Thermal Equation of State and Spin Transition of Magnesiosiderite at High Pressure and Temperature

Jin Liu¹,*, Jung-Fu Lin¹, Zhu Mao¹, Vitali B. Prakapenka²

¹Department of Geological Science, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712, USA

²Consortium for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA

* Email: jinliu@utexas.edu

ABSTRACT

In situ synchrotron X-ray diffraction experiments on natural magnesiosiderite [(Mg₀.₃₅Fe₀.₆₅)CO₃] were conducted using resistive and laser-heated diamond anvil cells (DACs) up to 78 GPa and 1200 K. Based on thermal elastic modeling of the measured pressure-volume curves at given temperatures, we have derived thermal equation of state (EoS) parameters and the spin-crossover diagram of magnesiosiderite across the spin transition. These results show the spin crossover broadened and shifted toward higher pressures at elevated temperatures. Low-spin magnesiosiderite is 6% denser and 8% more incompressible than the high-spin phase at 1200 K and high pressures. Within the spin crossover from 53 to 63 GPa at 1200 K, magnesiosiderite exhibits anomalous thermal elastic behaviors, including a dramatic increase in the thermal expansion coefficient by a...
factor of twenty and a drop in the isothermal bulk modulus and the bulk sound velocity
by approximately 75% and 50%, respectively. Compared with the end-member magnesite
$[\text{MgCO}_3]$ at relevant pressure-temperature conditions of the subducted slabs, the high-
spin magnesiosiderite with 65 mole% FeCO$_3$ is approximately 21-23% denser and its unit

cell volume is 2-4% larger, whereas the low-spin state is 28-29% denser and 2% smaller
than the end-member magnesite. Since ferromagnesite with 20 mole% of iron has been
proposed to be a potential deep-carbon carrier, our results here indicate that the dense
low-spin ferromagnesite can become more stable than high-spin ferromagnesite at
pressures above approximately 50 GPa, providing a mechanism for (MgFe)-bearing

carbonate to be a major carbon host in the deeper lower mantle.

Keywords: Fe-rich carbonate, thermal equation of state, spin transition,
ferromagnesite, diamond anvil cell

INTRODUCTION

The existence of oxidized carbon in the Earth’s deep interior can significantly affect a
number of geophysical and geochemical properties of the planet (e.g., Gaillard et al. 2008;
Dasgupta and Hirschmann 2010). Due to the nominally low solubility of carbon in the
main minerals of the mantle (Keppler et al. 2003; Dasgupta et al. 2013), carbon from
primordial origins or altered ocean crusts is expected to be present as accessory phases in
the deep mantle, such as carbonates, carbonate melts, carbon bearing fluids, diamond,
and/or iron carbides (e.g., Berg 1986; Alt and Teagle 1999; Pal'yanov et al. 1999).
Laboratory studies of carbon-bearing minerals at high pressures and temperatures (P-T)
can provide crucial constraints on the role and behavior of deep carbon in the geochemistry and geophysics of the Earth’s mantle, and therefore the mantle’s role in the global carbon cycle (Hazen et al. 2012). Magnesite [MgCO₃] has been reported to be stable at relevant P-T conditions of the Earth’s lower mantle (Isshiki et al. 2004; Oganov et al. 2008). High P-T experiments on carbonated peridotite and eclogite further showed that approximately 20 mole% siderite [FeCO₃] can be dissolved in magnesite, forming an Fe-bearing [(MgFe)CO₃] solid solution with rhombohedral structure (Dasgupta et al. 2004). This form, called ferromagnesite for the Mg-rich part of the system and magnesiosiderite for the Fe-rich part of the system, could be a stable major deep-carbon host in the lower mantle.

Iron as a transition metal is known to play an important role in the physical, chemical, and transport properties of the mantle minerals due to the various electronic spin and valence states exhibited by the 3d electrons of iron at high P-T conditions (e.g., Lin and Tsuchiya 2008). An electronic high-spin (HS) to low-spin (LS) transition of iron in the magnesite-siderite system has been recently observed to occur at approximately 45 GPa using a number of experimental and theoretical techniques including the high-pressure X-ray emission spectroscopy, X-ray diffraction, laser Raman spectroscopy, and first-principles calculations (Mattila et al. 2007; Shi et al. 2008; Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012). This transition is associated with a 6-10% reduction in the unit-cell volume, making the LS state denser and more incompressible than the HS counterpart (Lavina et al. 2009, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012). It has been suggested that iron may preferentially partition into the LS ferromagnesite, which would make it a stable deep-carbon host in
the lower mantle (Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012). On the other hand, iron-bearing magnesite and siderite have been reported to transform into an assemblage of magnetite, nano-diamonds, and a new high-pressure phase with three-membered rings of corner-sharing \((\text{CO}_4)^4-\) tetrahedra at pressures exceeding 40 GPa and high temperatures (Boulard et al. 2011, 2012). Furthermore, the electronic spin-pairing transition of \(\text{Fe}^{2+}\) and its associated effects on the thermal EoS of the magnesite-siderite system have only been previously investigated at high pressures and room temperature.

