1 Revision 1

2	Cathodoluminescence properties of radiation-induced alkali feldspars
3	
4	Masahiro Kayama ¹ *, Hirotsugu Nishido ² , Shin Toyoda ³ , Kosei Komuro ⁴ , Adrian A.
5	Finch ⁵ , Martin R. Lee ⁶ , and Kiyotaka Ninagawa ³
6	
7	¹ Department of Earth and Planetary Systems Science, Graduate School of Science,
8	Hiroshima University, Kagami-yama 1-3-1, Higashi-Hiroshima, 739-8526, Japan
9	² Research Institute of Natural Sciences, Okayama University of Science, 1-1 Ridaicho,
10	Kita-ku, Okayama 700-0005, Japan
11	³ Department of Applied Physics, Okayama University of Science, 1-1 Ridaicho, Kita-ku,
12	Okayama 700-0005, Japan
13	⁴ Earth Evolution Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, 305-8571,
14	Japan
15	⁵ Department of Earth Sciences, University of St Andrews, Irvine Building, North Street,
16	St Andrews, Fife, KY16 9AL, U.K.
17	⁶ School of Geographical and Earth Sciences, University of Glasgow, Lilybank Gardens,
18	Glasgow G12 8QQ, U.K.

1

19 *Email: kayama27@hiroshima-u.ac.jp 20 21 ABSTRACT 22 23 Cathodoluminescence (CL) spectroscopy provides useful information about the existence of radiation-induced defect centers with a few micrometer resolutions and 24 25 therefore has great potential to estimate the accumulated dose of natural radiation in micron-ordered mineral grain from radioactive decay. Although great scientific interest 26 27 exists concerning the CL of various types of minerals, very few investigation have been conducted on the luminescence properties of radiation-induced alkali feldspars. This 28 study, therefore, has sought a clarification of radiation effects on emission centers 29 detected by CL analysis of alkali feldspar implanted with He⁺ ions at 4.0 MeV, which 30 corresponds to the energy of an α particle derived from radioactive decay of ²³⁸U and 31 ²³²Th. 32 Panchromatic CL images of cross-sections of sanidine, orthoclase and microcline show 33

a dark line with ~1 μ m width on the bright luminescent background at 12–15 μ m beneath the implanted surface, of which behavior may be corresponding to the electronic energy loss process of 4.0 MeV He⁺ ion. CL and Raman spectroscopy

37	revealed that He ⁺ ion implantation may leads to a partial destruction of the feldspar
38	framework and Na^+ migration, resulting in a quenching of CL emission from alkali
39	feldspar, in proportion to the radiation dose. CL spectra of unimplanted and
40	He ⁺ -ion-implanted sanidine, orthoclase and microcline have emission bands at
41	${\sim}400{-}410$ nm and at ${\sim}730$ nm. Deconvolution of the CL spectra can successfully
42	separate these emission bands into emission components at 3.05, 2.81, 2.09, 1.73 and
43	1.68 eV. These components are assigned to the Ti^{4+} impurity, Al-O ⁻ -Al/Ti defect, a
44	radiation-induced defect center, and Fe ³⁺ impurities on the T1 and T2 sites, respectively.
45	The intensity at 3.05 eV negatively correlates with radiation dose owing to decreases in
46	the luminescence efficiency. A slight Na ⁺ diffusion and breaking of the linkage between
47	Ti^{4+} and oxygen as a ligand might reduce the activation energy, which decreases
48	availability of radiative energy in luminescence process of Ti ⁴⁺ impurity center.
49	Furthermore, He ⁺ ion implantation causes electron holes to be trapped at and released
50	from Löwenstein bridges as a consequence of Na ⁺ migration and leads to a partial
51	destruction of Al-O bond, which might be responsible for an increase and decrease in
52	the intensity of emission component at 2.81 eV. With an enhanced radiation dose, there
53	is a decrease in intensity at 1.73 eV and an increase in intensity at 1.68 eV.
54	Deconvoluted CL spectra of the alkali feldspars reveal a positive correlation between

55	intensity at 2.09 eV and the radiation dose, which may be due to the formation of a
56	radiation-induced defect center. These correlations can be fitted by an exponential curve,
57	where the gradients differ between the alkali feldspars studied, and are largest for the
58	microcline, followed by the orthoclase and then the sanidine. The intensity at 2.09 eV
59	has the potential to be used in geodosimetry and geochronometry.
60	Keywords: cathodoluminescence, alkali feldspar, quenching, radiation-induced defect
61	center, He ⁺ ion implantation
62	
63	INTRODUCTION
64	
65	Luminescence of minerals has been extensively applied in geosciences for
66	geodosimetry and geochronometry (e.g. Smith and Stenstrom 1965; Marshall 1988;
67	Gaft et al. 2005). The accumulated doses of natural radiation that have been
68	accumulated by rock-forming minerals such as quartz and feldspar can be quantitatively
69	estimated using thermoluminescence (TL) and optical stimulated luminescence (OSL)
70	spectroscopy. If the annual dose rate is known, these techniques can then be used to
70 71	spectroscopy. If the annual dose rate is known, these techniques can then be used to determine the luminescence dating of the minerals in sedimentary rocks and volcanic

73	defects in minerals, where intensity of ESR from the radiation-induced defect center has
74	been used as an indicator for geodosimetry and geochronometry. It is, however,
75	necessary for estimating the accumulated dose or dating the geological age by TL, OSL
76	and ESR methods to extract a large amount of mineral from the target sediment, so that
77	these techniques are difficult to apply to micrometer sized grains. Cathodoluminescence
78	(CL) spectroscopy also provides useful information about the existence and distribution
79	of radiation-induced defect centers in quartz and feldspar, and with a spatial resolution
80	of a few micrometers (Owen 1988; Komuro et al., 2002; Okumura et al., 2008; Kayama
81	et al. 2011a; Kayama et al. 2011b), suggesting a potential for geodosimetry and
82	geochronometry with respect to a micron-ordered heterogeneous minerals or single
83	grain analysis.
84	The effect of ion implantation on CL emissions from quartz has been investigated to
85	explore the processes whereby radiation-induced defect centers are formed and to
86	estimate the accumulated dose of natural radiation from radioactive decay (e.g. Owen
87	1988; Komuro et al., 2002; Okumura et al., 2008; Krickl et al., 2008; King et al., 2011).
88	According to Komuro et al. (2002) and Okumura et al. (2008), He ⁺ -ion-implanted
89	quartz at 4.0 MeV shows a bright luminescent band of \sim 14 μm width from the
00	implanted surface as a CL halo within which the intensity positively correlates with

91	radiation dose. A similar CL halo with ~45 μ m width from the implanted surface has
92	been also recognized in He^{2+} -ion-implanted quartz and SiO ₂ glass at 8.8 MeV, where the
93	intensities increase with radiation dose (Krickl et al., 2008). Although these previous CL
94	studies of ion-implanted quartz have demonstrated a good correspondence between CL
95	intensity and radiation dose, the dose response to ion implantation differs between
96	quartz samples of various origins, suggesting that the use of CL of quartz in
97	geodosimetry is not straightforward. Okumura et al. (2008) concluded that the CL
98	intensity of quartz depends on not only the radiation dose, but also other factors such as
99	density of defect centers (e.g., $[AlO_4/M^+]^0$ defect, self-trapped exciton, non-bridging
100	oxygen hole centers) and on the concentration of impurity centers (e.g., Ge^{4+} and Fe^{3+}
101	impurities). Accordingly, further work is required to elucidate how CL of
102	radiation-induced quartz can be used in geodosimetry.
103	CL has also been used to detect radiation-induced defect centers in He ⁺ -ion-implanted
104	albite (Kayama et al. 2011a; Kayama et al., 2011b). In this case, radiation resulted in a
105	characteristic red emission, whose intensity increased with radiation dose.
106	Deconvolution of CL spectra by Gaussian fitting revealed an emission component at

108 implantation. No investigations of ion implantation on the CL properties of alkali

107

1.861 eV that was assigned to a radiation-induced defect center produced by He⁺ ion

109	feldspars (e.g. sanidine, orthoclase and microcline) have been performed. Most alkali
110	feldspars show a blue CL emission assigned to Al-O ⁻ -Al defect center, and the intensity
111	depends on the natural radiation dose (Finch and Klein, 1999). Ion implantation
112	corresponding to $\boldsymbol{\alpha}$ particle radiation, therefore, potentially affects the CL emissions
113	assigned to Al-O ⁻ -Al defect centers as well as other emission centers such as Ti ⁴⁺ and
114	Fe^{3+} impurities, which should be interpreted in detail for the application of CL to
115	geodosimetry and geochronometry.
116	In this study, CL of He ⁺ -ion-implanted alkali feldspars at 4.0 MeV, corresponding to
117	energy of α particle from radioactive decay of ^{238}U and $^{232}\text{Th},$ was measured to clarify
118	the effect of ion implantation on luminescent emissions derived from defect and
119	impurity centers. Raman spectroscopy was also conducted for the implanted alkali
120	feldspar to investigate a formation process of radiation-induced defect centers produced
121	by He ⁺ ion implantation.
122	
123	SAMPLES AND METHODS
124	
125	CL and Raman analyses were carried out for unimplanted and He ⁺ -ion-implanted
126	samples of single crystals of sanidine (Sa) (Or ₈₇ Ab ₁₃) phenocrysts from syenite and

127	phonolite xenoliths in Quaternary diatreme from Eifel, Germany, microperthitic
128	orthoclase (Or) (Or ₉₃ Ab ₇) from Late Variscan granite in the Karlovy Vary Massif from
129	Karlovy Vary, Czech Republic and microperthitic microcline (Mi) (Or ₈₉ Ab ₁₁) as
130	pegmatite minerals from Naegi granite in Late Cretaceous Sanyo-type granitic zone
131	from Nakatsugawa, Gifu, Japan. These alkali feldspars were identified by X-ray
132	diffraction analysis. Microstructures and microtextures associated with exsolution,
133	micropores and twining were located by optical microscopy and backscattered electron
134	SEM imaging of the plagioclase grains and avoid in subsequent CL work owing to their
135	potential impact on the results. The sliced samples (10 \times 10 \times 1 mm) were cut
136	perpendicular to c-axis for CL and Raman measurements in order to avoid a polarization
137	effects as suggested by Finch et al. (2003). The sliced samples were polished and
138	finished with a 1 μm diamond abrasive. CL microscopy and spectroscopy were
139	preliminarily conducted on the surface of the sliced samples to select the areas with
140	comparable CL intensity and homogeneous distribution of the intensity before the He+
141	ion implantation experiments.
142	He^+ ion implantation was conducted perpendicular to their surface using a 3M-tandem

ion accelerator located at Takasaki Research Center of the Japan Atomic Energy
Research Institute. The ion-beam condition had a 4.0 MeV implantation energy,

8

145	corresponding to the energy of alpha particles from ²³⁸ U and ²³² Th disintegrations,
146	where a specific dose density was set in the range from 2.18×10^{-6} to 6.33×10^{-4} C/cm ²
147	for the sanidine and 4.83×10^{-6} to 4.64×10^{-4} C/cm ² for the orthoclase and microcline
148	(Table 1). The implanted samples for sanidine, orthoclase and microcline were
149	numbered in order of dose density, e.g., Sa00 for unimplanted sanidine and Sa10 for the
150	highest dose. CL spectra were acquired from the implanted surface of the samples,
151	which is indicated by the postscript "S", e.g., Or01S for orthoclase implanted at the
152	lowest dose and Or08S for oligoclase implanted at the highest dose. The implanted
153	samples were also cut perpendicular to their exposed surface to enable CL line analysis
154	and high-resolution CL imaging of the surface in cross-section. The sectional samples
155	are denoted by the postscript "C", e.g., Mi00C for unimplanted microcline and Mi10C
156	for microcline implanted at the highest radiation dose. Further details of the He^+ ion
157	implantation experiment and sample preparation can be found in Okumura et al. (2008)
158	and Kayama et al. (2011a).
159	A scanning electron microscopy-cathodoluminescence (SEM-CL) instrument was

160 carried out using a JEOL: JSM-5410 SEM combined with a grating monochromator

161

162 300 to 800 nm in 1 mm steps were corrected for the total instrumental response, which

(Oxford: Mono CL2) to measure CL spectra. All CL spectra obtained in the range from

163	was determined using a calibrated standard lamp. CL line analysis was measured across
164	a profile from He $^{+}$ ion implanted surface (0 μm) to a depth of 20 μm with 0.25 μm steps,
165	where the bulk intensity of the panchromatic CL (300 to 800 nm) was obtained. The
166	operating conditions were set as follows: an accelerating voltage of 15 kV and a beam
167	current of 2.0 nA in scanning mode with a 220 \times 185 μm scanning area, which was
168	established based on the preliminary CL spectroscopy for prevention of electron
169	irradiation damage and enhancement of the signal/noise (S/N) ratio. According to
170	Kayama et al. (2010), the corrected CL spectra in energy units were deconvoluted into
171	the Gaussian components corresponding to each emission center using the peak-fitting
172	software (Peak Analyzer) implemented in OriginPro 8J SR2. Peak position and integral
173	intensity of the Gaussian component were acquired from each five deconvoluted CL
174	spectra of unimplanted and He^+ ion-implanted sanidine, orthoclase and microcline at
175	different radiation dose. High-resolution CL images were obtained using the Gatan:
176	MiniCL imaging system under the same condition as CL spectral analysis by SEM-CL.
177	More details of the equipment construction and analytical procedures are in Ikenaga et
178	al. (2000) and Kayama et al. (2010).
179	A laser Raman microscope (Thermo Electron; Nicolet: Almega XR) was used for

180 Raman spectral measurements, where the Nd:YAG laser (532 nm excitation line) was

181	selected and controlled at 20 mW with a ${\sim}1~\mu m$ spot size. The operating conditions were
182	set as five accumulations of 10 s each in the range 120 to 900 cm^{-1} in steps of 1 cm^{-1} .
183	Raman bands were calibrated by monitoring the position of the O-Si-O stretching
184	vibration (464 cm ⁻¹) in reference to a standard high optical grade quartz before and after
185	the measurements. Details of instrument construction and analytical procedures can
186	found in Kayama et al. (2009).
187	
188	RESULTS
189	
190	CL microscopy
191	
192	Panchromatic CL images of cross-sections of sanidine implanted at $3.03 \times 10^{-4} \text{ C/cm}^2$
193	(Sa09C) and of orthoclase (Or08C) and microcline (Mi08C) both implanted at 4.64 \times
194	10^{-4} C/cm ² show a dark line with ~1 µm width on the bright luminescent background at
195	12–15 μ m beneath the implanted surface (Fig. 1). Similar dark lines occur in CL images
196	of all other implanted samples, but they are absent from unimplanted alkali feldspars.
197	The reduction in CL intensity that produces the dark line is more obvious for high dose
198	than low dose implanted samples. Optical microscopy, and secondary electron (SE), and

199	backscattered	electron	(BSE)	imaging	reveal	no	microstructures	or	textures
200	corresponding	to the dark	c line obs	served in th	ne CL in	nage	(Fig. 1).		

202 CL line analysis

203

204	CL line analyses were carried out on cross-sections of Sa09C, Or08C and Mi08C (Fig.
205	2). The analysis line is shown in Fig. 1, and extends from the implanted surface to a
206	depth of 20 μ m, which includes the dark line at 12–15 μ m. CL intensities of Sa09C
207	appear to slightly decrease with the implantation depth, show a drastic drop at 12-15
208	μ m, then increase to 16 μ m (Fig. 2). Similar changes in intensity were found in CL line
209	analyses of other sanidine cross-section samples. All implanted orthoclase and
210	microcline samples also show similar depth-dependent change in CL intensities (Fig. 2).
211	
212	CL spectroscopy

213

CL spectra of unimplanted sanidine (Sa00S) and microcline (Mi00S) have emission bands in the blue (~410 nm) and red-IR regions (~730 nm) (Figs. 3a and c). A UV emission at ~320 nm also occurs in the spectrum of Mi00S, and the intensity of this

217	peak is appreciably lower than of the emission bands in the blue and red-IR regions (Fig.
218	3c). Unimplanted orthoclase (Or00S) has similar UV, blue and red-IR emission with
219	higher intensities than Sa00S and Mi00S. CL spectroscopy of Sa09S reveals emission
220	bands at ~410 and ~730 nm, similar to those of Sa00S, whereas CL intensity of the blue
221	emission in Sa09S is lower than in Sa00S (Fig. 3a). Also, CL of Sa09S exhibits a
222	yellow-orange emission from 550 to 600 nm overlapped and concealed by the blue and
223	red-IR emissions. The intensity of the yellow-orange emission increases with the
224	radiation dose. CL spectra of Or08 and Mi08 consist of emission bands at \sim 320 nm in
225	the UV, ~410 nm in the blue and ~730 nm in the red-IR regions, and these spectral
226	patterns are similar to unimplanted orthoclase and microcline (Figs. 3b and c). The
227	implanted orthoclase and microcline show a decrease in the blue emission intensities
228	and an increase in the yellow-orange ones with an increase in radiation dose.
229	

230 Raman spectroscopy

231

Raman spectra of unimplanted sanidine, orthoclase and microcline have pronounced peaks at ~160, ~285, ~455, ~480 and ~515 cm⁻¹, and weak ones at ~360, ~405, ~750 and ~810 cm⁻¹. Similar peaks are also observed in Raman spectra of dark line areas at

235	12–15 μm depth in Sa09C, Or08C and Mi08C, which have lower intensities, larger
236	bandwidths and high background compared to those of unimplanted samples. Raman
237	line analyses of Sa09C, Or08C and Mi08C that were obtained from the implanted
238	surface to the inside with $20\mu m$ depth reveal that the integral-peak intensities at 515
239	cm^{-1} slightly decrease at 12–15 µm depth, then increase with greater depth (Fig. 4).
240	
241	DISCUSSION
242	
243	Characteristics of CL on implanted surface
244	
245	Panchromatic CL images of the cross-sections show a dark line at 12–15 μ m beneath
246	the implanted surface (Fig. 1), and this distance is close to the maximum of electronic
247	energy loss (~12.5 $\mu m)$ of 4.0 MeV He^{+} ion in alkali feldspars (Bragg and Kleeman
248	1905; Nogami and Hurley 1948; Faul 1954; Owen 1988; Komuro et al., 2002; Okumura
249	et al., 2008). By monochromatic CL imaging, Kayama et al. (2011a) found a similar
250	dark line beneath the implanted surface of albite, again, corresponding to the range of
251	He^{+} ion implantation at 4.0 MeV. CL line analyses acquired through the cross-sections
252	of all implanted alkali feldspars also reveal decreases in emission intensities at 12-15

253	μm (Fig. 2). However, the distance at 12–15 μm is not completely concordant with the
254	maximum of electric energy loss process, which may be due to $\mathrm{He}^{\!\!+}$ ion implantation
255	condition or spatial resolution of CL microscopy proposed by Okumura et al. (2008).
256	Nevertheless, it is noteworthy that He^+ ion implantation definitely make a quench of CL
257	emission from alkali feldspar around the end of the ion track, in proportion to the
258	radiation dose.
259	Raman spectra acquired from the dark line in CL imaging of Sa09, Or08 and Mi08
260	are of a lower peak intensity, broader bandwidth and high background than those seen in
261	unimplanted samples. Raman line analyses of Sa09C, Or08C and Mi08C show a slight
262	decrease in the integral-peak intensity at 515 cm^{-1} in the dark line at 12–15 $\mu\text{m},$
263	assigned to T-O stretch and O-T-O deformation modes in TO_4 group (Fig. 4) (von
264	Stengel 1977; Freedman et al. 2003). A similar phenomenon has been recognized in the
265	Raman spectra of He ⁺ -ion-implanted albite (Kayama et al., 2011a; Kayama et al.,
266	2011b). These facts imply that He^+ ion implantation may destroy the linkage between
267	TO ₄ tetrahedra or induce a strain, and consequently quenches CL in alkali feldspar. This
268	has been also observed in zircon, where the luminescence and Raman intensity is
269	reduced in proportion to metamictization (Nasdala et al. 2002; Kempe et al. 2010).
270	According to the previous studies, ion implantation also results in the migration of

11/20

271	monovalent cations in alkali feldspar. Monovalent cations such as $\mathrm{Na}^{\scriptscriptstyle +}$ migrate in the
272	lattice of feldspar during Pb ion implantation (Petit et al., 1987). The extent of lattice
273	damage caused by ion implantation and its consequent diffusion are determined by the
274	implantation dose (Watson and Dohmen 2010). According to Jambon and Carron (1976),
275	diffusion coefficient of alkali element in feldspar may depend on the defect density.
276	Lineweaver (1963) demonstrated that electron irradiation transfers alkali elements into
277	unirradiated areas due to formation of the electric fields produced by defection of
278	oxygen. Although the cation migration potentially occurs in associated with ion
279	implantation, it may be slight effective because there is almost no difference of Na^+
280	content, obtained from chemical analysis by wavelength dispersive X-ray spectroscopy
281	(WDS), between unimplanted and the implanted alkali feldspars. Taken together these
282	findings indicate that the partial destruction, introduction of strain and the slight $\mathrm{Na}^{\!+}$
283	migration due to He^+ ion implantation may be the cause of quenching of CL in alkali
284	feldspar rather than the $\mathrm{Na}^{\scriptscriptstyle +}$ migration. This CL quenching may be responsible for a
285	conversion of emission center related to the present alkali feldspar into non-luminescent
286	center due to an alteration of the energy state or a change of luminescence efficiency
287	due to a variation of the activation energy, as will be described in the section of
288	"Radiation effects on each emission center".

289	With an increase in the radiation dose on alkali feldspars, emission intensities of blue
290	CL decrease sharply, whereas yellow-orange emissions intensities increase and red-IR
291	intensities slightly decrease or increase depending on the samples (Fig. 3). This pattern
292	indicates that He^+ ion implantation effect on CL vary depending on type of emission
293	center. Although CL line analysis reveals a decrease in the intensity at 12–15 μm caused
294	by an elimination of the emission center due to the partial destruction, introduction of
295	strain or the Na ⁺ migration, there should also be an accumulation of radiation-induced
296	defect centers related to the brightening CL emission around the end of the ion track.
297	Therefore, CL halo in feldspars may be produced and characterized by both elimination
298	and creation of the emission centers due to radiation, where the former should be the
299	dominant process for the present alkali feldspar with the dark line and the later should
300	be for albite with bright luminescent band reported by Kayama et al. (2011a).
301	

302 Assignment of emission centers

303

The blue emission at 400–410 nm, shown in Fig. 3, is assigned to the following centers; (1) an oxygen defect associated with the electron hole trapped Löwenstein bridge (Al-O⁻-Al defect center) formed with two Al atoms, one of which is structural Al

307	and the others is impurity Al (Marfunin 1979; Finch and Klein 1999; Götze et al. 2000;
308	Słaby et al. 2008; Kayama et al. 2010) and (2) Ti^{4+} incorporated with Al sites, which act
309	as impurity center and/or oxygen defect associated with Al-O-Ti bridges (Marfunin and
310	Bershov 1970; Mariano et al. 1973; Mariano and Ring 1975; Speit and Lehmann 1976;
311	Kirsh et al. 1987; Smith and Brown 1988; Ginibre et al. 2004; Lee et al. 2007; Parsons
312	et al. 2008; Kayama et al. 2010). According to Kayama et al. (2010), the blue emission
313	band consists of an overlap of two components, namely the oxygen defect centers
314	associated with Al-O-Al and Al-O-Ti bridges (Al-O ⁻ -Al/Ti defect center) and the Ti^{4+}
315	impurity center. The alkali feldspars also have the red-IR CL emission attributed to a
316	Fe^{3+} impurity that substitutes for Al^{3+} ions in tetrahedral sites for the luminescence
317	caused by the radiative transition of the electrons from 4T_1 to 6A_1 (Telfer and Walker
318	1978; Finch and Klein 1999; Götze et al. 2000). Kayama et al. (2010) clarified the
319	suggestion of Finch and Klein (1999) that the red-IR CL emission is composed of two
320	components assigned to Fe^{3+} impurity centers on T1 and T2.
321	CL spectra of the implanted alkali feldspars have yellow-orange emission from 550 to

- 322 600 nm (Fig. 3), of which intensities increase with radiation dose. Ionoluminescence
- 323 (IL) spectrum of alkali feldspar shows a similar increase in the intensity depending on
- the radiation dose (Brooks et al. 2002). A comparable increase in the CL intensity with

325	radiation dose has been also observed in red emissions from He ⁺ -ion-implanted albite,
326	which is characteristic of the radiation-induced defect center (Kayama et al. 2011a;
327	Kayama et al. 2011b). Krickl et al. (2008) also demonstrated a similar yellow emission
328	assigned to the radiation-induced defect center in He ²⁺ irradiated natural and synthetic
329	SiO_2 phase as well as natural α -quartz with radiohaloes. This suggests the formation of
330	radiation-induced defect center in alkali feldspar by He ⁺ ion implantation and/or change
331	in quantum efficiency of the recombination site.
332	According to deconvolution method suggested by Stevens-Kalceff (2009) and Kayama
333	et al. (2010), the emission bands in CL spectra from the sanidine, orthoclase and
334	microcline can be separated into five Gaussian components, at 3.05, 2.81, 2.09, 1.73 and
335	1.68 eV, where their peak position and integral intensity are obtained from each five
336	deconvoluted CL spectral of unimplanted and the implanted alkali feldspar at different
337	radiation dose. The emission components at 3.05 and 2.81 eV are constituents of the
338	emission bands in the blue spectral region, where the former is assigned to Ti^{4+} impurity
339	center and the latter to Al-O ⁻ -Al/Ti defect center (Kayama et al. 2010). The red-IR
340	emission comprises the components at 1.73 and 1.68 eV that Kayama et al. (2010)
341	attributes to the Fe^{3+} impurity centers on the T1 and T2 sites, respectively. Intensity of
342	the component at 2.09 eV increases with radiation dose, implying a characteristic CL

343	signal of the radiation-induced defect center (Fig. 5). The emission component assigned
344	to the radiation-induced defect center is also detectable in the deconvoluted CL spectra
345	of He^+ -ion-implanted albite, but the peak wavelength (1.861 eV) is distinct from that
346	obtained from the alkali feldspar in the present study (2.09 eV). According to Blasse
347	and Grabmaier (1994), Götze et al. (2000) and Stevens-Kalceff et al. (2000), the peak
348	position of an emission band varies with chemical composition, crystal structure in host
349	lattice, and type of emission center. Therefore, further studies such as annealing
350	experiment and ESR analysis will be necessary for an identification of type of
351	radiation-induced defect center.

353 Radiation effects on each emission center

354

Figures 6, 7, 8 and 9 plot intensities of Gaussian components at 3.05 eV, 2.81 eV, 2.09 eV, 1.73 eV and 1.68 eV against dose density of He⁺ ion implantation on the sanidine, orthoclase and microcline, where the averaged intensities and the standard deviations are obtained from five deconvoluted CL spectra of each of these feldspar implanted at respective radiation dose. They elucidate radiation effects on CL of alkali feldspar activated by each emission center, as follows.

362 Ti⁴⁺ impurity center

363

364	Intensities of the emission component at 3.05 eV decrease sharply with increasing
365	radiation doses up to 1.07 \times $10^{-4}~C/cm^2$ for sanidine and 9.42 \times $10^{-5}~C/cm^2$ for
366	orthoclase and microcline, then decrease more gradually above that threshold. As
367	described above, He ⁺ ion implantation potentially leads to the partial destruction,
368	introduction of strain and the slight Na ⁺ migration in the alkali feldspars judging from
369	the present results obtained by Raman spectroscopy and EPMA analysis and the
370	previous studies, which may be responsible for quenching of the CL activated by Ti^{4+}
371	impurity center. According to Brooks et al. (2001), ion implantation reduces activation
372	energy associated with hopping between adjacent channels, which is a function of the
373	luminescence efficiency (Curie 1963). Kayama et al. (2009) demonstrated that the
374	activation energy depends on the structural state in SiO_2 polymorphs, which may be due
375	to a change of the energy state in host. Therefore, luminescence efficiency as well as the
376	activation energy varies depending on the structural state in the host, as suggested by
377	Blasse and Grabmaier (1994). A change of the structural state by partial destruction,
378	introduction of strain or the Na ⁺ migration during He ⁺ ion implantation may decreases a

11/20

379	luminescence efficiency of Ti ⁴⁺ impurity center in the alkali feldspars due to a change in
380	the activation energy. Alternatively, it may lead to an alteration of the energy state in
381	Ti ⁴⁺ impurity center, resulting in a conversion of the emission center into
382	non-luminescent center. Nevertheless, these outcomes of these processes may quench
383	the blue CL in alkali feldspars. The energy used as CL activated by the Ti^{4+} impurity
384	center might be transferred into lattice vibration as phonon, or applied for radiative
385	transition of the electron at other emission centers. However, further works will be
386	necessary to validate an adequacy of this model.

388 Al-O⁻-Al/Ti defect center

389

The emission components at 2.81 eV increase in intensity with an increase in low radiation level of He^+ ion for sanidine and microcline (Figs. 6b and 8b). IL spectroscopy of alkali feldspar also revealed an increase in the blue emission intensity with the radiation dose, which may be due to a formation of defect or vacancy in the structure (Brooks et al. 2002). Finch and Klein (1999) modeled the CL intensity of the blue emission in feldspar scales with the percentage of Löwenstein bridges with electron holes (Al-O⁻-Al defect center) in the structure, which is closely related to natural

397	radiation dose received by the feldspar during its geological history. ESR analysis
398	demonstrated that electron holes at oxygen positions (e.g., Al-O ⁻ -Al) in feldspars are
399	produced by natural gamma ray and X-ray radiation (Petrov et al., 1989). Furthermore,
400	the diffusion of monovalent cations in quartz in response to ion implantation converts
401	the $[AIO_4/M^+]^0$ defect (M: H ⁺ , Li ⁺ , Na ⁺ and K ⁺) into the $[AIO_4]^0$ defect (equivalent to
402	the Al-O ⁻ -Al defect in feldspar), resulting in an increase in the blue emission intensity
403	with elevated radiation doses (King et al., 2011). Electron holes may be derived from
404	the slight Na^+ migration in sanidine and microcline with He^+ ion implantation and
405	subsequently trapped in Löwenstein bridges in various extents depending on the
406	radiation dose, which might be responsible for an increase in the blue CL intensity at
407	relatively low radiation level.

The intensities at 2.81 eV, however, decrease with as a function of radiation dose up to 2.41 × 10⁻⁵ C/cm² for orthoclase (Fig. 7b). The emission intensity is substantially higher in unimplanted orthoclase than unimplanted sanidine and microcline (Fig. 6, 7 and 8), which, taking the Finch and Klein (1999) model at face value, implies that the orthoclase may have quite high percentage of Löwenstein bridges with electron holes. The sanidine at 1.07×10^{-4} C/cm² and the microcline at 9.42×10^{-5} C/cm² have a maximum intensity at 2.81 eV in Figure 6b and 8b, implying their sufficient high

415	percentage of Löwenstein bridges. Electron holes, therefore, may have been already
416	trapped in almost all Löwenstein bridges in the orthoclase before He ⁺ ion implantation
417	and in the sanidine and microcline after the implantation at relatively high radiation
418	dose, which may contributes to no increase in the intensity at 2.81 eV for the orthoclase
419	as well as the implanted sanidine and microcline at high level of radiation dose.
420	According to King et al. (2011), a mobility of an electron in quartz by ion implantation
421	also changes $[AlO_4]^0$ defect into $[AlO_4]^-$ defect, where the former acts as emission
422	center, but latter as non-luminescent center. Al-O ⁻ -Al/Ti defect centers in the orthoclase,
423	and the implanted sanidine and microcline at relatively high radiation dose might be
424	eliminated and converted into non-luminescent centers due to the Na ⁺ migration by He ⁺
425	ion implantation, which quenches their blue CL. Furthermore, Raman spectroscopy
426	shows a slight decrease in the integral-peak intensity at 515 cm^{-1} in the dark lines.
427	Radiation dose leads to a breaking of many Al-O bond in framework structure of the
428	alkali feldspar and then eliminating a large amount of Al-O ⁻ -Al/Ti defect centers. An
429	introduction of strain of AlO^4 tetrahedra due to He^+ ion implantation may be also due to
430	a change of the energy state in Al-O ⁻ -Al/Ti defect centers. These processes might be
431	also responsible for the quenching effect on the blue CL.

433 **Fe³⁺ impurity center**

434

435	The radiation doses on sanidine up to 1.07×10^{-4} C/cm ² decrease the intensity of
436	emission components at 1.73 eV assigned to the Fe ³⁺ impurity center on T1 sites. This
437	effect is also seen to doses of up to 9.42 \times $10^{-5}~\rm C/cm^2$ for the microcline. The
438	component at 1.68 eV, which is the Fe^{3+} impurity center on T2 sites, increases in
439	intensity with the radiation dose up to 1.07×10^{-4} C/cm ² in sanidine, 4.83×10^{-5} C/cm ²
440	in orthoclase and 2.50 \times 10^{-4} C/cm^2 in microcline (Figs. 6, 7 and 8). This may
441	contributes to an energy transition between Fe^{3+} impurity centers on T1 and T2 sites.
442	The minimal partial destruction, introduction of strain or slight Na ⁺ migration may
443	causes a decrease in the luminescence efficiency of Fe ³⁺ impurity center on T1 site as a
444	consequence of a change of activation energy or a conversion of the emission center
445	into non-luminescent center by an alteration of the energy state, the same as in the case
446	of Ti ⁴⁺ impurity center. Consequently, the red-IR CL in alkali feldspar may be quenched
447	by these processes derived from He ⁺ ion implantation. These results are concordant with
448	IL spectral data of Fe ³⁺ -activated emission obtained from alkali feldspar (Brooks et al.
449	2002). A part of energy for luminescence emission from the Fe^{3+} impurity center on the
450	T1 site should be consumed by radiative transition of Fe^{3+} impurity center on T2 site as

451	the energy transition process, resulting in an enhancement of the red-IR CL intensity.
452	The rate of increase of emission intensity at 1.68 eV is lower for orthoclase than for
453	sanidine and microcline (Figs. 6c, 7c and 8c). This may be due to the low concentration
454	of Fe ³⁺ impurity centers on the T1 site judging from undetectable emission component
455	at 1.73 eV in orthoclase, although further works will be necessary for an establishment
456	of this model.

457 The emission component at 1.68 eV in sanidine shows a decrease in the intensity with an increase in the radiation dose above 1.07×10^{-4} C/cm² (Fig. 6c). According to 458 Kayama et al. (2009), a change in framework configuration by partial destruction of its 459 structure alters the emission centers into non-luminescent centers with consequent 460 quenching of CL due to an increase in the population of non-radiative transition. This is 461 observed in other mineral systems, for example, Nasdala et al., (2002) demonstrated 462 463 that natural radiation destroys the structure of zircon, leading to a decrease in emission intensity depending on the radiation dose. These facts indicate that the linkages between 464 the Fe^{3+} ions on T2 site and oxygen as their ligands might be appreciably broken or 465 strained by He⁺ ion implantation at relatively high radiation dose, and consequently the 466 emission center is converted into non-luminescent center. Similarly, such change of the 467 energy state of the emission center should be caused by the slight Na⁺ migration, which 468

.

469	also results in a quenching of CL activated by Fe^{3+} impurity centers on the T2 site. On
470	the other hand, the intensities at 1.68 eV for orthoclase and microcline increase with
471	radiation dose up to 4.64 \times $10^{-4}~\text{C/cm}^2$ and reach a the saturation level above 4.83 \times
472	$10^{-5}~{\rm C/cm^2}$ for orthoclase and 2.50 $\times~10^{-4}~{\rm C/cm^2}$ for microcline. Since Raman
473	spectroscopy indicates that the framework of the disordered feldspar appears to be more
474	prone to damage than ordered feldspar (Fig. 4), He^+ ion implantation effects of the
475	structure-breaking may be potentially exerted to the sanidine rather than the orthoclase
476	and microcline. Most Fe^{3+} impurity centers on the T2 site act as an emission center in
477	orthoclase and microcline, but not in the sanidine at relatively high radiation dose,
478	which might explain the lack of a decrease in intensity at 1.68 eV in the orthoclase and
479	microcline with the enhanced radiation dose.

480

481 Radiation-induced defect center

482

The emission components at 2.09 eV exponentially increase in intensity with radiation dose in the low radiation level, although the gradients differ between the alkali feldspars, and are largest for the microcline, followed by the orthoclase and then the sanidine (Fig. 9). Saturation of the intensity is reached at 4.02×10^{-6} C/cm² for sanidine, above 2.41 ×

11/20

487	10^{-5} C/cm ² for orthoclase and above 4.83×10^{-5} C/cm ² for microcline; the saturated
488	intensity of the ordered alkali feldspar tends to be higher than that of the disordered one.
489	This pattern implies that an increase in the CL intensity of the yellow-orange emission
490	assigned to the radiation-induced defect center might be closely related to the degree of
491	Si-Al order. ESR studies on feldspar have also demonstrated that signals attributed to
492	oxygen vacancies linked between Si and Al tetrahedra vary depending on natural
493	gamma and X-ray radiation doses and the degree of Si-Al ordering (Matyash et al.,
494	1982; Petrov et al., 1989). The emission component at 2.09 eV in the alkali feldspar,
495	therefore, might be assigned to one or more of the oxygen vacancy centers. Further
496	investigations such as annealing experiment and ESR analysis of radiation-induced
497	alkali feldspars will allow us to specify type of the oxygen vacancy centers.
498	Figure 9 reveals that there is no decrease in the intensity at 2.09 eV with the enhanced
499	radiation dose up to 6.33×10^{-4} C/cm ² for sanidine and up to 4.64×10^{-4} C/cm ² for the
500	orthoclase and microcline. The components at 2.81 eV, however, decrease sharply in
501	intensity in the range of relatively high radiation doses, which might be due to breaking
502	of Al-O bonds related to the Al-O ⁻ -Al/Ti defect center by He ⁺ ion implantation. These
503	results indicate that formation of the radiation-induced defect center assigned to
504	component at 2.09 eV in the alkali feldspar should be a dominant process rather than an

s05 elimination of the center due to the partial breaking of the structure in the present ranges06 of the radiation dose.

507	The dose response of intensity at 2.09 eV appears to be mainly controlled only by the
508	degree of Si-Al ordering, even though other properties including chemical composition,
509	crystal structure, concentration and distribution of other emission centers and the
510	presence of microstructures or microtextures also differ between the alkali feldspars.
511	Kayama et al. (2011b) demonstrated that several albite from different localities show
512	almost same dose response of the intensity at 1.86 eV, not depending on other properties
513	of these albite crystals. In the case of alkali feldspar, therefore, a quantitative estimation
514	of α radiation dose from natural radionuclides using the intensity at 2.09 eV requires a
515	correction for the CL spectral data on the basis of the degree of Si-Al ordering, but
516	probably not to other mineralogical features. Eventually, the intensity at 2.09 eV may be
517	used as an indicator for geodosimetry, and then geochronometry based on the additive
518	dose method, which provide progressive application in geoscience and planetary science,
519	e.g. clarification of space weathering on lunar regolith and micron-order grain recovered
520	from Itokawa asteroid, sedimentary dating in wide applicable range, estimation of
521	leakage of nuclear waste from geologic disposal facilities and atomic power plant.
522	

11/20

ACKNOWLEDGMENTS

524

525	We are deeply indebted to Dr. S. Nakano (Shiga University, Shiga, Japan) for helpful
526	suggestions on CL of feldspar. We thank Dr. Y. Shibata (Technical center, Hiroshima
527	University, Hiroshima, Japan) for technical support on WDS using EPMA. The
528	measurement of EPMA was made using JXA-8200 at the Natural Science Center for
529	Basic Research and Development (N-BARD), Hiroshima University. We also appreciate
530	Dr. J. Götze (TU Bergakademie Freiberg, Freiberg, Germany) for his careful reading
531	and valuable suggestions on luminescence of radiation-induced minerals, which led to
532	improvements in the manuscript. He^+ ion implantation experiments were supported by
533	the Inter-University Program for the Joint Use of the Japan Atomic Energy Agency
534	(Takasaki), grant No. 21010 to H. N.
535	
536	REFERENCES
537	
538	Blasse, G. and Grabmaier, B.C. (1994) Radiative return to the ground state: Emission. In
539	Luminescent Materials, 52, chapter 3, p. 33-70. Springer Verlag, Berlin.

540 Bragg, W. H., and Kleeman, R. (1905) Alpha particles or radium, and their loss of range

- passing through various atoms and molecules. Philosophical Magazine, 10, 318–334.
- 542 Brooks, R. J., Ramachandran, V., Hole, D. E., Townsend, P. D. (2001) Dose rate effects
- 543 in ion beam luminescence. Radiation Effects and Defects in Solids: Incorporating
- 544 Plasma Science and Plasma Technology, 155, 177–181.
- 545 Brooks, R. J., Finch, A. A., Hole, D. E., Townsend, P. D., and Wu, Z. (2002) The red to
- 546 near-infrared luminescence in alkali feldspar. Contributions to Mineralogy and
- 547 Petrology, 143, 484–494.
- 548 Curie, D. (1963) Thermal and optical activation of trapped electrons: Quenching effects.
- 549 In Luminescence in Crystals, chapter 7, p. 202–208. Methuen and Co. Ltd., London.
- 550 Faul, H. (1954) Nuclear geology, John Wiley (New York), 414.
- 551 Freeman, J. J., Wang, A., Kuebler, K. E., and Haskin, L. A. (2003) Raman spectroscopic
- 552 characterization of the feldspars-Implications for in situ surface mineral characterization
- in planetary exploration. Lunar and Planetary Science XXXIV, 1676.
- 554 Finch, A. A., and Klein, J. (1999) The causes and petrological significance of
- 555 cathodoluminescence emission from alkali feldspars. Contributions to Mineralogy and
- 556 Petrology, 135, 234–243.
- 557 Finch, A. A., Hole, D. E., and Townsend, P. D. (2003) Orientation dependence of
- ⁵⁵⁸ luminescence in plagioclase. