| 1  | REVISION 1                                                                                                     |
|----|----------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                |
| 3  | Weddellite from renal stones: structure refinement and dependence of crystal chemical                          |
| 4  | features on H <sub>2</sub> O content.                                                                          |
| 5  |                                                                                                                |
| 6  | Alina Izatulina,* Vladislav Gurzhiy, and Olga Frank-Kamenetskaya                                               |
| 7  |                                                                                                                |
| 8  | Department of Geology, St.Petersburg State University, 199034, University emb. 7/9,                            |
| 9  | St.Petersburg, Russia. E-mail: alina.izatulina@mail.ru                                                         |
| 10 |                                                                                                                |
| 11 | Abstract                                                                                                       |
| 12 | The refinement of the structures of 17 weddellite crystals $(Ca(C_2O_4) \cdot (2+x)H_2O, I4/m, I4/m)$          |
| 13 | a = 12.329 - 12.378 Å, $c = 7.345 - 7.366$ Å, $V = 1117.8 - 1128.6$ Å <sup>3</sup> ) which were taken from the |
| 14 | oxalic renal stones of the St. Petersburg (Russian Federation) citizens of both sexes aged from 24             |
| 15 | to 65 years has been carried out by the means of single crystal X-ray diffraction ( $R_1 = 0.024$ –            |
| 16 | 0.057). According to the results of the study, the amount of "zeolitic" water molecules $(x)$ in the           |
| 17 | structure of weddellite varies from 0.13 to 0.37 p.f.u. A significant positive correlation between             |
| 18 | the amount of "zeolitic" water in the structure of weddellite and the closest interatomic distance             |
| 19 | between coordination water molecules in the large channels (OW1-OW1) was found as well as                      |
| 20 | positive correlation between the value of the <i>a</i> parameter and the average distance of $<$ Ca1 – O>      |
| 21 | in Ca polyhedron. Obtained linear regression equation: $x = 5.43a - 66.80$ , can be used for                   |
| 22 | determination of the "zeolitic" water amount using the known unit cell a parameter with mean-                  |
| 23 | root-square error $\pm 0.03$ p.f.u. It was found that the x value for the crystals selected from the           |
| 24 | "mono-weddellite" stones ( $x = 0.13 - 0.24$ ) are at the bottom of the range, thus we can assume              |
| 25 | that weddellite crystals with fewer "zeolitic" water amounts would be relatively stable.                       |

| 27 | Keywords: Weddellite, calcium oxalate, crystal structure, renal stones, biomineralogy                                                |
|----|--------------------------------------------------------------------------------------------------------------------------------------|
| 28 |                                                                                                                                      |
| 29 | Introduction                                                                                                                         |
| 30 | First samples of weddellite CaC <sub>2</sub> O <sub>4</sub> · (2 + x) H <sub>2</sub> O (x $\leq$ 0.5) were found in the sediments of |
| 31 | the Weddell Sea (Antarctica) in 1936 (Bannister et al. 1936). The classic form of weddellite                                         |
| 32 | crystals is a tetragonal bipyramid, flattened on [001], but sometimes the combination of the                                         |
| 33 | tetragonal bipyramid and pinacoid also occurs. Quite often, weddellite dehydrates to more stable                                     |
| 34 | whe<br>wellite – calcium oxalate monohydrate (CaC $_2O_4 \cdot H_2O$ ), forming excellent pseudomorphs of                            |
| 35 | granular whewellite after weddellite tetragonal dipyramids.                                                                          |
| 36 | In nature weddellite occurs in peat and calcareous lake sediments, in biofilms on the                                                |
| 37 | surface of limestone, in plants (Graustein et al. 1976, Frank-Kamenetskaya et al. 2012). As well,                                    |
| 38 | most part of the human urinary system stones consists of calcium oxalates both mono- and                                             |
| 39 | dihydrates (the amount of calcium oxalate stones is up to 75% depending on the region) (Korago                                       |
| 40 | 1992, Izatulina & Yelnikov 2008). Although the results of thermodynamic calculations show that                                       |
| 41 | whewellite is the stable calcium oxalate phase under physiological conditions (Yelnikov et al.                                       |
| 42 | 2007), the frequency of weddellite occurrence in oxalate uroliths is rather significant. According                                   |
| 43 | to our collection (more than 1000 renal stones), 46% of samples contain weddellite, and 5% are                                       |
| 44 | mono-weddellite. Quite often a rhythmic alternation of whewellite and weddellite (Fig. 1) is                                         |
| 45 | detected in renal stones that indicate a sudden and periodic change in the stone formation                                           |
| 46 | conditions.                                                                                                                          |
| 47 | The first data on the crystal structure of weddellite were obtained by Sterling (1965). In                                           |
| 48 | course of this study the partially occupied position of "zeolite" water molecules in the structural                                  |
| 49 | canals was localized, thus it was shown that the amount of water molecules in the structure of                                       |
| 50 | weddellite may vary up to 2.5 molecules per formula unit. Subsequently, Tazzoli and                                                  |
| 51 | Domenegetti (1980) refined structural data ( $x = 0.37$ ) and revealed a disordered distribution of                                  |
| 52 | "zeolitic" water molecules along the z axis (split position of the oxygen atom into two                                              |