Spin transitions of ferric and ferrous iron and their associated effects have also been reported to occur in other iron-bearing mantle minerals at high pressures, including ferropericlase, perovskite, and post-perovskite (See Lin and Tsuchiya (2008) and Lin et al. (2013) for recent reviews). In particular, the spin transition of iron has been observed to affect a number of physical and chemical properties of ferropericlase including density, incompressibility, sound velocities, and transport properties (Lin et al. 2005, 2006, 2007a; Tsuchiya et al. 2006; Fei et al. 2007b; Speziale et al. 2007; Crowhurst et al. 2008; Marquardt et al. 2009a, 2009b; Wentzcovitch et al. 2009; Wu et al. 2009; Komabayashi et al. 2010; Mao et al. 2011). Recent theoretical and experimental studies also show that the spin transition becomes a broad, continuous spin crossover at high \(P-T\) conditions (Tsuchiya et al., 2006; Lin et al. 2007b; Wentzcovitch et al. 2009; Wu et al. 2009; Komabayashi et al. 2010; Mao et al. 2011). Along a typical mantle geotherm (Brown and Shankland, 1981), the spin crossover in ferropericlase is expected to occur approximately between 1700 and 2700-km depth (e.g., Mao et al. 2011). Therefore, studying the spin transition and its associated effects on thermal EoS parameters in the magnesite-siderite
system at relevant P-T conditions of the Earth’s mantle would help us understand the nature of the spin crossover as well as the characteristics of this potential deep-carbon host.

In the present work, we have carried out synchrotron X-ray diffraction measurements on magnesiosiderite $[(\text{Mg}_{0.35}\text{Fe}_{0.65})\text{CO}_3]$ in an externally-heated diamond anvil cell (EHDAC) or a laser-heated diamond anvil cell (LHDAC) at high P-T conditions in order to understand its thermal EoS parameters across the spin crossover. We used the P-V-T relations of magnesiosiderite to model the spin-crossover diagram up to 80 GPa and 1200 K and to derive thermal EoS parameters for HS, LS, and mixed-spin states, respectively. The modeled spin-crossover diagram of magnesiosiderite shows that increasing temperature broadens the width of the spin crossover toward higher pressures. These results are applied to decipher the role of magnesiosiderite in the lower-mantle deep-carbon storage.

EXPERIMENTAL METHODS

A natural single-crystal magnesiosiderite from Brazil was used as the starting material, which has also been previously studied by Lin et al. (2012) using optical Raman and synchrotron X-ray diffraction spectroscopies at high pressures and room temperature. Briefly, electron microprobe and XRD analyses showed that the sample is chemically homogeneously within the analytical uncertainties, and has a composition $(\text{Mg}_{0.33}\text{Mn}_{0.02}\text{Fe}_{0.65})\text{CO}_3$ with lattice parameters $a = 4.6753$ (± 0.0012) Å and $c = 15.2794$ (± 0.0030) Å; for simplicity, the composition of the sample is referred to as
Revision 1: Magnesiosiderite Diffraction at high P-T, AM, 7/15/2013

(Mg$_{0.35}$Fe$_{0.65}$)CO$_3$ by ignoring the manganese content and by keeping the amount of iron fixed. Visual observations using a high-magnification optical microscope showed that the single-crystal sample was optically homogenous without any signs of chemical inclusions or variations in color. High P-T X-ray diffraction experiments were conducted at 13IDD beamline of the GSECARS of the Advanced Photon Source (APS), Argonne National Laboratory (ANL), using a monochromatic X-ray beam with a wavelength of 0.3344 Å.

Single-crystal or powder X-ray diffraction (XRD) measurements were performed using an EHDAC (Kantor et al. 2012) or an LHDAC (Prakapenka et al. 2008). A MarCCD detector was used to collect two-dimensional XRD images which were processed and integrated using Fit2D software (Hammersley et al. 1996). The tilting and rotation of the MarCCD detector relative to the incident X-ray beam were calibrated using cesium dioxide (CeO$_2$) powder as the X-ray diffraction standard. The sample-detector distance was calculated from the powder CeO$_2$ diffraction pattern at ambient conditions.

For the EHDAC experiments, both powder and single-crystal XRD measurements were performed using Ne as the pressure medium. For the single-crystal experiments, a piece of the single-crystal magnesiosiderite was cleaved from the natural crystal along (101) plane and loaded into an EHDAC, together with a 5 μm pellet of Au powder as the pressure calibrant (Fei et al. 2007a). A K-type thermocouple was attached to the pavilion of the diamond, approximately 500 μm away from its culet, and used to monitor the temperature. For the powder runs, powdered magnesiosiderite was mixed with 3 wt% micro-sized Au powder as the pressure calibrant (Fei et al. 2007a) by mechanically grinding the mixture for approximately 4 hours. Subsequently, the mixture was slightly pressed between two opposing diamond anvil s to form an approximately 15 μm thick
disk. The powder sample disk was loaded into an EHDAC with 300 µm culets and a Re gasket, which was pre-indentated to 30 µm thick and had a drill hole of 150 µm diameter.

Two runs of the LHDAC experiments were conducted using the double-sided Nd:YLF laser heating system at GSECARS (Prakapenka et al. 2008). The aforementioned powder sample disk was sandwiched between two dried NaCl disks, which functioned as the thermal insulator and pressure medium, in a symmetric DAC with 300 or 200 µm culets and a Re gasket. To remove any potential air and moisture contamination in the sample chamber, the sandwiched sample assemblage was evacuated for 30 minutes before closing the sample chamber in vacuum using the high-pressure gas loading system in the Mineral Physics Laboratory of the University of Texas at Austin. Two infrared laser beams were focused down to 25 µm diameter on both sides of the sample, and were co-axially aligned with the incoming X-ray beam using the X-ray induced luminescence on the sample and NaCl (Prakapenka et al. 2008). Temperatures of the heated samples were determined by fitting the measured thermal radiation spectra assuming the Graybody approximation (Prakapenka et al. 2008). The uncertainty of temperatures (1σ) was ±50 K based on multiple temperature measurements from both sides of the laser-heated sample. Pressures were calculated from in situ XRD patterns of the Au standard (Fei et al. 2007a).

