1	Revision # 2 – January 31 st , 2014
2	
3	Determination of the concentration of asbestos minerals in highly
4	contaminated mine tailings. The example of the abandoned mine waste
5	of Crètaz and Èmarese (Valle d'Aosta, Italy).
6	
7	Alessandro F. Gualtieri, ^{1,} * Simone Pollastri, ¹ Nicola Bursi Gandolfi, ¹
8	FRANCESCO RONCHETTI, ¹ CARLO ALBONICO, ² ALESSANDRO CAVALLO, ³ GIOVANNA
9	ZANETTI, ⁴ PAOLA MARINI, ⁴ AND ORIETTA SALA ⁵
10	¹ Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, I-41121 Modena,
11	Italy
12	² A.R.P.A. Valle d'Aosta, I-11020 Saint Christophe Aosta, Italy
13	³ Dipartimento di Scienze dell'ambiente e del territorio e di Scienze della terra, Università di Milano-
14	Bicocca, I-20126 Milano, Italy
15	⁴ Dipartimento di Ingegneria delle Materie Prime DIATI - Politecnico di Torino, I-10129 Torino, Italy
16	⁵ A.R.P.A. Emilia Romagna, Sezione Provinciale di Reggio Emilia
17	I-42122, Reggio Emilia, Italy
18	
19	Submitted to The American Mineralogist
20	*Corresponding author.
21	Phone: +39 059 2055810; Fax: +39 059 2055887
22	E-mail address: <u>alessandro.gualtieri@unimore.it</u>
23	

1

24

ABSTRACT

25	For the first time, this work reports concentration maps of asbestos minerals in
26	contaminated mine tailings drawn using the results of Rietveld quantitative phase
27	analysis (QPA). The investigates sites are located in the Valle d'Aosta region (Italy):
28	Crètaz, the most important Italian magnetite mine, active until 1979 and Emarèse, one the
29	most important chrysotile asbestos mines in Italy, active until 1968. The results of the
30	study permit to draw the spatial distribution of the asbestos (chrysotile and tremolite in
31	this specific case) concentration, useful to plan reclamation of the sites, with priority
32	given to the areas with the highest asbestos concentration. Because of the complexity of
33	the mineral assemblage which includes, among the others, antigorite, chlorite, talc, and
34	tremolite, the concentration of chrysotile was cross-checked using different experimental
35	techniques such as X-Ray powder diffraction (XRPD), Fourier Transform Infra-Red
36	(FTIR) spectroscopy, scanning electron microscopy (SEM), Polarized light Optical
37	Microscopy (PCOM), and differential thermal analysis (DTA). The accuracy of the
38	results was validated by analyzing standard samples with known concentrations of
39	chrysotile and tremolite. The comparison allowed to point out the advantages and
40	disadvantages of each experimental method.
41	At Crètaz, chrysotile ranges from 4.4 to 22.8 wt% and tremolite from 1.0 to 10.3 wt%
42	whereas at Emarèse the concentration of chrysotile varies from 3.3 to 39.5 wt% and
43	tremolite from 5.9 to 12.4 wt%. Antigorite and chlorite are the major accompanying
44	phases with variable amounts of other accessory minerals including magnetite,
45	carbonates, talc, olivine, pyroxene, talc, and brucite. The results of our study are of key
46	importance for the local environmental policies as the knowledge of the spatial

47	distribution of the asbestos concentration allows to plan a detailed reclamation agenda of
48	the contaminated sites. The spots with the highest surface contamination of both
49	chrysotile and tremolite were identified and classified as priority area in the reclamation
50	plan.
51	Keywords: Chrysotile, tremolite, serpentine, mine tailings, quantitative determination
52	
53	INTRODUCTION
54	Commercial asbestos minerals are classified into two groups: serpentine and
55	amphibole asbestos, both sharing the same fibrous-asbestiform crystal habit but different
56	structural arrangements at the molecular scale (Bailey 1988). The fibrous-asbestiform
57	variety of serpentine is chrysotile (white asbestos) with ideal chemical formula
58	Mg ₃ (OH) ₄ Si ₂ O ₅ . The amphibole asbestos family includes five minerals: actinolite,
59	amosite (fibrous variety of grunerite, brown asbestos), anthophyllite, crocidolite (fibrous
60	variety of riebeckite, blue asbestos), and tremolite. Amphiboles' have general formula
61	$AB_2C_5T_8O_{22}W_2$ with A = , Ca, K, Li, Na; B = Ca, Fe ²⁺ , Li, Mg, Mn ²⁺ , Na; C = Fe ²⁺ ,
62	Fe^{3+} , Li, Mg, Mn^{2+} , Mn^{3+} , Ti^{4+} ; T = Al, Si, Ti^{4+} ; W = Cl, F, O ²⁻ , (OH). The ideal
63	(approximated) formulas of the five asbestos species are: actinolite $A = B = Ca, C =$
64	(Fe ²⁺ , Mg), T = Si; W = (OH); amosite A = $, B = C = Fe^{2+}, T = Si; W = (OH);$
65	anthophyllite A = $, B = C = Mg, T = Si; W = (OH);$ crocidolite A = $, B = Na, C =$
66	(Fe ²⁺ , Fe ³⁺ , Mg), T = Si; W = (OH); tremolite A = $, B = Ca, C = Mg, T = Si; W = (OH).$
67	The six asbestos minerals exhibit outstanding chemical-physical and technological
68	properties exploited for various industrial applications. Chrysotile has been the most
69	commonly used form of asbestos. Regrettably, the unique fibrous-asbestiform crystal

70	habit and surface activity, responsible for the excellent technological properties, also
71	seem to be the cause of asbestos minerals' potential health hazard. The history of the
72	epidemiological reports of asbestos related diseases is well described in Skinner et al.
73	(1988). Although many epidemiological studies provided evidence that amphibole
74	asbestos minerals are more hazardous than chrysotile (Hodgson and Darnton 2000), all
75	six asbestos mineral species are assumed to be harmful to human health. Exposure
76	through inhalation of asbestos minerals may provoke lung diseases (Skinner et al. 1988;
77	Dilek and Newcomb 2003) and during the 1980s, asbestos minerals were declared proven
78	human carcinogens by the US Environmental Protection Agency, the International
79	Agency for Research on cancer (IARC) of the World Health Organization and the
80	National Toxicology Program (Nicholson 1986; IARC 1977; Collegium Ramazzini
81	2010). Later, many countries worldwide banned or restricted the use of asbestos
82	containing materials (ACMs). In the countries where asbestos minerals are banned,
83	ACMs have been progressively removed from the environment to minimize exposure of
84	the population (Gualtieri 2012). Despite the huge efforts to entirely remove asbestos from
85	the living environment, some issues are still matter of concern. One of these regards the
86	correct evaluation of the health hazard associated with abandoned asbestos mines
87	(especially dumps and tailings) and natural occurring asbestos (NOA). Mining of
88	asbestos and asbestos associated minerals (e.g., iron oxides) generated vast amounts of
89	residue material, chemically not very different from the original rock (Meyer 1980). An
90	important difference is the fineness of the residue material composing the dumps, making
91	it more prone to weathering or erosion by wind, with subsequent release of fibers in air or
92	in the percolating surface hydrological system. With this premise, Viti et al. (2011)

93 suggested that the correct evaluation of the hazard associated with serpentinite outcrops 94 (and asbestos containing mine tailings) would require a careful geo-statistical and geomechanical investigation of the fracturing/vein system, followed by careful qualitative 95 and quantitative determinations. Unfortunately, the accomplishment of accurate and 96 97 precise quantitative figures of the actual asbestos minerals content is made difficult by 98 two major factors: (1) asbestos bearing serpentinite textures typically consist of fine-to-99 ultrafine intergrowths of fibrous and non-fibrous minerals, often difficult to identify by 100 conventional methods, such as X-ray diffraction or microanalytical approaches. To this aim, DTA seems to be an effective and promising tool of analysis although only a case 101 102 study has been reported so far (Viti et al. 2011) and further experimental evidence is needed; (2) asbestos and asbestos containing mine dumps and tailings invariably contain 103 104 high concentrations of asbestos minerals (generally higher than 1wt%). In countries like Italy, regulated experimental techniques for massive materials (X-Ray Powder 105 Diffraction - XRPD, Fourier Transform Infra-red spectroscopy - FTIR, Scanning Electron 106 Microscopy - SEM, and Phase Contrast Optical Microscopy - PCOM) are applied to 107 108 determine whether asbestos concentration is higher than 0.1 wt% (Italian D.Lgs 109 10/03/2010 nr. 205 All. D). On the same line, Airborne Toxic Control Measure (ATCM) 110 restricted in the USA the use of serpentine and ultramafic rock aggregates for surface applications to materials containing less than 0.25 wt% asbestos determined according to 111 112 the Californian Air Resources Board method (CARB method 435, 1991). This scenario reveals that accuracy of these quantitative methods have not been tested for highly 113 contaminated massive materials. 114

This work was prompted by the actual need to map the concentration of asbestos

116	minerals in abandoned asbestos or asbestos containing open mines with dumps and
117	tailings possibly containing very high concentrations of asbestos fibers (well above 1
118	wt%). Because the costly reclamation of these sites usually conflicts with the tight
119	budgets of the regional/national funds allocated to such expense items, a step by step long
120	term plan must be proposed with priority given to the reclamation of the areas with the
121	highest asbestos concentration. Therefore, the knowledge of the spatial distribution of the
122	asbestos concentration in such sites is relevant from an economic standpoint as it may
123	permit to prioritize the most hazardous areas within a long term reclamation plan. For the
124	first time, we report the mapping of the concentration of asbestos minerals (chrysotile and
125	tremolite) in abandoned sites with highly contaminated mine tailings. The sites under
126	investigation are located in the Valle d'Aosta region in Italy: Crètaz is situated near the
127	town of Cogne where the most important Italian magnetite mine was active until 1979;
128	Emarèse was one the most important chrysotile asbestos mines in Italy, now abandoned
129	since 1968.
130	The determination of the chrysotile concentration was accomplished using all the
131	experimental techniques permitted by current Italian regulations for massive materials
132	XRPD, FTIR, SEM, and PCOM. Quantitative PCOM results were integrated by
133	qualitative observations in polarized light (PLOM) and with chromatic dispersion (CD).
134	Although the Italian D.M. 09/06/1994 suggests the use of SEM when the estimated
135	asbestos concentration is lower than 1wt% and MOCF, XRPD and FTIR when it is
136	higher than 1wt%, there is actually no indications on the upper concentration limits of
137	application of SEM. Hence, the analysis of samples with very high concentration of
138	asbestos offers a proper case study. The accuracy of the results was validated by the

analysis of especially prepared standard samples with known concentration of chrysotile
and tremolite and cross-checked by the application of the Differential Thermal Analysis
(DTA) and the Rietveld methods. The comparison allowed to point out the advantages
and disadvantages of each experimental method.