| 53                                                                                                                                 | crystallographically independent positions). Based on the results of the structure refinement of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 54                                                                                                                                 | the two weddellite crystals from the renal stones (Izatulina & Yelnikov 2008) and the data from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 55                                                                                                                                 | Tazzoli and Domenegetti (1980), we have preliminary estimated the range of variation in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 56                                                                                                                                 | amount of water in the structure of weddellite (from 2.13 to 2.37 molecules per formula unit) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 57                                                                                                                                 | a direct relationship between the $x$ value and the value of $a$ unit cell parameter was found at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 58                                                                                                                                 | trends.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 59                                                                                                                                 | As the continuation of the research we carried out a representative series of crystal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 60                                                                                                                                 | structure investigation experiments to clarify the range of $x$ , to analyze the effect of water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 61                                                                                                                                 | amount and its distribution on the geometry of the weddellite structure and to get a regression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 62                                                                                                                                 | equation to estimate the amount of water in the structure of weddellite according to the $a$ unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 63                                                                                                                                 | cell parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 64                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 65                                                                                                                                 | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 66                                                                                                                                 | 17 isometric colorless transparent crystals were taken from the oxalic renal stones of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 67                                                                                                                                 | St. Detershung (Duggion Enderstion) sitizang of both gaves aged from 24 to 65 years (callection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                    | St. Petersburg (Russian Federation) citizens of both sexes aged from 24 to 65 years (conection of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 68                                                                                                                                 | the Chair of Crystallography, St. Petersburg State University). The stones were removed for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 68<br>69                                                                                                                           | the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 68<br>69<br>70                                                                                                                     | St. Petersburg (Russian Federation) chizens of both sexes aged from 24 to 65 years (conection of<br>the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that<br>the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 68<br>69<br>70<br>71                                                                                                               | St. Petersburg (Russian Federation) chizens of both sexes aged from 24 to 65 years (conection of<br>the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that<br>the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were<br>selected from the stones of different phase composition, as well as from different zones of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ol> <li>68</li> <li>69</li> <li>70</li> <li>71</li> <li>72</li> </ol>                                                             | St. Petersburg (Russian Federation) chizens of both sexes aged from 24 to 65 years (conection of<br>the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that<br>the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were<br>selected from the stones of different phase composition, as well as from different zones of a<br>stone. Mineral component of the <b>1</b> , <b>6-8</b> and <b>10</b> sample stones presented mostly by weddellite,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>68</li> <li>69</li> <li>70</li> <li>71</li> <li>72</li> <li>73</li> </ul>                                                 | St. Petersburg (Russian Federation) chizens of both sexes aged from 24 to 65 years (conection of<br>the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that<br>the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were<br>selected from the stones of different phase composition, as well as from different zones of a<br>stone. Mineral component of the <b>1</b> , <b>6-8</b> and <b>10</b> sample stones presented mostly by weddellite,<br>whether the other stones contain of whewellite and weddellite mixture in different ratio. In the <b>3</b> ,                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>68</li> <li>69</li> <li>70</li> <li>71</li> <li>72</li> <li>73</li> <li>74</li> </ol>                                     | <ul> <li>St. Petersburg (Russian Pederation) citizens of both sexes aged from 24 to 65 years (conection of the Chair of Crystallography, St. Petersburg State University). The stones were removed for medical reasons in various medical institutions of St. Petersburg. To verify the assumption that the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were selected from the stones of different phase composition, as well as from different zones of a stone. Mineral component of the 1, 6-8 and 10 sample stones presented mostly by weddellite, whether the other stones contain of whewellite and weddellite mixture in different ratio. In the 3, 5, 8, 12 and 14 sample stones there are small amounts of hydroxylapatite. The mineral</li> </ul>                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>68</li> <li>69</li> <li>70</li> <li>71</li> <li>72</li> <li>73</li> <li>74</li> <li>75</li> </ol>                         | St. Petersburg (Russian Pederation) entitients of both sexes aged from 24 to 65 years (conection of<br>the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that<br>the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were<br>selected from the stones of different phase composition, as well as from different zones of a<br>stone. Mineral component of the <b>1</b> , <b>6-8</b> and <b>10</b> sample stones presented mostly by weddellite,<br>whether the other stones contain of whewellite and weddellite mixture in different ratio. In the <b>3</b> ,<br><b>5</b> , <b>8</b> , <b>12</b> and <b>14</b> sample stones there are small amounts of hydroxylapatite. The mineral<br>composition of the studied renal stones was determined by the means of powder XRD method                                                                                                                                                                     |
| <ol> <li>68</li> <li>69</li> <li>70</li> <li>71</li> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> </ol>             | St. Petersburg (Russian Pederation) entited of both sexes aged from 24 to 65 years (contection of<br>the Chair of Crystallography, St. Petersburg State University). The stones were removed for<br>medical reasons in various medical institutions of St. Petersburg. To verify the assumption that<br>the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were<br>selected from the stones of different phase composition, as well as from different zones of a<br>stone. Mineral component of the <b>1</b> , <b>6-8</b> and <b>10</b> sample stones presented mostly by weddellite,<br>whether the other stones contain of whewellite and weddellite mixture in different ratio. In the <b>3</b> ,<br><b>5</b> , <b>8</b> , <b>12</b> and <b>14</b> sample stones there are small amounts of hydroxylapatite. The mineral<br>composition of the studied renal stones was determined by the means of powder XRD method<br>using Rigaku Miniflex II diffractometer. Samples were measured at a room temperature using                                                                         |
| <ol> <li>68</li> <li>69</li> <li>70</li> <li>71</li> <li>72</li> <li>73</li> <li>74</li> <li>75</li> <li>76</li> <li>77</li> </ol> | St. Petersburg (Russian Pederation) entities of both sexes aged from 24 to 65 years (conection of the Chair of Crystallography, St. Petersburg State University). The stones were removed for medical reasons in various medical institutions of St. Petersburg. To verify the assumption that the amount of "zeolitic" water could be a criterion of weddellite "stability", crystals were selected from the stones of different phase composition, as well as from different zones of a stone. Mineral component of the <b>1</b> , <b>6-8</b> and <b>10</b> sample stones presented mostly by weddellite, whether the other stones contain of whewellite and weddellite mixture in different ratio. In the <b>3</b> , <b>5</b> , <b>8</b> , <b>12</b> and <b>14</b> sample stones there are small amounts of hydroxylapatite. The mineral composition of the studied renal stones was determined by the means of powder XRD method using Rigaku Miniflex II diffractometer. Samples were measured at a room temperature using monochromated Cu <i>Ka</i> radiation at 30 kV and 15mA in the 20 range of 10.00–60.00°. Beside the |

9/11

80

81 Single crystal X-ray analysis

82 The weddellite crystal structure investigations (17 samples) were conducted by the means 83 of single crystal X-ray diffraction analysis using Bruker Smart diffractometer, equipped with the 84 planar type APEX II CCD (charge-coupled device) detector, and STOE IPDS II diffractometer, 85 equipped with a 2-D X-ray sensitive plate with optical memory (Image Plate). Crystals of 1 - 1786 were measured at a room temperature using monochromated MoK $\alpha$  radiation. The unit cell 87 parameters (Table 1) were refined by least square techniques using reflections in the  $2\theta$  range of 88  $4.00-60.00^{\circ}$ . The structures have been solved by the direct methods and refined in the 89 anisotropic approximation of thermal parameters for non hydrogen atoms using SHELX-97 90 program (Sheldrick 2008). Positions of H atoms were localized objectively and refined without 91 restrictions with individual isotropic temperature parameters. For the crystals measured at STOE 92 diffractometer absorption correction was introduced using X-RED program by numerical 93 integration taking into account the experimentally determined and optimized crystal shape by X-94 SHAPE algorithm (Stoe & Cie 2005). For the crystals measured at Bruker diffractometer 95 absorbance correction was applied using SADABS program (Sheldrick 2004). Selected bond 96 lengths and angles for 1 - 17 are listed in Tables 2-4. Atomic coordinates and displacement 97 parameters for all atoms in the structures of 1 - 17 as well as other crystallographic data are on 98 deposit provided as a CIF. 99 100 Results and discussion 101 Structure description 102 Calcium oxalate dihydrate crystallizes in tetragonal I4/m space group. The main

- 103 "building" block of the weddellite structure (Fig. 2) is the Ca-polyhedra slightly distorted
- square antiprism. There is one crystallographically independent Ca atom in the structure that