RESULTS AND DATA ANALYSES

XRD patterns of the sample were collected at five given temperatures (300 K, 450 K, 600 K, 750 K and 1200 K) in 1-3 GPa intervals up to 78 GPa (Figs. 1 and 2); data at 1200
K were taken from the LHDAC experiments while all other high-temperature points were obtained from the EHDAC experiments. We limited the laser heating temperature to 1200 K because Fe-rich magnesiosiderite has been reported to transform into a new Fe(III)-bearing high-pressure phase at temperatures above 1850 K and high pressures (Boulard et al. 2011, 2012). The unit-cell parameters of the magnesiosiderite and Au in this study were calculated using 3-8 diffraction lines, respectively, at high $P-T$ (Fig. 3).

Analyses of the XRD patterns from heated and quenched sample assemblages only showed diffraction peaks from the sample, Au calibrant, and Ne or NaCl medium, indicating that the sample remained stable in the rhombohedral structure and that no dissociation or chemical reaction had occurred in the sample during high $P-T$ experiments (Figs. 1 and 2). All error bars reported here are derived from standard error propagations and represent $\pm 1\sigma$.

The compression curve of $(\text{Mg}_{0.35}\text{Fe}_{0.65})\text{CO}_3$ at 300 K shows a dramatic volume reduction of 6.5% over a pressure interval of ~4 GPa from 43.4 (±0.4) GPa to 47.5 (±0.5) GPa, consistent with the spin transition pressure reported previously (Mattila et al. 2007; Shi et al. 2008; Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012). The $P-V$ curves at given high temperatures clearly show an increase in the onset pressure and the width of the volume reduction; i.e., the volume reduction at 1200 K starts at 53.2 (±0.5) GPa and ends at 63 (±0.5) GPa over a pressure interval of approximately 10 GPa (Fig. 3). The $P-V-T$ curves were used to derive thermal EoS parameters of the HS, LS, and mixed-spin states as well as the spin-crossover diagram of the magnesiosiderite.
Equation of state at room temperature

The P-V curve of the sample at 300 K up to 40 GPa (before the abnormal volume reduction) was fitted to a third-order Birch-Murnaghan EoS (BM EoS) to derive the unit-cell volume (V_0), the bulk modulus (K_0) and the pressure derivative of the bulk modulus (K'_0) at ambient conditions using the EosFit v5.2 programs (Birch 1978; Angel 2000), yielding $V_0 = 289.2 \pm 0.1$ Å3, $K_0 = 109.2 \pm 1.3$ GPa, and $K'_0 = 4.9 \pm 0.2$ for the HS state (Table 1). In order to identify the onset pressure for the occurrence of the LS state (P_{LS}) and the ending pressure for the HS state (P_{HS}), our experimental data were compared with the modeled P-V curve for the HS state (Speziale et al. 2007; Mao et al. 2011)—the P_{LS} and P_{HS} can thus be determined from the variation in the volume difference between the experimental P-V data and the modeled HS P-V curve (Fig. 3 insert), yielding $P_{LS} = 43.4 \pm 0.4$ GPa and $P_{HS} = 47.5 \pm 0.5$ GPa, with a width of 4.1 (± 0.9) GPa. Additionally, EoS parameters for the LS magnesiosiderite were obtained from fitting the P-V data between 47.5 GPa and 78 GPa with the third order BM EoS (Table 2). The derived V_0, K_0, and K'_0 values for the HS and LS states at 300 K are in good agreement with previous reports (Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012).

Thermal equation of state parameters

For P-V data at elevated temperatures, the third-order isothermal BM EoS was employed to derive the thermal EoS parameters for the HS and LS states using the EosFit v5.2 programs (Birch 1978; Angel 2000):
where \(\partial T \) denotes ambient pressure and a given high temperature, respectively. Neglecting higher-order pressure derivatives of the bulk modulus and assuming that \(K'_{0T} \) is a constant in the temperature range of our study (Zhang et al. 1998), the \(K_{0T} \) can be determined using the following equation:

\[
K_{0T} = K_0 + (\partial K_T / \partial T)_{0P}(T - 300)
\]

where \((\partial K_T / \partial T)_{0P} \) is the temperature derivative of the bulk modulus at ambient pressure. The \((\partial K_T / \partial T)_{0P} \) is found to be a constant within the temperature range of our study. The zero-pressure unit-cell volume \((V_{0T}) \) at an elevated temperature \(T \) is expressed as:

\[
V_{0T} = V_0 \exp \int_{300}^{T} \alpha_T dT
\]

where \(\alpha_T \) is the thermal expansion coefficient at high temperature and ambient pressure.

In our model here, \(\alpha_T \) is assumed to be a linear function of temperature:

\[
\alpha_T = \alpha_0 + \alpha_1 T
\]

where \(\alpha_1 \) and \(\alpha_2 \) are constants. We have also modeled the thermal expansion coefficient using a polynomial function, instead of the above linear function, but the second-order constant is found to be too insignificant to justify the use of the polynomial function within our limited temperature range.
The modeled $P-V-T$ curves for the HS state were then used as the reference for derivation of the P_{LS} and P_{HS} using the variation in the volume difference between the modeled results and experimental data at high $P-T$ (Fig. 3 insert). Thermal EoS parameters of the LS state can then be determined using the same aforementioned procedure. These analyses show that the HS state exhibits $(\partial K_T/\partial T)_{\text{DP}} = -0.0262$ (±0.0021) GPa/K and $\alpha (\text{K}^{-1}) = 2.79$ (±0.21) $\times 10^{-5} + 0.95$ (±0.30) $\times 10^{-8}$ T (Table 1), while the LS state has $(\partial K_T/\partial T)_{\text{DP}} = -0.0234$ (±0.0052) GPa/K and $\alpha (\text{K}^{-1}) = 2.31$ (±0.20) $\times 10^{-5} + 0.14$ (±0.09) $\times 10^{-8}$ T (Table 2).

