1	REVISION 1 Manuscript 4567
2	Erionite and offretite from the Killdeer Mountains, Dunn County, North
3	Dakota, USA
4	BERNHARDT SAINI-EIDUKAT ¹ AND JASON W. TRIPLETT ^{1,2} *
5	¹ Department of Geosciences, North Dakota State University, Fargo, ND 58108, USA
6	² Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND
7	58108, USA
8	*present address: Richland Jr. High School, 101 Main, Colfax, ND 58018
9	
10	ABSTRACT
11	
12	The carcinogenic potential of erionite has sparked concern about human exposure in areas
13	where it is present in regional bedrock. The Arikaree Formation in western North Dakota contains
14	altered tuffaceous units with authigenic zeolites. We sampled stratigraphic profiles in the Killdeer
15	Mountains, Dunn County, North Dakota to determine the distribution and chemical composition
16	of zeolites. Powder X-ray diffraction, SEM/EDS and electron microprobe analyses were carried
17	out on sample concentrates. Only samples stratigraphically in or below the distinctive Burrowed
18	Marker Unit were found to contain zeolites. Erionite and offretite were the most common zeolites
19	identified, with offretite being more abundant based on frequency of measured Mg/(Ca+Na)
20	ratios. Intermediate chemical compositions could be natural or due to intimate intergrowths of the
21	two minerals. A better understanding is needed of the potential toxicity across the range of
22	erionite and offretite compositions.
23	

24	Keywords: erionite, offretite, zeolite, Killdeer Mountains, North Dakota, Arikaree
25	INTRODUCTION
26	During the late 1970's, an epidemic of mesothelioma was discovered in three villages in
27	the Cappadocian region of central Turkey (Baris et al., 1978; Artvinli and Baris, 1979).
28	Subsequent studies investigated the link between the high incidence of deaths within the group
29	caused by malignant pleural mesothelioma (MPM) and the occurrence of erionite in the region's
30	bedrock (Baris et al., 1987). Emigrants from the region were found to have increased risk of
31	MPM and 49% or more of the deaths in the Cappadocian region of Turkey due to MPM had a
32	potential link to erionite exposure (Metintas et al., 1999). It was reported that 78% of the deaths
33	that had occurred in the study group were due to malignant mesothelioma and it is estimated that
34	50% of the total deaths in the area can be attributed to mesothelioma (Metintas et al., 1999; Emri
35	et al., 2002).
36	Experimental studies show erionite has up to 300-800 times more carcinogenic potency
37	and may be 20-40 times more active than some asbestos forms (U.S. EPA, 2010). It has been
38	classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC,
39	1987). Physical and chemical differences between the minerals could explain these differences
40	(Kleymenova et al., 1999; Emri et al., 2002). Supporting studies on rats have shown that inhaled
41	erionite fibers resulted in increased incidence of mesothelioma in those animals (Wagner et al.,
42	1985). A North American case of mesothelioma attributed to erionite exposure was reported by
43	Kliment et al. (2009), however the mineral identification did not include a crystallographic tool
44	such as XRD or TEM. Increasing interest in the subject prompted many more studies on the
45	health effects of erionite, as well as new investigations into its carcinogenic potential,
46	mechanisms of carcinogenesis and potential genetic predispositions (Carbone and Yang, 2012),

47	its identification and classification (Dogan and Dogan, 2008), erionite mineral structure, and the
48	similarities between the mineral erionite and other closely related zeolites. A summary is
49	provided by Carbone et al. (2007).
50	The concern with the carcinogenic potential of erionite has sparked an interest within
51	North Dakota and other areas containing erionite in regional bedrock or sediments. These areas
52	include other high butte formations scattered across western North Dakota as well as the badland
53	formations of North Dakota, South Dakota, and Montana (Goodman and Pierson, 2010). There is
54	concern with exposure and transmission of airborne dusts and particulates possibly containing
55	erionite fibers from gravel pits, roads, parking lots, playgrounds, feed lots, building and
56	construction, mining operations, oil extraction, and farming/ranching operations (Carbone et al.,
57	2011; Maher, 2010). The study reported here was undertaken to characterize the distribution and
58	chemical composition of erionite and related zeolites in rocks exposed in the Killdeer Mountains
59	of Dunn County, North Dakota.
60	
61	GEOLOGIC SETTING AND PREVIOUS WORK
62	Bluemle (2000), Murphy (2001), Murphy et al. (1993) and Hoganson et al. (1998) provide
63	descriptions of the general geology, the geologic time setting, and the past geologic processes that
64	resulted in the formations and stratigraphy found in the study area.
65	The majority of the bedrock in the area surrounding the Killdeer Mountains consists of the
66	sandstones, siltstones, claystones, and lignites of the Paleocene Fort Union Group. During Eocene
67	time, rivers and streams cut into the Fort Union sediments, ultimately depositing coarse gravel
68	and sand beds which would become a part of the Chalky Buttes Member of the Chadron
69	Formation of the White River Group. Presently, river and stream erosion along with mass wasting

is still the primary form of erosion affecting the southwestern North Dakota landscape (Bluemle,
2000). These processes contribute to redistribution of any zeolite bearing sediments that are
present.