105 form eight bonds with oxygen atoms (Table 2): six O atoms belong to four equivalent oxalate 106 groups (four bonds with O1 and two with O2 atoms) and two more water molecules (OW1 and 107 OW2). Each Ca polyhedron share common O1 - O1 edges with two neighbor polyhedra to form 108 infinite chains of square antiprisms arranged along the [001] direction. These chains connected 109 with each other via ...  $C_2O_4 - H_2O - C_2O_4$ ... complexes arranged parallel to (100) plane (Fig. 110 3). The oxalate groups and water molecules of the complexes connected by hydrogen bonding 111  $OW1 - H1 \cdots O2$  and  $OW2 - H2 \cdots O2$  (Table 3). 112 Rotation of Ca polyhedra chains and water – oxalate complexes around the fourfold axis

113 results in formation of two types of channels in the structure of weddellite arranged along the c 114 axis and differ in internal diameter. The walls of the larger channels passing through the origin 115 and center of the unit cell, formed by water molecules OW1 (four OW1 molecules arranged in 116 the plane parallel to (001) to form a regular square with an edge  $OW1 - OW1 \sim 3.2$  Å and 117 diagonal distance  $\sim 4.6$  Å). At the center of the large channels there are "zeolitic" water 118 molecules arranged on the fourfold axis, the position of the oxygen atom of which are split into 119 two independent similar and substantially vacant positions (OW3 and OW31), separated by a 120 distance  $\sim 0.6$  Å. The hydrogen atoms of the "zeolitic" water molecules were not localized at the 121 difference Fourier synthesis which allows us to suggest that the protons are distributed 122 statistically. Large channels filled with "zeolitic" water, alternate with empty channels of smaller 123 diameter, which pass through the center of the unit cell edges parallel to the a and b axes. The 124 diameter of the channel ( $\sim 3.0$  Å) determined by the distance between the OW2 molecules 125 localized in it. 126 C1 - C1 bond length in the oxalate groups arranged along the c axis, vary from 1.549 to 127 1.557 Å, and the average bond length <C1 – O> are in the range of 1.245 – 1.250 Å (Table 4).

- 128 The distance between the oxygen atoms of the "zeolitic" water (OW3 and OW31) and
- 129 oxygen atoms OW1 located in the same channel ( $\sim 3.5-3.1$  Å) are close to the distance OW1-
- 130 OW1 (~ 3.2-3.3 Å), thus it could be described as the presence of slightly distorted octahedral

| 131 | groups (with the bases formed by OW1 atoms, and apical vertices by OW3/OW31) as well as the            |
|-----|--------------------------------------------------------------------------------------------------------|
| 132 | square complexes of oxygen OW1 atoms in the large channels. The OW3 – OW1 distance (~ $3.5$            |
| 133 | Å) is significantly longer than the distance OW31 –OW1 (3.1 Å) presumably because the                  |
| 134 | structure tend to implement sustainable clusters of water molecules due to the "zeolitic" water        |
| 135 | position splitting (the appearance of OW31 position). The presence of a prohibited distance            |
| 136 | between oxygen atoms OW3, linked through the inversion center (1.9 - 2.2 Å), indicate that the         |
| 137 | centrosymmetricity of the weddellite structure realizes only statistically.                            |
| 138 |                                                                                                        |
| 139 | Effect of "zeolitic" water amount variation on the geometry of the weddellite structure                |
| 140 | As the amount of "zeolitic" water molecules in the structure of weddellite increases the               |
| 141 | value of $(OW1)_4$ : $(OW1)_4(OW3/OW31)_2$ ratio decreases from ~ 7 to ~ 2, according to the ratio     |
| 142 | of the respective positions occupation. There is a significant positive correlation (Fig. 4) between   |
| 143 | the amount of "zeolitic" water in the structure of weddellite ( $x = 0.13 - 0.37$ p.f.u.) and the      |
| 144 | closest interatomic distance $OW1-OW1 = 3.211 - 3.279$ Å (edge of the OW1-based square                 |
| 145 | complex).                                                                                              |
| 146 | The displacement of the oxygen OW1 atoms (Fig. 5), arranged in the plane of symmetry,                  |
| 147 | with the increase of $x$ values, leads to changes in other interatomic distances. The average          |
| 148 | distance $<$ Ca1 – O> varies from 2.453 to 2.460 Å with the increase of <i>x</i> . The shortest bond   |
| 149 | length with OW1 oxygen atoms vary from 2.390 to 2.395 Å. Longer bond length with the OW2               |
| 150 | atoms vary from 2.445 to 2.457 Å. Bond lengths with oxygen atoms of oxalate groups fall in the         |
| 151 | range: Ca1 – O1 = $2.453 - 2.463$ Å and $2.494 - 2.506$ Å; Ca1 – O2 = $2.445 - 2.449$ Å.               |
| 152 | Changes in the interatomic distances and, especially, the increase in the bond lengths in              |
| 153 | the (001) plane, leads to significant variations in the values of the unit cell parameters (Table 1).  |
| 154 | The <i>a</i> parameter increases significantly than others (from 12.329 to 12.378 Å) and considerable  |
| 155 | positive correlation observed between the value of the <i>a</i> parameter and the occupancy of         |
| 156 | "zeolitic" water positions (Fig. 6). Obtained linear regression equation: $x = 5.43a - 66.80$ , can be |

157 used for determination of the "zeolitic" water amount (x) using the known unit cell *a* parameter 158 with mean-root-square error  $\pm 0.03$  p.f.u (if standard error of a parameter determination  $\leq 0.001$ 159 Å). A significant positive correlation is also observed between the value of the *a* parameter and 160 the average distance of  $\langle Cal - O \rangle$  (Fig. 7), which is well explained by the changes in the Ca-161 polyhedron bond lengths with an increase of the amount of "zeolitic" water in the structure, that 162 is discussed above. The c unit cell parameter in the structures fall in the range of 7.345-7.366 Å, 163 but the regular changes of this parameter with the amount of "zeolitic" water have not been 164 identified. 165 Thus, the crystal structures of 17 weddellite crystals  $CaC_2O_4 \cdot (2 + x) H_2O$  which were

166taken from the oxalic renal stones of the St. Petersburg (Russian Federation) citizens of both167sexes aged from 24 to 65 years were refined to  $R_1 = 0.024 - 0.057$ . According to the results of168the study and the available literature data, the amount of "zeolitic" water molecules (x) in the169structure of weddellite varies from 0.13 to 0.37 p.f.u. As the number of "zeolitic" water170molecules in the structure increase, the amount of octahedral water complexes and the size of the171calcium polyhedra increase too. Channels along the *c* axis expand and unit cell parameters172increase with the growth of *x* value as well.

173 An interesting result is that the *x* value for the crystals from "mono-weddellite" stones 174 fall in the range of 0.13 - 0.24 p.f.u. In the recent paper Conti et al. 2010 suggests that there is a 175 range of water whereby weddellite crystals are stable, while the increase and decrease of the 176 water amount leads to the destruction of crystals. It is also known (Frank-Kamenetskaya et al. 177 2012) that for the weddellite crystals formed by the influence of microscopic fungi (Aspergillus 178 *niger* strain, active producer of organic acids) x = 0.10 - 0.24. Such weddellite could be 179 considered relatively stable, since it is stored in the dried sludge. Whereas crystals obtained in 180 our experiments, transforms to whewellite after drying the precipitate. The x value determined 181 for the weddellite crystals obtained in the presence of bacteria and viruses from the equation 182 suggested above varies from 0.21 to 0.28 p.f.u. Thus perhaps the weddellite in oxalate renal

183 stones (Fig. 1), substituted for calcium oxalate monohydrate, was formed during inflammatory

184 processes.