- 143
- 144

GEOLOGY OF THE INVESTIGATED AREA

145 The main structural lines of the Aosta valley (Fig. 1) are aligned N-W to S-E. They 146 represent a natural cross-section through the structural units of the Italian Alps where the 147 ancient European and African continental margins are divided by relict portions of the 148 oceanic floor. The margin of the European basement emerges in correspondence to the crystalline massif externally represented by the Monte Bianco (Elvetico - Ultraelvetico 149 Domain) and internally by the Gran San Bernardo – Ruitor, the Monte Rosa and the Gran 150 151 Paradiso (Pennidico Domain). The ancient portion of the Piedmont ocean (the Piedmont Zone with Calc-schists and Green Stones) occurs in the middle stretch of the Valley, 152 153 spanning the inner margin of the crystalline massifs. The area of the lowest valley is 154 mainly composed by the Pennidic and Austroalpine domains, characterized by folded 155 structures and marked by metamorphism in association with large thrust of the Piedmont 156 Zone of Calc-schists with Green Stones (ophiolites). The mining area of Cogne is found in that formation and emerges in the localities of Aymavilles, Urtier river, and Grauson 157 158 river (Elter 1987). The rocks of that unit are known to host mineralizations of Cr, Pt, Ni and Fe and various phases such as asbestos minerals and talc. Iron is mostly hosted in 159 magnetite, one of the main constituents of the serpentinite accessories, with the genesis 160 161 attributed to the processes of serpentinization (hydrothermal alteration of the original

162 mantle peridotites) which began probably in the oceanic environment and continued during the Alpine orogeny (Dal Piaz 1971). The magnetite mines of Cogne, and in 163 particular the site of Crètaz, are located inside the area of the Piedmont Calc-schists and 164 Green Stones (Diella et al. 1994). The ore mining of Cogne was both underground and 165 166 open (Di Colbertaldo et. al. 1967) and the iron ore has been industrially exploited from 1900 to 1979. 167 168 The asbestos Émarèse mine is located inside the Piedmont Zone with Calc-schists and 169 Greenstones (ophiolites). The metabasites which occur at the Émarèse area are mainly

sometimes occurs in very long fibers that can reach a length of 1 m. Serpentines are
accompanied by carbonates, magnetite and talc. The mining activity regarded an open pit
and several wells and tunnels (Cavinato 1964). The Émarèse mine is abandoned since
1968.

composed of serpentinites locally mineralized to antigorite and chrysotile. The latter

175

170

- ± / 、
- 176

EXPERIMENTAL PROCEDURE

177 Materials sampling and sample preparation

A number of representative samples were collected in the areas of Crètaz and Emarèse. Given the extremely hazardous situation due to the proximity of the contaminated site with the touristic town of Cogne, both surface and core sampling was conducted at Crètaz whereas only surface sampling was conducted at Emarèse. As far as the surface sampling is concerned, the materials were collected under a 25-30 mm thick surface layer of soil manually removed with the aid of a shovel. All the operations were conducted using protective equipments. Samples were collected down to a depth of about

185	60 mm with the aid of a manual corer. A representative amount of material, depending on
186	the average grain size, was sampled and manually divided with the aid of a Retsch
187	stainless steel sample splitter (maximum capacity = 16 l; maximum grain size = 50 mm)
188	to obtain about 2 Kg of homogeneous final raw product that was finally stored inside
189	glass bottles and sealed. At Crètaz, core sampling was possible using a rotary core drill
190	with a penetration length of about 20 m. Raw core samples were divided and
191	homogenized using the same procedure described above for surface samples. All the
192	surface and core collection spots for both localities are reported in Figure 1. The figure
193	legend also specifies the sampling mode.
194	In the lab, using protective equipments and under extractor fan, raw samples were
195	quartered to obtained about 50 g of homogeneous representative material and
196	subsequently dried at 105 °C for 2 h. Powders were obtained by mechanical milling using
197	Retsch mm 200 SiC jars, with a capacity of 10 ml each, for 10 min at a speed of 25
198	oscillations/s. Further fine manual powdering was conducted using an agate mortar for 5
199	min.
200	Two standard samples (labeled STD1 and STD2) with known contents of chrysotile
201	and tremolite asbestos and mineralogical composition similar to that of the natural
202	samples were prepared as weighed mixtures of artificial tailings to assess the accuracy of
203	the quantitative determination. The compositions of the standard samples (wt%) were:
204	STD1 (chrysotile 5.11, tremolite 5.11, talc 5.11, clinochlore 5.11, antigorite 8.07, calcite
205	40.86, dolomite 10.2, magnesite 4.09, albite 16.34); STD2 (chrysotile 10.44, tremolite
206	1.04, talc 5.22, clinochlore 5.22, antigorite 16.49, calcite 36.53, dolomite 10.44,
207	magnesite 4.18, albite 10.44). Specimens of the mineral phases talc, clinochlore, calcite,

dolomite, magnesite, and albite were taken from the mineral collection of the MUSEO

GEMMA 1786, Dipartimento di Scienze Chimiche e Geologiche of the University of

210 Modena e Reggio Emilia (Modena, Italy).

The asbestos samples used to prepare the weighed mixtures of artificial tailings are the

NIST chrysotile standard SRM1866a and the NIST tremolite sample SRM 1867a, the

213 highest purity available. Bunches of fibers were ultrasonicated and selected under optical

- 214 microscope. The antigorite sample is from a pale-green, splintery vein occurring in a
- 215 massive serpentinite from Elba Island (Italy): sample ATG18 in Viti and Mellini (1996).

216 The sample predominantly consists of antigorite lamellae with an average composition of

217 $Mg_{2.62}Fe^{2+}_{0.16}Fe^{3+}_{0.03}(OH)_4Al_{0.01}Si_2O_5$ (normalized to 2 apfu in the tetrahedral site; Loss

of Ignition (L.O.I.) of 11.9 wt%) and super-periodicity of 48.8 Å; interstitial chrysotile

- occurs among antigorite lamellae. The total chrysotile content is 22.0(9) wt% (Viti et al.
- 220 2011). Obviously, the chrysotile content of antigorite was considered during the
- 221 preparation of the mixture. Sample purity of all the selected specimens was checked by
- 222 XRPD. Prior to the weighing procedure, all the specimens were dried at 105 °C for 2 h

and reduced to powders by manual grinding in an agate mortar using acetone as solvent.

- 224 After weighing the various components, the coarse powders were homogenized and
- powdered in an agate mortar for 5 min.
- 226

227 Analytical methods

228 Sample selection

Two natural samples (C2 and E1) and the two standards STD1 and STD2 were selected for the determination of the concentration of chrysotile and tremolite (when possible) asbestos, following the experimental methods considered in the Italian D.M.
09/06/1994, differential thermal analysis (DTA) and X-ray powder diffraction (XRPD)
with the Rietveld method. All the other samples collected during the surface and core
sampling at Crètaz and Èmarese were analyzed with the Rietveld method to determine
both the concentration of chrysotile and tremolite asbestos.

236 *Optical microscopy*

237 As far as the optical microscopy observations are concerned, prior to the qualitative 238 analysis, the samples underwent a chemical attack using a very diluted HCl solution to remove the carbonate fraction and eventually hydrated carbonate alteration products and 239 240 release the fibers from the matrix. About 0.2 mg of the powder was then suspended in a drop of acetone on a slide, put in a bottle, and inserted in an ultrasonic bath for 15 min. A 241 2.4.2 liquid of proper refraction index is added to the powder on the slide for the polarized light optical microscopy (PCOM) observations. The following refractive indices were used for 243 the identification of the asbestos fibres in the samples: 1.550 for chrysotile; 1.610-1.615 244 for tremolite; 1.620 for anthophyllite, and 1.640 for actinolite. The microscopes used for 245 246 the qualitative observations were a Leica DMLP and Leica DIALUX 20.

The samples for the quantitative analyses were prepared by suspending 0.1 mg of powder in 10 ml of distilled water. The suspension was ultrasonicated for 15 min. The suspension was filtered using a 47 mm cellulose nitrate filter to obtain an homogeneous dispersion. The filter was subsequently diaphanized for the PCOM observation. The observations were performed at 500x over a 1.57 mm² area of the membrane (0.5% of the total membrane area of 152 mm²). Each regulated (length > 5 μ m and aspect ratio of 3) fiber of both chrysotile and tremolite asbestos observed on the membrane was reported

254	and summed up to calculate the total volume. Assuming theoretical density values of
255	crysotile and tremolite fibers of 2.6 g/cm ³ and 3.0 g/cm ³ , respectively, it was possible to
256	calculate the total weight of both asbestos species counted on the membrane. This value
257	was then rescaled to the entire powdered area of the membrane and therefore to the
258	amount (0.1 mg) of powder on it.
259	Electron microscopy
260	The scanning electron microscopy (SEM) determinations were performed following
261	the method described in the Italian legislation (Italian Ministry of Health, 1994), which is
262	very similar to the International Standard Organization (ISO) Method 14966 (ISO, 2002).
263	The fiber-definition criteria are those cited above and are compliant with the ISO 14966
264	and WHO standard (WHO 1997; ISO 2002). An amount of 10 mg of each powder sample
265	was suspended in 200 ml of deionised and micro-filtered water with 0.1 vol.% surfactant
266	additive (dioctyl sodium sulfoccinate, C ₂₀ H ₃₇ NaO ₇ S, CAS nr. 577-11-7), and
267	ultrasonicated to facilitate the particle dispersion. A volume of 3 x 2.5 ml of this
268	suspension was collected at different levels and put into a filtering system, allowing
269	random deposition of the particles on polycarbonate filters (Osmonics 25 mm diameter,
270	0.6 µm porosity). Filters were dried in an oven (at 55 °C), weighed using a high-precision
271	balance and coated with graphite. The samples were analyzed with a Vega TS Tescan
272	5163 XM SEM (LAB1, the University of Milan-Bicocca), in combination with an
273	energy-dispersive X-ray spectrometer (EDAX Genesis 400), operating at 20 kV and 200
274	pA, at a working distance of about 20 mm. For each sample, 1 mm ² of the filter surface
275	was investigated, working at 2000-6000 magnification. The technique is based on point-
276	counting statistics, reporting the occurrence, number, dimension and chemical

277	composition of asbestos fibers in each measured spot. The volume of the single fiber is
278	approximated to that of a cylinder, and the weight is calculated assuming an average
279	density of 2.6 g/cm ³ for chrysotile and 3.0 g/cm ³ for all amphibole species. The fiber-
280	concentration C (in ppm) was then calculated as follows:
281	$C = [A \bullet (w_c + w_a)/n \bullet a \bullet W] \bullet 10^6$
282	with A = filter surface (mm ²); w_c = total weight of counted chrysotile fibers (mg); w_a =
283	total weight of counted amphibole fibers (mg); n = number of analyzed spots; a = spot
284	surface (mm^2) ; W = weight of the sample on the filter (mg).
285	The samples (following the protocol of LAB1) were also prepared separately and
286	analyzed in another laboratory (LAB2, A.R.P.A. Aosta). An amount of 10 mg of each
287	powder was suspended in 200 ml of deionised and micro-filtered water with 0.2 vol.%
288	surfactant additive (sodium lauryl sulfate, CH ₃ (CH ₂) ₁₁ OSO ₃ Na, CAS nr. 151-21-3), and
289	ultrasonically treated. All the other experimental conditions were identical to those
290	reported above. The instrument used for the observations was a Zeiss EVO MA10 with a
291	LaB6 cathode, in combination with an EDAX system, operating at 20 kV and 200 pA,
292	with 500–16000 magnification, at a working distance of 12 mm.
293	Infrared spectroscopy
294	For the Fourier transform Infrared (FTIR) spectroscopy measurements, pellets were
295	prepared using 198 mg of dried KBr powder and 2 mg of dried sample powder, with a
296	final load of 12 t for 12 s. A blank standard sample composed of KBr powder was also
297	prepared. Prior to the analysis, a calibration curve with increasing amounts of chrysotile
298	was prepared using the same experimental conditions to apply the Linear Calibration