73 The Killdeer Mountains consist of two predominant mesas located in northern Dunn 74 County of western North Dakota (Fig. 1). The two mesas rise about 200 m above the surrounding 75 landscape and cover an area of approximately 2000 hectares. They are composed of, from top to 76 bottom, rock units from the Arikaree Formation, Chadron Formation (Chalky Buttes Member) 77 and the Golden Valley Formation (Bear Den Member and Camel Buttes Member). No Brule 78 Formation appears to be present in this location (Denson and Gill, 1965; Murphy et al., 1993). 79 The mesas are located in an area once covered by a large lake or a series of many smaller 80 lakes during Miocene time. The Arikaree Formation, which constitutes the caprock of the Killdeer 81 Mountain complex, is the most well-recognized erionite bearing unit. It consists of approximately 82 100 m of tuffaceous siltstones, sandstones, and carbonates, with the sandstones and siltstones 83 being calcareous (Denson and Gill, 1965). Most units contain some volcanic glass (Delimata, 84 1975; Forsman, 1986), which characterizes them as slightly to highly tuffaceous. Volcanic ash in 85 these units is believed to have originated from volcanic eruptions westward of the Killdeer 86 Mountains (Delimata, 1975). The ash would have been deposited across western North Dakota by 87 eolian processes and then transported to the lake systems by fluvial processes, eventually 88 accumulating to approximately 30 m thickness in locations. The ash-rich, tuffaceous sediment 89 eventually lithified into tuffaceous limestone beds. Since the Pliocene, the erosional cycle in the 90 area removed large amounts of surrounding sediment. The geologic setting of the area has been 91 described as an inverted lake basin (Delimata, 1975). Diagenetic processes resulted in glass 92 shards being altered to a clay and zeolite assemblage (Delimata, 1975; Forsman, 1986).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4567

93	A predominant cliff-forming unit of the Killdeer Mountain caprock contains interbedded
94	tuffaceous sandstone and siltstone layers with carbonate lenses (Fig. 2). This unit, dated using
95	fission track analysis to 25.1 +/- 2.2 Ma, was termed the "burrowed marker unit" (BMU) by
96	Forsman (1986) for the presence of an abundance of what has been classified as fossilized
97	burrows of unknown origins (Murphy et al., 1993).
98	Delimata (1975) carried out XRD analysis on samples from the Killdeer Mountains and
99	reported the occurrence of clinoptilolite, offretite (which he considered identical to erionite
100	following Hey and Fejer (1962)), and chabazite. He described the habits as radiating acicular and
101	columnar void fillings, along with fibrous habits found in matrix pores. Forsman (1986) reported
102	on zeolites within the pores and vugs of tuffaceous ash units. Based on standard powder X-ray
103	diffraction (XRD) and electron microprobe (EMP) analysis on single mineral crystals, he
104	concluded that erionite composed the majority of the zeolite content in the samples collected. Due
105	to the possible health risks associated with erionite, hazard mapping (Forsman, 2006) was
106	undertaken by the North Dakota Department of Health (NDDoH), in cooperation with the North
107	Dakota Geological Survey (NDGS) and the Environmental Protection Agency (EPA). These
108	investigations led to gravel quarry restrictions, gravel use restrictions, dust control measures, and
109	guidance plans to control and reduce the overall exposure by businesses and private landowners
110	working in close proximity to the bedrock formations and/or gravel quarries which potentially
111	contain erionite (NDDoH, 2005).
112	Lowers and Meeker (2007) conducted a study by the USGS on 20 soil and roadbed
113	samples collected from western North Dakota for zeolite identification. The SEM/EDS analysis
114	determined the zeolite composition as intermediate between erionite and offretite as determined

by Passaglia et al. (1998), and as similar to zeolites associated with high incidences of malignant

116	diseases in Turkey (Dogan et al., 2006). Their EMP data plot within the offretite field on a Mg -
117	Ca+Na – K diagram, and agree with the EMP data collected by Forsman (1986). XRD data
118	supported the presence of erionite, but because both minerals have similar diffraction patterns, the
119	presence of offretite could not be ruled out (Lowers and Meeker, 2007). Eylands et al. (2009)
120	studied sandstones and siltstones from buttes in Dunn, Stark, and Slope Counties of North Dakota
121	and identified erionite using XRD and SEM. Lowers et al. (2010) and Carbone et al. (2011) found
122	erionite from the Killdeer Mountains with that from villages in Turkey to have similar physical
123	and chemical characteristics. However, the EMP data from Lowers et al. (2010) plot in the
124	offretite field. Steele (2011) carried out single crystal studies on zeolite from North Dakota and
125	Turkey and confirmed the presence of erionite in both areas.
126	The U.S. EPA carried out chest X-rays and sensitive high resolution computed
127	tomography (HRCT) scans to detect pleural and interstitial changes associated with fiber
128	exposure in current or past residents of western North Dakota with exposure to road gravels and
129	erionite containing rock units (U.S. EPA, October, 2010; Ryan et al., 2011). Chest X-ray results
130	did not indicate a significant increase in interstitial or localized pleural changes. The HRCT scans
131	did indicate an increase in interstitial changes. Results of that study suggested that exposure to
132	erionite containing rock units and road gravels could increase the risk of pleural and interstitial
133	changes in humans that are commonly associated with asbestos exposure.
134	
135	SAMPLING AND ANALYSIS
136	Field work and sampling for this study was carried out during 2008 at North and South
137	Killdeer Mountains (Fig. 1). At South Killdeer Mountain (SKDM), samples were taken along the

southeast edge of the mesa in the region of Medicine Hole Plateau (approximately 47°26"38' N;