185

## Implications

186 Calcium oxalates are one of the most common pathogenic entities. They are the part of 187 humans, cats and dogs kidney stones, and also found in pathogenic entities in the human lungs. 188 Along with stable calcium oxalate monohydrate, such entities often contain metastable 189 weddellite. Being in the body and during subsequent retrieval the bipyramidal weddellite crystals 190 injure living tissues. Low concentrations of various impurities among the factors that change the 191 stability of weddellite, which themselves or indirectly through the entry of water into the 192 structure during the calcium oxalate crystallization, could strongly shift the phase equilibrium, 193 change the crystallization kinetics and, therefore, significantly affect the formation of calcium 194 oxalates in the human body. Thus, the study of weddellite crystal structure and its stability under 195 different conditions should expand the knowledge on pathogenic crystal growth processes in 196 living organisms and the development of the theory of oxalate stone formation in humans and 197 animals. Such studies are considered as the building blocks underlying the biomolecular 198 technologies for prevention and treatment of diseases associated with lithiasis. 199 200 201 Acknowledgments 202 This work was supported by RFBR (grant 12-05-31415). XRD studies had been 203 performed at the X-ray Diffraction Centre of St.Petersburg State University.

| 205 | References cited                                                                                         |
|-----|----------------------------------------------------------------------------------------------------------|
| 206 | Bannister, F.A. and Hey, M.H. (1936) Report on some Crystalline Components of the                        |
| 207 | Weddell Sea Deposits. Discovery Reports, Cambridge University press, 19, 60-69.                          |
| 208 | Conti, C., Brambilla, L., Colombo, C., Dellasega, D., Diego, G.G., Realinia, M. and                      |
| 209 | Zerbib, G. (2010) Stability and transformation mechanism of weddellite nanocrystals studied by           |
| 210 | X-ray diffraction and infrared spectroscopy. Physical Chemistry Chemical Physics, 12, 14560-             |
| 211 | 14566.                                                                                                   |
| 212 | Frank-Kamenetskaya, O., Rusakov, A., Barinova, K., Zelenskaya, M. and Vlasov D.                          |
| 213 | (2012) The formation of oxalate patina on the surface of carbonate rocks under influence of              |
| 214 | microorganisms. Proceedings of the 10 <sup>th</sup> International congress of Applied Mineralogy (ICAM), |
| 215 | Springer Verlag, 213-220.                                                                                |
| 216 | Graustein, W. C., Cromack, K. JR., and Sollins, E. (1977) Calcium Oxalate: Occurrence                    |
| 217 | in Soils and Effect on Nutrient and Geochemical Cycles. Science, 23,1252-1254.                           |
| 218 | Yelnikov, V.Yu., Rosseeva, E.V., Golovanova, O.A., Frank-Kamenetskaya, O.V. (2007)                       |
| 219 | Thermodynamic and experimental modeling of the formation of major mineral phases of                      |
| 220 | uroliths. Russian Journal of Inorganic Chemistry, 52, 150-157.                                           |
| 221 | Izatulina, A.R. and Yelnikov, V.Yu. (2008) Structure, chemistry and crystallization                      |
| 222 | conditions of calcium oxalates - the main components of kidney stones. Minerals as Advanced              |
| 223 | Materials I, Springer Verlag, 190-197.                                                                   |
| 224 | Izatulina, A.R., Punin, Yu.O., Stukenberg, A.G., Frank-Kamenetskaya, O.V., and                           |
| 225 | Gurzhiy, V.V. (2012) The factors affecting formation and stability of calcium oxalates, the main         |
| 226 | crystalline phases of kidney stones. Minerals as Advanced Materials II, Springer Verlag, 415-            |
| 227 | 424.                                                                                                     |
| 228 | Korago, A.A. (1992) Introduction to Biomineralogy. Nedra, St.Petersburg, (in russian).                   |
| 229 | Sheldrick, G.M. (2004) SADABS. University of Göttingen, Germany.                                         |

| 230 |      | Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112- |
|-----|------|------------------------------------------------------------------------------------|
| 231 | 122. |                                                                                    |

- 232 Sterling, C. (1965) Crystal-structure analysis of weddellite, CaC<sub>2</sub>O<sub>4</sub>·(2+x)H<sub>2</sub>O. Acta
- 233 *Crystallographica*, 18, 917-921.

234 Stoe & Cie (2005) X-Area and X-Red. Stoe & Cie, Darmstadt, Germany.

- 235 Tazzoli, V. and Domeneghetti, C. (1980) The crystal structures of whewellite and
- weddellite: re-examination and comparison. American Mineralogist, 65, 327-334.

## This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4536

Table 1. Crystallographic data and refinement parameters for the examined weddellite crystal structures (1 - 17). Space group *I*4/*m*, Z=8, MoK $\alpha$ .

