, even though routine SEM/EDS analysis allows evaluation of sample morphology and provides semi-quantitative chemical data, it does not allow determination of crystal structure like TEM. Although TEM is a very time-consuming method, seldom providing concentrations that can be considered representative of the whole sample, it is well known that its use makes it possible to resolve many of the ambiguities that lead to incorrect fiber concentration (Beaman and File 1976; Cattaneo et al. 2012).

The underestimation of the fiber concentration from LAB2 may be explained by sample powder heterogeneity. We have observed ball of thread like aggregates of chrysotile fibers within the powders (see Fig. 3e) of the samples prepared in LAB2 determining areas with a great concentration of asbestos fibers and areas with no fibers at all. A possible explanation is the use of the surfactant sodium lauryl sulfate for the preparation of the suspension in place of dioctyl sodium sulfocccinate. Sodium lauryl sulfate rises the pH of aqueous solution to about 9.5 whereas dioctyl sodium sulfocccinate
stabilizes pH values of the aqueous solution to about 6.2. In distilled water, the zeta potential of chrysotile displays strongly positive values (about +40 mV) at 6.2 and decreases down to about 20 mV at pH = 9.5 (Light and Wei 1977). The decrease of the zeta potential towards the isoelectric point determines instability of the suspension because the particles with low zeta potential have no force to prevent them coming together and flocculating. Jolicouer et al. (1981) used these principles to retard sedimentation of asbestos fibers in NaCl solutions. Hence, the flocculating chrysotile fibers tend to lump together to form the observed ball of thread like aggregate. On a speculative level, it is not possible to rule out that aggregation also occurs in the dry powders, especially those that have undergone physical long-distance transportation and mechanical shaking. In both situations, fiber segregation may bias the sample homogeneity and the representativeness of the microscopic observation usually performed using a tiny amount of powder.

It was already said that the Italian D.M. 09/06/1994 advises the use of SEM when the estimated asbestos concentration is lower than 1 wt% giving no indications on the upper concentration limits of application of the method. The concern about asbestos quantitative determination in the case of massive concentration of fibers is related to difficulties for fiber identification and counting due to severe fiber overlap, aggregation and stratification. The results of this study point out that SEM method, if a careful sample preparation, dispersion and representativeness are obtained, can be used even for the quantitative determination of chrysotile asbestos in massive materials with concentrations much larger than 1 wt% with a fairly good accuracy.

Infrared spectroscopy
There are many examples of application of FTIR for the quantitative determination of chrysotile asbestos in bulk materials (see for example, Balducci and Valerio 1986; Massola 1997) although some criticism still exists. According to Davies et al. (1996), FTIR is not a sensitive method for quantifying asbestos in loose aggregates and does not produce useful results when multi-component mixtures are analyzed. Oppositely, a positive report is provided by Foresti et al. (2003) who described the application of the FTIR Linear Calibration Curve method for the determination of low levels (0.01–1 wt%) of free fibers of chrysotile in contaminated clayey, sandy and sandy-organic soils. The detection limit of 0.01 wt% was reached with an enrichment of free fibers of chrysotile in the samples using a standard laboratory elutriator for sedimentation analysis. The linearity of the calibration curves obtained for samples having different soil matrices, indicates that the matrix effects can be accounted for. Recently, De Stefano et al. (2012) compared the accuracy and precision of the Linear Calibration Curve Method and the Method of Addition for the FTIR quantitative determination of asbestos bulk matrices and found that, providing careful samples preparation, both techniques quantify the asbestos content at the level of 1-2 wt% with good precision. The results provided in this study are very important as this is one of the few examples of application of the FTIR quantitative method to complex serpentinite samples.

The figures obtained with this method seem rather accurate and in agreement with the values provided by the application of the other experimental methods (Table 5): an estimate of 4.9(2) wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 13.8(2) wt% for STD2 sample against an expected value of 10.44 wt%. Both calculated weights of sample STD2 and E1 (32.9 wt% vs. 25.3 wt% from the Rietveld...
method and 27.5 wt% from the SEM analysis) are apparently overestimated. This discrepancy may be possibly due to: (i) interference of antigorite and chlorite present in the investigated samples with a severe overlap of their absorption bands to that of chrysotile; (ii) deviation of the linearity of the curve intensity of the chrysotile absorption band vs. concentration for large chrysotile contents. The breaking of the linearity assumption has been already observed by De Stefano et al. (2012). They observed that in the case of chrysotile, the peak intensity is a quadratic-like function of the concentration in the extended concentration range.