139	102°53"40' W). The measured geologic section of Murphy et al. (1993) is used here as a basis for
140	locating samples (Fig. 1). At North Killdeer Mountain (NKDM), samples were taken on both
141	sides of the entry to a former quarry at the top of the mesa (47°29"53' N, 102°53"36' W).
142	Sampling was also conducted at West and East Rainy Buttes and at White Butte (Chalky Butte
143	complex) in southwest North Dakota; these results and analyses of Killdeer Mountain samples
144	provided by Forsman from his 1986 collection are presented in Triplett (2012). Sample locations
145	and descriptions are provided in the supplemental materials file.
146	Small portions of samples were disaggregated into a coarse powder to liberate any zeolite
147	minerals. Some samples were well enough cemented that an agate mortar and pestle was used, but
148	the majority were friable enough to disaggregate easily without grinding. This disaggregated
149	material was considered as "unprocessed" and used for SEM/EDS analysis, before further
150	processing for powder XRD and EMP analysis.
151	Initial sample preparation for SEM/EDS was removal of small portions of the rock by
152	pressing carbon tape onto the sample surface. Visual inspection and qualitative SEM/EDS
153	analyses were carried out on unprocessed samples to identify any zeolite minerals.
154	Samples that showed apparent zeolite minerals in initial screening were subjected to a
155	simple floatation process. Disaggregated material was placed into distilled water in a 1000 ml
156	graduated cylinder and allowed to settle. A ball pipette was used to transfer all of the suspension,
157	the water and fine suspended particles, into a vacuum filter system. Filtered material was used for
158	powder XRD, SEM/EDS, and EMP analysis.
159	Filtered material was pulverized for XRD using an agate mortar and pestle. Powder XRD

mounts were prepared using ethanol on glass slides and were analyzed at the NDSU Department

160

161	of Chemistry and Biochemistry on a Phillips X'Pert MPD X-Ray Powder Diffractometer. Search
162	match was carried out using Jade + and X'Pert Highscore software.
163	Samples were prepared for SEM/EDS and EMP analysis by placing concentrated sample
164	material onto carbon tape and then carbon coated. SEM/EDS analysis was carried out at the North
165	Dakota State University Electron Microscopy Center on a JEOL JSM -7600F with a field-
166	emission source. EMP analysis was conducted at the University of Minnesota Electron
167	Microprobe Lab, Department of Earth Sciences using a JXA-8900 SuperProbe. Microprobe
168	analysis was carried out using the standards: Na, amelia albite; Ba, barite; K, Asbestos
169	microcline; Mg, Si, Al, Ca and Fe, Kakanui hornblende. H ₂ O was calculated by difference in ZAF
170	correction. Analytical conditions were 15kV with a beam current of 10 nA; the beam diameter
171	was nominally 5 μ m, although it was modified for particular grains from 2 to 10 μ m. Counting
172	times were 10 sec on-peak and 10 sec off-peak. Experimental error was assessed by analyzing 8
173	spots on Kakanui hornblende. The measured average and standard deviations are: 40.92 (0.31)
174	wt.% SiO ₂ , 15.14 (0.21) wt.% Al ₂ O ₃ , 11.08 (0.20) wt.% FeO, 12.99 (0.13) wt.% MgO, 10.33
175	(0.18) wt.% CaO, 2.84 (0.08) wt.% Na ₂ O, 2.22 (0.05) wt.% K ₂ O. Depending on the zeolite
176	concentration and the accessibility of the mineral grains within the surrounding matrix, 1 to 6
177	grains were analyzed by EMP from each of the nine samples. We analyzed 27 grains on 77
178	different points.
179	
180	RESULTS AND DISCUSSION
101	Develop VDD analysis identified some tange of availity in tan of the function SKDM

Powder XRD analysis identified some type of zeolite in ten of the fourteen SKDM
samples and seven of the nine NKDM samples (Table 1, Fig. 1). The processed material often
contained calcite, quartz or other minerals, and these are noted. Erionite and offretite were the