| 4 | 23 | 8 |
|---|----|---|
| 2 | 23 | 9 |

| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2             | 3             | 4             | 5             | 6             | 7             | 8             | 9             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--|--|--|
| <i>a</i> (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.3363(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.3543(13)   | 12.3462(11)   | 12.3530(5)    | 12.3528(5)    | 12.3542(5)    | 12.3565(5)    | 12.3443(14)   | 12.3573(6)    |  |  |  |
| <i>c</i> (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.3448(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.3547(9)     | 7.3535(7)     | 7.3594(3)     | 7.3569(3)     | 7.3604(3)     | 7.3592(3)     | 7.3599(8)     | 12.3573(6)    |  |  |  |
| $V(Å^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1117.8(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1122.5(2)     | 1120.88(18)   | 1123.02(8)    | 1122.60(8)    | 1123.39(8)    | 1123.63(8)    | 1121.5(2)     | 1123.69(10)   |  |  |  |
| $\mu$ (mm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.081         | 1.083         | 1.081         | 1.081         | 1.080         | 1.080         | 1.082         | 1.081         |  |  |  |
| $D_{\text{calc}} (\text{g/cm}^3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.980         | 1.982         | 1.980         | 1.980         | 1.978         | 1.979         | 1.983         | 1.984         |  |  |  |
| Diffractometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stoe IPDS II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stoe IPDS II  | Stoe IPDS II  | Bruker Smart  | Bruker Smart  | Bruker Smart  | Bruker Smart  | Stoe IPDS II  | Bruker Smart  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               | Apex II       | Apex II       | Apex II       | Apex II       |               | Apex II       |  |  |  |
| Crystal size (mm <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.32×0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.30×0.24     | 0.28×0.22     | 0.24×0.18     | 0.22×0.15     | 0.23×0.19     | 0.21×0.17     | 0.35×0.27     | 0.25×0.22     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×0.19         | ×0.16         | ×0.16         | ×0.13         | ×0.16         | ×0.12         | ×0.21         | ×0.17         |  |  |  |
| Total reflections<br>with $I > 2\sigma(I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6502          | 6609          | 7554          | 8769          | 7504          | 5051          | 5254          | 8596          |  |  |  |
| Unique reflections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1030          | 1032          | 885           | 1081          | 885           | 885           | 815           | 1081          |  |  |  |
| Angle range $2\theta$ , °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.66-63.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.44-63.80    | 4.66-63.82    | 4.66–59.96    | 4.66-64.86    | 4.66–59.96    | 4.66–59.96    | 4.66–58.72    | 4.66-62.84    |  |  |  |
| Reflections with $ F_{\rm o}  \ge 4\sigma_F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 901           | 909           | 778           | 974           | 791           | 756           | 646           | 913           |  |  |  |
| R <sub>int</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0501        | 0.0433        | 0.0287        | 0.0280        | 0.0267        | 0.0350        | 0.0502        | 0.0351        |  |  |  |
| $R_{\sigma}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0251        | 0.0222        | 0.0172        | 0.0154        | 0.0147        | 0.0246        | 0.0336        | 0.0223        |  |  |  |
| $R_1 ( F_o  \ge 4\sigma_F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0519        | 0.0435        | 0.0259        | 0.0250        | 0.0248        | 0.0271        | 0.0344        | 0.0259        |  |  |  |
| $wR_2( F_0  \ge 4\sigma_F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0924        | 0.0782        | 0.0751        | 0.0661        | 0.0724        | 0.0752        | 0.0643        | 0.0684        |  |  |  |
| $R_1$ (all data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0629        | 0.0538        | 0.0295        | 0.0283        | 0.0279        | 0.0324        | 0.0543        | 0.0321        |  |  |  |
| $wR_2$ (all data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0966        | 0.0818        | 0.0769        | 0.0680        | 0.0740        | 0.0777        | 0.0690        | 0.0713        |  |  |  |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.093         | 1.085         | 1.061         | 1.076         | 1.062         | 0.997         | 1.011         | 1.077         |  |  |  |
| $ ho_{ m min},  ho_{ m max}, e/{ m \AA}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.535, 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.581, 0.507 | -0.397, 0.491 | -0.364, 0.377 | -0.276, 0.531 | -0.397, 0.426 | -0.358, 0.429 | -0.422, 0.460 | -0.297, 0.492 |  |  |  |
| $R_{1} = \Sigma   F_{o}  -  F_{c}   / \Sigma  F_{o}  $<br>$w = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} - (a$ | $ R_1 = \Sigma  F_0  -  F_c  /\Sigma F_0 ; wR_2 = \{\Sigma[w(F_0^2 - F_c^2)^2]/\Sigma[w(F_0^2)^2]\}^{1/2};$<br>$w = 1/(F_c^2/F_c^2)^2 + (pR_c^2 + pR_c^2)^2 + (pR_c^2)^2 + $ |               |               |               |               |               |               |               |               |  |  |  |

## This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4536

## 240 Table 1. Continue.

| Sample                                          | 10                                                    | 11                                                  | 12                            | 13                               | 14                | 15                   | 16                | 17 242                  |
|-------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------|----------------------------------|-------------------|----------------------|-------------------|-------------------------|
| a (Å)                                           | 12.3558(7)                                            | 12.3576(8)                                          | 12.3567(6)                    | 12.3530(5)                       | 12.363(2)         | 12.3620(5)           | 12.3627(6)        | 12.3783(8) 243          |
| <i>c</i> (Å)                                    | 7.3601(4)                                             | 7.3578(5)                                           | 7.3573(3)                     | 7.3603(3)                        | 7.3460(17)        | 7.3574(3)            | 7.3574(3)         | 7.3659(5) 244           |
| $V(Å^3)$                                        | 1123.64(11)                                           | 1123.61(13)                                         | 1123.37(9)                    | 1124.83(7)                       | 1122.7(4)         | 1124.35(8)           | 1124.48(9)        | 1128.62(13)245          |
| $\mu$ (mm <sup>-1</sup> )                       | 1.080                                                 | 1.081                                               | 1.082                         | 1.080                            | 1.082             | 1.081                | 1.081             | 1.079 245               |
| $D_{\text{calc}} (\text{g/cm}^3)$               | 1.978                                                 | 1.980                                               | 1.991                         | 1.988                            | 1.992             | 1.991                | 1.994             | 1.997 240               |
| Diffractometer                                  | Bruker Smart                                          | Bruker Smart                                        | Bruker Smart                  | Bruker Smart                     | Stoe IPDS II      | Bruker Smart         | Bruker Smart      | Bruker Smart            |
|                                                 | Apex II                                               | Apex II                                             | Apex II                       | Apex II                          |                   | Apex II              | Apex II           | Apex II 248             |
| Crystal size (mm <sup>3</sup> )                 | 0.29×0.21                                             | 0.21×0.18                                           | 0.28×0.22                     | 0.29×0.22                        | 0.33×0.29         | 0.24×0.20            | 0.34×0.31         | 0.32×0.24 × <b>0.49</b> |
|                                                 | ×0.15                                                 | ×0.15                                               | ×0.16                         | ×0.18                            | ×0.21             | ×0.16                | ×0.22             | 250                     |
| Total reflections                               | 7511                                                  | 4960                                                | 5508                          | 5844                             | 5150              | 5046                 | 5070              | 5039 251                |
| with $I > 2\sigma(I)$                           |                                                       |                                                     |                               |                                  |                   |                      |                   | 252                     |
| Unique reflections                              | 885                                                   | 885                                                 | 885                           | 1082                             | 815               | 887                  | 887               | <sup>891</sup> 253      |
| Angle range $2\theta$ , °                       | 4.66–59.96                                            | 4.66–59.98                                          | 4.66–59.98                    | 4.66–59.96                       | 6.44–58.62        | 4.66–59.98           | 4.66–59.98        | 4.66-60.00 254          |
| Reflections with                                | 825                                                   | 754                                                 | 812                           | 976                              | 683               | 772                  | 774               | 767 255                 |
| $ F_{o}  \ge 4\sigma_{F}$                       |                                                       |                                                     |                               |                                  |                   |                      |                   | 256                     |
| R <sub>int</sub>                                | 0.0252                                                | 0.0273                                              | 0.0262                        | 0.0222                           | 0.0754            | 0.0259               | 0.0277            | 0.0302 257              |
| $R_{\sigma}$                                    | 0.0116                                                | 0.0202                                              | 0.0147                        | 0.0158                           | 0.0419            | 0.0199               | 0.0207            | 0.0224 258              |
| $R_1 ( F_o  \ge 4\sigma_F)$                     | 0.0240                                                | 0.0242                                              | 0.0240                        | 0.0259                           | 0.0415            | 0.0256               | 0.0256            | 0.0251 259              |
| $wR_2( F_o  \ge 4\sigma_F)$                     | 0.0659                                                | 0.0651                                              | 0.0651                        | 0.0722                           | 0.0769            | 0.0717               | 0.0712            | 0.0664 260              |
| $R_1$ (all data)                                | 0.0256                                                | 0.0297                                              | 0.0263                        | 0.0295                           | 0.0568            | 0.0299               | 0.0300            | 0.0304 261              |
| $wR_2$ (all data)                               | 0.0670                                                | 0.0672                                              | 0.0664                        | 0.0757                           | 0.0815            | 0.0739               | 0.0734            | 0.0691 262              |
| S                                               | 1.070                                                 | 1.092                                               | 1.119                         | 0.996                            | 1.106             | 1.063                | 1.073             | 1.076 263               |
| $\rho_{\rm min}, \rho_{\rm max}, e/{\rm \AA}^3$ | -0.250, 0.485                                         | -0.285, 0.387                                       | -0.226, 0.425                 | -0.290, 0.508                    | -0.424, 0.366     | -0.245, 0.525        | -0.309, 0.452     | -0.333, 0.40464         |
| $R_1 = \Sigma   F_0  -  F_c   / \Sigma  F $     | $wR_2 = \{\Sigma[w(F_0^2)]\}$                         | $-F_{\rm c}^{2})^{2}]/\Sigma[w(F_{\rm o}^{2})^{2}]$ | 1/2 <b>,</b>                  |                                  |                   |                      |                   | 203                     |
| $w = 1/[\sigma^2(F_o^2) + (aP)^2]$              | + bP], where $P = (P =$ | $F_{\rm o}^2 + 2F_{\rm c}^2)/3; s = \{\Sigma$       | $E[w(F_o^2 - F_c^2)]/(n - 1)$ | $\{-p\}^{1/2}$ where <i>n</i> is | the number of ref | flections and $p$ is | the number of ref | inement 266             |
| parameters.                                     |                                                       |                                                     |                               |                                  |                   |                      |                   | 267                     |