X-ray powder diffraction

In this work it was found that the XRPD external standard method (Klug and Alexander 1974) is unsuitable for such complex matrices as the observation (e.g., the (001) peak of chrysotile) overlaps to the major peaks of both antigorite (001) and chlorite (002) present in the samples (see sample E1 in Fig. 5), resulting in biased estimates of the integrated area using the single peak fitting deconvolution. The limits of the single peak method for such complex matrices were obvious to Giacomini et al. (2010) who obtained only qualitative estimates of the relative abundance of serpentine polymorphs in samples from the metaophiolites of the the Voltri Massif and Sestri–Voltaggio Zone (Liguria, NW Italy), using the internal standard (20 wt% of corundum) technique and the reference intensity ratio (RIR) method (Snyder and Bish 1989). On the same line, only qualitative determination via XRPD methods were reported by Rigopoulos et al. (2010) for asbestiform minerals in basic and ultrabasic rocks from ophiolite suites of central and northern Greece, Beneduce et al. (2012) for the ophiolites of the Pollino National Park (Calabria-Lucania border, southern Italy), and Cavallo and Rimoldi (2013) for
serpentinites of the Valmalenco are (Central Alps, Northern Italy). Puledda and Marconi (1990) assessed the validity of the XRPD external standard method with the Ag filter for synthetic mixtures prepared for the determination of chrysotile content in bulk and airborne samples but did not apply it to natural complex samples such as the one investigated here. It is difficult to evaluate the analytical accuracy of the estimates reported by Davis (1990) who used the RIR method to determine the content of asbestos minerals in synthetic multicomponent mixtures prepared samples demonstrate that the lower limit of detection for most asbestos minerals falls in the range 0.5% to 2 wt%.

On the contrary, the figures obtained with the Rietveld method seem accurate (Table 5): an estimate of 5.8(2) wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 11.2(2) wt% for STD2 sample against an expected value of 10.44 wt%. Sample E1 and C2 also contain fairly large amounts of chrysotile asbestos. The results reported here witness that the Rietveld method can be successfully applied for the determination of chrysotile asbestos in these complex multicomponent samples characterized by the presence of two serpentine polymorphs (antigorite and chrysotile) and chlorite. It is not possible to generalize the outcome of this study and assert that the method is accurate even for more complex samples which contain all the serpentine polymorphs including lizardite, although this mineral association is not rare in green stones. Another critical aspect regards the range of applicability of the Rietveld method in terms of chrysotile content. It is well known that chrysotile possesses a cylindrical lattice with layers curled concentrically or spirally, usually around the x axis (clinochrysotile and orthochrysotile) and seldom around the y axis (parachrysotile), to form a tubular structure (roll) of about 22±27 nm in diameter (Whittaker 1957; Yada 1971). Moreover,
the cylindrical lattice also displays extensive structural defectivity (e.g., random shift component along the fiber axis to yield cone lattices). Such structure complexity results in anisotropic broadening effects of the peak profiles in the X-ray powder patterns which can only be properly fit by recursive models such as the one implemented in DIFFaX+ (Leoni et al. 2004) and not simply by Rietveld-based deterministic codes. For this reason, Wilson et al. (2006) developed an alternative approach to determine the chrysotile content in mine tailings at Clinton Creek (Yukon Territory) and Cassiar (British Columbia) using structure-less pattern fitting and with the addition of a known quantity of a well-crystallized material, by considering the serpentine minerals as amorphous phases, and tested the accuracy of the method using synthetic serpentine-rich mine tailings of known composition. Notwithstanding, marked peak profile broadening effects (especially the asymmetric band in the 19-26 °2θ range due to the destructive interference of non-basal diffraction peaks) are obvious when chrysotile fraction is high. Usually, when chrysotile is present in medium-low concentration, the powder pattern generally displays only the major basal (00l) peaks of chrysotile and minor non-basal peaks. Thus, peak profile broadening effects are less obvious and may be modeled by empirical Lorentzian profile anisotropic broadening functions such as the one implemented in GSAS (Larson and Von Dreele 1999): \(\gamma = Y + Y_c\cos\phi \) with \(\gamma = \) Lorentzian contribution to the pseudo-Voigt profile function; \(Y = \) isotropic strain broadening term; \(Y_c = \) anisotropic strain broadening term; \(\phi = \) angle which defines the direction of the broadening axis within the crystallographic setting. Wilson et al. (2006) reported chrysotile estimates as high as 90.8 wt%. For those samples resembling monophasic systems, the accuracy of the Rietveld method is expected to be low. On the other hand, for the systems investigated
here with chrysotile contents below 40 wt%, the accuracy of the Rietveld method is still expected to hold. As a matter of fact, the refinement of the anisotropic strain broadening term of the Lorentzian part of the pseudo-Voigt function was attempted for chrysotile for samples C2 and E1, setting the broadening direction along the b axis and the stacking fault model but did not significantly changed the final calculated weights.

Thermal analysis

The quantitative concentration of chrysotile in the standard samples using the DTA method, reported in Table 5, are rather accurate: 7.6 wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 12.2 wt% for STD2 sample against an expected value of 10.44 wt%. Although the successful application of the method has already been reported in the literature for simple systems such as pharmaceutical grade talc where the minimum level of detection was 1% by weight of chrysotile asbestos (Shelz 1974) and in cosmetic grade talc/body products where the minimum level of detection was 0.5% by weight of chrysotile asbestos (Luckewicz 1975), only the recent contribution of Viti et al. (2011) reported accurate estimates for complex natural systems such as serpentinites. Hence, the results of this work are a further confirmation of the reliability of this method. The apparently systematic overestimation should be due to the presence of chlorite in the system. As a matter of fact, Viti et al. (2011) reported that the possible occurrence of other minerals does not hamper the attainment of reliable qualitative determinations, with the only exception of chlorite whose typical DTA curve is characterized by an endothermic peak at 600–650 °C (Smykatz-Kloss 1974), and suggested that, prior to DTA data collection, qualitative XRPD should be performed to ascertain the presence and the amount of chlorite. The presence of chlorite was assessed
in the first instance via XRPD suggesting the addition of a further peak due to chlorite during the process of fit deconvolution. Notwithstanding, it is possible that a systematic correlation occurred for the calculation of the integrated areas and that the resulting integrated area of chrysotile was underestimated in favor of that of chlorite.