Spin-crossover diagram

The $P-V-T$ relations of the magnesiosiderite were used to derive the fraction of the HS and LS states for constructing the spin-crossover diagram. Following the thermodynamic methods described previously (Tsuchiya et al. 2006; Speziale et al. 2007; Wentzcovitch et al. 2009; Mao et al. 2011), the unit cell volume of the sample within the spin crossover was treated as an ideal solid-solution mixture of the HS and LS states:

$$V = n_{LS}V_{LS} + (1-n_{LS})V_{HS}$$

where V_{HS} and V_{LS} are the unit cell volume of the HS and LS states, respectively, and n_{LS} is the LS fraction. With the experimentally-determined n_{LS} at a given temperature (Fig. 4), the LS fraction of the magnesiosiderite at a given $P-T$ condition was modeled using the Gibbs free energy difference between the LS and HS states (ΔG_{LS-HS}) across the spin crossover (Tsuchiya et al. 2006; Speziale et al. 2007; Wentzcovitch et al. 2009):
Revision 1: Magnesiosiderite Diffraction at high P-T, AM, 7/15/2013

\[n_{LS} = \frac{1}{1 + \exp(\Delta G_{LS-HS} / T)}. \]

Here the P-T dependence of the \(\Delta G_{LS-HS} \) is expressed using the following empirical relation:

\[\Delta G_{LS-HS} = b_0 + b_1 (P - P_{HS}) / (P_{LS} - P_{HS}) \]

where \(b_0 \) and \(b_1 \) are two temperature-dependent constants, and \(P_{LS} \) and \(P_{HS} \) are the onset pressure for the occurrence of the LS state and the ending pressure for the HS state, respectively. Parameters \(b_0 \) and \(b_1 \) are derived from the non-linear least square fit of the experimentally-determined \(n_{LS} \) as a function of P-T. We note that this model has been successfully applied to derive the spin-crossover diagram of the lower-mantle ferropericlase using experimentally-measured thermal P-V-T data (Mao et al. 2011).

Using the derived width of the spin transition and thermal EoS parameters of the magnesiosiderite, the fraction of the LS state and the spin-crossover diagram can be derived from modeling our data between 300 K and 1200 K at high pressures (Figs. 4 and 5). The spin-crossover diagram shows apparently positive values for the effective \(dP/dT \) of the transition boundaries and the width of the spin crossover widens at higher temperatures (Fig. 5).

Thermal elastic properties along an isotherm

Using the obtained thermal EoS parameters and the LS fraction, thermoelastic properties of the magnesiosiderite, including thermal expansion coefficient (\(\alpha \)),
259 isothermal bulk modulus \((K_T) \), and bulk sound velocity \((V_\phi) \), have also been derived at
given temperatures (300 K, 450 K, 600 K, 750 K and 1200 K) and high pressures up to
80 GPa across the spin crossover (Figs. 6 and 7). The thermal expansion coefficient
across the transition is defined as (Mao et al. 2011):

\[
\alpha = \frac{1}{V} \frac{\partial V}{\partial T} = \frac{1}{V} \frac{\partial [n_{LS}V_{LS} + (1-n_{LS})V_{HS}]}{\partial T}.
\]

263 The isothermal bulk modulus is calculated using the equation (Wentzcovitch et al. 2009):

\[
\frac{V}{K_T} = n_{LS} \frac{V_{LS}}{K_{LS}} + (1-n_{LS}) \frac{V_{HS}}{K_{HS}} - (V_{LS} - V_{HS}) \left(\frac{\partial n_{LS}}{\partial P} \right)_T
\]

266 where \(K_{HS} \) and \(K_{LS} \) are the isothermal bulk modulus of the HS and LS state at a given \(P-T \)
condition, respectively. The last term accounts for the pressure-dependent LS fraction
that can affect the modulus as a result of the anomalous volume reduction \((V_{LS} - V_{HS}) \)
across the transition (Fig. 6(b)) (Wentzcovitch et al. 2009). With the derived \(K_T \) and \(\alpha \),
the bulk sound velocity \((V_\phi) \) can be calculated using the equations:

\[
V_\phi = \sqrt{\frac{K_S}{\rho}}
\]

\[
K_S = (1 + \alpha_{\gamma}T)K_T
\]

276 where \(K_S \) is the adiabatic bulk modulus, \(\rho \) is density, and \(\gamma \) is the thermodynamic
Grüneisen parameter. Because the \(\gamma \) value of the sample at high \(P-T \) remains unknown
across the spin transition, we used the following equation to calculate the \(\gamma \) value at
ambient conditions and assume it remains a constant at high \(P-T \):

13
\[\gamma = \frac{\alpha K_S}{\rho C_P} \]

where \(K_S \) is the adiabatic bulk modulus and \(C_P \) is the heat capacity at constant pressure.