Table 2. Calcium atom polyhedron: bond lengths (Å) for 1 - 17.

| Sample    | Cal – OW1  | Cal – OW2  | Ca1 – O2   | Ca1 – O1   | Ca1 – O1   | <ca1 o="" –=""></ca1> |
|-----------|------------|------------|------------|------------|------------|-----------------------|
|           |            |            | x2         | x2         | x2         |                       |
| 1         | 2.392(3)   | 2.448(3)   | 2.4449(18) | 2.4528(16) | 2.4945(15) | 2.453                 |
| x = 0.133 |            |            |            |            |            |                       |
| 2         | 2.391(3)   | 2.454(3)   | 2.4455(19) | 2.4576(17) | 2.4994(16) | 2.457                 |
| x = 0.190 |            |            |            |            |            |                       |
| 3         | 2.391(3)   | 2.449(3)   | 2.4453(16) | 2.4568(14) | 2.4977(13) | 2.455                 |
| x = 0.192 |            |            | ( )        | ( )        | ( )        |                       |
| 4         | 2.3942(16) | 2.4479(17) | 2.4488(11) | 2.4583(9)  | 2.5022(9)  | 2.458                 |
| x = 0.192 |            |            |            |            |            |                       |
| 5         | 2.3937(14) | 2.4498(15) | 2.4470(9)  | 2.4588(8)  | 2,4985(8)  | 2.457                 |
| x = 0.197 | ( )        | ( )        |            |            |            |                       |
| 6         | 2.3950(15) | 2.4486(16) | 2.4486(10) | 2.4592(9)  | 2.5013(9)  | 2.458                 |
| x = 0.199 |            |            |            |            |            |                       |
| 7         | 2.3932(17) | 2.4489(18) | 2.4486(11) | 2.4598(10) | 2.5017(9)  | 2.458                 |
| x = 0.199 | ,          | ()         |            | ,          |            |                       |
| 8         | 2.390(2)   | 2.446(3)   | 2.4461(16) | 2,4571(14) | 2.5010(13) | 2.456                 |
| x = 0.213 | , (_)      | (c)        | ()         | ,          |            |                       |
| 9         | 2.3933(15) | 2.4494(16) | 2.4473(10) | 2.4603(9)  | 2.5010(9)  | 2.457                 |
| x = 0.230 | ,()        | , .()      |            | ()         |            | ,                     |
| 10        | 2.3941(15) | 2.4492(16) | 2.4479(10) | 2,4594(9)  | 2.5010(9)  | 2.457                 |
| x = 0.237 |            |            |            |            |            |                       |
| 11        | 2.3930(16) | 2.4495(17) | 2.4469(10) | 2.4607(9)  | 2.5006(9)  | 2.457                 |
| x = 0.257 |            |            |            |            |            |                       |
| 12        | 2.3915(15) | 2.4506(16) | 2.4468(10) | 2,4593(9)  | 2.5001(9)  | 2.457                 |
| x = 0.257 | ,()        |            | ()         | ()         |            | ,                     |
| 13        | 2 3951(15) | 2 4522(16) | 2 4477(10) | 2 4604(8)  | 2 5016(8)  | 2 458                 |
| x = 0.262 | 2.5951(15) | 2.1022(10) | 2.1177(10) | 2.1001(0)  | 2.0010(0)  | 2.150                 |
| 14        | 2394(3)    | 2 452(3)   | 2 4450(18) | 2 4568(16) | 2 4970(15) | 2 4 5 5               |
| x = 0.267 | 2.591(5)   | 2.152(5)   | 2.1100(10) | 2.1500(10) | 2.1970(15) | 2.100                 |
| 15        | 2 3933(17) | 2 4469(11) | 2 4510(18) | 2 4608(10) | 2 5004(9)  | 2 4 5 8               |
| x = 0.275 |            |            |            |            | 2.000 (()) | 2.100                 |
| 16        | 2 3920(16) | 2 4510(17) | 2,4465(11) | 2,4601(9)  | 2 5021(9)  | 2,458                 |
| x = 0.289 | ,(10)      |            |            | =          |            |                       |
| 17        | 2 3949(16) | 2,4539(17) | 2,4475(10) | 2,4636(9)  | 2,5056(9)  | 2,460                 |
| x = 0.347 | ,(10)      |            |            |            |            |                       |

Table 3. Oxalic group: bond lengths (Å) and angles (°) for 1 - 17.