Crètaz and Emarèse samples

According to the Italian law D.Lgs 12/03/2010 nr. 205 All. D, if the asbestos concentration is higher than 0.1 wt%, a site should be classified as “contaminated by asbestos”. Hence, both Crètaz and Emarèse sites should be reclaimed as all the collected samples consistently show asbestos concentration much higher than the imposed limit (Tables 4 and 5).

Figure 9a,b reports maps of concentration of chrysotile and tremolite obtained from the Rietveld analysis for the site of Crètaz (Tables 4 and 5). The maps were obtained by geostatistical analysis of the raw data in GIS environment using the software ArcGIS 10.1 and the ArcGIS Geostatistical Analyst application. The Inverse Distance Weighting (IDW) model (Shepard 1968) was used for the deterministic interpolation of the data points. For the chrysotile concentration maps, the following parameters were used: first order model (power = 1), maximum neighbors = 10, minimum neighbors = 5, total calculation area = circular with radius of 138 m. For the tremolite concentration maps, the following parameters were used: second order model (power = 2), maximum neighbors = 10, minimum neighbors = 5, total calculation area = circular with radius of 200 m.

The chrysotile content varies from 4.4 to 22.8 wt%. In all the samples, chrysotile is associated to antigorite (6.3-50.1 wt%), chlorite (clinochlore 4.1-15.2 wt%), muscovite
(2.2-15.8 wt%), quartz (1.9-29.1 wt%), and calcite (4.2-27.5 wt%). The mineral assemblage reflects the overall composition of the mine tailings, a mixing of three different rock types all belonging to the Piedmont Zone unit: the antigorite-serpentinites with magnetite formation, the calc-schists s.l. and local quartzites formation, and the exotic continental Permian-mesozoic succession with schists, quartzites, marbles, and limestones. The distinctive minerals of the latter formation are quartz, mica, carbonates calcite and dolomite, plagioclase, K-feldspar and tremolite (1.8-10.3 wt%). Apparently no trends of the chrysotile and tremolite concentration with (horizontal or vertical) space are observed. This random distribution is due to the history of the various deposits emplaced and mixed with other source of rock dumps during the activity of the mine and not to physical factors such as fiber leaching, transport, and re-deposition. The area with the highest surface concentration of asbestos minerals (see Figure 9) should be considered as priority of intervention in the reclamation plan.

Figure 9c, not elaborated with the geostatistical analysis due to the limited number of raw data points, reports the concentration of chrysotile in the site of Emarèse as obtained from the Rietveld analysis (see also Tables 4 and 5). The chrysotile content varies from 3.3 to 39.5 wt% with the concentration linearly decreasing with the distance from the main mining sites. Chrysotile is invariably accompanied by antigorite (3.3-44.7 wt%) and chlorite (clinochlore 12.4-32.6 wt%). On the basis of the mineral assemblage, two groups of rock samples are observed: (i) samples E1-E5 belongs to the antigorite-serpentinites with magnetite formation of the Piedmont Zone. Besides the typical serpentinite phases antigorite, chrysotile and chlorite, magnetite, talc and brucite are found together with the minerals of the original ultramaphic rock forsterite and enstatite. Hematite, calcite and
dolomite are likely secondary phases formed after surface alteration in contact with water; (ii) samples E6-E7 are collected from the surface debris and soil composed of a mixing of the former antigorite-serpentinites with magnetite formation and the calc-schists s.l. and local quartzites formation both belonging to the Piedmont Zone unit. The distinctive minerals of the calc-schists s.l.- quartzite formation are quartz, mica, K-feldspar, plagioclase, and tremolite (5.9-12.4 wt%).

The area with the highest surface concentration of chrysotile (see Figure 9c) should also be classified as prioritary in the reclamation plan.

CONCLUDING REMARKS

A map of the concentration of asbestos minerals chrysotile and tremolite in contaminated mine tailings of the Valle d’Aosta region (Northern Italy) was drawn. The results of this study are strategic as the knowledge of the spatial distribution of the asbestos concentration allows to plan reclamation agenda of the sites. The area with the highest surface concentration of both chrysotile and tremolite were identified and classified as priority in the reclamation plan. The results of our study have general implications as the protocol of sampling, data analysis and mapping of the asbestos concentration can be used in any region of the globe where such deposits are found.