Using the values of \(\alpha = 3.08 \times 10^{-5} \text{ K}^{-1} \) (this study), \(K_S = 113.4 \text{ GPa} \) (Sanchez-Valle et al. 2011), \(\rho = 3.654 \text{ g/cm}^3 \) (this study), and \(C_P = 82.44 \text{ J/(mol·K)} \) (Robie et al. 1984) at 300 K, the calculated \(\gamma \) value is 1.16 (±0.12).

DISCUSSIONS and IMPLICATIONS

Spin crossover at high \(P-T \)

The modeled spin-crossover diagram of the magnesiosiderite shows an extended crossover behavior at high temperatures with an apparently positive value for the effective \(dP/dT \) of approximately 10 MPa/K (Fig. 5). Specifically, the width of the transition is approximately 4 GPa at 300 K but expands to approximately 10 GPa at 1200 K. The onset pressure for the occurrence of the LS state increases from 43.4 (±0.4) GPa at 300 K to 53.2 (±0.5) GPa at 1200 K (Fig. 8). Such spin-crossover behavior has been previously reported to occur in ferropericlase theoretically and experimentally (Tsuchiya et al., 2006; Lin et al. 2007b; Wentzcovitch et al. 2009; Wu et al. 2009; Komabayashi et al. 2010; Mao et al. 2011). Compared with ferropericlase, the spin crossover in magnesiosiderite remains much narrower and occurs at relative lower pressures (Figs. 5 and 8). The relatively sharp spin crossover in the \(\text{MgCO}_3-\text{FeCO}_3 \) system is likely a result of the localized \(\text{FeO}_6 \) octahedra that are more isolated and separated from other iron ions.
in the surrounding FeO$_6$ octahedra (Lavina et al. 2010b). Previous theoretical and experimental studies on ferropericlase [(MgFe)O] (e.g., Wentzcovitch et al. 2009; Mao et al. 2011) have reported apparently positive values for the effective dP/dT slope. At a given temperature, the spin transition is reported to be a pressure-induced volume-driven transition in which the pressure-induced volume reduction increases the crystal-field splitting energy that eventually overcomes the spin-pairing energy (e.g., Burns 1993; Persson et al. 2006).

We note that the presence of nonhydrostaticity and pressure gradient in the sample chamber may cause a broadening in the width of the spin crossover (Lin and Tsuchiya, 2008). In this study, the use of Ne pressure medium and the tightly focused X-ray beam of less than 5 μm in diameter (FWHM) would minimize the influence of these factors. Therefore, the broadening of the spin crossover at higher $P-T$ can be treated as the intrinsic phenomenon of the Fe$^{2+}$ ions in magnesiosiderite at elevated temperatures, in which high temperature provides higher configuration entropy to stabilize the mixture of the HS and LS states (Burns 1993; Tsuchiya et al. 2006). Previous studies have shown that the HS state is favored at higher temperatures due to the larger entropy for Fe$^{2+}$ in the octahedral site via the thermal expansion effect (Li 2007; Wentzcovitch et al. 2009). Consequently, additional compression (smaller unit cell volume) is necessary for the LS state to become stable at elevated temperatures.

Compositional effects on the spin transition pressure
To illustrate the compositional effect on the transition pressure and thermal EoS parameters in the MgCO$_3$-FeCO$_3$ system as well as MgO-FeO system, we have plotted our results and literature transition pressures (Fig. 9) for comparison (Badro et al. 2003; Speziale et al. 2005; Lin et al. 2005, 2006, 2007b; Keppler et al. 2007; Fei et al. 2007b; Crowhurst et al. 2008; Lavina et al. 2009, 2010a, 2010b; Komabayashi et al. 2010; Nagai et al. 2010; Mao et al. 2011; Farfan et al. 2012; Lin et al. 2012). Among all iron-bearing earth minerals, we note that the spin transitions in these two systems have been most extensively documented using high-pressure X-ray and laser optical spectroscopic techniques. The transition in the MgCO$_3$-FeCO$_3$ system occurs at 45 (±5) GPa without observable compositional effects (Mattila et al. 2007; Shi et al. 2008; Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012). That is, the substitution of Fe$^{2+}$ ions for Mg$^{2+}$ ions in MgCO$_3$ does not show any appreciable effect on the spin transition pressure. This can be used to support the solid-solution model that we used to derive the spin fraction as a function of the volume reduction. In the (MgFe)O system, on the other hand, the transition pressure generally increases from 40-50 GPa for MgO-rich part (ferropericlase) to approximately 102 GPa for FeO-rich part (magnesiowustite) (Badro et al. 2003; Speziale et al. 2005; Lin et al. 2005, 2006, 2007b; Persson et al. 2006; Keppler et al. 2007; Fei et al. 2007b; Crowhurst et al. 2008; Komabayashi et al. 2010; Mao et al. 2011), indicating a strong compositional effect that stabilizes the high-spin state. These analyses indicate that the Fe$^{2+}$-Fe$^{2+}$ exchange interaction in the (MgFe)O system plays a more significant role in the spin transition than that in the (MgFe)CO$_3$ system (Figs. 8 and 9) (Lin et al. 2006).
Abnormal thermal EoS and stability of $(\text{MgFe})\text{CO}_3$

Previous studies on the EoS of $(\text{MgFe})\text{CO}_3$ have shown that the spin transition of iron causes approximately 6-10% volume reduction from the HS state to the LS state in magnesiosiderite containing more than 65% iron (Lavina et al. 2009, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012). However, thermal EoS parameters within the spin transition remain unclear at high P-T. Our thermoelastic modeling of the P-V-T relations of the magnesiosiderite shows abnormal behavior in the thermal expansion coefficient, isothermal bulk modulus, and bulk sound velocity within the spin transition (Figs. 6 and 7). Specifically, within the transition, the thermal expansion coefficient increases by approximately a factor of forty at 300 K and twenty at 1200 K, whereas the isothermal bulk modulus and the bulk sound velocity decrease by approximately 75% and 50% at 1200 K, respectively. It should be noted that such abnormal behaviors within the spin transitions have been reported for the lower-mantle ferropericlase (Speziale et al. 2007; Crowhurst et al. 2008; Wentzcovitch et al. 2009; Wu et al. 2009; Mao et al. 2011).