| Sample    | C1 – O1    | C1 – O2    | <c1 o="" –=""></c1> | O2 – C1 –  | O2 – C1 –  | O1 – C1 –  | O1 – C1 –  |
|-----------|------------|------------|---------------------|------------|------------|------------|------------|
| -         |            |            |                     | 01         | C1         | C1         | C1         |
|           | x2         | x2         |                     |            |            |            |            |
| 1         | 1.251(2)   | 1.244(3)   | 1.248               | 126.9(2)   | 116.10(12) | 116.96(12) | 1.549(4)   |
| x = 0.133 |            |            |                     |            |            |            |            |
| 2         | 1.252(3)   | 1.247(3)   | 1.249               | 126.7(2)   | 116.18(13) | 117.07(12) | 1.548(4)   |
| x = 0.190 |            |            |                     |            |            |            |            |
| 3         | 1.251(2)   | 1.245(2)   | 1.248               | 126.79(17) | 116.10(11) | 117.09(10) | 1.549(3)   |
| x = 0.192 |            |            |                     |            |            |            |            |
| 4         | 2.3947(15) | 2.3810(17) | 1.248               | 126.84(13) | 116.15(8)  | 117.00(7)  | 1.553(3)   |
| x = 0.192 |            |            |                     |            |            |            |            |
| 5         | 1.2524(12) | 1.2474(13) | 1.25                | 126.75(11) | 116.17(7)  | 117.06(6)  | 1.552(2)   |
| x = 0.197 |            |            |                     |            |            |            |            |
| 6         | 1.2495(14) | 1.2473(14) | 1.248               | 126.79(12) | 116.13(7)  | 117.06(7)  | 1.552(2)   |
| x = 0.199 |            |            |                     |            |            |            |            |
| 7         | 1.2482(16) | 1.552(3)   | 1.248               | 126.71(13) | 116.14(8)  | 117.12(8)  | 1.2471(16) |
| x = 0.199 |            |            |                     |            |            |            |            |
| 8         | 1.249(2)   | 1.242(2)   | 1.246               | 127.03(17) | 116.00(11) | 116.96(10) | 1.557(4)   |
| x = 0.213 |            |            |                     |            |            |            |            |
| 9         | 1.2498(13) | 1.2469(14) | 1.248               | 126.72(12) | 116.12(7)  | 117.14(7)  | 1.550(2)   |
| x = 0.230 |            |            |                     |            |            |            |            |
| 10        | 1.2504(13) | 1.2468(14) | 1.249               | 126.85(12) | 116.11(7)  | 117.02(7)  | 1.554(2)   |
| x = 0.237 |            |            |                     |            |            |            |            |
| 11        | 1.2489(15) | 1.2478(15) | 1.248               | 126.66(12) | 116.12(8)  | 117.20(7)  | 1.549(3)   |
| x = 0.257 |            |            |                     |            |            |            |            |
| 12        | 1.2513(14) | 1.2473(14) | 1.249               | 126.71(12) | 116.19(7)  | 117.09(7)  | 1.551(2)   |
| x = 0.257 |            |            |                     |            |            |            |            |
| 13        | 1.2516(13) | 1.2472(13) | 1.249               | 126.68(11) | 116.19(7)  | 117.11(6)  | 1.550(2)   |
| x = 0.262 |            |            |                     |            |            |            |            |
| 14        | 1.252(3)   | 1.244(3)   | 1.248               | 127.15(18) | 115.94(12) | 116.89(11) | 1.552(4)   |
| x = 0.267 |            |            |                     | . ,        |            |            |            |
| 15        | 1.2505(15) | 1.2462(15) | 1.248               | 126.79(13) | 116.09(8)  | 117.11(7)  | 1.552(3)   |
| x = 0.275 |            |            |                     | (-)        |            |            | , , ,      |
| 16        | 1.2485(15) | 1.2475(15) | 1.248               | 126.87(13) | 116.05(8)  | 117.07(7)  | 1.552(3)   |
| x = 0.289 | , ,        | , ,        |                     | , , ,      |            | , ,        | Ì Ì        |
| 17        | 1.2506(15) | 1.2481(15) | 1.249               | 126.71(13) | 116.10(8)  | 117.18(7)  | 1.550(3)   |
| x = 0.347 |            | , ,        |                     | , ,        |            | , , ,      | , , ,      |

