| 1  | <b>Revision 4</b>                                                                                 |
|----|---------------------------------------------------------------------------------------------------|
| 2  |                                                                                                   |
| 3  | Precipitation and dissolution of chromite by hydrothermal solutions in the                        |
| 4  | Oman ophiolite: new behavior of Cr and chromite                                                   |
| 5  | Shoji Arai <sup>1,*</sup> and Norikatsu Akizawa <sup>1</sup>                                      |
| 6  | <sup>1</sup> Department of Earth Sciences, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan. |
| 7  | *e-mail: ultrasa@staff.kanazawa-u.ac.jp                                                           |
| 8  | Abstract                                                                                          |
| 9  | Chromite is a typical refractory igneous mineral, precipitated from mafic magmas at               |
| 10 | relatively high temperatures. Chromites commonly occur in sedimentary, metamorphic and            |
| 11 | metasomatic rocks, where they are interpreted as relics of an igneous phase and serve as the      |
| 12 | source of Cr for low-temperature Cr-bearing minerals. We present evidence for the nucleation      |
| 13 | of chromite within hydrothermal solutions. We have found minute euhedal chromite grains           |
| 14 | enclosed by uvarovite (Ca-Cr garnet) in a diopsidite, metasomatically replacing the layered       |
| 15 | gabbro of the Oman ophiolite. The uvarovite shows oscillatory concentric zoning in terms of       |
| 16 | Cr# (= Cr/(Cr + Al)), and the chromite is embedded only in the high- $Cr#$ zones of the           |
| 17 | uvarovite. Another diopsidite, replacing peridotite in the underlying upper mantle section,       |

| 18 | contains xenocrystic chromite, which is partly dissolved. This suggests that a hydrothermal                    |
|----|----------------------------------------------------------------------------------------------------------------|
| 19 | solution collected Cr by partial to total dissolution of chromite within the upper mantle and                  |
| 20 | precipitated chromite, along with high-Cr# uvarovite, within the lower crust upsection. The                    |
| 21 | metasomatic agent involved was a CO <sub>2</sub> -, SO <sub>2</sub> - and Cl-bearing hydrothermal solution     |
| 22 | containing appreciable silicate components that could carry Cr, possibly as a complex. The                     |
| 23 | hydrothermal chromite is similar in chemistry to that commonly found in igneous rocks (e.g.,                   |
| 24 | $Cr = 0.8$ , $Mg/(Mg + Fe^{2+}) = 0.1-0.2$ , $TiO_2 < 0.3$ wt% and $Fe^{3+}/(Cr + Al + Fe^{3+})$ , up to 0.3), |
| 25 | but its Cr# is clearly different from that of mantle chromite (0.6-0.7) in peridotites and                     |
| 26 | chromitites from the Oman ophiolite. The results from this study suggest that a hydrothermal                   |
| 27 | origin is possible for chromites in ultramafic rocks that have experienced fluid activity                      |
| 28 | assuming that there is sufficient chromite at the fluid source.                                                |
| 29 |                                                                                                                |
| 30 | Keywords: hydrothermal chromite, uvarovite, diopsidite, Oman ophiolite                                         |
| 31 |                                                                                                                |
| 32 | INTRODUCTION                                                                                                   |
| 33 | Chromium is important in mafic and ultramafic rocks (Liang and Elthon 1989), in                                |
| 34 | industry, and the environment (Motzer and Todd Engineers 2004), although its behavior in                       |
|    |                                                                                                                |

| 35 | nature is not fully understood. Chromite is a typical refractory magmatic mineral (Irvine          |
|----|----------------------------------------------------------------------------------------------------|
| 36 | 1965; Arai 1992) and the main reservoir for Cr in rocks. During alteration, Cr is extracted        |
| 37 | from chromite with difficulty but is easily liberated from Cr-bearing silicates (Oze et al.        |
| 38 | 2004). $Cr^{3+}$ is mobile only over a limited distance during alteration or metamorphism of rocks |
| 39 | (Treloar 1987; Martin 2009; Klein-BenDavid et al. 2011). Secondary Cr-rich minerals, such          |
| 40 | as uvarovite (Ca-Cr garnet), most frequently form at the expense of the primary chromite,          |
| 41 | which serves as their Cr source (Treloar 1987; Proenza et al. 1999; Taguchi et al. 2012).          |
| 42 | In this study we describe partially dissolved chromite in a diopsidite from the Oman               |
| 43 | ophiolite (e.g., Lippard et al. 1986) that has metasomatically replaced mantle peridotite          |
| 44 | (Python et al. 2007). In the same locality new chromite has nucleated in another diopsidite        |
| 45 | replacing a lower crustal Cr-poor gabbro (Akizawa et al. 2011). The behavior of the                |
| 46 | hydrothermally deposited Cr and chromite is discussed and interpreted.                             |
| 47 |                                                                                                    |
| 48 | GEOLOGICAL BACKGROUND AND PETROGRAPHY                                                              |
| 49 | Diopsidites occur in the mantle section of the Oman ophiolite as a result of sub-oceanic           |
| 50 | hydrothermal activity (Python et al. 2007). They are possibly a reaction product between           |
| 51 | mantle rocks and hydrothermal fluids (> 800 °C), rich in silicate components, circulating          |

| 52 | downward from the seafloor through the crust into the upper mantle (Python et al. 2007). We   |
|----|-----------------------------------------------------------------------------------------------|
| 53 | recognized two types of diopsidite from the Wadi Fizh, northern Oman ophiolite (Akizawa       |
| 54 | and Arai 2009). One is from the crustal section (= crustal diopsidite), replacing a layered   |
| 55 | gabbro (Fig. 1a-c). It is about 50 meters higher than the top of the Moho transiton zone      |
| 56 | (MTZ) (Akizawa et al. 2011). Here the MTZ is mainly composed of dunite and wehrlite and       |
| 57 | is remarkably thin, 10 to 15 m, in this particular area of the Oman ophiolite (Akizawa and    |
| 58 | Arai 2009; Akizawa et al. 2012). The other diopsidite is located in the uppermost mantle      |
| 59 | section (mantle diopsidite). It is about 20 meters below the top of the MTZ and replaces      |
| 60 | mantle rock (Fig. 1d,e).                                                                      |
| 61 | The crustal diopsidite is grayish on the outcrop with bright green-white                      |
| 62 | uvarovite-anorthite pockets that sometimes contain black chromite dots (Fig. 1b,c). Accessory |
| 63 | minerals include chlorite, titanite, pumpellyite, and epidote. The latter two minerals form   |
| 64 | veinlets, indicating that they are of late stage origin. The mantle diopsidite forms a dike   |
| 65 | within the dunite (locally harzburgite) and is whitish but locally greenish with numerous     |
| 66 | chromite grains (Fig. 1d,e). It is comprised mainly of diopside (>90 volume %) with           |
| 67 | subordinate grossular (Ca-Al garnet). The chromite grains sometimes form parallel thin (< 5   |
| 68 | mm) seams in the mantle diopsidite (Fig. 1e).                                                 |