In comparison to the lower-mantle ferropericlase, our magnesiosiderite sample exhibits similar abnormal behaviors across the spin transition, although the magnitude of the changes was much higher than that of ferropericlase as a result of the larger volume reduction across the sharper spin transition at high P-T.

The spin transition increases the isothermal bulk modulus by approximately 10% and decreases the thermal expansion coefficient by nearly 20%, making the LS state much more incompressible and less expandable than the HS state. The effects of the spin transition on the bulk modulus can be understood in terms of the relative ionic radii of the HS-LS Fe^{2+} and Mg^{2+} cations in the system which has been investigated and

17
systematically tabulated in previous studies (Shannon and Prewitt 1969; Shannon 1976; Hazen and Finger 1982). Previous studies have shown that in the octahedral coordination the effective ionic radius of the HS Fe$^{2+}$ is 0.78 Å and the Mg$^{2+}$ ion is 0.72 Å (Shannon and Prewitt 1969; Shannon 1976), indicating that the substitution of Fe$^{2+}$ for Mg$^{2+}$ would yield a larger unit cell volume in the (MgFe)CO$_3$ system, i.e., the unit cell volume of the magnesiosiderite [(Mg$_{0.35}$Fe$_{0.65}$)CO$_3$] is 289.2 Å3 while magnesite (MgCO$_3$) is 279.3 Å3 (Zhang et al. 1997; Fiquet et al. 2002; Litasov et al. 2008). On the other hand, the extrapolated unit cell volume of the LS magnesiosiderite of 265.1 Å3 at ambient conditions is much smaller than the HS state counterpart, suggesting that the LS state is intrinsically more incompressible than the HS state, confirming the previously reported empirical relationship between the atomic compressibility and the ionic radii (Hazen and Finger 1982). As a result of the volume collapse, the LS magnesiosiderite also exhibits a smaller unit cell volume than the end-member magnesite at given P-T conditions, showing that the effective ionic radius of the LS Fe$^{2+}$ is thus smaller than the Mg$^{2+}$ ion (Fig. 10) (e.g., Shannon and Prewitt 1969; Hazen and Finger 1982; Lavina et al. 2009).

To understand the stability of the magnesiosiderite at high P-T conditions, we have derived its volume and density differences from the MgCO$_3$ reference (Figs. 10 and 11). For the HS state, this volume difference is nearly 4% at 300 K and 3% at 1200 K before the spin transition. The volume difference decreases dramatically to about -2% for the LS state between 300 K and 1200 K; that is, the LS state has a much lower volume than the end member MgCO$_3$ counterpart. This volume difference in the LS state remains almost constant as a function of pressure, revealing that the LS state has similar incompressibility with the end member MgCO$_3$.

18
Recent high $P-T$ experimental and theoretical studies have reported that magnesite remains stable in the calcite structure (space group $R\bar{3}c$) at relevant $P-T$ conditions of the lower mantle, instead of undergoing a dissociation that releases carbon dioxide into the surrounding mantle materials (Isshiki et al. 2004; Skorodumova et al. 2005; Oganov et al. 2008). Since the lower-mantle magnesite likely incorporates approximately 20% iron and the low-spin ferromagnesite has a smaller unit cell volume than the high-spin counterpart, it is conceivable that the low-spin ferromagnesite can become the major deep-carbon host mineral in the lower part of the lower mantle. Specifically, extrapolations of our results show that low-spin ferromagnesite containing 20 mole% iron would be 0.6% smaller in volume and 7% denser than the end-member magnesite at relevant $P-T$ conditions of the subducted slabs. The relatively dense low-spin ferromagnesite likely becomes more stable than the high-spin counterpart and can promote partitioning of iron into the LS state making it an even denser and much more stable phase in the lower-mantle conditions (Badro et al. 2005; Irifune et al. 2010). Detailed knowledge of the thermodynamic parameters of the whole mineralogical assemblage of the lower mantle will be needed in order to fully explore the thermodynamic stability of the ferromagnesite in different spin states. Future studies of physical and chemical properties of the low-spin ferromagnesite with surrounding mineral assemblages such as ferropericlase and silicate perovskite at relevant $P-T$ conditions are still needed to understand the geophysical and geochemical consequences of the spin crossover in the lower mantle.
ACKNOWLEDGEMENTS

J. F. Lin acknowledges supports from the US National Science Foundation (EAR-1053446 and EAR-1056670), Energy Frontier Research Centers (EFree), and the Carnegie/DOE Alliance Center (CDAC). Synchrotron works of the study were performed at HPCAT of the APS, ANL. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. The authors also thank J. Wu, D. Fan, J. Yang, and B. Chen for constructive discussions.
Figure Captions

Figure 1. Representative X-ray diffraction patterns of magnesiosiderite \([(Mg_{0.35}Fe_{0.65})CO_3]\) measured from an EHDAC. Gold (Au) was used as the internal pressure calibrant (Fei et al. 2007a), while Neon (Ne) was used as the thermal insulator and pressure medium. The wavelength of the monochromatic X-ray beam was 0.3344 Å.