184 most common zeolites, but chabazite, heulandite, and clinoptilolite were also identified. XRD 185 identification of zeolites in one of the samples, 080603-05 is questionable. 186 SEM/EDS and EMP analyses were carried out on samples with detectable zeolite based on 187 the XRD analyses. Additional SEM/EDS analyses were carried out on samples provided by 188 Forsman from his 1986 study. Some grains measured using EMP were the identical ones 189 measured by SEM/EDS. EMP analyses are presented in Table 2 and Fig. 3 is a plot of the 190 compositions as measured by both EMP and SEM/EDS. 191 Figs. 4 and 5 are micrographs of representative grains. As discussed in Gunter et al. 192 (2007) relating to amphiboles, terms such as "fibers" and "fibrous" are applied differently by 193 different groups. Gunter et al. (2007) also discuss use of the terms "particle," "cleavage-fragment" 194 and "fragment." To mineralogists, the morphological term "fiber" is a textural description for 195 flexible thin partings. The grain shown in Fig. 5 exhibits such fibrous morphology. The grains in 196 Fig. 4 could be single crystals, or based on aspect-ratio criteria, could be considered as fibers by 197 the regulatory community. In zeolite nomenclature, however, the term "fibrous zeolite" is used as 198 part of a crystal-chemical classification scheme referring to zeolites containing T_5O_{10} chains of 199 tetrahedra (Gottardi and Galli, 1985; Armbruster and Gunter, 2001), with no implication on a 200 particular mineral fragment's flexibility. 201 Identification of and distinction between erionite and offretite can be difficult because of 202 their structural and chemical similarities (Passaglia et al., 1998), and because of the possibility of

203 intergrowth of the two species within each crystal (Tschernich, 1992; Coombs et al., 1997). The

erionite general formula is $(K_2 Na_2 Ca_3) [Al_{10} Si_{26} O_{72}] \cdot 30H_2O$ (Passaglia et al., 1998) with a

hexagonal space group symmetry P6₃/mmc and unit cell parameters a \approx 13.15 and c \approx 15.05 Å

206 (Passaglia et al., 1998). Three erionite species have been identified, erionite-Ca, -Na, and -K

207 (Coombs et al., 1997). The offretite general formula is (Ca K Mg) [Al₅Si₁₃O₃₆]·16H₂O (Passaglia 208 et al., 1998) with a hexagonal space group symmetry P6m2 and unit cell parameters $a \approx 13.30$ and $c \approx 7.60$ Å (Gualtieri et al., 1998). In erionite, Si + Al [+Fe³⁺] should be equal to 36 atoms 209 based on 72 oxygen atoms, while in offretite, $Si + Al [+Fe^{3+}]$ should be equal to 18 atoms based 210 211 on 36 oxygen atoms. Here, all data are calculated on the basis of 72 oxygen atoms. 212 The reliability of a chemical analysis used to determine the zeolite species (or any 213 framework silicate) can be evaluated by using a balance error formula (Passaglia, 1970): $E\% = [(Al+Fe^{3+}) - Al_{th}] / Al_{th} \times 100$ 214 215 where $Al_{th} = Na + K + 2(Ca + Mg + Sr + Ba)$. 216 An extended balance formula is presented in Coombs et al. (1997). Chemical analyses for zeolites 217 are considered to be reliable if the balance error (E%) is equal to or less than +/-10% (Passaglia, 218 1998). If the E% falls within the set conditions, then the mineral may be erionite or may be 219 another closely related zeolite with similar chemical composition. While some EMP analyses in 220 Table 2 fall outside the +/-10% range, all are presented here for completeness. 221 A chemical attribute relevant to distinguishing erionite from offretite is the ratio of Mg to 222 (Ca+Na). Passaglia et al. (1998) defined the ratio Mg/(Ca+Na) = 0.30 as the boundary between 223 the two minerals. As seen on the fields depicted on Fig. 3 and discussed in Gualtieri et al. (1998), 224 erionite is generally magnesium poor due to crystal structural limitations, whereas offretite is 225 more magnesium rich with a Ca/Mg ratio close to 1.0. However, Rinaldi (1976) as cited in 226 Tschernich (1992) reported a magnesium rich erionite from Sasbach, Germany. It should be 227 noted, that the structural and chemical conclusions of Gualtieri et al. (1998) and Passaglia et al. 228 (1998) were based on zeolites that were not collected from tuffs such as in Turkey or North 229 Dakota and so may not be directly applicable to zeolites formed in other geologic environments

230 (Steele, pers. comm., 2013). Fig. 5 is a histogram of Mg/(Ca + Na) ratio for zeolite grains 231 analyzed in this study. The dataset includes SEM/EDS and EMP analyses of samples collected for 232 this study, and of samples provided to us by Forsman from his 1986 study. The relative frequency 233 of Mg/(Ca + Na) > 0.3 is approximately 80%. Following Passaglia et al. (1998), these high ratios 234 indicate compositions consistent with offretite occur more frequently than those consistent with 235 erionite. The apparent lack of a compositional gap could be the result of analytical error, grain 236 scale intergrowth of erionite with offretite, or real compositional variation. 237 The study by Lowers and Meeker (2007) of zeolite grains from 20 soil and roadbed 238 samples from the Killdeer Mountain region showed comparable results. SEM/EDS analyses

overlap the erionite and offretite fields of Passaglia et al. (1998), and EMP analyses indicate the