| Sample          | OW1 – O2    | OW1 – H1  | H1 –    | OW1 -   | OW2 – O2    | OW2 –     | H2 –    | OW2 -   | OW3 –     | OW3 –    | OW3 –     | OW3 -    | OW31 -   | OW31      | OW31 -   |
|-----------------|-------------|-----------|---------|---------|-------------|-----------|---------|---------|-----------|----------|-----------|----------|----------|-----------|----------|
| _               |             |           | 02      | H1 – O2 |             | H2        | 02      | H2 - O2 | OW31      | OW3      | 02        | OW1      | OW31     | - O2      | OW1      |
|                 |             | x2        |         |         |             | x2        |         |         | 0.00(1.0) |          | x4        | x4       |          | x4        | x4       |
| 1               | 2.922(3)    | 0.90(5)   | 2.067   | 158.2   | 2.863(3)    | 0.80(6)   | 2.255   | 133.4   | 0.60(19)  | 2.0(6)   | 3.28(3)   | 3.5(2)   | 3.2(3)   | 3.280(12) | 3.08(9)  |
| x = 0.133       | 2.025(2)    | 0.07(5)   | 0.104   | 155.0   | 0.0(0(0)    | 0.04(6)   | 0.100   | 145.0   | 0.(0)     | 2.0(2)   | 2 201(15) | 2.54(10) | 2.21(15) | 2 205(7)  | 2.00(5)  |
| 2               | 2.925(3)    | 0.87(5)   | 2.104   | 155.9   | 2.862(3)    | 0.84(6)   | 2.129   | 145.8   | 0.62(9)   | 2.0(3)   | 3.301(15) | 3.54(10) | 3.21(15) | 3.295(7)  | 3.09(5)  |
| x = 0.190       | 2.024(2)    | 0.90(4)   | 2 00 4  | 155.0   | 2.9(2(2)    | 0.7((())  | 2.265   | 124.1   | 0.54(11)  | 2 2(4)   | 2 294(12) | 2 44(15) | 2.2(2)   | 2 202(11) | 2.0((7)) |
| 3 = 0.102       | 2.924(2)    | 0.89(4)   | 2.094   | 155.0   | 2.862(3)    | 0.70(0)   | 2.365   | 124.1   | 0.54(11)  | 2.2(4)   | 3.284(13) | 3.44(15) | 3.3(2)   | 3.293(11) | 3.06(7)  |
| x = 0.192       | 2.0222(16)  | 0.024(19) | 2 1 2 1 | 144.6   | 2.9652(17)  | 0.026(19) | 2 2 1 9 | 126.2   | 0.61(4)   | 2.10(16) | 2 282(6)  | 2 15(6)  | 2 42(14) | 2 207(9)  | 2.02(4)  |
| $\frac{4}{102}$ | 2.9232(16)  | 0.924(18) | 2.121   | 144.0   | 2.8655(17)  | 0.926(18) | 2.218   | 120.3   | 0.61(4)   | 2.19(10) | 3.282(6)  | 3.45(6)  | 3.42(14) | 3.297(8)  | 3.02(4)  |
| x = 0.192       | 2.0206(14)  | 0.029(17) | 2.004   | 1476    | 2.9626(15)  | 0.027(19) | 2 1 7 2 | 120.7   | 0.56(2)   | 2 22(12) | 2 282(2)  | 2 40(5)  | 2 45(12) | 2 202(7)  | 2.01(4)  |
| 3 = 0.107       | 2.9206(14)  | 0.928(17) | 2.094   | 147.0   | 2.8626(15)  | 0.937(18) | 2.172   | 129.7   | 0.56(3)   | 2.33(13) | 3.282(3)  | 3.40(5)  | 3.45(12) | 3.302(7)  | 3.01(4)  |
| x = 0.197       | 2 0222(15)  | 0.021(18) | 2 1 2 2 | 144.6   | 2 8660(16)  | 0.022(18) | 2 214   | 126.2   | 0.50(2)   | 2.26(14) | 3 280(4)  | 3 12(5)  | 2 44(12) | 2 208(8)  | 3.01(4)  |
| r = 0.100       | 2.9255(15)  | 0.921(18) | 2.123   | 144.0   | 2.8000(10)  | 0.932(18) | 2.214   | 120.5   | 0.39(3)   | 2.20(14) | 3.280(4)  | 3.43(3)  | 5.44(15) | 3.290(8)  | 5.01(4)  |
| $\frac{1}{2}$   | 2 9221(17)  | 0.920(18) | 2 1 1 7 | 145.5   | 2 8653(17)  | 0.936(18) | 2 145   | 132.9   | 0.61(5)   | 2.06(18) | 3 293(8)  | 3 50(7)  | 3 29(9)  | 3 296(5)  | 3 29(9)  |
| r = 0.199       | 2.9221(17)  | 0.920(10) | 2.11/   | 145.5   | 2.0055(17)  | 0.750(10) | 2.145   | 152.7   | 0.01(3)   | 2.00(10) | 5.275(0)  | 5.50(7)  | 5.27(7)  | 5.270(5)  | 5.27(7)  |
| <b>8</b>        | 2 928(2)    | 0.84(3)   | 2 141   | 155.3   | 2 867(2)    | 0.72(5)   | 2 376   | 127.0   | 0.57(14)  | 21(4)    | 3 290(19) | 3 50(16) | 3 10(5)  | 3 288(7)  | 3 19(16) |
| r = 0.213       | 2.920(2)    | 0.04(3)   | 2.171   | 155.5   | 2.007(2)    | 0.72(3)   | 2.570   | 127.0   | 0.57(14)  | 2.1(7)   | 5.270(17) | 5.50(10) | 5.10(5)  | 5.200(7)  | 5.17(10) |
| 9               | 2 9224(15)  | 0.907(17) | 2 1 2 5 | 146.2   | 2 8653(16)  | 0.920(18) | 2 1 3 7 | 135.3   | 0.62(3)   | 2 16(13) | 3 289(5)  | 3 47(5)  | 3 39(9)  | 3 301(5)  | 3 03(3)  |
| x = 0.230       | 2.922 ((15) | 0.507(17) | 2.125   | 110.2   | 2.00000(10) | 0.920(10) | 2.107   | 155.5   | 0.02(3)   | 2.10(15) | 5.207(5)  | 5.17(5)  | 5.57(7)  | 5.501(5)  | 5.05(5)  |
| 10              | 2.9228(15)  | 0.926(17) | 2.088   | 149.2   | 2.8647(16)  | 0.937(18) | 2.179   | 129.2   | 0.59(4)   | 2.22(15) | 3.284(5)  | 3.44(6)  | 3.03(4)  | 3.298(7)  | 3.40(13) |
| x = 0.237       |             |           |         |         |             |           |         |         |           | . ( - )  |           |          |          |           |          |
| 11              | 2.9204(16)  | 0.907(17) | 2.112   | 148.0   | 2.8656(16)  | 0.925(18) | 2.138   | 134.8   | 0.61(3)   | 2.22(12) | 3.288(4)  | 3.45(4)  | 3.43(9)  | 3.305(5)  | 3.02(3)  |
| x = 0.257       | ~ /         | ( )       |         |         | ( )         | ( )       |         |         |           |          |           |          |          |           | ~ /      |
| 12              | 2.9198(15)  | 0.920(18) | 2.089   | 149.6   | 2.8609(16)  | 0.931(18) | 2.173   | 129.9   | 0.60(3)   | 2.17(13) | 3.293(5)  | 3.47(5)  | 3.36(8)  | 3.303(5)  | 3.05(3)  |
| x = 0.257       | × ,         |           |         |         | . ,         | . ,       |         |         |           | . ,      |           |          |          |           | ~ /      |
| 13              | 2.9195(15)  | 0.932(18) | 2.072   | 150.6   | 2.8613(16)  | 0.937(19) | 2.23    | 124.0   | 0.58(3)   | 2.27(11) | 3.291(3)  | 3.43(4)  | 3.44(9)  | 3.309(6)  | 3.02(3)  |
| x = 0.262       | . ,         |           |         |         |             |           |         |         |           |          |           |          |          |           |          |
| 14              | 2.922(3)    | 0.84(4)   | 2.114   | 161.0   | 2.865(3)    | 0.83(4)   | 2.117   | 149.5   | 0.66(8)   | 1.9(2)   | 3.306(12) | 3.56(8)  | 3.25(9)  | 3.301(5)  | 3.08(3)  |
| x = 0.267       |             |           |         |         |             |           |         |         |           |          |           |          |          |           |          |
| 15              | 2.9197(16)  | 0.933(18) | 2.051   | 154.4   | 2.8621(17)  | 0.942(19) | 2.183   | 128.2   | 0.59(3)   | 2.29(11) | 3.291(3)  | 3.42(4)  | 3.48(9)  | 3.313(6)  | 3.01(3)  |
| x = 0.275       |             |           |         |         |             |           |         |         |           |          |           |          |          |           |          |
| 16              | 2.9198(16)  | 0.925(18) | 2.09    | 148.6   | 2.8634(17)  | 0.928(18) | 2.145   | 133.5   | 0.60(3)   | 2.18(13) | 3.296(5)  | 3.47(5)  | 3.37(8)  | 3.307(5)  | 3.05(3)  |
| x = 0.289       |             |           |         |         |             |           |         |         |           |          |           |          |          |           |          |
| 17              | 2.9217(16)  | 0.906(17) | 2.125   | 146.3   | 2.8642(16)  | 0.929(18) | 2.092   | 139.8   | 0.61(3)   | 2.13(10) | 3.309(4)  | 3.50(4)  | 3.34(6)  | 3.318(3)  | 3.07(2)  |
| x = 0.347       |             |           |         |         |             |           |         |         |           |          |           |          |          |           |          |

Table 4. Hydrogen bonds and other water intermolecule parameters: bond lengths (Å) and angles (°) for 1 - 17.



- Figure 1. Biomineral renal stone: central part whewellite, outer part weddelite. Picture taken
- in polarized light.
- 275









287 Figure 4. Correlation of OW1 – OW1 distance with amount of "zeolitic" water molecules;

288 rhombuses – this work, circles – Rusakov et al. (unpublished data).



289



293 the increase of x.





297 rhombuses - this work, circles - Rusakov et al. (unpublished data), squares - Izatulina &

298 Yelnikov 2008, triangular – Tazzoli & Domeneghetti 1980.



Figure 7. Correlation of <Ca - O> distance in Ca polyhedron with amount of "zeolitic" water
 molecules; rhombuses - this work, circles - Rusakov et al. (unpublished data).

9/11