Besides that, another general implication of our work regards the assessment of the accuracy of the results obtained using state of the art experimental techniques for the determination of the concentration of asbestos in massive materials. Although we focused on the methods recommended by the Italian laws, the Rietveld method and DTA (Viti et al. 2011) were also included so that a comparison among the various methods used
worldwide was possible. Accurate estimates were obtained using the SEM, FTIR, XRPD, Rietveld and DTA methods whereas poor figures were obtained with the optical microscopy. The single peak fitting XRPD method revealed to be unsuitable because of the interference effects of antigorite and chlorite. It should be remarked that the Rietveld method has been successfully applied for the determination of chrysotile concentrations as high as about 40 wt% in these complex serpentinite multi-component samples characterized by the presence of two serpentine polymorphs (antigorite and chrysotile) and chlorite. Further investigations are required to test the accuracy of the method for even more difficult systems which contain all the three serpentine polymorphs, including lizardite. With higher concentrations (>50 wt%?), it is recommended to apply other methods such as the one proposed by Wilson et al. (2006) who determined the chrysotile content in asbestos mine tailings using structure-less pattern fitting and with the addition of a known quantity of a standard material so to be able to consider the serpentine minerals as amorphous phases.

Acknowledgments

Thanks are due to the technical staff of the C.I.G.S. Laboratory (The University of Modena and R.E., Modena Italy). Thanks to the staff of the CGT - Centro di Geotecnologie) University of Siena, Italy for help with the FTIR analyses. Thanks to A. Facchinetti and A. Zanella (ARPA Valle d'Aosta, Sezione Analisi strutturali e amianto) for their help with the SEM analyses. This manuscript benefited greatly from the accurate revisions of Dr. S.A. Wilson and suggestions of the Associate Editor Prof. M. Gunter.
REFERENCES CITED

Cattaneo, A., Somigliana, A., Gemmi, M., Bernabeo, F., Savoca, D., Domenico, M.
Cavallo, and P.A., Bertazzi (2012) Airborne Concentrations of Chrysotile Asbestos in
Serpentine Quarries and Stone Processing Facilities in Valmalenco, Italy. Annals of
Occupational Hygiene, 56(6), 671–683.

study in Valmalenco, Central Alps, Northern Italy. Environmental Science: Processes
& Impacts, in press.

and limit values. Italian Journal of Occupational and Environmental Hygiene, 1(1),
18-28.

686 (in Italian).

Collegium Ramazzini (2010), ‘Asbestos is still with us: repeat call for universal ban’,
Occupational Medicine, 60, 584–588.

Dal Piaz, G.V. (1971) Alcune considerazioni sulla genesi delle ofioliti piemontesi e dei
giacimenti ad esse associati. Bollettino Associazione Mineralogica Subalpina, Torino,
8: 365-388 (in Italian).

Development and validation of an analytical method to determine the amount of
69.

Davis, B.L. (1990) Quantitative Analysis of Asbestos Minerals by the Reference Intensity
X-Ray Diffraction Procedure. American Industrial Hygiene Association Journal,

Elter, G. (1960) La zona pennidica dell’alta e media Valle d’Aosta e le sue unità limitrofe. Memorie Istituto Geologia e Mineralogia Università di Padova (Italy), 22,

Shelz, J. P. (1974) The detection of chrysotile asbestos at low-levels of talc by
differential thermal analysis. Thermochimica Acta, 197-204.

mineralogy, crystal chemistry and health effects: New York, Oxford, Oxford
University Press, pp. 204.

mineralogy, Springer-Verlag, Berlin, pp.185.

Snyder, R.L. and Bish, D.L. (1989) Quantitative Analysis, in Bish, D.L. and Post, J.E.,
eds., Modern Powder Diffraction, Reviews in Mineralogy, v. 20, Washington, D.C.,
Mineralogical Society of America, 101-144.

Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
Crystallography, 34, 210–213.

Mineralogist, 36, 1595-1605.

Ungaretti, L. and Oberti, R. (2000) Leverage analysis and structure refinement of

Mineralogist, 95, 631–638.

Figure Captions

Figure 1. Sketch map of the geology of Valle d’Aosta (1:1,000,000 scale; Legend: Austroalpine System (1 = Diorite–Kinzigite Zone, 2 = Gneiss Complex, 3 = Eclogitic Micaschist Complex); Piedmont Zone with Calc-schists and Greenstones (4 = Oceanic Metasedimentary overlay, 5 = Metabasites); Pennidic System (6 = Upper Pennidic Zone, 7 = Middle Pennidic Zone, 8 = Outer Pennidic Zone; 9 = Ultra-elvetic System; 10 = Elvetic System) and location of the surface and core collection spots for the two investigated sites: (a) Crétaz with C1-C8 = surface samples, depth 0.25-0.3 m; C9v1 = drill 1, depth 0.7 m; C10v1 = drill 1, depth 7.5 m; C11v1 = drill 1, depth 15 m; C12v1 = drill 1, depth 19.2 m; C13v2 = drill 2, depth 0.5 m; C14v2 = drill 2, depth 11 m; C15v2 = drill 2, depth 22.4 m. (b) Emarèse with E1-E8 = surface samples.