240 presence of offretite. XRD analysis showed the presence of erionite but offretite could not be

ruled out. For the South Killdeer Mountain profile studied here, all samples except those

stratigraphically above the BMU contained erionite or offretite, while six of the nine samples

collected from NKDM contained erionite or offretite. At SKDM, erionite or offretite containing

rock units were identified down to the base unit of the Arikaree Formation, which at that location

is described as a 7.6 m (25 ft) thick moderately cemented siltstone with sand lenses and

concretions approximately 94 m (308 ft) from the top of the mesa (Murphy et al., 1993). Zeolite

247 was not found in samples above the BMU: from the entrance to Medicine Hole, from the massive

sandstone unit in the middle of the Arikaree Formation (unit 10 of Murphy et al., 1993), from the

calcareous portion of the burrowed marker unit, nor from the sandstone near the top of the mesa

251 possible that the zeolite bearing rock units extend below the Arikaree Formation into the Chadron

(unit 13 of Murphy et al., 1993). Because this was the extent of the sampling for this study, it is

and Golden Valley Formations.

250

253	At North Killdeer Mountain, erionite or offretite were identified in six of nine samples
254	taken (Fig. 1; Tables 1, 3). Zeolites were present in rock units from just below the uppermost
255	weathered horizon of NKDM down to the massive sandstone unit in the middle of the Arikaree
256	Formation, and additionally from the base of the massive unit down to the stratigraphically lowest
257	exposed outcrop of the NKDM east quarry wall. That unit is interpreted to be the bottom of the
258	burrowed marker unit, the stratigraphically lowest sampling for this project at North Killdeer
259	Mountain. One of the samples without zeolite (080604-04) was from weathered surficial material,
260	and another (080604-05) was a lithic fragment. Because this was the extent of sampling at
261	NKDM, it is possible that stratigraphically lower rock units may contain zeolite minerals.
262	In this study, we have documented the extent and composition of erionite and offretite in
263	sampled profiles of exposed Killdeer Mountain rock units. It is unclear whether the mineralogic
264	distinction between erionite and offretite has any health implications. However, as has been seen
265	for the case of asbestos minerals (Gunter et al., 2007; Berndt and Brice, 2008; Thompson et al.,
266	2011), codification of nomenclature such as specific mineral names or habits into laws or
267	regulations may have consequences in the application of health and legal policy. An area of
268	research to be explored in environmental health may be to better understand any differences in
269	potential toxicity between erionite and offretite including the varieties and intergrowths of these
270	minerals.

- 271
- 272
- 273

ACKNOWLEDGMENTS

Nels Forsman, Edward C. Murphy and John Hoganson were helpful in providing direction
and preliminary information on zeolites in western North Dakota, and Edward is acknowledged

276	for reviewing the geology section. Angel Ugrinov, Scott Payne, Jayma Moore, and Ellery Frahm
277	provided analytical support. Dilion Dolezal and Sharon (Brozo) Feit assisted with field and
278	analytical work. Landowners Craig Dvirnak, Brian Benz, Sheila Murphy, Kenny Urlacher, and
279	Marry Dennis are thanked for allowing access for sample collection, and Wendell and Linda
280	Vigen provided welcome hospitality. We especially thank Ian Steele, an anonymous reviewer,
281	and the editorship of Mickey Gunter for their meticulous reviews and suggestions on improving
282	the manuscript. However, interpretations presented are strictly those of the authors. Funding from
283	National Institutes of Health grant number P20 RR016471 from the INBRE program of the
284	National Center for Research Resources, and an Institutional Development Award (IDeA) from
285	the National Institute of General Medical Sciences of the National Institutes of Health under grant
286	number P20 GM12345 are gratefully acknowledged.
287	
288	REFERENCES CITED
289	Armbruster, T. and Gunter, M.E. (2001) Crystal structures of natural zeolites. In D.L. Bish and D.W.
290	Ming, Eds., Natural zeolites; occurrence, properties, applications. Reviews in Mineralogy and
291	Geochemistry, 45, 1-67.
292	Artvinli, M., and Baris, Y.I. (1979) Malignant mesothelioma in a small village in the Anatolian region of
293	Turkey: An epidemiologic study. Journal of the National Cancer Institute, 63, 17-22.
294	Baris, Y.I., Sahin, A.A., Ozesmi, M., Kerse, I., Ozen, E., Kolacan, B., Altinörs, M., and Göktepeli, A.
295	(1978) An outbreak of pleural mesothelioma and chronic fibrosing pleurisy in the village of
296	Karain/Ürgüp in Anatolia. Thorax, 33, 181-192.
297	Baris, I., Artvinli, M., Saracci, R., Simonato, L., Pooley, F., Skidmore, J., and Wagner, C. (1987)
298	Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: A

Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: A

299	four-year study in the Cappadocian region of Turkey. International Journal of Cancer, 39(1), 10-
300	17.
301	Berndt, M.E., and Brice, W.C. (2008) The origins of public concern with taconite and human health:
302	Reserve Mining and the asbestos case. Regulatory Toxicology and Pharmacology, 52, S31-S39.
303	Bluemle, J.P. (2000) The Face of North Dakota (3 rd ed). North Dakota Geological Survey Educational
304	Series 26, 206 p.
305	Carbone, M., and Yang, H. (2012) Molecular pathways: Targeting mechanisms of asbestos and erionite
306	carcinogenesis in mesothelioma. Clinical Cancer Research, 18, 598-604.
307	Carbone, M., Emri, S., Dogan, A.E., Steele, I., Tuncer, M., Pass, H.I., and Baris, Y.I. (2007) A
308	mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes.
309	Nature Reviews Cancer, 7, 147-154.
310	Carbone, M., Baris, Y.I., Bertino, P., Brass, B., Comertpay, S., Dogan, A.U., Gaudino, G., Jube, S.,
311	Kanodia, S., Partridge, C.R., Pass, H.I., Rivera, Z.S., Steele, I., Tuncer, M., Way, S., Yang, H.,
312	and Miller, A. (2011) Erionite exposure in North Dakota and Turkish villages with mesothelioma
313	Proceedings of the National Academy of Sciences of the USA, 108(33), 13618-13623.
314	Coombs, D.S., Alberti, A., Armbruster, T., Artioli, G., Colella, C., Galli, E., Grice, J.D., Liebau, F.,
315	Mandarino, J.A., Minato, H., Nickel, E.H., Passaglia, E., Peacor, D.R., Quartieri, S., Rinaldi, R.,
316	Ross, M., Sheppard, R.A., Tillmanns, E., and Vezzalini, G. (1997), Recommended nomenclature
317	for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical
318	Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 35,
319	1571-1606.
220	Delimeter II (1075) Potrology and geochemistry of the Killdeer carbonates. Ph.D. thesis, University of

Delimata, J.J. (1975) Petrology and geochemistry of the Killdeer carbonates, Ph.D. thesis, University of
 North Dakota, Grand Forks. 256 p.

322	Denson, N.M., and Gill, J.R. (1965) Uranium-Bearing Lignite and Carbonaceous Shale in the
323	Southwestern Part of the Williston Basin-A Regional Study: United States Geological Survey
324	Professional Paper 463, 75 p.
325	Dogan, A.U. and Dogan, M. (2008) Re-evaluation and re-classification of erionite series minerals.
326	Environmental Geochemistry and Health, 30(4), 355-366. doi: 10.1007/s10653-008-9163-z
327	Dogan, A.U., Baris, Y. I., Dogan, M., Emri, S., Steele, I., Elmishad, A.G. and Carbone, M. (2006)
328	Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey, Cancer
329	Research, 66, 5063-5068. doi:10.115 8/0008-5472.CAN-05-4642
330	Emri, S., Demir, A., Dogan, M., Akay, H., Bozkurt, B., Carbone, M., Baris, I. (2002) Lung
331	diseases due to environmental exposures to erionite and asbestos in Turkey. Toxicology
332	Letters, 127, 251-257.
333	Eylands, K.E., Azenkeng, A., Mibeck, B.A., and Raymond, L.J. (2009) Subtask 1.1 -
334	Characterization of Erionite. Report 2009-EERC-12-06.
335	www.osti.gov/bridge/purl.cover.jsp?purl=/971247-9B7QwY/Subtask1.1-
336	Characterization of Erionite.pdf
337	Forsman N.F. (1986) Documentation and diagenesis of tuffs in the Killdeer Mountains, Dunn County,
338	North Dakota. Report of Investigation No. 87, North Dakota Geological Survey, 13 p.
339	Forsman, N.F. (2006) Erionite in tuffs of North Dakota: the need for erionite hazard maps. Geological
340	Society of America Abstracts with Programs, 38(7), 366.
341	Gottardi G. and Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, 409 p.
342	Goodman, B.S. and Pierson, M.P. (2010) Erionite, a naturally occurring fibrous mineral hazard in the tri-
343	state area of North Dakota, South Dakota, and Montana. Geological Society of America Abstracts
344	with Programs, 42(3), 5.

9/11

345	Gualtieri, A., Artioli, G., Passaglia, E., Bigi, S., Viani, A., and Hanson, J.C. (1998) Crystal structure-
346	crystal chemistry relationships in the zeolites erionite and offretite, American Mineralogist, 83,
347	590-606.
348	Gunter, M.E., Belluso, E., and Mottana, A. (2007) Amphiboles: Environmental and Health Concerns. In
349	F.C. Hawthorne, R.Oberti, G. Della Verntura and A. Mottana, Eds., Amphiboles: Crystal
350	Chemistry, Occurrence, and Health Issues. Reviews in Mineralogy and Geochemistry, 67, 453-
351	516.
352	Hey, M.H. and Fejer, E.E. (1962) The identity of erionite and offretite. Mineralogical Magazine,
353	33, 66-67.
354	Hoganson, J.W., Murphy, E.C., and Forsman, N.F. (1998) Lithostratigraphy, paleontology, and
355	biochronology of the Chadron, Brule, and Arikaree Formations in North Dakota. In D.O.
356	Terry, Jr., H.E. LaGarry, and R.M. Hunt, Eds. Geological Society of America Special
357	Paper 325, 185-196.
358	IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC Monographs volume
359	42. IARC Monographs on the evaluation of carcinogenic risks to humans, Suppl. 7: p.
360	203.
361	Kliment, C.R., Clemens, K. and Oury, T.D. (2009) North American erionite-associated mesothelioma
362	with pleural plaques and pulmonary fibrosis: A case report. International Journal of Clinical and
363	Experimental Pathology, 2, 407-410.
364	Lowers, H.A., and Meeker, G.P. (2007) Denver microbeam laboratory administrative report 14012007:
365	U.S. Geological Survey Administrative Report, 11 p.
366	Lowers, H.A., Adams, D.T., Meeker, G.P., and Nutt, C.J. (2010) Chemical and morphological
367	comparison of erionite from Oregon, North Dakota, and Turkey. U.S. Geological Survey Open-