| 69 | In the crustal diopsidite, uvarovite, which is skeletal and full of inclusions of other           |
|----|---------------------------------------------------------------------------------------------------|
| 70 | minerals such as anorthite and chlorite (Fig. 2a,b), shows an oscillatory, concentric zonal       |
| 71 | texture with respect to the Cr# (= Cr/(Cr + Al)) (Fig. 2c). Euhedral chromite is enclosed as      |
| 72 | fine grains in the uvarovite (Fig. 1a, b), and is distinctly different in appearance from that in |
| 73 | altered chromitites (e.g., Proenza et al. 1999). The fine chromite grains are contained solely in |
| 74 | the high-Cr# zones of the oscillatory-zoned uvarovite (Fig. 2c). Coarse, discrete, chromite       |
| 75 | grains are also skeletal and show concentric, oscillatory zoning with respect to the Cr# (Fig.    |
| 76 | 2d, e). It is noticeable that a hydrothermal mineral such as chlorite apparently takes part in    |
| 77 | chromite oscillatory zoning. The chlorite plays a role similar to that of an "Al-rich spinel" in  |
| 78 | the zoning (Fig. 2d, e). This also means the almost simultaneous crystallization of a typical     |
| 79 | non-magmatic mineral such as chlorite with chromite.                                              |
| 80 | Chromite grains in the greenish part of the mantle diopsidite (Fig. 1d) differ in texture.        |
| 81 | Some of them show irregular anhedral morphologies, suggesting dissolution to varying              |
| 82 | degrees (Fig 3a). A thin (~ 1 $\mu$ m) chromite film commonly fills the grain boundaries of the   |
| 83 | diopside adjacent to the coarse anhedral chromite grains (Fig. 3a-c). Other grains from the       |
| 84 | chromite seams are nearly euhedral, although cracked, and contain globular silicate inclusions    |
| 85 | (Fig. 3d) similar to chromite in chromitite (e.g., Borisova et al. 2012). The inclusions are,     |

 $\mathbf{5}$ 

| 86  | however, now replaced with grossular and chlorite (Fig. 3d), although they may have initially              |
|-----|------------------------------------------------------------------------------------------------------------|
| 87  | been comprised of pargasite, phlogopite, and pyroxenes (e.g., Borisova et al. 2012). The                   |
| 88  | diopsidite here probably replaced mainly a dunite with local chromite concentrations (or thin              |
| 89  | chromite seams). These seams are visible where the diopside is greenish (Fig. 1d,e).                       |
| 90  | To identify phases in micro-fluid inclusions trapped mainly in diopside and anorthite                      |
| 91  | from the crustal diopsidite, we used a micro-Raman system (HORIBA JOBIN YVON,                              |
| 92  | LabRAM HR-800) equipped with a 532 nm Nd-YAG laser (Showa Optoronics Co.,Ltd,                              |
| 93  | J100GS-16) and an optical microscope (Olympus, BX41) (see Arai et al., 2012). The fluid                    |
| 94  | inclusions are less than 10 $\mu$ m across, and show negative crystal forms with a bubble and with         |
| 95  | or without daughter minerals. Raman spectroscopic analysis indicated the fluid inclusions are              |
| 96  | comprised mainly of H <sub>2</sub> O, though daughter minerals of calcite and anhydrite were identified    |
| 97  | in fluid inclusions from the anorthite. The shape of Raman spectra in the O-H stretching                   |
| 98  | region (2800 to 3800 cm <sup>-1</sup> ) of the $H_2O$ -rich fluid inclusions suggests 10 to 20 wt% of NaCl |
| 99  | solution (Mernagh and Wilde, 1989; Frezzotti et al., 2012). This is consistent with our                    |
| 100 | preliminary laser ICP-MS analysis; Na was detected on fluid inclusions in titanite weheas not              |
| 101 | detected on inclusion-free parts. No peaks for $CO_2$ , e.g. at 1388 cm-1 and 1285 cm-1, were              |
| 102 | detected on the Raman spectra of the fluid inclusions, indicationg the $CO_2/(H_2O + CO_2)$ ratio          |

103 is quite low, < 2~3 mole% (Azbej et al., 2007).

104

| 105 | MINERAL CHEMISTRY                                                                                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 106 | Minerals were analyzed using a JEOL wave-length dispersive electron probe X-ray                                          |
| 107 | microanalyzer (JXA8800R) at Kanazawa University. During conventional quantitative spot                                   |
| 108 | analysis, analytical conditions were 10-kV accelerating voltage and a 12-nA electron beam                                |
| 109 | current with a 3-µm beam diameter. For the elemental distribution maps (Figs. 2c,e and 3c), a                            |
| 110 | 20 kV accelerating voltage and a 100 nA probe current with a beam diameter of less than 1                                |
| 111 | µm were used. Natural and synthetic materials (quartz, esklaite, wollastonite, fayalite, jadeite,                        |
| 112 | KTiPO <sub>5</sub> , corundum, manganosite, periclase and bunsenite) were used as standards. Dwell                       |
| 113 | time and step intervals were 50 milli-seconds and 3 $\mu m$ for uvarovite (Fig. 2c), and 40                              |
| 114 | milli-seconds and 0.5 $\mu m$ for chromite (Fig. 2f and 3c). The $Fe^{2+}$ and $Fe^{3+}$ contents in                     |
| 115 | chromite were calculated assuming stoichiometry. In the silicate minerals all the Fe was                                 |
| 116 | assumed to be $Fe^{2+}$ except in the garnet where Fe was assumed to be $Fe^{3+}$ . Standard                             |
| 117 | deviations (1 $\sigma$ ) are less than 1.0 wt% for major elements (> 10 wt% oxides) on diopside,                         |
| 118 | anorthite and grossular, and about 2.2 wt% for $Cr_2O_3$ and 1.1 wt% for $Al_2O_3$ on Cr-poor and                        |
| 119 | Cr-rich uvarovites. They are relatively hign in chromite cores, 1.1 and 1.0 wt% for Al <sub>2</sub> O <sub>3</sub> , 4.2 |

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

| 120 | and 1.8 wt% for $Cr_2O_3$ , 5.2 and 1.9 wt% for FeO, and 0.38 and 1.2 wt% for MgO, in the                            |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 121 | crustal diopsdite and mantle diopsidite, respectively. They are much lower in chromites from                         |
| 122 | mantle harzburgite and chromitite.                                                                                   |
| 123 | Chromite from the crustal diopsidite is distinct in chemistry from that in the mantle                                |
| 124 | diopsidite (Fig. 4; Table 1). The Cr# is higher in the former ( $\approx 0.8$ ) than in the latter ( $\approx 0.6$ ) |
| 125 | (Fig. 4). The former is strongly zoned in $Fe^{3+}/(Cr + Al + Fe^{3+})$ , which increases up to 0.3 at               |
| 126 | the rim (Fig. 4). For the chromite from the mantle diopsidite (Fig. 3a, d) the core is similar in                    |
| 127 | composition to the mantle diopsidite chromite, and the rim, to the core of the crustal                               |
| 128 | diopsidite chromite (Fig. 4), which are both characterized by a low Mg# (=Mg/(Mg + Fe <sup>2+</sup> ), $<$           |
| 129 | 0.2 (Table 1). They are similar both in the Mg# and $Fe^{3+}/(Cr + Al + Fe^{3+})$ to secondary                       |
| 130 | chromite associated with chlorite from a podiform chromitite altered at relatively high                              |
| 131 | temperatures (> the serpentinization temperature) (Arai et al. 2006) (Fig. 4). They are far                          |
| 132 | lower in Mg# than chromites from ordinary podiform chromitites but are in approximately the                          |
| 133 | same range in terms of $Fe^{3+}/(Cr + Al + Fe^{3+})$ (Fig. 4).                                                       |
| 134 | The uvarovite in the crustal diopsidite is higher in the $Cr# (0.5-0.8)$ than uvarovite                              |
| 135 | overgrown on chromite (Cr#=0.3-0.6) in altered chromitite from Oman (Fig. 5). Grossular in                           |
|     |                                                                                                                      |

136 the mantle diopsidite is Cr-bearing (Table 1; Fig. 5). All the garnets described here are

| 137                                                                                                   | assumed to be relatively anhydrous due to the fact that the electron microprobe analysis totals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 138                                                                                                   | tend to average around 100 % (Table 1). Diopside is generally Mg-rich in the diopsidites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 139                                                                                                   | overall, but its Mg# is lower in the crustal diopsidite (0.84-0.97) than in the mantle diopsidite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 140                                                                                                   | (0.95-1.0) (Table 1). Diopside from the mantle diopsidite varies in Cr <sub>2</sub> O <sub>3</sub> content, from almost                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 141                                                                                                   | nil to more than 2 wt.%. Chlorite, associated with chromite in the crustal diopsidite (Fig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 142                                                                                                   | 2d,e), is Cr-bearing high-Mg# clinochlore (Hey 1954) (Table 1). The anorthite Ca/(Ca + Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 143                                                                                                   | ratio is higher than 0.93 in the two diopsidites (Python et al. 2007; Akizawa et al. 2011).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 144                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 145                                                                                                   | DISCUSSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 146                                                                                                   | Hydrothermal formation of chromite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 146<br>147                                                                                            | Hydrothermal formation of chromite<br>It is highly unlikely that the diopsidites described here formed as a magmatic intrusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 146<br>147<br>148                                                                                     | Hydrothermal formation of chromite<br>It is highly unlikely that the diopsidites described here formed as a magmatic intrusion<br>(Python et al. 2007). Such highly calcic silicate melts have never been described in ophiolites.                                                                                                                                                                                                                                                                                                                                                                 |
| 146<br>147<br>148<br>149                                                                              | Hydrothermal formation of chromite         It is highly unlikely that the diopsidites described here formed as a magmatic intrusion         (Python et al. 2007). Such highly calcic silicate melts have never been described in ophiolites.         In addition, the diopsidite shares some minerals with skarns (Meinert 1992; Jamtveit et al.                                                                                                                                                                                                                                                   |
| <ol> <li>146</li> <li>147</li> <li>148</li> <li>149</li> <li>150</li> </ol>                           | Hydrothermal formation of chromite         It is highly unlikely that the diopsidites described here formed as a magmatic intrusion         (Python et al. 2007). Such highly calcic silicate melts have never been described in ophiolites.         In addition, the diopsidite shares some minerals with skarns (Meinert 1992; Jamtveit et al.         1993). An H <sub>2</sub> O-rich nature for the agent responsible for the formation of the diopsidites is                                                                                                                                  |
| <ol> <li>146</li> <li>147</li> <li>148</li> <li>149</li> <li>150</li> <li>151</li> </ol>              | Hydrothermal formation of chromiteIt is highly unlikely that the diopsidites described here formed as a magmatic intrusion(Python et al. 2007). Such highly calcic silicate melts have never been described in ophiolites.In addition, the diopsidite shares some minerals with skarns (Meinert 1992; Jamtveit et al.1993). An H2O-rich nature for the agent responsible for the formation of the diopsidites issupported by the presence of H2O-rich inclusions in the diopside and anorthite from the                                                                                            |
| <ol> <li>146</li> <li>147</li> <li>148</li> <li>149</li> <li>150</li> <li>151</li> <li>152</li> </ol> | Hydrothermal formation of chromiteIt is highly unlikely that the diopsidites described here formed as a magmatic intrusion(Python et al. 2007). Such highly calcic silicate melts have never been described in ophiolites.In addition, the diopsidite shares some minerals with skarns (Meinert 1992; Jamtveit et al.1993). An H2O-rich nature for the agent responsible for the formation of the diopsidites issupported by the presence of H2O-rich inclusions in the diopside and anorthite from thecrustal diopsidite. Growth of chlorite, together with chromite (Fig. 2d), also supports the |

| 154 | The pressure of formation of these diopsidites is estimated to be around 0.2-0.3 GPa from         |
|-----|---------------------------------------------------------------------------------------------------|
| 155 | their position in the ophiolite stratigraphy in the region of the MTZ where the thickness of the  |
| 156 | crustal section is presumed to have reached at least 6 km (Reuber 1988). The temperature of       |
| 157 | formation of the crustal diopsidite is lower than the thermal stability limit of the Mg-rich      |
| 158 | clinochlore, 700-800 °C at 0.3 GPa (Fawcett and Yoder 1966; Staudigel and Schreyer 1977).         |
| 159 | In contrast, the assemblage of anorthite + diopside + chlorite indicates that the temperature     |
| 160 | should have been higher than 500-550 °C at 0.3 GPa (Rice 1983; Cheng and Greenwood                |
| 161 | 1989). This suggests that the hydrous crustal diopsidite were formed at temperatures slightly     |
| 162 | lower than the mantle diopsidites, which are anhydrous (> 800 °C; Python et al. 2007). This       |
| 163 | temperature range is lower than the temperature of formation for ordinary rodingites (=           |
| 164 | hydrothermally altered mafic rocks in serpentinite), which are synchronous with                   |
| 165 | serpentinization, i.e., 200~350°C (e.g., Li et al. 2004; Frost et al. 2008; Bach and Klein 2009). |
| 166 | The anhydrous nature of these garnets (Table 1) gives insight into the high-temperature           |
| 167 | character of the hydrothermal solution involved compared with the lower temperatures              |
| 168 | (mostly 200-350 °C) for hydrogrossular-bearing rodingites (e.g., Barringa and Fyfe 1983;          |
| 169 | Esteban et al. 2003; Frost et al. 2008). This is consistent with the lower stabilization          |
| 170 | temperature of hydrogarnet compared to its higher temperature anhydrous equivalent (cf.           |

10

171 Pistorius and Kennedy 1960; Hsu 1980).

| 172                                                                                                   | The concentric, oscillatory chemical zoning of uvarovite (Fig. 2c) indicates its progressive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 173                                                                                                   | growth outwards recording a periodic change in the Cr# of the solution present during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 174                                                                                                   | formation of the crustal diopsidite. The similar zonation in some chromite grains (Fig. 2e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 175                                                                                                   | also indicates in-situ synchronous growth with uvarovite (Fig. 2c) from the same solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 176                                                                                                   | The enclosure of chromite exclusively in the high-Cr# growth zone in the uvarovite grains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 177                                                                                                   | strongly implies that the chromite as well as the high-Cr# uvarovite grew only when high-Cr#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 178                                                                                                   | solution pulses were available (Fig. 2c). This implies that co-existing chromite was not the Cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 179                                                                                                   | source for uvarovite, as is normally the case in thermally altered rocks, especially chromitites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 180                                                                                                   | (Proenza et al. 1999) (Fig. 2c).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 180<br>181                                                                                            | (Proenza et al. 1999) (Fig. 2c).<br>The texture and mode of occurrence indicate that the chromite grains were dissolved to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 180<br>181<br>182                                                                                     | (Proenza et al. 1999) (Fig. 2c).<br>The texture and mode of occurrence indicate that the chromite grains were dissolved to<br>varying degrees in the mantle diopsidite (Fig. 3). The thin film of chromite filling diopside                                                                                                                                                                                                                                                                                                                                                                                               |
| 180<br>181<br>182<br>183                                                                              | (Proenza et al. 1999) (Fig. 2c).<br>The texture and mode of occurrence indicate that the chromite grains were dissolved to<br>varying degrees in the mantle diopsidite (Fig. 3). The thin film of chromite filling diopside<br>grain boundaries (Fig. 3b, c) indicates the precipitation of chromite from a local Cr-rich                                                                                                                                                                                                                                                                                                 |
| 180<br>181<br>182<br>183<br>184                                                                       | (Proenza et al. 1999) (Fig. 2c).<br>The texture and mode of occurrence indicate that the chromite grains were dissolved to<br>varying degrees in the mantle diopsidite (Fig. 3). The thin film of chromite filling diopside<br>grain boundaries (Fig. 3b, c) indicates the precipitation of chromite from a local Cr-rich<br>solution interstitial to the diopside grains. A mantle-rock (xenocrystic) origin for the chromite                                                                                                                                                                                            |
| 180<br>181<br>182<br>183<br>184<br>185                                                                | (Proenza et al. 1999) (Fig. 2c). The texture and mode of occurrence indicate that the chromite grains were dissolved to varying degrees in the mantle diopsidite (Fig. 3). The thin film of chromite filling diopside grain boundaries (Fig. 3b, c) indicates the precipitation of chromite from a local Cr-rich solution interstitial to the diopside grains. A mantle-rock (xenocrystic) origin for the chromite grains in the mantle diopsidite is also supported by the chemical similarity between their                                                                                                             |
| <ol> <li>180</li> <li>181</li> <li>182</li> <li>183</li> <li>184</li> <li>185</li> <li>186</li> </ol> | (Proenza et al. 1999) (Fig. 2c).<br>The texture and mode of occurrence indicate that the chromite grains were dissolved to<br>varying degrees in the mantle diopsidite (Fig. 3). The thin film of chromite filling diopside<br>grain boundaries (Fig. 3b, c) indicates the precipitation of chromite from a local Cr-rich<br>solution interstitial to the diopside grains. A mantle-rock (xenocrystic) origin for the chromite<br>grains in the mantle diopsidite is also supported by the chemical similarity between their<br>cores and mantle chromites (Fig. 4). In addition, the rim of the chromite from the mantle |

| 188 | (Fig. 4). This implies that the hydrothermal solution took Cr up from chromite in the upper                                         |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|
| 189 | mantle rocks (Fig. 3) and precipitated new chromite (Fig. 2a-e) within the lower crustal                                            |
| 190 | gabbro, which is poor in Cr (Cr <sub>2</sub> O <sub>3</sub> <0.1 wt.%). Hydrothermal solutions, transported down                    |
| 191 | through the oceanic crust into the uppermost mantle, were responsible for the formation of the                                      |
| 192 | mantle diopsidite (Python et al. 2007). This fluid was rich in Ca and probably Si (Python et al.                                    |
| 193 | 2007) but poor in Cr, and highly reactive with mantle olivine and chromite, precipitating                                           |
| 194 | diopside and grossular.                                                                                                             |
| 195 | Assuming constant volume, the basic reaction responsible for the formation of the mantle                                            |
| 196 | diopsidite is: $Mg_2SiO_4$ (olivine)+ (0.72CaO + 0.44SiO_2) (solution) = 0.72CaMgSi_2O_6                                            |
| 197 | (diopside) + 1.28MgO (solution). The solution supplied both Ca and Si, and subtracted Mg                                            |
| 198 | from the dunite protolith. Grossular possibly formed via the reaction: $MgAl_2O_4$ (spinel                                          |
| 199 | component in chromite) + $(3CaO + 3SiO_2)$ (solution) = $Ca_3Al_2Si_3O_{12}$ (grossular) + MgO                                      |
| 200 | (solution). Precursor chromite was converted in part to a component in the diopside and in                                          |
| 201 | part dissolved via the reaction: $FeCr_2O_4$ (chromite)+ (CaO + SiO <sub>2</sub> + 0.5Al <sub>2</sub> O <sub>3</sub> ) (solution) = |
| 202 | $CaCrAlSiO_6$ (Cr-Ca Tchermak's component in diopside) + (FeO + 0.5Cr <sub>2</sub> O <sub>3</sub> ) (solution).                     |
| 203 | The resultant Cr-bearing solution migrated upwards into the lower crust to                                                          |
| 204 | metasomatically convert the gabbro (mainly plagioclase + augite) into an anorthite diopsidite                                       |

| 205 | coupled with the precipitation of chromite and uvarovite (Rai et al. 1989). The formation of                         |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 206 | uvarovite and anorthite in the crustal diopsidite, instead of grossular and diopside in the                          |
| 207 | mantle diopsidite, may be due to the higher silica content in the gabbro-solution system in the                      |
| 208 | crust than in the dunite-solution system in the MTZ because of the mass-balance reaction:                            |
| 209 | $2CaCrAlSiO_6$ (Cr-Ca Tchermak's component in diopside) + $Ca_3Al_2Si_3O_{12}$ (grossular) + $2SiO_2$                |
| 210 | $= Ca_3Cr_2Si_3O_{12} \text{ (uvarovite)} + 2CaAl_2Si_2O_8 \text{ (anorthite)}.$                                     |
| 211 | Chromium and Fe possibly formed a carbonate-sulfate-chloride complex in the solution,                                |
| 212 | as evidenced by the presence of calcite and anhydrite daughter crystals as well as a NaCl                            |
| 213 | solute in the fluid inclusions. Solubility of Cr in H <sub>2</sub> O-CO <sub>2</sub> -rich solutions, in the form of |
| 214 | carbonate-complexes, is also suggested by experiments (Rai et al. 2007). Chlorite has been                           |
| 215 | long known to play an important role in Cr dissolution in aqueous solution (e.g., Hall and                           |
| 216 | Eyring, 1950; Gates and King, 1958). Dissolution of Cr, together with Fe, facilitates the                            |
| 217 | precipitation of chromite from solution. Chromium was possibly hexavalent in the solution                            |
| 218 | and subsequently reduced to be trivalent during chromite formation, although there is no                             |
| 219 | evidence for the initial presence of $Cr^{6+}$ . Reduction of $Cr^{6+}$ to $Cr^{3+}$ would have been facilitated     |
| 220 | if coupled with the oxidation of $Fe^{2+}$ to $Fe^{3+}$ (Motzer and Todd Engineers 2004). In reduced                 |
| 221 | aqueous solutions $Cr^{2+}$ could have also been mobile (cf. Borisova et al. 2012). However it is                    |

| 222 | unlikely that diopsidite formation occurred under reduced conditions since metal alloys are     |
|-----|-------------------------------------------------------------------------------------------------|
| 223 | totally absent. This is in accordance with the higher temperature conditions here compared to   |
| 224 | the temperatures under which serpentinization (or rodingitization) could have occurred. These   |
| 225 | conditions could have resulted in a highly reducing fluid (e.g., Sleep et al. 2004)             |
| 226 |                                                                                                 |
| 227 | Implications concerning mobility of Cr in lower crustal-upper mantle hydrothermal               |
| 228 | systems                                                                                         |
| 229 | The mobility of Cr in hydrothermal systems is probably more complicated than has been           |
| 230 | previously described. Solution and transportation of Cr via hydrothermal solutions can          |
| 231 | redistribute Cr within the oceanic mantle-crust system in the region of the hydrothermal        |
| 232 | activity near mid-oceanic ridge systems (Kelley et al. 2001). Chromium, initially distributed   |
| 233 | preferentially in chromite and pyroxenes in the upper mantle, is taken up, probably together    |
| 234 | with Fe, by circulating hydrothermal solutions and incorporated in metasomatised lower          |
| 235 | crustal rocks that contain Cr-rich minerals such as uvarovite and chromite. This process        |
| 236 | suggests another origin for chromite in metamorphic and metasomatized rocks. Euhedral           |
| 237 | chromites found in metasomatic or metamorphic rocks have been previously interpreted as         |
| 238 | relics, with or without chemical modification (e.g., Taguchi et al. 2012). However, the results |

| 239 | from this study indicate that chromites could also be precipitates from a hydrothermal          |
|-----|-------------------------------------------------------------------------------------------------|
| 240 | solution rich in carbonate, sulfate and chloride components. This also implies that Cr could be |
| 241 | mobile within the mantle wedge via the action of hydrous fluids released from the slab.         |
| 242 | Olivine in strongly metasomatized peridotite xenoliths from Avacha volcano, Kamchatka,          |
| 243 | which are representative of a mantle-wedge material beneath a volcanic front, contains          |
| 244 | numerous fine grains of chromite (Ishimaru and Arai 2008). In accordance with the results       |
| 245 | from this study, this suggests that these chromite grains could possibly have precipitated from |
| 246 | fluids active in that part of the mantle wedge during metasomatic alteration of the olivine     |
| 247 | (Ishimaru and Arai 2011).                                                                       |
| 248 | If conditions permit, even a chromitite (chromite ore) could possibly form as a result of       |
| 249 | hydrothermal processes. The concentration of chromite as a result of fluid-aided processes      |
| 250 | was an early idea regarding the formation of chromitites (e.g., Ross 1931), which are           |
| 251 | selectively altered even when the peridotites are intact. Originally a hydrothermal origin for  |
| 252 | chromitites was discounted by Arai (1978). This is because hydration can influence the          |
| 253 | concentration of Al and Cr in chromitites, since chlorite is formed at the expense of the       |
| 254 | Al-spinel component in chromite at higher temperatures than serpentine upon retrogressive       |
| 255 | cooling (Arai 1978). The idea of a hydrothermal origin for chromitite can now be revived.       |

| 256 | These include chromitites in which the chromite has a low Mg# and $Fe^{3+}$ content, which      |
|-----|-------------------------------------------------------------------------------------------------|
| 257 | previously were described as high-temperature altered chromitites (e.g., Arai et al. 2006), and |
| 258 | not as an alteration product from igneous chromitites.                                          |
| 259 |                                                                                                 |
| 260 | ACKNOWLEDGEMENTS                                                                                |
| 261 | We thank J. Uesugi, A. Tamura, M. Python and S. Ishimaru for collaboration in the filed. We     |
| 262 | are grateful to T. Morishita and S. Ishimaru for their assistance in microprobe analysis. T.    |
| 263 | Mizukami and M. Miura guided us to perform Raman spectroscopic analysis. Critical               |
| 264 | comments by A.Y. Borisova, an anonymous referee, and D. Harlov were highly helpful in           |
| 265 | revision of the previous manuscript.                                                            |
| 266 |                                                                                                 |
| 267 | REFERENCES CITED                                                                                |
| 268 | Akizawa, N. and Arai, S. (2009) Petrologic profile of peridotite layers under a possible Moho   |
| 269 | in the northern Oman ophiolite: an example from Wadi Fizh. Journal of Mineralogical and         |
| 270 | Petrological Sciences, 104, 389-394.                                                            |
| 271 | Akizawa, N., Arai, S., Tamura, A., Uesugi, J. and Python, M. (2011) Crustal diopsidites from    |
| 272 | the northern Oman ophiolite: evidence for hydrothermal circulation through suboceanic           |

- 273 Moho. Journal of Mineralogical and Petrological Sciences, 106, 261-266.
- Akizawa, N., Arai, S. and Tamura, A. (2012) Behavior of MORB magmas at uppermost
- 275 mantle beneath a fast-spreading axis: an example from Wadi Fizh of the northern Oman
- ophiolite. Contributions to Mineralogy and Petrology, 164, 601-625.
- Arai, S. (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma
- chemistry. Mineralogical Magazine, 56, 173-184.
- 279 Arai, S. (1997) Control of wall-rock composition on the formation of podiform chromitites as
- a result of magma/peridotite interaction. Resource Geology, 47, 177-187.
- 281 Arai, S. (1978) Formation of chlorite corona around chromian spinel in peridotite and its
- significance. Geoscience Reports of Shizuoka University, 3, 9-15 (in Japanese with
- English abstract).
- Arai, S., Ishimaru, S. and Mizukami, T. (2012) Methane and propane micro-inclusions in
- olivine in titanoclinohumite-bearing dunites from the Sanbagawa high-P metamorphic belt,
- 286 Japan: hydrocarbon activity in a subduction zone and Ti mobility. Earth and Planetary
- 287 Science Letters, 353-354, 1-11.
- Azbej, T., Severs, M.J., Rusk, B.G. and Bodnar, R.J. (2007) In situ quantitiative analysis of
- individual H2O-CO2 fluid inclusions by laser Raman spectroscipy. Chemical Geology,

- 290 237, 255-263.
- Bach, W. and Klein, F. (2009) The petrology of seafloor rodingites: Insights from
- 292 geochemical reaction path modeling. Lithos, 112, 103-117.
- 293 Barringa, F. and Fyfe, W.S. (1983) Development of rodingite in basaltic rocks in
- serpentinites, East Liguria, Italy. Conbributions to Mineralogy and Petrology, 84, 146-151.
- 295 Borisova, A., Ceuleneer, G., Kamenetsky, V.S., Arai, S., Béjina, F., Abily, B., Bindeman,
- I.N., Polvé, M., de Parseval, P., Aigouy, T. and Pokrovski, G.S. (2012) A new view on the
- 297 petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted
- inclusions. Journal of Petrology, 53, 2411-2440.
- 299 Cheng, W. and Greenwood, H.J. (1989) The stability of the assemblage zoisite + diopside.
- 300 Canadian Mineralogist, 27, 657-662.
- 301 Esteban, J.J., Cuevas, J., Tubía, M. and Yuska, I. (2003) Xenotolite in rodingite assmeblages
- from the Ronda peridotites, Betic Cordilleras, southern Spain. Canadian Mineralogist, 41,
- 303 161-170.
- 304 Frezzotti, M.L., Tecce, F. and Casagli, A. (2012) Raman spectroscopy for fluid inclusions
- analysis. Joural of Geochemical Exploration, 112, 1-20.
- 306 Frost, B.R., Beard, J.S., McCraig, A. and Condliffe, E. (2008) The formation of

- 307 micro-rodingites from IODP Hole U1309D: Key to understanding the process of
- 308 serpentinization. Journal of Petrology, 49, 1579-1588.
- 309 Gates, H.S. and King, E.L. (1958) A study of the equilibria in acidic chromium (III) chloride
- 310 solutions. Journal of the American Chemical Society, 80, 5011-5015.
- Hall, H.T. and Eyring, H. (1950) The constitution of chromic salts in aqueous solution.
- 312 Journal of the American Chemical Society, 72, 782-790.
- Hey, M.H. (1954) A new review of chlorites. Mineralogical Magazine, 30, 277-292.
- Hsu, L.C. (1980) Hydration and phase relations of grossular-spessartine garnets at  $P_{H2O} = 2$
- kb. Conbributions to Mineralogy and Petrology, 71, 407-425.
- 316 Irvine, T.N. (1965) Chromian spinel as a petrogenetic indicator. Part 1. Theory. Canadian
- Journal of Earth Sciences, 2, 648-672.
- 318 Ishimaru, S. and Arai, S. (2008) Nickel enrichment in mantle olivine beneath a volcanic front.
- 319 Contributions to Mineralogy and Petrology, 156, 119-131.
- 320 Ishimaru, S. and Arai, S. (2011) Peculiar Ca-Mg-Si metasomatism along a shear zone within
- 321 the mantle wedge: inference from fine-grained xenoliths from Avacha volcano,
- 322 Kamchatka. Contributions to Mineralogy and Petrology, 161, 703-720.
- 323 Jamtveit, B., Wogelius, R.A. and Fraser, D.G. (1993) Zonation patterns of skarn garnets:

- Records of hydrothermal system evolution. Geology, 21, 113-116.
- 325 Kelley, D.S., Karson, J.A., Blackman, D.K., Früh-Green, G.L., Butterfield, D.A., Lilley,
- 326 M.D., Olson, E.J., Schrenk, M.O., Roe, K.K., Lebon, G.T., Rivizzigno, P. and the AT3-60
- 327 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at
- 328 30° N. Nature, 412, 145-149.
- 329 Klein-BenDavid, O., Pettke, T. and Kessel, R. (2011) Chromium mobility in hydrous fluids at
- upper mantle conditions. Lithos, 125, 122-130.
- 331 Li, X.-P., Rahm, M. and Bucher, K. (2004) Metamorphic processes in rodingites of the
- 332 Zermatt-Saas ophiolites. International Geology Review, 47, 28-51.
- 333 Liang, Y. and Elthon, D. (1989) Evidence from chromium abundances in mantle rocks for
- extraction of picrite and komatiite melts. Nature, 343, 551-553.
- Lippard, S.J., Shelton, A.W. and Gass, I.G. (1986) The ophiolite of northern Oman,
- 336 Geological Society Memoir 11, 178 p. Blackwell Scientific Publications, Oxford.
- 337 Martin, A.J. (2009) Sub-millimeter heterogeneity of yttrium and chromium during growth of
- semi-pelitic garnet. Journal of Petrology, 50, 1713-1727.
- 339 Meinert, L.D. (1992) Skarns and skarn deposits: Geoscience Canada, 19, 145-162.
- 340 Mernagh, T.P. and Wilde, A.R. (1989) The use of the laser Raman microprobe for the

- determination of salinity in fluid inclusions. Geochimica et Cosmochimica Acta, 53,
- 342 765-771.
- 343 Motzer, W.E. and Todd Engineers (2004) Chemistry, geochemistry, and geology of
- 344 chromium and chromium compounds. In F. Guertin, C.P. Avakian and J.A. Jacobs, Eds.,
- 345 Chromium(VI) Handbook, p. 23-88. CRC Press, Boca Raton, Florida.
- 346 Normand, C. and Williams-Jones, A.E. (2007) Physicochemical conditions and timing of
- 347 rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos
- 348 mine, Asbestos, Quebec. Geochemical Transactions 2007, 8:11
- doi:10.1186/1467-4866-8-11.
- 350 Oze, C., Fendorf, S., Bird, D.K. and Coleman, R.G. (2004) Chromium geochemistry in
- 351 serpentinized ultramafic rocks and serpentine soils from the Franciscan Complex of
- 352 California. American Journal of Science, 304, 67-101.
- 353 Pistorius, C.W.F.T. and Kennedy, G.C. (1960) Stability relations of grossularite at high
- temperatures and pressures. American Journal of Science, 258, 247-257.
- 355 Pomonis, P., Tsikouras, B., Karipi, S. and Natzipanagiotou, K. (2008) Rodingite formation in
- 356 ultramafic rocks from the Koziakas ophiolite, western Thessaly, Greece: conditions of
- 357 matasomatic alteration, geochemical exchanges and T-*X*(CO<sub>2</sub>) evolutionary path. Canadian

- 358 Mineralogist, 46, 569-581.
- 359 Proenza, J., Solé, J. and Melgarejo, J.C. (1999) Uvarovite in podiform chromitite: The
- 360 Moa-Baracoa ophiolitic massif, Cuba. Canadian Mineralogist, 37, 679-690.
- 361 Python, M., Ceuleneer, G., Ishida, Y., Barrat, J.-A. and Arai, S. (2007) Oman diopsidites: a
- new lithology diagnostic of very high temperature hydrothermal circulation in mantle
- 363 peridotite below oceanic spreading centres. Earth and Planetary Science Letters, 255,

364 289-305.

- 365 Rai, D., Early, L.E. and Zachara, J.M. (1989) Environmental chemistry of chromium. Science
- of the Total Environment, 86, 15-23.
- 367 Rai, D., Moore, D.A, Jess, N.J., Rosso, K.M., Rao, L. and Heald, S.M. (2007) Chromium (III)
- 368 hydroxide solubility in the aqueous  $K^+$ - $H^+$ - $CO_2$ - $HCO_3^{2-}$ - $H_2O$  system: a thermodynamic
- 369 model. Journal of Solution Chemistry, 36, 1261-1285.
- 370 Reuber, I (1988) Complexity of the crustal sequence in the northern Oman ophiolite (Fizh and
- 371 southern Aswad blocks): The effect of early slicing? Tectonophysics, 151, 137-165.
- 372 Rice, J.M. (1983) Metamorphism of rodingites: Part 1. Phase relations in a portion of the
- 373 system CaO-MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>-CO<sub>2</sub>-H<sub>2</sub>O. American Journal of Science, 283-A, 121-150.
- Ross, C.S. (1931) The origin of chromite. Economic Geology, 26, 540-545.

| fluids from serpentinization: geochemical and biotic implication. Proceedings of National                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Academy of Sciences of the United States of America, 101, 12818-12823.                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |  |  |
| Taguchi, T., Satish-Kumar, M., Hokada, T. and Jayananda, M. (2012) Petrogenesis of Cr-rich                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |  |  |
| calc-silicate rocks from the Bandihalli supracrustal belt, Archean Dharwar Craton, India.                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |  |  |  |
| Canadian Mineralogist, 50, 705-718.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |  |
| Treloar, P.J. (1987) The Cr-minerals of Outokumpu- Their chemistry and significance.                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |
| Journal of Petrology, 28, 867-886.                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions Figure 1. Diopsidites of hydrothermal origin from Wadi Fizh, Oman ophiolite. (a)                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions Figure 1. Diopsidites of hydrothermal origin from Wadi Fizh, Oman ophiolite. (a) Chromite-bearing crustal diopsidite replacing layered gabbro (G) on the outcrop.                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions         Figure 1. Diopsidites of hydrothermal origin from Wadi Fizh, Oman ophiolite. (a)         Chromite-bearing crustal diopsidite replacing layered gabbro (G) on the outcrop.         Uvarovite-rich part is greenish. (b) Hand specimen of the chromite-bearing uvarovite,                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions         Figure 1. Diopsidites of hydrothermal origin from Wadi Fizh, Oman ophiolite. (a)         Chromite-bearing crustal diopsidite replacing layered gabbro (G) on the outcrop.         Uvarovite-rich part is greenish. (b) Hand specimen of the chromite-bearing uvarovite,         replacing gabbro (G). Grayish part around the gabbro (G) is rich in diopside, and the greenish                                                           |  |  |  |  |  |  |  |  |  |  |  |  |
| Figure captions Figure 1. Diopsidites of hydrothermal origin from Wadi Fizh, Oman ophiolite. (a) Chromite-bearing crustal diopsidite replacing layered gabbro (G) on the outcrop. Uvarovite-rich part is greenish. (b) Hand specimen of the chromite-bearing uvarovite, replacing gabbro (G). Grayish part around the gabbro (G) is rich in diopside, and the greenish part contains uvarovite, anorthite, and chromite. (c) Hand specimen of diopsidite rich in |  |  |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |  |  |  |

392 crustal diopsidite. Black dots are chromite of mantle-rock (xenocrystal) origin. White to gray

23

| 393 | part consists of Cr-poor diopside, and the greenish part around chromite is not uvarovite but   |  |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 394 | Cr-rich diopside. (e) Mantle diopsidite replacing a dunitic rock in the Fizh MTZ. Note a seam   |  |  |  |  |  |  |  |  |  |  |
| 395 | of chromite (Chr) with greenish Cr-bearing diopside, which may be a remnant of chromite         |  |  |  |  |  |  |  |  |  |  |
| 396 | concentrations in the dunite host.                                                              |  |  |  |  |  |  |  |  |  |  |
| 397 |                                                                                                 |  |  |  |  |  |  |  |  |  |  |
| 398 | Figure 2. Uvarovite and chromite in the crustal diopsidite. (a) Photomicrograph                 |  |  |  |  |  |  |  |  |  |  |
| 399 | (plane-polarized light) of an euhedral uvarovite grain (light green) full of inclusions. Black  |  |  |  |  |  |  |  |  |  |  |
| 400 | dots are chromite inclusions. (b) Close-up of one of the euhedral chromite inclusions in        |  |  |  |  |  |  |  |  |  |  |
| 401 | uvarovite (a). (c) Cr distribution map showing a concentric, oscillatory Cr distribution in the |  |  |  |  |  |  |  |  |  |  |
| 402 | uvarovite grain (a). Note that chromite grains (white spots) are contained only in the high-Cr# |  |  |  |  |  |  |  |  |  |  |
| 403 | (reddish) portions. White to warm colors show higher concentrations of Cr. (d)                  |  |  |  |  |  |  |  |  |  |  |
| 404 | Back-scattered electron image of a relatively coarse skeletal chromite grain (white). Uvt,      |  |  |  |  |  |  |  |  |  |  |
| 405 | uvarovite. Chl, chlorite. An, anorthite. (e) Chromium distribution map showing the              |  |  |  |  |  |  |  |  |  |  |
| 406 | concentric, oscillatory distribution of Cr in the chromite grain (d). White to warm colors show |  |  |  |  |  |  |  |  |  |  |
| 407 | higher concentrations of Cr. Note that chlorite is associated with the concentric zoning.       |  |  |  |  |  |  |  |  |  |  |
| 408 |                                                                                                 |  |  |  |  |  |  |  |  |  |  |

409 Figure 3. Chromite in the mantle diopsidite. (a) Photomicrograph (plane-polarized light)

| 410 | of an anhedral chromite grain, possibly suggesting partial dissolution (black; Chr). Note the                       |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 411 | very thin chromite film (brown) along the diopside grain boundary (Di). (b) Close-up                                |
| 412 | (plane-polarized light) of a part of the panel (a), showing the thin film of chromite (brown)                       |
| 413 | along the diopside grain boundary. (c) Chromium distribution map of the area in (a) showing                         |
| 414 | the chromite distribution. White to warm colors show higher concentrations of Cr. (d)                               |
| 415 | Photomicrograph (reflected light) of a semi-euhedral chromite grain (Chr) in diopside (Di).                         |
| 416 | Cracks and globular inclusions are filled by grossular (Grs) and chlorite (Chl). The chromite                       |
| 417 | grain is interpreted to be intact or slightly modified. It represents a chromite relic from a                       |
| 418 | mantle rock now metasomatically altered to diopsidite.                                                              |
| 419 |                                                                                                                     |
| 420 | Figure 4. Chemical characteristics of chromites in diopsidites from Wadi Fizh, Oman                                 |
| 421 | ophiolite. Chromite compositional ranges are shown for MTZ peridotites (Akizawa and Arai                            |
| 422 | 2009; Akizawa et al. 2012), high-temperature altered chromites in chromitites (Arai et al.                          |
| 423 | 2006), and for ordinary podiform chromitites (Barnes and Roeder 2001). (a) Plot of Mg# vs.                          |
| 424 | Cr#. Averaged chemical zonation trend from the core to the rim in the mantle diopsidite is                          |
| 425 | shown by the arrow. ( <b>b</b> ) Ternary plot of $Cr^{3+}$ , $Fe^{3+}$ , and $Al^{3+}$ . Averaged chemical zonation |
| 426 | trends from the core to the rim are shown by arrows. In the crustal diopsidite chromite, the                        |

| 427 | rim is higher in $Fe^{3+}$ than the core (broken line). The core is similar in chemistry to mantle                |
|-----|-------------------------------------------------------------------------------------------------------------------|
| 428 | chromites, and the rim to the core of crustal diopsidite chromite (solid line).                                   |
| 429 |                                                                                                                   |
| 430 | <b>Figure 5.</b> Ternary plot of $Cr^{3+}$ , $Fe^{3+}$ , and $Al^{3+}$ for garnets in diposidites from Wadi Fizh, |
| 431 | Oman ophiolite. The uvarovite associated with chromite in the crustal diopside is different in                    |
| 432 | chemistry from that in mantle chromitites from Wadi Hilti, northern Oman ophiolite. Garnet                        |
| 433 | from the mantle diopsidite, where chromite is of mantle-rock (xenocrystal) origin and                             |
| 434 | partially digested, is Cr-bearing grossular, not uvarovite.                                                       |

| Table 1 Chemical composition of main minerals |                    |       |         |         |          |        |        |          |                   |           |          |         |         |          |             |
|-----------------------------------------------|--------------------|-------|---------|---------|----------|--------|--------|----------|-------------------|-----------|----------|---------|---------|----------|-------------|
| Rock type                                     | Crustal diopsidite |       |         |         |          |        |        |          | Mantle diopsidite |           |          |         |         |          | Harzburgite |
| Mineral                                       | Chro               | mite  | Uva     | rovite  | Chlorite | PI     | Срх    | Chromite |                   | Grossular |          | Срх     |         | Chromite | Chromite    |
| Position                                      | core               | rim   | Cr-rich | Cr-poor |          | core   | core   | core     | rim               | core      | chr. rim | Cr-rich | Cr-poor | core     | core        |
| SiO <sub>2</sub>                              | 0.90               | 0.10  | 37.51   | 37.86   | 31.53    | 44.73  | 55.41  | 0.01     | 0.24              | 38.90     | 39.57    | 52.31   | 54.59   | -        | 0.02        |
| TiO <sub>2</sub>                              | 0.08               | 0.30  | 0.72    | 1.71    | 0.02     | -      | 0.02   | 0.37     | 0.03              | 0.07      | 0.15     | 0.07    | 0.01    | 0.12     | 0.12        |
| $AI_2O_3$                                     | 7.38               | 4.44  | 3.96    | 7.72    | 20.35    | 35.60  | 0.84   | 18.59    | 9.04              | 20.71     | 20.13    | 3.30    | 2.49    | 20.58    | 24.11       |
| $Cr_2O_3$                                     | 54.90              | 39.05 | 22.02   | 12.30   | 1.46     | 0.04   | -      | 42.88    | 55.70             | 2.22      | 3.07     | 2.39    | 0.04    | 49.30    | 40.03       |
| $Fe_2O_3$                                     | 4.57               | 22.30 | 1.96*   | 5.34*   |          | -      | -      | 6.47     | 2.62              | 0.42*     | 0.68*    | -       | -       | 3.04     | 5.46        |
| FeO                                           | 28.48              | 29.94 | -       | -       | 4.52*    | 0.05*  | 2.96*  | 24.50    | 27.84             | -         | -        | 0.81*   | 1.05*   | 11.54    | 18.79       |
| MnO                                           | 0.54               | 1.55  | 0.10    | 0.04    | 0.05     | -      | 0.00   | 0.63     | 1.14              | -         | 0.04     | 0.03    | 0.01    | 0.24     | 0.35        |
| MgO                                           | 2.71               | 1.06  | 0.50    | 0.19    | 30.18    | -      | 16.58  | 6.88     | 3.41              | 0.03      | 0.37     | 16.34   | 16.97   | 15.59    | 11.08       |
| CaO                                           | 0.31               | 0.10  | 33.65   | 34.92   | 0.12     | 19.65  | 25.65  | -        | 0.43              | 38.73     | 36.60    | 26.17   | 25.89   | 0.01     | -           |
| Na <sub>2</sub> O                             | 0.11               | -     | 0.00    | 0.00    | -        | 0.39   | 0.12   | 0.00     | -                 | -         | 0.00     | 0.21    | 0.33    | 0.01     | -           |
| K <sub>2</sub> O                              | 0.00               | 0.00  | 0.00    | 0.00    | -        | 0.01   | -      | 0.00     | -                 | -         | -        | 0.00    | 0.01    | -        | -           |
| NiO                                           | 0.00               | 0.16  | 0.01    | 0.01    | 0.13     | -      | 0.05   | 0.18     | -                 | 0.01      | -        | 0.02    | 0.07    | 0.14     | 0.07        |
| Total                                         | 99.97              | 99.01 | 100.43  | 100.09  | 88.35    | 100.46 | 101.62 | 100.51   | 100.46            | 101.09    | 100.62   | 101.66  | 101.45  | 100.57   | 100.04      |
| 0                                             | 4                  | 4     | 12      | 12      | 28       | 8      | 6      | 4        | 4                 | 12        | 12       | 6       | 6       | 4        | 4           |
| Si                                            | 0.032              | 0.004 | 3.035   | 3.024   | 5.893    | 2.058  | 1.989  | 0.000    | 0.008             | 2.933     | 2.984    | 1.883   | 1.951   | -        | 0.001       |
| Ti                                            | 0.002              | 0.008 | 0.044   | 0.103   | 0.003    | -      | 0.000  | 0.009    | 0.001             | 0.004     | 0.008    | 0.002   | 0.000   | 0.003    | 0.003       |
| Al                                            | 0.305              | 0.194 | 0.378   | 0.726   | 4.482    | 1.930  | 0.035  | 0.713    | 0.370             | 1.840     | 1.788    | 0.140   | 0.105   | 0.737    | 0.881       |
| Cr                                            | 1.523              | 1.142 | 1.408   | 0.776   | 0.216    | 0.001  | -      | 1.102    | 1.528             | 0.132     | 0.183    | 0.068   | 0.001   | 1.184    | 0.981       |
| Fe <sup>3+</sup>                              | 0.121              | 0.621 | 0.119   | 0.321   | -        | -      | -      | 0.158    | 0.068             | 0.024     | 0.039    | -       | -       | 0.070    | 0.127       |
| Fe <sup>2+</sup>                              | 0.836              | 0.926 | -       | -       | 0.707    | 0.002  | 0.089  | 0.666    | 0.808             | -         | -        | 0.024   | 0.031   | 0.293    | 0.487       |
| Mn                                            | 0.016              | 0.048 | 0.007   | 0.0025  | 0.007    | -      | 0.000  | 0.017    | 0.034             | 0.000     | 0.002    | 0.001   | 0.000   | 0.006    | 0.009       |
| Mg                                            | 0.142              | 0.058 | 0.060   | 0.022   | 8.405    | -      | 0.887  | 0.333    | 0.176             | 0.003     | 0.042    | 0.876   | 0.903   | 0.706    | 0.512       |
| Ca                                            | 0.012              | 0.004 | 2.916   | 2.987   | 0.023    | 0.968  | 0.986  | -        | 0.016             | 3.128     | 2.956    | 1.009   | 0.991   | 0.000    | -           |
| Na                                            | 0.007              | -     | 0.000   | 0.000   | -        | 0.034  | 0.008  | 0.000    | -                 | 0.000     | 0.000    | 0.015   | 0.023   | 0.000    | -           |
| К                                             | 0.000              | 0.000 | 0.000   | 0.000   | -        | 0.000  | -      | 0.000    | -                 | 0.000     | -        | 0.000   | 0.000   | -        | -           |
| Ni                                            | 0.000              | 0.005 | 0.001   | 0.001   | 0.019    | -      | 0.001  | 0.005    | -                 | 0.001     | -        | 0.001   | 0.002   | 0.004    | 0.002       |
| Total                                         | 2.996              | 3.010 | 7.968   | 7.962   | 19.755   | 4.994  | 3.997  | 3.005    | 3.008             | 8.065     | 8.003    | 4.019   | 4.008   | 3.003    | 3.002       |
| Mg#                                           | 0.145              | 0.129 |         |         | 0.922    |        | 0.909  | 0.3335   | 0.1791            |           |          | 0.9729  | 0.9665  | 0.707    | 0.512       |
| Cr#                                           | 0.833              | 0.812 | 0.7885  | 0.517   | 0.046    |        |        | 0.6074   | 0.8052            | 0.097     | 0.132    |         |         | 0.616    | 0.527       |
| An                                            |                    |       |         |         |          | 96.6   |        |          |                   |           |          |         |         |          |             |

\* All Fe is assumed to be  $Fe^{2+}$  or  $Fe^{3+}$ . An, anorthite. Di, diopside.



Figure 1 Arai & Akizawa



Figure 2

Arai & Akizawa



## Arai & Akizawa Figure 3



Figure 4 Arai and Akizawa



Figure 5 Arai and Akizawa