Figure 2. Selected PCOM images of the investigated samples (see text for details). Legend: (a) chrysotile at 10x in liquid with refractive index of 1.550; (b) tremolite fibers at 10x in liquid with refractive index of 1.615; (c) non-asbestos acicular-like crystal: diopside at 10x in liquid with refractive index of 1.670.

Figure 3. Selected SEM images of the investigated samples (see text for details). Legend: (a) particle and fiber aggregates difficult to detect and count; (b) chrysotile fibers of heterogeneous size; (c) tremolite fibers with the relative EDS point analysis which permits the discrimination from other fibrous phases; (d) example of intergrowth of mixed chrysotile-antigorite aggregate; (e) ball of thread like aggregates of chrysotile fibers within the powders of the samples prepared in LAB2 (see the text for details).

Figure 4. The FTIR spectra region between 3400 and 3950 cm\(^{-1}\) of the four investigated samples where the absorption bands of chrysotile and interference layer...
silicates occur. (a) STD1; (b) STD2; (c) C2; (d) E1.

Figure 5. Selected low angle region of sample E1 showing severe overlap of the peaks of chrysotile, antigorite and clinochlore and the result of the peak fitting using the Rietveld method.

Figure 6. The Rietveld graphical outputs of the samples selected for the accuracy verification. Crosses represent the observed pattern, the thin line represents the calculated pattern and the grey bottom line is the difference line. Markers of all the peaks of the each crystalline phase included in the refinement procedure are also shown in different lines. Legend: (a) STD1, lines of peak markers from the bottom: antigorite, chrysotile, tremolite, talc, clinochlore, calcite, dolomite, magnesite, albite. (b) STD2, lines of peak markers from the bottom: antigorite, chrysotile, tremolite, talc, clinochlore, calcite, dolomite, magnesite, albite; (c) C2, lines of peak markers from the bottom: antigorite, chrysotile, tremolite, muscovite, clinochlore, calcite, quartz, K-feldspar, albite; (d) E1, lines of peak markers from the bottom: antigorite, chrysotile, clinochlore, calcite, magnetite, forsterite, hematite, enstatite, brucite.

Figure 7. DTA traces of the four investigated samples and standard pure chrysotile, in the range 550–850 °C (see the text for details) with the result of the deconvolution fitting procedure. Legend: (a) STD1; (b) STD2; (c) C2; (d) E1; (e) pure chrysotile.

Figure 8. The Rietveld graphical output of sample C5. Crosses represent the observed pattern, the thin line represents the calculated pattern and the grey bottom line is the difference line. Markers of all the peaks of the each crystalline phase included in the refinement procedure are shown. Legend from the bottom line: antigorite, chrysotile, tremolite, muscovite, clinochlore, calcite, quartz, K-feldspar, dolomite.
FIGURE 9. Maps of concentration of chrysotile (a) and tremolite (b) obtained from the Rietveld analysis for the site of Crètaz obtained by geostatistical analysis of the raw data in GIS environment using the software ArcGIS 10.1 and the ArcGIS Geostatistical Analyst application. The raw concentrations of chrysotile for the site of Emarèse are plotted in (c).
TABLE 1. The calculated absorbance (%) of the stretching vibration of chrysotile and the resulting chrysotile content (wt%), using the calibration curve with equation $y = 0.78269x$ with $y =$ absorbance (%) and $x =$ chrysotile weight fraction.

<table>
<thead>
<tr>
<th>Sample</th>
<th>absorbance (%)</th>
<th>chrysotile content (wt%)</th>
<th>chrysotile content error</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD1</td>
<td>3.856</td>
<td>4.9</td>
<td>0.03</td>
</tr>
<tr>
<td>STD2</td>
<td>10.801</td>
<td>13.8</td>
<td>0.02</td>
</tr>
<tr>
<td>C2</td>
<td>4.931</td>
<td>6.3</td>
<td>0.02</td>
</tr>
<tr>
<td>E1</td>
<td>25.75</td>
<td>32.9</td>
<td>0.02</td>
</tr>
</tbody>
</table>
TABLE 2. The results of the Rietveld quantitative phase composition. The definition of the agreement factors is reported in Larson and Von Dreele (1999).