- 368 File Report 2010-1286, 13 p.
- 369 Maher, B. (2010) Epidemiology: Fear in the Dust. Nature, 468, 884–885.
- Metintas, M., Hillerdal, G., and Metintas, S. (1999) Malignant mesothelioma due to environmental
 exposure to erionite: follow-up of a Turkish emigrant cohort. European Respiratory Journal,
 13(3), 523-526.
- 373 Murphy, E.C. (2001) Geology of Dunn County. North Dakota Geological Survey Bulletin 68 Part
 374 1, Bismarck, ND, 36 p.
- 375 Murphy, E.C., Hoganson, J.W., and Forsman, N.F. (1993) The Chadron, Brule, and Arikaree
- Formations in North Dakota. North Dakota Geological Survey Report of Investigation No.
- 377 96, Bismarck, ND, 144 p.
- 378 North Dakota Department of Health (2005) www.health.state.nd.us/EHS/Erionite/. Accessed
 379 Aug. 17, 2009.
- Passaglia, E. (1970) The crystal chemistry of chabazites. American Mineralogist, 55, 1278-1301.
- Passaglia, E., Artioli, G., and Gualtieri, A. (1998) Crystal chemistry of the zeolites erionite and offretite.
 American Mineralogist, 83, 577–589.
- 383 Ryan, P.H., Dihle, M., Griffin, S., Partridge, C., Hillbert, T.J., Taylor, R., Adjei, S. and Lockey, J.E.
- 384 (2011) Erionite in road gravel associated with interstitial and pleural changes an occupational
- hazard in western United States. Journal of Occupational Environmental Medicine, 53, 892-898.
- 386 Steele, I.M. (2011) Comparison of erionite from N. Dakota and central Turkey. Geological Society of
- 387 America Abstracts with Programs, 43(5), 138.
- Thompson, B.D., Gunter, M.E., and Wilson, M.A. (2011) Amphibole asbestos soil contamination in the
 USA: A matter of definition. American Mineralogist, 96, 690-693.
- 390 Tschernich, R.W. (1992) Zeolites of the World, Geoscience Press, Pheonix, AZ, 563 p.

391	Triplett, J.W. (2012) Identification and characterization of zeolites in western North Dakota, M.S. Thesis,
392	North Dakota State University, Fargo, ND, 112 p.
393	U.S. EPA (2010) Radiographic changes associated with exposure to erionite in road gravel in North
394	Dakota. Report EP-R8-06-02/TO#0804, 2010. 90 p.
395	Wagner, J.C., Skidmore, J.W., Hill, R.J., and Griffiths, D.M. (1985) Erionite exposure and
396	mesotheliomas in rats. British Journal of Cancer, 51, 727-730.
397	
398 399	FIGURE CAPTIONS
400	
401	Figure 1. Topography, stratigraphic profiles, and sample identifications in the study
402	area. SKDM: South Killdeer Mountain. NKDM: North Killdeer Mountain. BMU:
403	"burrowed marker unit". Inset shows general location of study area. SKDM
404	stratigraphy from Murphy et al. (1993). Base map from google.com.
405	
406	Figure 2. Photo of "burrowed marker unit" (BMU) of Forsman, 1986 on South
407	Killdeer Mountain. Sample 080603-08 is from the more weathered, friable material
408	between harder calcareous layers; sample 080603-09 is from the more resistant
409	calcareous material.
410	
411	Figure 3. Ternary compositional plot of zeolite minerals. This study squares: SEM/EDS (filled
412	square is mineral pictured in Fig. 5); circles: EMPA. Triangles: Forsman (1986). Eri (erionite) and
413	Off (offretite) fields after Gualtieri et al. (1998).
414	

9/11

- 415 Figure 4. Electron micrographs of zeolite minerals. a: 080603-06 grain 1, b: 080603-06
- 416 grain 2, c: 080603-07, d: 080603-08. Scale bar 10 micrometer.

417

- 418 Figure 5. Electron micrograph of a zeolite mineral separated from a North Killdeer
- 419 Mountain sample provided by N. Forsman. Scale bar 10 micrometer.
- 420
- 421
- 422 Figure 6. Histogram of Mg/(Ca + Na) ratios for zeolite fibers analyzed in this study. Note: one
- 423 measured value of 3.40 not included.