299 Curve Method (see a through description of the method applied to FTIR in De Stefano et

300	al. 2012). All the spectra were collected from 4000 to 600 cm^{-1} at 4 cm ⁻¹ resolution using
301	a Bruker VECTOR 22 spectrometer with a Globar source, aperture 3 mm, 32 scans,
302	velocity 10 kHz, detector DTGS with a window of KBr (8000–400 cm ⁻¹), Mertz
303	correction phase, apodization function 3-term Blackman-Harris. Data were collected and
304	analyzed using the Bruker OPUS 6.5 software. The intensity of the absorption band at
305	3697 cm ⁻¹ , the stretching vibration of chrysotile non-hydrogen-bonded OH ⁻ (Farmer
306	1974), was measured and plotted versus the added chrysotile weight percent. It is
307	assumed that the detection limit is 0.01 wt% (Foresti et al. 2003). This procedure is rather
308	straightforward when no interference phases such as serpentine polymorphs and chlorite
309	are present (see for example, Balducci and Valerio 1986). The presence in the
310	investigated samples of the layer silicates antigorite and chlorite, which may overlap their
311	absorption bands to that of chrysotile, requires a careful discrimination to obtain the
312	intensity of the chrysotile band to plot vs. chrysotile concentration. For the investigated
313	samples with unknown concentration of chrysotile, the intensity of the absorption band
314	was measured as closest as possible to the ideal value of 3697 cm ⁻¹ (Farmer 1974), using
315	the "R" type integration process available in the software (the value of the intensity
316	measured above the base line taken between 3720 e 3661 cm ⁻¹). The resulting values
317	were then used to extract the chrysotile concentraion from the calibration curve.
318	X-ray powder diffraction
319	The XRPD quantitative analysis of chrysotile asbestos has been long conducted using
320	the external standard method (Klug and Alexander 1974) where the peak
321	intensity/integrated area of the major diffraction peak of an analyte (001 peak for
322	chrysotile) is usually plotted vs. its concentration to build a calibration curve. The

323	concentration of the analyte in an unknown sample requires the determination of the
324	correct unbiased intensity/integrated area of the major diffraction peak. Puledda and
325	Marconi (1990) developed a method used for chrysotile legitimated by the Italian D.M.
326	09/06/1994 which is based on the use of a silver membrane filter. The method also
327	proposes an appropriate value for the deposition area of the sample on filter, which
328	optimizes the diffraction response of the analyte. To apply the method described above,
329	the powder patterns of the samples C2, E1 and the two standards STD1 and STD2 were
330	collected using a Bragg–Brentano θ - θ diffractometer (PANalytical X'Pert Pro), Cu K α
331	radiation, 40 kV and 40 mA) equipped with a curved graphite monochromator and a gas
332	proportional detector. The divergence, receiving and anti-scattering slits were of 1°, 0.1
333	mm, and 1°, respectively. The scans were collected with a step scan of 0.02 °2 θ , and 5
334	s/step in the range 4-64 $^{\circ}2\theta$. The data analysis was performed using the PANalytical
335	HighScore Plus software version 2.2c.
336	The mineralogical quantitative phase analyses (QPA) of all the Crètaz and Èmarese
337	samples and the two standard samples STD1 and STD2 using the Rietveld method
338	(Rietveld 1969) were performed through X-ray powder diffraction (XRPD). Data were
339	collected using a Bragg–Brentano θ -2 θ diffractometer (Bruker D8 Advance, Cu K α
340	radiation, 40 kV and 40 mA) equipped with a Göbel mirror on the incident beam and a
341	solid state detector. The width of the divergence, receiving and anti-scattering slits were
342	of 0.6, 0.1, and 0.2 mm, respectively. The scans were collected with a step scan of 0.02
343	°2 θ , and 20 s/step in the range 4-65 °2 θ . QPAs were performed following the refinement
344	strategies described in Gualtieri (2000). Refinements were accomplished with the GSAS
345	(Larson and Von Dreele 1999) package and its graphical interface EXPGUI (Toby 2001).

346	Whenever the samples showed the presence of more than the maximum number of 9
347	phases available to the program, the procedure described by Winbur et al. (2000) was
348	used. Although samples were prepared with the side loading technique to minimize a
349	priori preferred orientation of crystallites, residual preferred orientation effects were
350	modelled with the March model (Dollase 1986). The following structural models were
351	used: albite (Downs et al. 1994) and plagioclase (Wenk et al. 1980), antigorite (Uehara
352	1998), calcite, dolomite, quartz (Le Saoût et al. 2011), chrysotile (Falini et al. 2004),
353	chlinochlore (Zanazzi et al. 2009), illite (Birle 1968), magnetite (Haavik et al. 2000),
354	microcline (Ribbe 1979) and orthoclase (Prince et al. 1973), talc (Perdikatsis and Burzlaff
355	1981), and tremolite (Ungaretti and Oberti 2000).
356	Thermal analysis
357	The collection of the thermal analysis curves thermogravimetry (TG), differential
358	thermogravimetry (DTG), and DTA of the C2, E1, and the two standard samples STD1
359	and STD2 samples were performed using a simultaneous differential thermal analysis
360	(SDTA) SEIKO SSC/5200 SII. Data were collected in air with a flow rate of 2 $\mu l/min,$ in
361	the range 20–1000 °C, and heating rate of 10 °C/min. Instrumental precision was checked
362	by repeated collections on reference samples, revealing good reproducibility
363	(instrumental theoretical precision of ± 0.5 °C); theoretical weight sensitivity is down to
364	0.1 µg. The DTA traces of the reference samples are reported in Viti (2010). The DTA

- peak deconvolution has been performed following the method described in Viti et al.
- 366 (2011). Fitting of the DTA peaks was performed using the deconvolution process avail-
- able in PeakFit4 (PeakFit Version 4.12, SPSS Inc., AISN Software). The temperature
- range selected for data analysis is 550–800 °C, that is the main dehydroxylation range, in

369	the attempt to avoid possible interferences with the 820 °C exothermic signals (Viti
370	2010). The Loess algorithm was used to smooth the data and to remove local
371	perturbations with a ratio of 5%. After that, baseline subtraction was accomplished by a
372	second derivative test procedure.
373	
374	Although it is well known that both transmission electron microscopy (TEM) and
375	Raman are powerful diagnostic techniques for the study of asbestos containing materials,
376	the two techniques have not been used in this work where the preference was given to the
377	custom methods specifically developed for the determination of the concentration of
378	asbestos minerals in massive materials.
379	
380	RESULTS
381	This section is divided into two parts. The first part summarizes the results of each
382	experimental technique applied to the determination of the chrysotile asbestos content in
383	the natural samples C2 and E1, and the two especially prepared standards STD1 and
384	STD2. The second part describes the results of the quantitative phase analysis of the
385	samples collected at Crètaz and Emarèse sites.
386	
387	Optical observations
388	The application of the PCOM technique to the study of our samples was of great help
389	from a qualitative point of view as it easily permitted to identify the nature of fiber
390	bunches thanks to the chromatic dispersion (CD) of the fibers (McCrone 1987; NIOSH
391	1989; EPA 1993; Moss 1994; Bellopede et al. 2009; Cavariani et al. 2010). Figure 2a,b

392	shows beautiful fiber aggregates of chrysotile and tremolite. From a quantitative
393	standpoint, because the fiber counting is usually conducted at a low magnification
394	(generally from 40 to 500x), only fibers or fiber aggregates of considerable size can be
395	observed and counted, and it is sometimes difficult to distinguish between an asbestos
396	fiber and crystal of different nature with acicular crystal habit (Fig. 2c). As a matter of
397	fact, fibers with diameter smaller than 0.8-1 μ m are not visible with optical microscopy at
398	500x with a resolution power of 0.2 μ m (Cavariani et al. 2010).

400 SEM analyses

401 The SEM determinations allowed to detect even very small fibers (with a length 402 shorter than 1-2 μ m) invisible under optical microscope. We have observed that the 403 sample preparation is crucial and a correct fiber counting is possible only if the stub is not 404 overloaded, that is the case when particle aggregates are formed (see an example in Fig. 3a). Small fibers are frequent in the standard samples STD1 and STD2 which were 405 406 prepared using dry powders. Figure 3b,c reports selected SEM images of the investigated 407 samples showing the presence of fibers with heterogeneous size of both chrysotile and tremolite asbestos fibers. The use of the EDS spot analysis is essential for the correct 408 409 identification and counting of the chrysotile and tremolite asbestos fibers (Fig. 3c with the relative EDS analysis in the white box). The use of this technique also permits to 410 411 detect fiber aggregates with distinctive habit and texture and consequently hard to classify otherwise. One such example is portrayed in Figure 3d where an intergrowth of 412 chrysotile-antigorite aggregate is likely observed. Such aggregates may witness low 413 414 grade regional progressive metamorphism of serpentinite which involves formation of

415	antigorite at expenses of chrysotile (Mellini et al. 1987). This paragenesis has already
416	been reported for the Val Malenco serpentinites in the Italian Alps where chrysotile has
417	been identified as antigorite precursor (Mellini et al. 1987; Wicks and O'Hanley 1988).
418	Notwithstanding, the study of the serpentinite texture and its origin is out of the aims of
419	this paper and should be accomplished using TEM.
420	
421	FTIR data
422	Figure 4 portrays the selected region between 3400 and 3950 cm ⁻¹ of the FTIR spectra
423	of the four investigated samples, where the absorption bands of chrysotile and
424	interference layer silicates occur. The calculated absorbance of the stretching vibration of
425	chrysotile and the resulting chrysotile content (wt%), using the calibration curve with
426	equation $y = 0.78269x$ with $y =$ absorbance (%) and $x =$ chrysotile weight fraction, are
427	reported in Table 1.