<table>
<thead>
<tr>
<th></th>
<th>STD1</th>
<th>STD2</th>
<th>C2</th>
<th>E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{wp} (%)</td>
<td>10.3</td>
<td>9.73</td>
<td>10.33</td>
<td>9.44</td>
</tr>
<tr>
<td>R_p (%)</td>
<td>8.02</td>
<td>7.51</td>
<td>7.57</td>
<td>7.07</td>
</tr>
<tr>
<td>χ^2</td>
<td>5.40</td>
<td>2.71</td>
<td>5.40</td>
<td>6.32</td>
</tr>
<tr>
<td>antigorite</td>
<td>6.9(3)</td>
<td>14.9(3)</td>
<td>3.5(3)</td>
<td>44.7(6)</td>
</tr>
<tr>
<td>brucite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3(1)</td>
</tr>
<tr>
<td>calcite</td>
<td>39.3(2)</td>
<td>36.7(3)</td>
<td>8.0(3)</td>
<td>2.6(2)</td>
</tr>
<tr>
<td>chrysotile</td>
<td>5.8(2)</td>
<td>11.2(3)</td>
<td>6.3(4)</td>
<td>25.1(9)</td>
</tr>
<tr>
<td>clinohlore</td>
<td>4.6(2)</td>
<td>5.9(3)</td>
<td>7.5(3)</td>
<td>15.8(4)</td>
</tr>
<tr>
<td>dolomite</td>
<td>11.9(2)</td>
<td>11.7(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>hematite</td>
<td>-</td>
<td>-</td>
<td>1.3(2)</td>
<td></td>
</tr>
<tr>
<td>enstatite</td>
<td>-</td>
<td>-</td>
<td>1.2(3)</td>
<td></td>
</tr>
<tr>
<td>forsterite</td>
<td>-</td>
<td>-</td>
<td>4.0(6)</td>
<td></td>
</tr>
<tr>
<td>K-feldspar</td>
<td>-</td>
<td>-</td>
<td>4.2(3)</td>
<td>-</td>
</tr>
<tr>
<td>magnesite</td>
<td>4.3(2)</td>
<td>4.6(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>magnetite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.0(2)</td>
</tr>
<tr>
<td>muscovite/Illite</td>
<td>-</td>
<td>-</td>
<td>10.9(5)</td>
<td>-</td>
</tr>
<tr>
<td>plagioclase</td>
<td>18.3(2)</td>
<td>10.8(3)</td>
<td>22.4(3)</td>
<td>-</td>
</tr>
<tr>
<td>quartz</td>
<td>-</td>
<td>-</td>
<td>32.6(2)</td>
<td>-</td>
</tr>
<tr>
<td>talc</td>
<td>3.3(5)</td>
<td>3.2(3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tremolite</td>
<td>5.6(3)</td>
<td>1.0(3)</td>
<td>4.6(3)</td>
<td>-</td>
</tr>
<tr>
<td>TOT</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE 3. The results of the chrysotile determination using the DTA method (see the text for details).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sum of the peak area</th>
<th>Error</th>
<th>r^2</th>
<th>Calculated wt% chrysotile</th>
<th>Area ratio</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure chrysotile standard</td>
<td>1358</td>
<td>39</td>
<td>0.9909</td>
<td>100</td>
<td>1</td>
<td>n.d.</td>
</tr>
<tr>
<td>STD1</td>
<td>89</td>
<td>16</td>
<td>0.9927</td>
<td>7.6</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>STD2</td>
<td>155</td>
<td>8</td>
<td>0.9921</td>
<td>12.2</td>
<td>0.11</td>
<td>0.02</td>
</tr>
<tr>
<td>C2</td>
<td>108</td>
<td>3</td>
<td>0.9952</td>
<td>8.9</td>
<td>0.08</td>
<td>0.07</td>
</tr>
<tr>
<td>E1</td>
<td>300</td>
<td>26</td>
<td>0.9955</td>
<td>22.2</td>
<td>0.22</td>
<td>0.07</td>
</tr>
</tbody>
</table>
TABLE 4. The quantitative phase compositions of the Crètaz and Emarèse samples. The definition of the agreement factors is reported in Larson and Von Dreele (1999).

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9V1</th>
<th>C10V1</th>
<th>C11V1</th>
<th>C12V1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rwp (%)</td>
<td>7.68</td>
<td>10.33</td>
<td>6.46</td>
<td>8.8</td>
<td>5.64</td>
<td>11.32</td>
<td>7.12</td>
<td>6.98</td>
<td>7.8</td>
<td>7.86</td>
<td>3.29</td>
<td>10.48</td>
</tr>
<tr>
<td>Rp (%)</td>
<td>5.58</td>
<td>7.57</td>
<td>4.81</td>
<td>6.22</td>
<td>4.08</td>
<td>8.01</td>
<td>5.51</td>
<td>5.42</td>
<td>5.94</td>
<td>6.02</td>
<td>5.55</td>
<td>7.93</td>
</tr>
<tr>
<td>χ²</td>
<td>5.55</td>
<td>5.40</td>
<td>3.44</td>
<td>6.60</td>
<td>3.87</td>
<td>8.64</td>
<td>2.55</td>
<td>2.96</td>
<td>3.33</td>
<td>3.35</td>
<td>2.64</td>
<td>5.61</td>
</tr>
<tr>
<td>antigorite</td>
<td>32.4(8)</td>
<td>3.5(3)</td>
<td>29.5(6)</td>
<td>47.1(6)</td>
<td>39.3(7)</td>
<td>50.1(6)</td>
<td>30.9(5)</td>
<td>23.6(4)</td>
<td>40.4(4)</td>
<td>19.5(7)</td>
<td>14.3(4)</td>
<td>52.4(5)</td>
</tr>
<tr>
<td>calcite</td>
<td>20.5(3)</td>
<td>8.0(3)</td>
<td>4.2(2)</td>
<td>9.0(3)</td>
<td>11.5(3)</td>
<td>8.1(3)</td>
<td>12.0(2)</td>
<td>8.0(2)</td>
<td>14.7(2)</td>
<td>27.5(2)</td>
<td>16.6(2)</td>
<td>5.0(2)</td>
</tr>
<tr>
<td>chrysotile</td>
<td>6.2(9)</td>
<td>6.3(4)</td>
<td>4.4(6)</td>
<td>11.4(8)</td>
<td>9.7(8)</td>
<td>11.2(7)</td>
<td>15.8(4)</td>
<td>11.6(4)</td>
<td>11.8(4)</td>
<td>12.1(5)</td>
<td>6.0(3)</td>
<td>22.8(5)</td>
</tr>
<tr>
<td>clinochlore</td>
<td>13.4(5)</td>
<td>7.5(3)</td>
<td>10.0(3)</td>
<td>12.0(6)</td>
<td>6.1(5)</td>
<td>11.4(5)</td>
<td>15.2(5)</td>
<td>7.0(3)</td>
<td>10.1(5)</td>
<td>9.4(6)</td>
<td>9.0(3)</td>
<td>7.9(7)</td>
</tr>
<tr>
<td>dolomite</td>
<td>4.3(5)</td>
<td>-</td>
<td>-</td>
<td>2.3(5)</td>
<td>2.8(5)</td>
<td>2.2(5)</td>
<td>15.0(3)</td>
<td>-</td>
<td>-</td>
<td>4.6(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K-feldspar</td>
<td>3.5(4)</td>
<td>4.2(3)</td>
<td>1.7(3)</td>
<td>2.9(4)</td>
<td>5.1(4)</td>
<td>2.1(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>magnetite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.9(1)</td>
<td>2.5(1)</td>
<td>3.6(2)</td>
<td>4.7(1)</td>
<td>1.3(1)</td>
<td>4.2(2)</td>
</tr>
<tr>
<td>muscovite/Illite</td>
<td>9.6(8)</td>
<td>10.9(5)</td>
<td>15.8(5)</td>
<td>8.3(8)</td>
<td>13.1(1)</td>
<td>8.4(7)</td>
<td>2.2(6)</td>
<td>10.3(5)</td>
<td>7.8(6)</td>
<td>9.3(6)</td>
<td>20.4(4)</td>
<td>2.2(7)</td>
</tr>
<tr>
<td>plagioclase</td>
<td>-</td>
<td>22.4(3)</td>
<td>3.3(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.3(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>quartz</td>
<td>2.0(3)</td>
<td>32.6(2)</td>
<td>28.8(2)</td>
<td>3.8(4)</td>
<td>5.4(2)</td>
<td>4.1(1)</td>
<td>3.5(2)</td>
<td>17.6(1)</td>
<td>5.6(1)</td>
<td>10.2(2)</td>
<td>29.1(2)</td>
<td>3.4(2)</td>
</tr>
<tr>
<td>tale</td>
<td>0.5(2)</td>
<td>-</td>
<td>0.5(2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.5(2)</td>
<td>2.8(2)</td>
<td>2.1(2)</td>
<td>2.7(3)</td>
<td>3.3(3)</td>
<td>2.1(3)</td>
</tr>
<tr>
<td>tremolite</td>
<td>7.6(6)</td>
<td>4.6(3)</td>
<td>1.8(4)</td>
<td>3.2(5)</td>
<td>7.0(5)</td>
<td>2.4(5)</td>
<td>-</td>
<td>10.3(1)</td>
<td>3.9(5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOT</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>C13V2</td>
<td>C14V2</td>
<td>C15V2</td>
<td>E1</td>
<td>E2</td>
<td>E3</td>
<td>E4</td>
<td>E5</td>
<td>E6</td>
<td>E7</td>
<td>E8</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>R_{wp} (%)</td>
<td>8.29</td>
<td>8.61</td>
<td>7.6</td>
<td>9.44</td>
<td>10.9</td>
<td>10.44</td>
<td>9.23</td>
<td>10.31</td>
<td>8.36</td>
<td>6.6</td>
<td>6.01</td>
<td></td>
</tr>
<tr>
<td>R_p (%)</td>
<td>6.29</td>
<td>6.73</td>
<td>5.77</td>
<td>7.07</td>
<td>8.13</td>
<td>7.64</td>
<td>6.94</td>
<td>7.53</td>
<td>6.26</td>
<td>5.09</td>
<td>4.67</td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>3.99</td>
<td>3.54</td>
<td>2.87</td>
<td>6.32</td>
<td>8.68</td>
<td>8.89</td>
<td>6.35</td>
<td>10.41</td>
<td>5.87</td>
<td>3.32</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>antigorite</td>
<td>35.4(5)</td>
<td>35.1(4)</td>
<td>6.3(4)</td>
<td>44.7(6)</td>
<td>21.4(5)</td>
<td>13.5(3)</td>
<td>7.1(2)</td>
<td>17.1(3)</td>
<td>3.3(2)</td>
<td>7.7(3)</td>
<td>8.8(3)</td>
<td></td>
</tr>
<tr>
<td>brucite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.3(1)</td>
<td>2.0(3)</td>
<td>1.0(3)</td>
<td>1.1(2)</td>
<td>1.4(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>calcite</td>
<td>12.0(3)</td>
<td>9.8(2)</td>
<td>5.0(2)</td>
<td>2.6(2)</td>
<td>-</td>
<td>3.5(2)</td>
<td>2.9(2)</td>
<td>4.9(3)</td>
<td>2.0(5)</td>
<td>1.3(2)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>chrysotile</td>
<td>14.7(5)</td>
<td>21.9(4)</td>
<td>5.2(3)</td>
<td>25.1(9)</td>
<td>39.5(9)</td>
<td>35.0(9)</td>
<td>39.5(8)</td>
<td>36.4(9)</td>
<td>15.2(9)</td>
<td>4.6(4)</td>
<td>3.3(5)</td>
<td></td>
</tr>
<tr>
<td>clinohlore</td>
<td>6.7(4)</td>
<td>18.4(5)</td>
<td>4.1(5)</td>
<td>15.8(4)</td>
<td>25.4(7)</td>
<td>23.8(8)</td>
<td>32.6(6)</td>
<td>22.6(7)</td>
<td>23.5(8)</td>
<td>12.4(5)</td>
<td>20.0(5)</td>
<td></td>
</tr>
<tr>
<td>dolomite</td>
<td>5.9(3)</td>
<td>5.8(2)</td>
<td>-</td>
<td>-</td>
<td>1.4(2)</td>
<td>-</td>
<td>-</td>
<td>0.4(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>hematite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.3(2)</td>
<td>1.2(2)</td>
<td>1.5(2)</td>
<td>1.7(2)</td>
<td>1.8(2)</td>
<td>2.6(3)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>enstatite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.2(3)</td>
<td>1.9(4)</td>
<td>3.1(6)</td>
<td>2.5(7)</td>
<td>1.4(4)</td>
<td>10.5(9)</td>
<td>8.3(5)</td>
<td>6.0(5)</td>
<td></td>
</tr>
<tr>
<td>forsterite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.0(6)</td>
<td>3.2(7)</td>
<td>6.4(7)</td>
<td>5.7(4)</td>
<td>9.3(6)</td>
<td>6.0(7)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>K-feldspar</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.6(5)</td>
<td>5.5(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>magnetite</td>
<td>4.6(1)</td>
<td>3.5(1)</td>
<td>-</td>
<td>5.0(2)</td>
<td>5.4(2)</td>
<td>6.2(2)</td>
<td>6.9(2)</td>
<td>5.1(2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>muscovite/illite</td>
<td>6.8(7)</td>
<td>2.3(6)</td>
<td>15.0(5)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>7.6(9)</td>
<td>13.9(9)</td>
<td>13.3(9)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>plagioclase</td>
<td>3.7(4)</td>
<td>-</td>
<td>18.7(4)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8.3(4)</td>
<td>12.9(4)</td>
<td>11.3(4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>quartz</td>
<td>5.5(2)</td>
<td>1.9(1)</td>
<td>40.1(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.3(2)</td>
<td>12.5(2)</td>
<td>10.4(2)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>talc</td>
<td>4.7(4)</td>
<td>-</td>
<td>1.3(3)</td>
<td>1.6(2)</td>
<td>-</td>
<td>4.6(9)</td>
<td>-</td>
<td>8.4(9)</td>
<td>9.6(4)</td>
<td>9.0(4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tremolite</td>
<td>5.4(4)</td>
<td>-</td>
<td>4.0(3)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9(5)</td>
<td>11.2(3)</td>
<td>12.4(3)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOT</td>
<td>100</td>
</tr>
</tbody>
</table>