424

425

sample	minerals						
080602-01*	Eri, Qz						
080602-02*	Off, Eri, Cal						
080602-03	Cal, Ank						
080603-01	Eri, Cal						
080603-02	Eri, Off						
080603-03	Off, Eri, Cal						
080603-04	Eri, Cal						
080603-05	Eri?, Off?						
080603-06	Eri, Cal, Qz						
080603-07*	Off, Cal						
080603-08	Eri, Qz						
080603-09	Cal, Qz						
080603-10	Dol, Qz						
080603-11	Cal, Qz						
080604-01	Off, Cal						
080604-02	Cal, Qz						
080604-03	Eri, Chab, Cal, Qz						
080604-04	Eri, Hul, Cal, Qz						
080604-05	Cal, Qz						
080604-06	Cpt, Eri, Off, Cal, Qz						
080604-07	Off						
080604-08	Eri, Off, Cal						
080604-09	Off, Cal, Qz						
otes: Eri – erionite, Off – offretite,							

TABLE 1. Powder XRD identification of
minerals in processed samples, Killdeer
Mountains, North Dakota

Notes: Eri – erionite, Off – offretite, Chab – chabazite, Hul – heulandite, Cpt – clinoptilolite, Cal – calcite, Dol – dolomite, Ank – ankerite, Qz – quartz *sample location possibly slumped ? - tentative identification

		080603-	080603-	080603-	080603-											
Sample No./Grair 080603-08/1		08/2	08/3	07/1	07/2	080603-07/3	080603-07/4	080604-09/3	080604-08/1	080604-07/2	080603-01/1	080603-01/2	080602-03/1	080602-03/2	080604-01/1	080604-01/3
SiO2	44.86	53.54	43.49	61.82	48.06	54.70	48.72	64.87	67.52	62.45	58.89	48.20	61.46	59.53	45.10	64.51
Al2O3	12.03	13.90	12.03	15.74	12.03	14.31	12.97	16.36	17.27	15.14	12.90	10.98	14.93	14.33	14.44	16.24
Fe_2O_3	1.99	0.28	0.05	0.66	0.17	6.53	0.31	0.12	0.32	0.57	0.08	0.21	0.24	0.29	0.17	0.03
MgO	1.78	1.04	0.74	1.62	1.35	4.73	1.08	0.37	0.77	0.69	1.29	2.35	2.52	2.61	1.95	1.99
CaO	2.77	3.85	2.85	3.59	2.63	1.68	3.66	6.00	5.95	4.57	3.14	2.73	3.08	3.35	2.92	3.42
Na2O	0.16	0.22	0.23	0.16	0.09	0.14	0.17	0.03	0.03	0.05	0.11	0.29	0.02	0.05	0.08	0.05
K2O	2.41	3.22	3.65	3.02	2.13	2.51	2.71	2.35	2.33	3.20	2.62	1.28	1.57	1.30	2.35	2.79
H ₂ O	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Si	26.79	27.54	26.60	27.73	27.94	25.80	27.35	27.92	27.78	28.05	28.70	28.08	28.06	27.99	26.29	27.94
Al	8.47	8.43	9.37	8.32	8.23	7.96	8.61	8.30	8.38	8.01	7.39	7.54	8.04	7.95	9.92	8.29
Fe ³⁺	0.90	0.11	0.03	0.22	0.07	2.32	0.13	0.04	0.10	0.19	0.03	0.09	0.08	0.10	0.07	0.01
Mg	1.58	0.80	0.73	1.08	1.17	3.33	0.90	0.24	0.47	0.46	0.92	2.04	1.72	1.83	1.70	1.28
Са	1.78	2.13	2.14	1.72	1.64	0.85	2.21	2.77	2.62	2.20	1.65	1.70	1.51	1.69	1.82	1.59
Na	0.18	0.22	0.35	0.14	0.11	0.13	0.18	0.02	0.03	0.04	0.11	0.32	0.02	0.05	0.09	0.04
К	1.84	2.12	3.21	1.73	1.58	1.51	1.94	1.29	1.22	1.84	1.69	0.95	0.92	0.78	1.75	1.54
Number of points	1	3	2	2	2	1	3	1	1	1	3	1	1	2	1	1
Al _{th}	8.73	8.19	9.30	7.48	7.29	9.99	8.35	7.33	7.44	7.20	6.94	8.76	7.39	7.86	8.88	7.32
E%	7.19	4.25	1.06	14.03	13.89	2.89	4.64	13.82	13.95	13.95	6.91	-12.91	9.89	2.35	12.46	13.39
Si+Al	35.26	35.97	35.97	36.04	36.17	33.76	35.97	36.22	36.15	36.06	36.08	35.62	36.10	35.94	36.20	36.23
Mg/(Ca+Na)	0.81	0.34	0.31	0.58	0.68	3.40	0.38	0.09	0.18	0.21	0.55	1.01	1.12	1.06	0.89	0.79

Table 2. Chemical compositions of erionite and offretite from the Killdeer Mountains

Atomic ratios based on 72 O. The balance error E% = [(Al+Fe³⁺) – Alth] / Alth x 100 where Alth = Na + K + 2(Ca+Mg+Sr+Ba) (Passaglia, 1970) Note:

Figure 5