Figure 2. Representative X-ray diffraction patterns of magnesiosiderite \([(Mg_{0.35}Fe_{0.65})CO_3]\) at high pressures and 1200 K measured from a LHDAC. HS and LS states are labeled to illustrate the splitting of the diffraction peaks across the spin transition. Gold (Au) was used as the internal pressure calibrant (Fei et al. 2007a), while sodium chloride (NaCl) in B1 or B2 structure was used as the thermal insulator and pressure medium. The wavelength of the monochromatic X-ray beam was 0.3344 Å.

Figure 3. Pressure-volume relations of magnesiosiderite \([(Mg_{0.35}Fe_{0.65})CO_3]\) at high \(P-T\). Open circles: experimental measurements; lines: modeled results. The insert figure shows the volume difference between experimental results and the HS state reference.

Figure 4. Low-spin fraction of magnesiosiderite \([(Mg_{0.35}Fe_{0.65})CO_3]\) as a function of pressure compared with the fitting results. Open circles: experimental measurements; lines: fitting results. Vertical ticks represent the error for the low-spin fraction. Errors are calculated using standard error propagations from our modeled parameters.

Figure 5. Spin crossover of iron in magnesiosiderite \([(Mg_{0.35}Fe_{0.65})CO_3]\) at high \(P-T\). The color bar on the right represents the fraction of the LS state.
Figure 6. Thermal elastic parameters of magnesiosiderite \([(\text{Mg}_{0.35}\text{Fe}_{0.65})\text{CO}_3]\) at constant temperatures. \(\alpha\): thermal expansion coefficient; \(K_T\): isothermal bulk modulus; \(V_\Phi\): bulk sound velocity. Vertical ticks: representative errors (±1\(\sigma\)) for \(\alpha\), \(K_T\) and \(V_\Phi\), respectively.

Figure 7. Variations of thermal elastic parameters for the LS magnesiosiderite at constant temperatures using the HS state as the reference. \(\alpha\): thermal expansion coefficient; \(K_T\): isothermal bulk modulus; \(V_\Phi\): bulk sound velocity. Vertical ticks: representative errors.

Figure 8. Comparison of the low-spin fraction between magnesiosiderite and ferropericlase at high \(P-T\). Solid lines: magnesiosiderite; dashed lines: ferropericlase \([(\text{Mg}_{0.75}\text{Fe}_{0.25})\text{O}; \text{fp25}]\) (Mao et al. 2011).

Figure 9. Comparison of the spin transition pressures in (MgFe)\text{CO}_3 and (MgFe)\text{O} solid solution systems. Solid diamonds: (MgFe)\text{CO}_3 (Lavina et al. 2009, 2010a, 2010b; Nagai et al. 2010; Farfan et al. 2012; Lin et al. 2012), open circles: (MgFe)\text{O} (Badro et al. 2003; Speziale et al. 2005; Lin et al. 2005, 2006, 2007b; Keppler et al. 2007; Fei et al. 2007b; Crowhurst et al. 2008; Komabayashi et al. 2010; Mao et al. 2011).

Figure 10. Comparison of the thermal pressure-volume relations (a) and volume differences (b) between magnesiosiderite and magnesite (MgCO_3) at high \(P-T\). (a) Solid lines: the fitted thermal \(P-V\) curves of magnesiosiderite; dashed lines: the fitted thermal \(P-V\) curves of magnesite (Zhang et al. 1997; Litasov et al. 2008). Solid lines in (b) show
the volume differences across the spin transition using magnesite \((V_{\text{MgCO}_3}) \) as the reference. Vertical ticks: representative errors.

Figure 11. Comparison of the thermal pressure-density relations and density differences between magnesiosiderite and magnesite \((\text{MgCO}_3)\) at high \(P-T \). (a) Solid lines: fitted thermal \(P-\rho \) curves of magnesiosiderite; dashed lines: fitted thermal \(P-\rho \) curves of magnesite \((\text{Zhang et al. 1997; Litasov et al. 2008})\). Solid lines in (b) show the density differences across the spin transition using the HS magnesiosiderite as the reference; Solid lines in (c) show the density differences across the spin transition using magnesite \((\rho_{\text{MgCO}_3})\) as the reference. Vertical ticks: representative errors.
REFERENCES CITED

Revision 1: Magnesiosiderite Diffraction at high \(P-T \), AM, 7/15/2013

Revision 1: Magnesiosiderite Diffraction at high P-T, AM, 7/15/2013

Revision 1: Magnesiosiderite Diffraction at high P-T, AM, 7/15/2013

pressure research at GSECARS: application to the melting behavior of germanium.

High Pressure Research, 28(3), 225-235.

Revision 1: Magnesiosiderite Diffraction at high P-T, AM, 7/15/2013

TABLE 1. Thermal elastic parameters of the Fe-bearing magnesite [(MgFe)CO₃] in the high-spin state at ambient conditions. The thermal equation of state parameters were derived using the Birch-Murnaghan EOS when possible (Birch 1978). Literature values were refitted with the linear function for the thermal expansion coefficients in order to have more consistent systematic comparisons. Error bars represent one standard deviation in experimental uncertainties in our study.