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
TABLE 5. Summary of the calculated concentration of chrysotile asbestos in the four samples selected for the cross-check analysis.

<table>
<thead>
<tr>
<th>Method</th>
<th>Normative reference</th>
<th>Chrysotile wt% STD1</th>
<th>Chrysotile wt% STD2</th>
<th>Chrysotile wt% C2</th>
<th>Chrysotile wt% E1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighed</td>
<td></td>
<td>5.11</td>
<td>10.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTA</td>
<td>-</td>
<td>7.6</td>
<td>12.2</td>
<td>8.9</td>
<td>22.2</td>
</tr>
<tr>
<td>FTIR</td>
<td>Italian D.M. 09-06-94</td>
<td>4.9</td>
<td>13.8</td>
<td>6.3</td>
<td>32.9</td>
</tr>
<tr>
<td>PCOM</td>
<td>Italian D.M. 09-06-94</td>
<td>3.7</td>
<td>1.4</td>
<td>n.d.</td>
<td>7.5</td>
</tr>
<tr>
<td>SEM</td>
<td>09-06-94 - LAB1</td>
<td>4.6</td>
<td>13.1</td>
<td>4.7</td>
<td>27.5</td>
</tr>
<tr>
<td>SEM</td>
<td>09-06-94 - LAB2</td>
<td>1.9</td>
<td>0.6</td>
<td>5.9</td>
<td>26.4</td>
</tr>
<tr>
<td>XRPD</td>
<td></td>
<td>5.8</td>
<td>11.2</td>
<td>6.3</td>
<td>25.3</td>
</tr>
<tr>
<td>Rietveld</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>