429 XRPD and the Rietveld method

430 Because the quantitative analysis of chrysotile asbestos using XRPD with the external standard method (Klug and Alexander 1974) requires the determination of the peak 431 intensity or the integrated area of the major diffraction peak of the (001) peak of 432 433 chrysotile in the unknown sample, the severe peak overlap due to the interference of both antigorite and chlorite, as observed the investigated samples makes this method 434 impracticable. The application of blind single peak fitting procedures to deconvolute each 435 single contribution resulted in unreliable outcomes. For this reason, the use of this 436 method for the determination of the chrysotile asbestos concentration in these matrices 437

19

438 turns out to be unfeasible. On the other hand, if a more robust fitting procedure with 439 independent observations and (crystallographic) constraints is applied, deconvolution of each contribution seemed viable. As a matter of fact, the application of the Rietveld 440 method guarantees both the use of independent observations (it is a full profile fitting 441 442 procedure where all the peaks of each phase in the system are modeled) and robust crystallographic constraints (symmetry, unit cell, profile coefficients, background and 443 444 others). Accuracy of estimates for multiple serpentine minerals can be achieved because 445 all independent reflections belonging to the different serpentine polymorphs in the collected range can be fitted during the refinement procedure. To this aim, areas where 446 447 overlap of the peaks of chrysotile and antigorite is limited, with distinct observations that help constrain refinement of these phases, exists: see for example the major $(13 \ \overline{1})$ peak 448 of antigorite at 2.52 Å which is well separated from chrysotile reflections ($\overline{2}02$) and (2) 449 0 2), at 2.45 Å and 2.55 Å, respectively. In addition, the fit of a number of peaks of each 450 451 phase in the systems makes it possible to correct *a posteriori* any preferred orientation 452 effect, if present, which may bias the major intensities of chrysotile, antigorite and chlorite. The result is a very good fit which allows the calculation of the weight estimates 453 of each phase in the system including chrysotile (see the example of sample E1 in Fig 5). 454 455 As far as the four analyzed samples, agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range: $R_{wp} = 9.44-10.33\%$, $R_p = 7.07-8.02\%$, 456 $\chi^2 = 2.709-5.397$. The Rietveld graphical outputs are shown in Figure 6 and Table 2 457 reports the agreement factors and quantitative phase composition. 458 459

460 **DTA analyses**

461	Figure 7a-d shows the DTA endothermic signals of the four investigated samples and
462	standard pure chrysotile, due to serpentine dehydroxylation processes in the range 550-
463	850 °C and relative result of the fitting procedure. DTA signals were fit using two peaks
464	for chrysotile (dehydroxylation I and II, weak and strong, respectively) and one peak for
465	antigorite (I in Viti et al. 2011). Figure 7e shows the DTA trace and result of the fitting
466	procedure for the pure chrysotile sample. Only fits with a regression coefficient $R^2 \ge$
467	0.990 were considered acceptable. The calculated peak areas were reduced to area ratios
468	(ratio between the calculated area in the unknown and that of the pure chrysotile
469	standard) and plotted in the curve obtained by Viti et al. (2011) for antigorite+chrysotile
470	mixtures with a calculated equation of $y = 0.0108x - 0.016$. The results of the procedure
471	are reported in Table 3.
472	
473	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse
473 474	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples
473 474 475	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in
473 474 475 476	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the
473 474 475 476 477	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low
473 474 475 476 477 478	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low peak to background ratio observed in a few samples was due to the fluorescent scattering
473 474 475 476 477 478 479	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low peak to background ratio observed in a few samples was due to the fluorescent scattering induced by the large iron content (large magnetite amounts) which excites the copper
473 474 475 476 477 478 479 480	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low peak to background ratio observed in a few samples was due to the fluorescent scattering induced by the large iron content (large magnetite amounts) which excites the copper atoms of the anticathode. Table 4 reports all the quantitative phase compositions of the
473 474 475 476 477 478 479 480 481	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low peak to background ratio observed in a few samples was due to the fluorescent scattering induced by the large iron content (large magnetite amounts) which excites the copper atoms of the anticathode. Table 4 reports all the quantitative phase compositions of the investigated samples. Because of the low content of magnetite determined in the
473 474 475 476 477 478 479 480 481 482	Mineralogical composition and asbestos concentration of the Crètaz and Emarèse samples Agreement factors of the Rietveld refinements (Larson and Von Dreele 1999) were in the range $R_{wp} = 6.46-11.32\%$, $R_p = 4.08-8.01\%$, $\chi^2 = 3.437-8.639$. As an example, the Rietveld graphical output of sample C5 is reported in Figure 8. It should be noted the low peak to background ratio observed in a few samples was due to the fluorescent scattering induced by the large iron content (large magnetite amounts) which excites the copper atoms of the anticathode. Table 4 reports all the quantitative phase compositions of the investigated samples. Because of the low content of magnetite determined in the investigated samples, the microabsorption effects are presumably negligible and no

484 485 DISCUSSION Accuracy of the results from the various experimental techniques 486 The accuracy of the concentration figures of chrysotile asbestos in the abandoned sites 487 488 of Crètaz and Emarèse was assessed for two selected samples C2 and E1 and the two especially prepared standards STD1 and STD2, with known asbestos concentration, using 489 490 the experimental techniques permitted by the current Italian regulation for massive 491 materials (XRPD, FTIR, SEM, and PCOM), the Rietveld method and DTA. Table 5 492 summarizes the resulting calculated concentration of chrysotile asbestos in the four samples. 493 494 *Optical microscopy* 495 Although the application of the PCOM technique was qualitatively very useful, the 496 figures obtained with this technique are underestimated with respect to the values provided by the application of the other experimental methods (Table 5): an estimate of 497 3.7 wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 1.4 498 499 wt% for STD2 sample against an expected value of 10.44 wt%. It is possible that limited 500 resolution power did not allow to reckon and quantify small fibers or fiber aggregates 501 predominantly present in the fine powder standards. Analogous conclusions can be found in the literature for the analysis of both airborne and massive sample. As an example, for 502 503 airborne asbestos fibers in steam tunnels, Dufresne et al. (2002) reported that concentrations found by the TEM/EDS method were higher than those determined by 504 PCOM, especially when chrysotile fibers were present, probably because the TEM/EDS 505 506 method has a higher resolution than PCOM. Airborne asbestos fibers were present in all

22

507	the steam tunnels and were barely detectable by the PCOM technique only. Our work
508	confirms the limits of the optical methods and it is not surprising that in many countries
509	optical microscopy was adopted only for the visual qualitative identification of asbestos
510	fibers (see for example, EPA 1989; OSHA 1994; HSE 1994).
511	Electron microscopy
512	The chrysotile concentrations obtained from the SEM LAB1 analyses are fairly more
513	accurate than the figures determined from the optical observations. On the other hand, the
514	concentrations provided by SEM LAB2 evidence disagreement (see Table 5). The values
515	provided by LAB1 laboratory are accurate and in agreement with the expected values: an
516	estimate of 4.6 wt% was calculated for STD1 sample against an expect value of 5.11 wt%
517	and 13.1 wt% for STD2 sample against an expected value of 10.44 wt%. Both calculated
518	weights of natural samples C2 and E1 are also in agreement with the values provided by
519	other methods. The values provided by the SEM LAB2 laboratory are largely
520	underestimated as far as the standards are concerned.
521	Due to the higher resolution power and larger field depth, SEM allows to detect small
522	fibers invisible using the optical microscope. The standards were prepared using
523	chrysotile powders with fine chrysotile fibers hard to detect with an optical microscope
524	even at 500x but clearly visible at 2000x with an electron microscope. This may explain
525	the underestimation in the chrysotile concentration determined with the PCOM
526	technique. The difference in the performance of the two microscopic techniques in favor
527	of the SEM method have already been reported by Cavariani et al. (2010). Cavallo and
528	Rimoldi (2013) who studied similar matrices (asbestos serpentinite quarries in
529	Valmalenco, Central Alps, Northern Italy) reported that the small thickness of chrysotile

530 fibrils produced during quarrying activities, and the abundance of pseudo-fibrous 531 antigorite cleavage fragments proved the SEM-EDS analytical procedure to be the most suitable. 532

533

Concerning the results provide by LAB2, Davies et al. (1996) have previously 534 reported that the method for quantitative analysis of asbestos with SEM for both airborne and massive samples presents difficulties, primarily because of the complexity in 535 536 standardizing the many operating parameters that are controlled. Although some modern 537 SEMs are capable of resolving surface features at the angstrom level, there is still much difficulty in obtaining adequate images of unit fibrils. Such images are necessary to 538 539 perform quantitative analyses. Moreover, even though routine SEM/EDS analysis allows evaluation of sample morphology and provides semi-quantitative chemical data, it does 540 541 not allow determination of crystal structure like TEM. Although TEM is a very timeconsuming method, seldom providing concentrations that can be considered 542 representative of the whole sample, it is well known that its use makes it possible to 543 544 resolve many of the ambiguities that lead to incorrect fiber concentration (Beaman and 545 File 1976; Cattaneo et al. 2012). The underestimation of the fiber concentration from LAB2 may be explained by 546 547 sample powder heterogeneity. We have observed ball of thread like aggregates of chrysotile fibers within the powders (see Fig. 3e) of the samples prepared in LAB2 548 determining areas with a great concentration of asbestos fibers and areas with no fibers at 549 all. A possible explanation is the use of the surfactant sodium lauryl sulfate for the 550 551 preparation of the suspension in place of dioctyl sodium sulfoccinate. Sodium lauryl 552 sulfate rises the pH of aqueous solution to about 9.5 whereas dioctyl sodium sulfoccinate

553	stabilizes pH values of the aqueous solution to about 6.2. In distilled water, the zeta
554	potential of chrysotile displays strongly positive values (about +40 mV) at 6.2 and
555	decreases down to about 20 mV at $pH = 9.5$ (Light and Wei 1977). The decrease of the
556	zeta potential towards the isoelectric point determines instability of the suspension
557	because the particles with low zeta potential have no force to prevent them coming
558	together and flocculating. Jolicouer et al. (1981) used these principles to retard
559	sedimentation of asbestos fibers in NaCl solutions. Hence, the flocculating chrysotile
560	fibers tend to lump together to form the observed ball of thread like aggregate. On a
561	speculative level, it is not possible to rule out that aggregation also occurs in the dry
562	powders, especially those that have undergone physical long-distance transportation and
563	mechanical shaking. In both situations, fiber segregation may bias the sample
564	homogeneity and the representativeness of the microscopic observation usually
565	performed using a tiny amount of powder.
566	It was already said that the Italian D.M. 09/06/1994 advises the use of SEM when the
567	estimated asbestos concentration is lower than 1wt% giving no indications on the upper
568	concentration limits of application of the method. The concern about asbestos
569	quantitative determination in the case of massive concentration of fibers is related to
570	difficulties for fiber identification and counting due to severe fiber overlap, aggregation
571	and stratification. The results of this study point out that SEM method, if a careful sample
572	preparation, dispersion and representativeness are obtained, can be used even for the
573	quantitative determination of chrysotile asbestos in massive materials with concentrations
574	much larger than 1 wt% with a fairly good accuracy.
575	Infrared spectroscopy

576	There are many examples of application of FTIR for the quantitative determination of
577	chrysotile asbestos in bulk materials (see for example, Balducci and Valerio 1986;
578	Massola 1997) although some criticism still exists. According to Davies et al. (1996),
579	FTIR is not a sensitive method for quantifying asbestos in loose aggregates and does not
580	produce useful results when multi-component mixtures are analyzed. Oppositely, a
581	positive report is provided by Foresti et al. (2003) who described the application of the
582	FTIR Linear Calibration Curve method for the determination of low levels (0.01–1 wt%)
583	of free fibers of chrysotile in contaminated clayey, sandy and sandy-organic soils. The
584	detection limit of 0.01 wt% was reached with an enrichment of free fibers of chrysotile in
585	the samples using a standard laboratory elutriator for sedimentation analysis. The
586	linearity of the calibration curves obtained for samples having different soil matrices,
587	indicates that the matrix effects can be accounted for. Recently, De Stefano et al. (2012)
588	compared the accuracy and precision of the Linear Calibration Curve Method and the
589	Method of Addition for the FTIR quantitative determination of asbestos bulk matrices
590	and found that, providing careful samples preparation, both techniques quantify the
591	asbestos content at the level of 1-2 wt% with good precision. The results provided in this
592	study are very important as this is one of the few examples of application of the FTIR
593	quantitative method to complex serpentinite samples.
594	The figures obtained with this method seem rather accurate and in agreement with the
595	values provided by the application of the other experimental methods (Table 5): an
596	estimate of 4.9(2) wt% was calculated for STD1 sample against an expect value of 5.11
597	wt% and 13.8(2) wt% for STD2 sample against an expected value of 10.44 wt%. Both
598	calculated weights of sample STD2 and E1 (32.9 wt% vs. 25.3 wt% from the Rietveld

599	method and 27.5 wt% from the SEM analysis) are apparently overestimated. This
600	discrepancy may be possibly due to: (i) interference of antigorite and chlorite present in
601	the investigated samples with a severe overlap of their absorption bands to that of
602	chrysotile; (ii) deviation of the linearity of the curve intensity of the chrysotile absorption
603	band vs. concentration for large chrysotile contents. The breaking of the linearity
604	assumption has been already observed by De Stefano et al. (2012). They observed that in
605	the case of chrysotile, the peak intensity is a quadratic-like function of the concentration
606	in the extended concentration range.
607	X-ray powder diffraction
608	In this work it was found that the XRPD external standard method (Klug and
609	Alexander 1974) is unsuitable for such complex matrices as the observation (e.g., the
610	(001) peak of chrysotile) overlaps to the major peaks of both antigorite (001) and chlorite

(002) present in the samples (see sample E1 in Fig. 5), resulting in biased estimates of the

612 integrated area using the single peak fitting deconvolution. The limits of the single peak

611

613 method for such complex matrices were obvious to Giacomini et al. (2010) who obtained

only qualitative estimates of the relative abundance of serpentine polymorphs in samples

- from the metaophiolites of the the Voltri Massif and Sestri–Voltaggio Zone (Liguria, NW
- 616 Italy), using the internal standard (20 wt% of corundum) technique and the reference

617 intensity ratio (RIR) method (Snyder and Bish 1989). On the same line, only qualitative

618 determination via XRPD methods were reported by Rigopoulos et al. (2010) for

asbestiform minerals in basic and ultrabasic rocks from ophiolite suites of central and

- northern Greece, Beneduce et al. (2012) for the ophiolites of the Pollino National Park
- 621 (Calabria-Lucania border, southern Italy), and Cavallo and Rimoldi (2013) for

622	serpentinites of the Valmalenco are (Central Alps, Northern Italy). Puledda and Marconi
623	(1990) assessed the validity of the XRPD external standard method with the Ag filter for
624	synthetic mixtures prepared for the determination of chrysotile content in bulk and
625	airborne samples but did not apply it to natural complex samples such as the one
626	investigated here. It is difficult to evaluate the analytical accuracy of the estimates
627	reported by Davis (1990) who used the RIR method to determine the content of asbestos
628	minerals in synthetic multicomponent mixtures prepared samples demonstrate that the
629	lower limit of detection for most asbestos minerals falls in the range 0.5% to 2 wt%.
630	On the contrary, the figures obtained with the Rietveld method seem accurate (Table
631	5): an estimate of 5.8(2) wt% was calculated for STD1 sample against an expect value of
632	5.11 wt% and 11.2(2) wt% for STD2 sample against an expected value of 10.44 wt%.
633	Sample E1 and C2 also contain fairly large amounts of chrysotile asbestos. The results
634	reported here witness that the Rietveld method can be successfully applied for the
635	determination of chrysotile asbestos in these complex multicomponent samples
636	characterized by the presence of two serpentine polymorphs (antigorite and chrysotile)
637	and chlorite. It is not possible to generalize the outcome of this study and assert that the
638	method is accurate even for more complex samples which contain all the serpentine
639	polymorphs including lizardite, although this mineral association is not rare in green
640	stones. Another critical aspect regards the range of applicability of the Rietveld method in
641	terms of chrysotile content. It is well known that chrysotile possesses a cylindrical lattice
642	with layers curled concentrically or spirally, usually around the x axis (<i>clinochrysotile</i>
643	and orthochrysotile) and seldom around the y axis (parachrysotile), to form a tubular
644	structure (roll) of about 22±27 nm in diameter (Whittaker 1957; Yada 1971). Moreover,

645 the cylindrical lattice also displays extensive structural defectivity (e.g., random shift 646 component along the fiber axis to yield cone lattices). Such structure complexity results 647 in anisotropic broadening effects of the peak profiles in the X-ray powder patterns which 648 can only be properly fit by recursive models such as the one implemented in DIFFaX+ 649 (Leoni et al. 2004) and not simply by Rietveld-based deterministic codes. For this reason, 650 Wilson et al. (2006) developed and alternative approach to determine the chrysotile 651 content in mine tailings at Clinton Creek (Yukon Territory) and Cassiar (British 652 Columbia) using structure-less pattern fitting and with the addition of a known quantity of a well-crystallized material, by considering the serpentine minerals as amorphous 653 654 phases, and tested the accuracy of the method using synthetic serpentine-rich mine tailings of known composition. Notwithstanding, marked peak profile broadening effects 655 (especially the asymmetric band in the 19-26 °20 range due to the destructive interference 656 of non-basal diffraction peaks) are obvious when chrysotile fraction is high. Usually, 657 658 when chrysotile is present in medium-low concentration, the powder pattern generally 659 displays only the major basal (00*l*) peaks of chrysotile and minor non-basal peaks. Thus, 660 peak profile broadening effects are less obvious and may be modeled by empirical 661 Lorentzian profile anisotropic broadening functions such as the one implemented in GSAS (Larson and Von Dreele 1999): $\gamma = Y + Y_e \cos \phi$ with $\gamma =$ Lorentzian contribution to 662 the pseudo-Voigt profile function; Y = isotropic strain broadening term; $Y_e =$ anisotropic 663 strain broadening term; ϕ = angle which defines the direction of the broadening axis 664 665 within the crystallographic setting. Wilson et al. (2006) reported chrysotile estimates as 666 high as 90.8 wt%. For those samples resembling monophasic systems, the accuracy of the 667 Rietveld method is expected to be low. On the other hand, for the systems investigated

29

668 here with chrysotile contents below 40 wt%, the accuracy of the Rietveld method is still 669 expected to hold. As a matter of fact, the refinement of the anisotropic strain broadening term of the Lorentzian part of the pseudo-Voigt function was attempted for chrysotile for 670 samples C2 and E1, setting the broadening direction along the b axis and the stacking 671 672 fault model but did not significantly changed the final calculated weights. 673 Thermal analysis 674 The quantitative concentration of chrysotile in the standard samples using the DTA 675 method, reported in Table 5, are rather accurate: 7.6 wt% was calculated for STD1 sample against an expect value of 5.11 wt% and 12.2 wt% for STD2 sample against an 676 677 expected value of 10.44 wt%. Although the successful application of the method has already been reported in the literature for simple systems such as pharmaceutical grade 678 talc where the minimum level of detection was 1% by weight of chrysotile asbestos 679 (Shelz 1974) and in cosmetic grade talc/body products where the minimum level of 680 detection was 0.5% by weight of chrysotile asbestos (Luckewicz 1975), only the recent 681 682 contribution of Viti et al. (2011) reported accurate estimates for complex natural systems 683 such as serpentinites. Hence, the results of this work are a further confirmation of the 684 reliability of this method. The apparently systematic overestimation should be due to the 685 presence of chlorite in the system. As a matter of fact, Viti et al. (2011) reported that the 686 possible occurrence of other minerals does not hamper the attainment of reliable 687 qualitative determinations, with the only exception of chlorite whose typical DTA curve 688 is characterized by an endothermic peak at 600–650 °C (Smykatz-Kloss 1974), and suggested that, prior to DTA data collection, qualitative XRPD should be performed to 689 690 ascertain the presence and the amount of chlorite. The presence of chlorite was assessed

691	in the first instance via XRPD suggesting the addition of a further peak due to chlorite
692	during the process of fit deconvolution. Notwithstanding, it is possible that a systematic
693	correlation occurred for the calculation of the integrated areas and that the resulting
694	integrated area of chrysotile was underestimated in favor of that of chlorite.
695	

696 Crètaz and Emarèse samples

According to the Italian law D.Lgs 12/03/2010 nr. 205 All. D, if the asbestos

concentration is higher than 0.1 wt%, a site should be classified as "contaminated by

asbestos". Hence, both Crètaz and Emarèse sites should be reclaimed as all the collected

samples consistently show asbestos concentration much higher than the imposed limit

701 (Tables 4 and 5).

Figure 9a,b reports maps of concentration of chrysotile and tremolite obtained from

the Rietveld analysis for the site of Crètaz (Tables 4 and 5). The maps were obtained by

geostatistical analysis of the raw data in GIS environment using the software ArcGIS

10.1 and the ArcGIS Geostatistical Analyst application. The Inverse Distance Weighting

706 (IDW) model (Shepard 1968) was used for the deterministic interpolation of the data

707 points. For the chrysotile concentration maps, the following parameters were used: first

order model (power = 1), maximum neighbors = 10, minimum neighbors = 5, total

calculation area = circular with radius of 138 m. For the tremolite concentration maps, the

following parameters were used: second order model (power = 2), maximum neighbors =

10, minimum neighbors = 5, total calculation area = circular with radius of 200 m.

- The chrysotile content varies from 4.4 to 22.8 wt%. In all the samples, chrysotile is
- associated to antigorite (6.3-50.1 wt%), chlorite (clinochlore 4.1-15.2 wt%), muscovite

714	(2.2-15.8 wt%), quartz (1.9-29.1 wt%), and calcite (4.2-27.5 wt%). The mineral
715	assemblage reflects the overall composition of the mine tailings, a mixing of three
716	different rock types all belonging to the Piedmont Zone unit: the antigorite-serpentinites
717	with magnetite formation, the calc-schists s.l. and local quartzites formation, and the
718	exotic continental Permian-mesozoic succession with schists, quartzites, marbles, and
719	limestones. The distinctive minerals of the latter formation are quartz, mica, carbonates
720	calcite and dolomite, plagioclase, K-feldspar and tremolite (1.8-10.3 wt%). Apparently
721	no trends of the chrysotile and tremolite concentration with (horizontal or vertical) space
722	are observed. This random distribution is due to the history of the various deposits
723	emplaced and mixed with other source of rock dumps during the activity of the mine and
724	not to physical factors such as fiber leaching, transport, and re-deposition. The area with
725	the highest surface concentration of asbestos minerals (see Figure 9) should be
726	considered as priority of intervention in the reclamation plan.
727	Figure 9c, not elaborated with the geostatistical analysis due to the limited number of
728	raw data points, reports the concentration of chrysotile in the site of Emarèse as obtained
729	from the Rietveld analysis (see also Tables 4 and 5). The chrysotile content varies from
730	3.3 to 39.5 wt% with the concentration linearly decreasing with the distance from the
731	main mining sites. Chrysotile is invariably accompanied by antigorite (3.3-44.7 wt%) and
732	chlorite (clinochlore 12.4-32.6 wt%). On the basis of the mineral assemblage, two groups
733	of rock samples are observed: (i) samples E1-E5 belongs to the antigorite-serpentinites
734	with magnetite formation of the Piedmont Zone. Besides the typical serpentinite phases
735	antigorite, chrysotile and chlorite, magnetite, talc and brucite are found together with the
736	minerals of the original ultramaphic rock forsterite and enstatite. Hematite, calcite and

737	dolomite are likely secondary phases formed after surface alteration in contact with
738	water; (ii) samples E6-E7 are collected from the surface debris and soil composed of a
739	mixing of the former antigorite-serpentinites with magnetite formation and the calc-
740	schists s.l. and local quartzites formation both belonging to the Piedmont Zone unit. The
741	distinctive minerals of the calc-schists s.l quartzite formation are quartz, mica, K-
742	feldspar, plagioclase, and tremolite (5.9-12.4 wt%).
743	The area with the highest surface concentration of chrysotile (see Figure 9c) should
744	also be classified as prioritary in the reclamation plan.
745	
746	CONCLUDING REMARKS
747	A map of the concentration of asbestos minerals chrysotile and tremolite in
748	contaminated mine tailings of the Valle d'Aosta region (Northern Italy) was drawn. The
749	results of this study are strategic as the knowledge of the spatial distribution of the
750	asbestos concentration allows to plan reclamation agenda of the sites. The area with the
751	highest surface concentration of both chrysotile and tremolite were identified and
752	classified as priority in the reclamation plan. The results of our study have general
753	implications as the protocol of sampling, data analysis and mapping of the asbestos
754	concentration can be used in any region of the globe where such deposits are found.
755	Besides that, another general implication of our work regards the assessment of the
756	accuracy of the results obtained using state of the art experimental techniques for the
757	determination of the concentration of asbestos in massive materials. Although we focused
758	on the methods recommended by the Italian laws, the Rietveld method and DTA (Viti et
759	al. 2011) were also included so that a comparison among the various methods used

760	worldwide was possible. Accurate estimates were obtained using the SEM, FTIR, XRPD
761	Rietveld and DTA methods whereas poor figures were obtained with the optical
762	microscopy. The single peak fitting XRPD method revealed to be unsuitable because of
763	the interference effects of antigorite and chlorite. It should be remarked that the Rietveld
764	method has been successfully applied for the determination of chrysotile concentrations
765	as high as about 40 wt% in these complex serpentinite multi-component samples
766	characterized by the presence of two serpentine polymorphs (antigorite and chrysotile)
767	and chlorite. Further investigations are required to test the accuracy of the method for
768	even more difficult systems which contain all the three serpentine polymorphs, including
769	lizardite. With higher concentrations (>50 wt%?), it is recommended to apply other
770	methods such as the one proposed by Wilson et al. (2006) who determined the chrysotile
771	content in asbestos mine tailings using structure-less pattern fitting and with the addition
772	of a known quantity of a standard material so to be able to consider the serpentine
773	minerals as amorphous phases.
774	
775	Acknowledgments
776	Thanks are due to the technical staff of the C.I.G.S. Laboratory (The University of
777	Modena and R.E., Modena Italy). Thanks to the staff of the CGT - Centro di Geo
778	Tecnologie) University of Siena, Italy for help with the FTIR analyses. Thanks to A.
779	Facchinetti and A. Zanella (ARPA Valle d'Aosta, Sezione Analisi strutturali e amianto)
780	for their help with the SEM analyses. This manuscript benefited greatly from the accurate
781	revisions of Dr. S.A. Wilson and suggestions of the Associate Editor Prof. M. Gunter.
782	

783	References cited
784	
785	Bailey, K. F. (1988) Hydrous Phyllosilicates (exclusives of micas) Vol. 19. Series editor
786	P. H. Ribbe. Mineralogical Society of America, pp., 518.
787	
788	Balducci, D. and Valerio, F. (1986) Qualitative and Quantitative Evaluation of Chrysotile
789	and Crocidolite Fibers with IR-Spectroscopy: Application to Asbestos-Cement
790	Products. International Journal of Environmental Analytical Chemistry 27(4), 315-
791	323.
792	
793	Beaman, D.R. and File, D.M. (1976) Quantitative determination of asbestos fiber
794	concentrations. Analytical Chemistry, 48, 101–110.
795	
796	Bellopede, R., Clerici, C., Marini, P. and Zanetti, G. (2009) Rocks with Asbestos: Risk
797	Evaluation by Means of an Abrasion Test. American Journal of Environmental
798	Sciences, 5(4), 500-506.
799	
800	Beneduce, P., Di Leo, P., Ivo Giano, S. and Schiattarella, M. (2012) Quantitative
801	geomorphic analysis of asbestos dispersion and pollution from natural sources: the
802	case-history of the Pollino national park, southern Italy. Geografia fisica e Dinamica
803	del Quaternario (in Italian), 35, 3-12.
804	
805	Birle, J. D., Gibbs, G. V., Moore, P. B. and Smith, J. V. (1968) Crystal structures of
806	natural olivines. American Mineralogist, 53, 807-824.
807	
808	Brindley, G. W. (1945) The effect of particle size and microabsorption on diffracted
809	powder line intensities. Philosophical Magazine, 36, 347-369.
810	
811	CARB Method 435, (1991) Determination of asbestos content of serpentinite aggregate.
812	State of Air Resources Board, California.
813	http://www.arb.ca.gov/testmeth/vol3/M_435.pdf

814	
815	Cattaneo, A., Somigliana, A., Gemmi, M., Bernabeo, F., Savoca, D., Domenico, M.
816	Cavallo, and P.A., Bertazzi (2012) Airborne Concentrations of Chrysotile Asbestos in
817	Serpentine Quarries and Stone Processing Facilities in Valmalenco, Italy. Annals of
818	Occupational Hygiene, 56(6), 671–683.
819	
820	Cavallo, A. and Rimoldi, B. (2013) Chrysotile asbestos in serpentinite quarries: a case
821	study in Valmalenco, Central Alps, Northern Italy. Environmental Science: Processes
822	& Impacts, in press.
823	
824	Cavariani, F., Marconi, A. and Sala, O. (2010) Asbestos: sampling, analytical techniques
825	and limit values. Italian Journal of Occupational and Environmental Hygiene, 1(1),
826	18-28.
827	
828	Cavinato, A. (1964) I Giacimenti minerari. Torino : UTET, stampa 1964 XLVII, pp.
829	686 (in Italian).
830	
831	Collegium Ramazzini (2010), 'Asbestos is still with us: repeat call for universal ban',
832	Occupational Medicine, 60, 584–588.
833	
834	Dal Piaz, G.V. (1971) Alcune considerazioni sulla genesi delle ofioliti piemontesi e dei
835	giacimenti ad esse associati. Bollettino Associazione Mineralogica Subalpina, Torino,
836	8: 365-388 (in Italian).
837	
838	Davies, L.S.T., Wetherill, G.Z., McIntosh, C., McGonagle, C., and Addison, J. (1996)
839	Development and validation of an analytical method to determine the amount of
840	asbestos in soils and loose aggregates. HSE Contract research Report No. 83/1996, pp.
841	69.
842	
843	Davis, B.L. (1990) Quantitative Analysis of Asbestos Minerals by the Reference Intensity
844	X-Ray Diffraction Procedure. American Industrial Hygiene Association Journal,
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4708

845	51(6), 297-303.
846	
847	De Stefano, L., Cioffi, R. and Colangelo, F. (2012) Comparison between Two FTIR
848	Spectroscopy Analytical Procedures for Micrograms Determination of Asbestos
849	Species in Bulk Materials. American Journal of Analytical Chemistry, 3, 1-5.
850	
851	Di Colbertaldo, D., Di Furia, E. and Rossi, F. (1967) Il giacimento a magnetite di Cogne
852	in Val d'Aosta. Rendiconti Istituto Lombardo, 101, 361-394 (in Italian).
853	
854	Diella, V., Ferrario, A. and Rossetti, P. (1994) The magnetite ore deposits of the southern
855	Aosta Valley: chromitite transformed during an alpine metamorphic event. Ofioliti,
856	19, 247-256.
857	
858	Dilek, Y. and Newcomb, S. (Eds.) (2003) Ophiolite concept and the evolution of
859	geological thought (No. 373). Geological society of America, pp. 505.
860	
861	Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder
862	diffractometry: application of the March model. Journal of Applied Crystallography,
863	19, 267-272.
864	
865	Downs, R.T., Hazen, R.M. and Finger, L.W. (1994) The high-pressure crystal chemistry
866	of low albite and the origin of the pressure dependency of Al-Si ordering. American
867	Mineralogist, 79, 1042-1052.
868	
869	Dufresne, A., Anthes, M., Santos, B. and Infante-Rivard, C. (2002) Airborne Asbestos
870	Fibres in Steam Tunnels: A Qualitative Analysis by PLM and a Quantitative Analysis
871	by PCOM and TEM/EDS. Annals of Occupational Hygiene, 46(1), 125–127.
872	
873	Elter, G. (1960) La zona pennidica dell'alta e media Valle d'Aosta e le sue unità
874	limitrofe. Memorie Istituto Geologia e Mineralogia Università di Padova (Italy), 22,

875	113 (in Italian).
876	
877	Environmental Protection Agency (EPA) (1989) Code of Federal Regulations, Pt. 763,
878	Appendix A- Interim method of the determination of asbestos in bulk insulation
879	samples, July 1989.
880	
881	Environmental Protection Agency (EPA) (1993) Test Method - Method for the
882	determination of asbestos in bulk building materials. EPA/600/R-93/116, July 1993.
883	
884	Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G. and Roveri, N.
885	(2004) Tubular-shaped stoichiometric chrysotile nanocrystals. Chemistry European
886	Journal, 10, 3043–3049.
887	
888	Farmer, V.C. (1974) The Infrared Spectra of Minerals. The Mineralogical Society,
889	London, U.K, pp. 539.
890	
891	Foresti, E., Gazzano, M., Gualtieri, A.F., Lesci, I.G., Lunelli, B., Pecchini, G., Renna, E.
892	and Roveri, N. (2003) Determination of low levels of free fibres of chrysotile in
893	contaminated soils by X-ray diffraction and FTIR spectroscopy. Analytical and
894	Bioanalytical Chemistry, 376, 653–658.
895	
896	Giacomini, F., Boerio, V., Polattini, S., Tiepolo, M., Tribuzio, R. and Zanetti, A. (2010)
897	Evaluating asbestos fibre concentration in metaophiolites: A case study from the
898	Voltri Massif and Sestri-Voltaggio Zone (Liguria, NW Italy). Environmental Earth
899	Sciences, 61, 1621–1639.
900	
901	Gualtieri, A.F. (2000) Accuracy of XRPD QPA using the combined Rietveld-RIR
902	method. Journal of Applied Crystallography, 33, 267-278.
903	

904	Gualtieri, A. F. (2012) : Mineral fibre-based building materials and their health hazards.
905	Chapter 8 nel volume "Toxicity of Building Materials" (pp. 486), Edited by F.
906	Pacheco-Torgal, S. Jalali and A. Fucic, Woodhead Publishing, 166-195.
907	
908	Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M. and Häusermann, D. (2000) Equation
909	of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O
910	system at high pressure. American Mineralogist, 85(3-4), 514-523.
911	
912	Hodgson, J. T. and Darnton, A. (2000) The quantitative risks of mesothelioma and lung
913	cancer in relation to asbestos exposure. Annals of Occupational Hygiene, 44 (8), 565-
914	601.
915	
916	IARC (International Agency for Research on Cancer) (1977) IARC Monographs on the
917	Evaluation of the Carcinogenic Risk of Chemicals to Man: Asbestos. IARC
918	Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man, 14, 1-106.
919	
920	ISO (International Standard Organization) (2002) Ambient air determination of
921	numerical concentration of inorganic fibrous particles scanning electron microscopy
922	method 14966. Geneva, Switzerland.
923	
924	Jolicoeur, C. and Duchesne, D. (1981) Infrared and thermogravimetric studies of the
925	thermal degradation of chrysotile asbestos fibres: evidences for matrix effects.
926	Canadian Journal of Chemistry, 59, 1521–1526.
927	
928	Klug, H. P. and Alexander, L. E. (1974) X-ray Diffraction. Addision-Wilson Publishing
929	Company Inc, USA, 132 pp. 966.
930	
931	Larson, A.C. and Von Dreele, R.B. (1999) Generalized Structure Analysis System. Los
932	Alamos National Lab, New Mexico, LAUR 86-748.
933	

934	Leoni, M., Gualtieri, A.F., and Roveri, N. (2004) Simultaneous refinement of structure
935	and microstructure of layered materials. Journal of Applied Crystallography, 37, 166-
936	173.
937	
938	Le Saoût, G, Kocaba, V. and Scrivener, K. (2011) Application of the Rietveld method to
939	the analysis of anhydrous cement. Cement and Concrete Research, 41, 133-141.
940	
941	Light, W. G. and Wei, E. T. (1977) Surface charge and hemolytic activity of asbestos.
942	Environmental Research, 13(1), 135-145.
943	
944	Luckewicz, W. (1975) Differential thermal analysis of Chrysotile asbestos in pure talc
945	and talc containing other minerals. Journal of the Society of Cosmetics Chemistry, 26,
946	431-437.
947	
948	Massola, A. (1997) Campionamento e analisi di materiali contenenti amianto. L'amianto:
949	dall'ambiente di lavoro all'ambiente di vita. Nuovi indicatori per futuri effetti a cura di
950	Minoia C., Scansetti G., Piolatto G., Massola A. Laboratorio di Igiene Ambientale e
951	Tossicologia Industriale, Fondazione "S. Maugeri". Clinica del Lavoro e della
952	Riabilitazione, (I.R.C.C.S.). Centro Medico di Pavia. I Documenti. 12 (in Italian).
953	
954	McCrone, W.C. (1987) Asbestos identification: Chicago, Illinois, McCrone Research
955	Institute, G&C Printers Inc., pp. 199.
956	
957	Mellini, M., Trommsdorff, V. and Compagnoni, R. (1987) Antigorite polysomatism:
958	Behaviour during progressive metamorphism. Contributions to Mineralogy and
959	Petrology, 97, 147–155.
960	
961	Meyer, D. R. (1980) Nutritional problems associated with the establishment of vegetation
962	on tailings from an asbestos mine. Environmental Pollution (Series A), 23, 287 – 298
963	
964	Moss, R.D. (1994) Evaluation of asbestos quantitation methods. Microscope, 42, 7-14.

965	
966	Nicholson W. J. (1986) Airborne asbestos health assessment update. NTIS,
967	SPRINGFIELD, VA(USA).
968	
969	NIOSH (National Institute of Occupational Safety and Health) (1989) Asbestos (bulk),
970	Method 9002: Microscopy, Stereo and Polarized Light with Dispersion Staining.
971	NIOSH Manual of Analytical Methods, 5/15/89.
972	
973	OSHA (Occupational Health and Safety Administration) (1994) Occupational Exposure
974	to Asbestos. Federal Register 59, 40964, August 10, 1994.
975	
976	Perdikatsis, B. and Burzlaff, H.(1981) Strukturverfeinerung am talk $Mg_3[(OH)_2Si_4O_{10}]$.
977	Zeitschrift für Kristallographie, 156(3-4), 177-186.
978	
979	Prince, E., Donnay, G., Martin, R.F. (1973) Neutron diffraction refinement of an ordered
980	orthoclase structure. American Mineralogist, 58, 500-507.
981	
982	Puledda, S. and Marconi, A. (1990) Quantitative X-ray diffraction analysis of asbestos by
983	the silver membrane filter method. Application to chrysotile. Am. Ind. Hyg. Assoc. J.,
984	51, 107-114.
985	
986	Ribbe, P.H. (1979) The structure of a strained intermediate microcline in cryptoperthitic
987	association with twinned plagioclase. American Mineralogist, 64, 402-408.
988	
989	Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. J
990	Applied Crystallography, 2, 65–71.
991	
992	Rigopoulos, I., Tsikouras, B., Pomonis, P., Karipi, S. and Hatzipanagiotou, K. (2010)
993	Quantitative analysis of asbestos fibres in ophiolitic rocks used as aggregates and
994	hazard risk assessment for human health. Bulletin of the Geological Society of Greece,
995	Proceedings of the 12th International Congress, Patras, May, 2010

996	
997	Shelz, J. P. (1974) The detection of chrysotile asbestos at low- levels of talc by
998	differential thermal analysis. Thermochimica Acta, 197-204.
999	
1000	Shepard, D. (1968) A two-dimensional interpolation function for irregularly spaced data.
1001	Proceedings of the 1968 ACM National Conference, 517-524.
1002	
1003	Skinner, H.C.W., Ross, M. and Frondel, C. (1988) Asbestos and other fibrous materials -
1004	mineralogy, crystal chemistry and health effects: New York, Oxford, Oxford
1005	University Press, pp. 204.
1006	
1007	Smykatz-Kloss, W. (1974) Differential Thermal Analysis. Application and results in
1008	mineralogy, Springer-Verlag, Berlin, pp.185.
1009	
1010	Snyder, R.L. and Bish, D.L. (1989) Quantitative Analysis, in Bish, D.L. and Post, J.E.,
1011	eds., Modern Powder Diffraction, Reviews in Mineralogy, v. 20, Washington, D.C.,
1012	Mineralogical Society of America, 101-144.
1013	
1014	Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
1015	Crystallography, 34, 210–213.
1016	
1017	Uehara, S. (1998) TEM and XRD study of antigorite superstructures. The Canadian
1018	Mineralogist, 36, 1595-1605.
1019	
1020	Ungaretti, L. and Oberti, R. (2000) Leverage analysis and structure refinement of
1021	minerals. American Mineralogist, 85(3-4), 532-542.
1022	
1023	Viti, C. (2010) Serpentine minerals discrimination by thermal analysis. American
1024	Mineralogist, 95, 631–638.
1025	

1026	Viti, C. and Mellini M. (1996) Vein antigorites from Elba Island, Italy. European Journal
1027	of Mineralogy, 8, 423–434.
1028	
1029	Viti, C., Giacobbe, C. and Gualtieri, A.F. (2011) Quantitative determination of chrysotile
1030	in massive serpentinites using DTA: Implications for asbestos determinations.
1031	American Mineralogist, 96, 1003–1011.
1032	
1033	
1034	Wenk, H.R., Joswig , W., Tagai, T., Korekawa, M. and Smith, B.K. (1980) The average
1035	structure of An 62-66 labradorite. American Mineralogist, 65, 81-95.
1036	
1037	Wicks, F. J. and O'Hanley, D. S. (1988) : Serpentine minerals; structures and petrology
1038	Reviews in Mineralogy and Geochemistry, 19, 91-167.
1039	
1040	Winburn, R.S., Grier, D.G., McCarthy, G.J. and Peterson, R.B. (2000) Rietveld
1041	quantitative X-ray diffraction analysis of NIST fly ash standard reference materials.
1042	Powder Diffraction, 15, 163-172.
1043	
1044	Whittaker, E.J.W. (1957) The structure of Chrysotile, V. diffuse reflexions and fibre
1045	texture Acta Crystallographica, 10, 149-156.
1046	
1047	WHO (World Health Organization) (1997) Determination of airborne fiber number
1048	concentrations; a recommended method, by phase contrast microscopy (membrane
1049	filter method). Geneva, Switzerland.
1050	
1051	Wilson, S. A., Raudsepp, M. and Dipple, G. M. (2006) Verifying and quantifying carbon
1052	fixation in minerals from serpentine-rich mine tailings using the Rietveld method with
1053	X-ray powder diffraction data. American Mineralogist, 91, 1331–1341.
1054	
1055	Yada K. (1971) Study of microstructure of chrysotile asbestos by high-resolution electron
1056	microscopy, Acta Crystallographica A, 27(6), 659-664.

- 1058 Zanazzi, P.F., Comodi, P., Nazzareni, S., and Andreozzi, G.B. (2009) Thermal behaviour
- 1059 of chlorite: an *in situ* single-crystal and powder diffraction study. European Journal of
- 1060 Mineralogy, 21(3), 581-589.

1061

1057

1062 Figure Captions

1063	FIGURE 1. Sketch map of the geology of Valle d'Aosta (1:1.000.000 scale; Legend:
1064	Austroalpine System (1 = Diorite–Kinzigite Zone, 2 = Gneiss Complex, 3 = Eclogitic
1065	Micaschist Complex); Piedmont Zone with Calc-schists and Greenstones (4 = Oceanic
1066	Metasedimentary overlay, 5 = Metabasites); Pennidic System (6 = Upper Pennidic Zone,
1067	7 = Middle Pennidic Zone, 8 = Outer Pennidic Zone; 9 = Ultra-elvetic System; 10 =
1068	Elvetic System) and location of the surface and core collection spots for the two
1069	investigated sites: (a) Crètaz with C1-C8 = surface samples, depth 0.25-0.3 m; C9v1 =
1070	drill 1, depth 0.7 m; C10v1 = drill 1, depth 7.5 m; C11v1 = drill 1, depth 15 m; C12v1 =
1071	drill 1, depth 19.2 m; $C13v2 = drill 2$, depth 0.5 m; $C14v2 = drill 2$, depth 11 m; $C15v2 = drill 2$
1072	drill 2, depth 22.4 m. (b) Emarèse with $E1-E8 =$ surface samples.
1073	FIGURE 2. Selected PCOM images of the investigated samples (see text for details).
1074	Legend: (a) chrysotile at 10x in liquid with refractive index of 1.550; (b) tremolite fibers
1075	at 10x in liquid with refractive index of 1.615; (c) non-asbestos acicular-like crystal:
1076	diopside at 10x in liquid with refractive index of 1.670.
1077	FIGURE 3. Selected SEM images of the investigated samples (see text for details).
1078	Legend: (a) particle and fiber aggregates difficult to detect and count; (b) chrysotile fibers
1079	of heterogeneous size; (c) tremolite fibers with the relative EDS point analysis which
1080	permits the discrimination from other fibrous phases; (d) example of intergrowth of
1081	mixed chrysotile-antigorite aggregate; (e) ball of thread like aggregates of chrysotile
1082	fibers within the powders of the samples prepared in LAB2 (see the text for details).
1083	FIGURE 4. The FTIR spectra region between 3400 and 3950 cm ⁻¹ of the four
1084	investigated samples where the absorption bands of chrysotile and interference layer

1085 silicates occur. (a) STD1; (b) STD2; (c) C2; (d) E1.

FIGURE 5. Selected low angle region of sample E1 showing severe overlap of the
peaks of chrysotile, antigorite and clinochlore and the result of the peak fitting using the
Rietveld method.

FIGURE 6. The Rietveld graphical outputs of the samples selected for the accuracy

1090 verification. Crosses represent the observed pattern, the thin line represents the calculated

pattern and the grey bottom line is the difference line. Markers of all the peaks of the

1092 each crystalline phase included in the refinement procedure are also shown in different

1093 lines. Legend: (a) STD1, lines of peak markers from the bottom: antigorite, chrysotile,

1094 tremolite, talc, clinochlore, calcite, dolomite, magnesite, albite. (b) STD2, lines of peak

1095 markers from the bottom: antigorite, chrysotile, tremolite, talc, clinochlore, calcite,

dolomite, magnesite, albite; (c) C2, lines of peak markers from the bottom: antigorite,

1097 chrysotile, tremolite, muscovite, clinochlore, calcite, quartz, K-feldspar, albite; (d) E1,

1098 lines of peak markers from the bottom: antigorite, chrysotile, clinochlore, calcite,

- 1099 magnetite, forsterite, hematite, enstatite, brucite.
- **FIGURE 7.** DTA traces of the four investigated samples and standard pure chrysotile,

in the range 550–850 °C (see the text for details) with the result of the deconvolution

1102 fitting procedure. Legend: (a) STD1; (b) STD2; (c) C2; (d) E1; (e) pure chrysotile.

FIGURE 8. The Rietveld graphical output of sample C5. Crosses represent the observed

pattern, the thin line represents the calculated pattern and the grey bottom line is the

- difference line. Markers of all the peaks of the each crystalline phase included in the
- 1106 refinement procedure are shown. Legend from the bottom line: antigorite, chrysotile,
- 1107 tremolite, muscovite, clinochlore, calcite, quartz, K-feldspar, dolomite.

- **FIGURE 9.** Maps of concentration of chrysotile (a) and tremolite (b) obtained from the
- 1109 Rietveld analysis for the site of Crètaz obtained by geostatistical analysis of the raw data
- in GIS environment using the software ArcGIS 10.1 and the ArcGIS Geostatistical
- 1111 Analyst application. The raw concentrations of chrysotile for the site of Emarèse are
- 1112 plotted in (c).
- 1113

1114 Tables

- **TABLE 1.** The calculated absorbance (%)of the stretching vibration of chrysotile and the
- resulting chrysotile content (wt%), using the calibration curve with equation y =
- 1117 0.78269x with y = absorbance (%) and x = chrysotile weight fraction.

	Sample	absorbance (%)	chrysotile content (wt%)	chrysotile content error
	STD1	3.856	4.9	0.03
	STD2	10.801	13.8	0.02
	C2	4.931	6.3	0.02
_	E1	25.75	32.9	0.02
1118				
1119				

- 1120
- 1121
- 1122
- 1123

1124

1125

TABLE 2. The results of the Rietveld quantitative phase composition. The definition of

	STD1	STD2	C2	E1
R_{wp} (%)	10.3	9.73	10.33	9.44
$R_{p}(\%)$	8.02	7.51	7.57	7.07
χ^2	5.40	2.71	5.40	6.32
antigorite	6.9(3)	14.9(3)	3.5(3)	44.7(6)
brucite	-	-	-	0.3(1)
calcite	39.3(2)	36.7(3)	8.0(3)	2.6(2)
chrysotile	5.8(2)	11.2(3)	6.3(4)	25.1(9)
clinochlore	4.6(2)	5.9(3)	7.5(3)	15.8(4)
dolomite	11.9(2)	11.7(2)	-	-
hematite	-	-		1.3(2)
enstatite	-	-		1.2(3)
forsterite	-	-		4.0(6)
K-feldspar	-	-	4.2(3)	-
magnesite	4.3(2)	4.6(2)	-	-
magnetite	-	-	-	5.0(2)
muscovite/Illite	-	-	10.9(5)	-
plagioclase	18.3(2)	10.8(3)	22.4(3)	-
quartz	-	-	32.6(2)	-
talc	3.3(5)	3.2(3)	-	-
tremolite	5.6(3)	1.0(3)	4.6(3)	-
ТОТ	100	100	100	100

the agreement factors is reported in Larson and Von Dreele (1999).

1128

TABLE 3. The results of the chrysotile determination using the DTA method (see the text

1131 for details).

Sample	Sum of the peak area	Error	r ²	Calculated wt% chrysotile	Area ratio	Error
Pure chrysotile standard	1358	39	0.9909	100	1	n.d.
STD1	89	16	0.9927	7.6	0.06	0.03
STD2	155	8	0.9921	12.2	0.11	0.02
C2	108	3	0.9952	8.9	0.08	0.07
E1	300	26	0.9955	22.2	0.22	0.07

1132 1133

1134

1136 **TABLE 4.** The quantitative phase compositions of the Crètaz and Emarèse samples. The definition of the agreement factors is reported

in Larson and Von Dreele (1999).

	C1	C2	C3	C4	C5	C6	C7	C8	C9V1	C10V1	C11V1	C12V1
R_{wp} (%)	7.68	10.33	6.46	8.8	5.64	11.32	7.12	6.98	7.8	7.86	3.29	10.48
$R_{p}(\%)$	5.58	7.57	4.81	6.22	4.08	8.01	5.51	5.42	5.94	6.02	5.55	7.93
χ^2	5.55	5.40	3.44	6.60	3.87	8.64	2.55	2.96	3.33	3.35	2.64	5.61
antigorite	32.4(8)	3.5(3)	29.5(6)	47.1(6)	39.3(7)	50.1(6)	30.9(5)	23.6(4)	40.4(4)	19.5(7)	14.3(4)	52.4(5)
calcite	20.5(3)	8.0(3)	4.2(2)	9.0(3)	11.5(3)	8.1(3)	12.0(2)	8.0(2)	14.7(2)	27.5(2)	16.6(2)	5.0 (2)
chrysotile	6.2(9)	6.3(4)	4.4(6)	11.4(8)	9.7(8)	11.2(7)	15.8(4)	11.6(4)	11.8(4)	12.1(5)	6.0(3)	22.8(5)
clinochlore	13.4(5)	7.5(3)	10.0(3)	12.0(6)	6.1(5)	11.4(5)	15.2(5)	7.0(3)	10.1(5)	9.4(6)	9.0(3)	7.9(7)
dolomite	4.3(5)	-	-	2.3(5)	2.8(5)	2.2(5)	15.0(3)	-	-	4.6(2)	-	-
K-feldspar	3.5(4)	4.2(3)	1.7(3)	2.9(4)	5.1(4)	2.1(3)	-	-	-	-	-	-
magnetite	-	-	-	-	-	-	4.9(1)	2.5(1)	3.6(2)	4.7(1)	1.3(1)	4.2(2)
muscovite/Illite	9.6(8)	10.9(5)	15.8(5)	8.3(8)	13.1(1)	8.4(7)	2.2(6)	10.3(5)	7.8(6)	9.3(6)	20.4(4)	2.2(7)
plagioclase	-	22.4(3)	3.3(4)	-	-	-	-	6.3(3)	-	-	-	-
quartz	2.0(3)	32.6(2)	28.8(2)	3.8 (4)	5.4(2)	4.1(1)	3.5(2)	17.6(1)	5.6(1)	10.2(2)	29.1(2)	3.4(2)
talc	0.5(2)	-	0.5(2)	-	-	-	0.5(2)	2.8(2)	2.1(2)	2.7(3)	3.3(3)	2.1(3)
tremolite	7.6(6)	4.6(3)	1.8(4)	3.2(5)	7.0(5)	2.4(5)	-	10.3(1)	3.9(5)	-	-	-
ТОТ	100	100	100	100	100	100	100	100	100	100	100	100

1138

1139

1140

51

	C13V2	C14V2	C15V2	E1	E2	E3	E4	E5	E6	E7	E8
R_{wp} (%)	8.29	8.61	7.6	9.44	10.9	10.44	9.23	10.31	8.36	6.6	6.01
$R_{p}(\%)$	6.29	6.73	5.77	7.07	8.13	7.64	6.94	7.53	6.26	5.09	4.67
χ^2	3.99	3.54	2.87	6.32	8.68	8.89	6.35	10.41	5.87	3.32	3.20
antigorite	35.4(5)	35.1(4)	6.3(4)	44.7(6)	21.4(5)	13.5(3)	7.1(2)	17.1(3)	3.3(2)	7.7(3)	8.8(3)
brucite	-	-	-	0.3(1)	2.0(3)	1.0(3)	1.1(2)	1.4(3)	-	-	-
calcite	12.0(3)	9.8(2)	5.0(2)	2.6(2)	-	3.5(2)	2.9(2)	4.9(3)	2.0(5)	1.3(2)	-
chrysotile	14.7(5)	21.9(4)	5.2(3)	25.1(9)	39.5(9)	35.0(9)	39.5(8)	36.4(9)	15.2(9)	4.6(4)	3.3(5)
clinochlore	6.7(4)	18.4(5)	4.1(5)	15.8(4)	25.4(7)	23.8(8)	32.6(6)	22.6(7)	23.5(8)	12.4(5)	20.0(5)
dolomite	5.9(3)	5.8(2)	-	-	-	1.4(2)	-	-	0.4(4)	-	-
hematite	-	-	-	1.3(2)	1.2(2)	1.5(2)	1.7(2)	1.8(2)	2.6(3)	-	-
enstatite	-	-	-	1.2(3)	1.9(4)	3.1(6)	2.5(7)	1.4(4)	10.5(9)	8.3(5)	6.0(5)
forsterite	-	-	-	4.0(6)	3.2(7)	6.4(7)	5.7(4)	9.3(6)	6.0(7)	-	-
K-feldspar	-	-	-	-	-	-	-	-	-	5.6(5)	5.5(4)
magnetite	4.6(1)	3.5(1)	-	5.0(2)	5.4(2)	6.2(2)	6.9(2)	5.1(2)	-	-	-
muscovite/illite	6.8(7)	2.3(6)	15.0(5)	-	-	-	-	-	7.6(9)	13.9(9)	13.3(9)
plagioclase	3.7(4)	-	18.7(4)	-	-	-	-	-	8.3(4)	12.9(4)	11.3(4)
quartz	5.5(2)	1.9(1)	40.1(1)	-	-	-	-	-	6.3(2)	12.5(2)	10.4(2)
talc	-	1.3(3)	1.6(2)	-	-	4.6(9)	-	-	8.4(9)	9.6(4)	9.0(4)
tremolite	4.7(4)	-	4.0(3)	-	-	-	-	-	5.9(5)	11.2(3)	12.4(3)
TOT	100	100	100	100	100	100	100	100	100	100	100

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4708

TABLE 5. Summary of the calculated concentration of chrysotile asbestos in the

1147 four samples selected for the cross-check analysis.

_

Method	Normative reference	Chrysotile wt% STD1	Chrysotile wt% STD2	Chrysotile wt% C2	Chrysotile wt% E1
		Weighed	Weighed		
		value	value		
		5.11	10.44		
DTA	-	7.6	12.2	8.9	22.2
FTIR	Italian D.M. 09-06-94	4.9	13.8	6.3	32.9
РСОМ	Italian D.M. 09-06-94	3.7	1.4	n.d.	7.5
SEM	Italian D.M. 09-06-94 - LAB1	4.6	13.1	4.7	27.5
SEM	Italian D.M. 09-06-94 - LAB2	1.9	0.6	5.9	26.4
XRPD external standard method	Italian D.M. 09-06-94	n.d.	n.d.	n.d.	n.d.
XRPD Rietveld method	-	5.8	11.2	6.3	25.3

1148