<table>
<thead>
<tr>
<th>Source</th>
<th>V_0 (Å³)</th>
<th>K_{0T} (GPa)</th>
<th>K'_T</th>
<th>$\langle(\partial K/\partial T)_{dp}\rangle$ (GPa/K)</th>
<th>α_0 (10⁻⁵ K⁻¹)</th>
<th>α_1 (10⁻⁸ K⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study a</td>
<td>289.2 (±0.1)</td>
<td>109.2 (±1.3)</td>
<td>4.9 (±0.2)</td>
<td>-0.0262 (±0.0021)</td>
<td>2.79 (±0.21)</td>
<td>0.95 (±0.30)</td>
</tr>
<tr>
<td>Lin et al. (2012) a</td>
<td>289.1 (±0.1)</td>
<td>108 (±2)</td>
<td>4.8 (±0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavina et al. (2010b) b</td>
<td>294.4 (±0.3)</td>
<td>110 (±2)</td>
<td>4.6 (±0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavina et al. (2010a) c</td>
<td>281.0 (±0.5)</td>
<td>102.8 (±0.3)</td>
<td>5.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagai et al. (2010) d</td>
<td>293.5 (±0.1)</td>
<td>120 (±3)</td>
<td>4.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang et al. (1998) e</td>
<td>292.828 (±0.035)</td>
<td>117 (±1)</td>
<td>4*</td>
<td>-0.031 (±0.003)</td>
<td>1.76 (±0.35)</td>
<td>3.46 (±0.62)</td>
</tr>
<tr>
<td>Zhang et al. (1998) f</td>
<td>288.314 (±0.133)</td>
<td>112 (±1)</td>
<td>4*</td>
<td>-0.026 (±0.002)</td>
<td>2.09 (±0.23)</td>
<td>2.97 (±0.39)</td>
</tr>
<tr>
<td>Litasov et al. (2008) g</td>
<td>279.55 (±0.02)</td>
<td>97.1 (±0.5)</td>
<td>5.44 (±0.07)</td>
<td>-0.013 (±0.001)</td>
<td>4.03 (±0.07)</td>
<td>0.49 (±0.10)</td>
</tr>
<tr>
<td>Ishiki et al. (2004) h</td>
<td>279.32 (±0.015)</td>
<td>103 (±1)</td>
<td>4*</td>
<td>-0.021 (±0.002)</td>
<td>3.15 (±0.17)</td>
<td>2.32 (±0.28)</td>
</tr>
<tr>
<td>Fiquet et al. (2002) i</td>
<td>279.2 (±0.2)</td>
<td>108 (±3)</td>
<td>5.0 (±0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- (Fe₀.₆₅Mg₀.₃₃Mn₀.₀₂)CO₃; b (Fe₀.₉₆Mg₀.₀₄)CO₃; c (Mg₀.₈₇Fe₀.₁₂Ca₀.₀₁)CO₃; d (Fe₀.₇₃Mg₀.₂₂Mn₀.₀₅)CO₃;
- (Fe₀.₉₉₈Mn₀.₀₀₂)CO₃; e (Fe₀.₆₀Mg₀.₃₈Mn₀.₀₂)CO₃; f (Mg₀.₉₇Fe₀.₀₃Mn₀.₀₅Ca₀.₀₀₂)CO₃; g (Mg₀.₉₉₄Ca₀.₀₀₆)CO₃; h MgCO₃.

*Fixed
TABLE 2. Thermal elastic parameters of the low-spin magnesiosiderite. The thermal equation of state parameters were derived using the Birch-Murnaghan EOS (Birch 1978). Error bars represent one standard deviation in experimental uncertainties in our study.

<table>
<thead>
<tr>
<th></th>
<th>V_0 (Å3)</th>
<th>K_{0T} (GPa)</th>
<th>K_T^*</th>
<th>$(\partial K/\partial T)_{0P}$ (GPa/K)</th>
<th>a_0 (10^{-5} K$^{-1}$)</th>
<th>a_1 (10^{-8} K$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study (LS)*</td>
<td>265.1 (±3.2)</td>
<td>124.6 (±3.3)</td>
<td>5.3 (±0.2)</td>
<td>-0.0234 (±0.0052)</td>
<td>2.31 (±0.20)</td>
<td>0.14 (±0.09)</td>
</tr>
<tr>
<td>Lin et al. (2012)*</td>
<td>267 (±2)</td>
<td>127 (±5)</td>
<td>5.1 (±0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavina et al. (2009)*</td>
<td>263 (±3)</td>
<td>148 (±12)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (Fe$_{0.65}$Mg$_{0.33}$Mn$_{0.02}$)CO$_3$; * (Fe$_{0.72}$Mg$_{0.24}$Mn$_{0.03}$Ca$_{0.01}$)CO$_3$
Figure 1
Figure 2

Intensity (Arb. Unit)

71 GPa

55 GPa

43 GPa

21 GPa

2θ (Degree)
Figure 3

Unit Cell Volume (Å^3)

Pressure (GPa)

(V - V_{HS}) / V_{HS} (%)

Pressure (GPa)

300 K

450 K

600 K

750 K

1200 K
Figure 4
Figure 6
Figure 7
Figure 8
Figure 9

This figure shows the relationship between pressure (GPa) and the mole fraction of MgCO$_3$ and FeCO$_3$ in the system MgO-FeO. The data points are categorized into LS (low-temperature) and HS (high-temperature) conditions.
Figure 10

(a) MgCO$_3$ and (Mg$_{0.35}$Fe$_{0.65}$)CO$_3$ unit cell volume as a function of pressure at different temperatures.

(b) The relative volume change $(V - V_{MgCO_3}) / V_{MgCO_3}$ for MgCO$_3$ and (Mg$_{0.35}$Fe$_{0.65}$)CO$_3$ as a function of pressure.
Figure 11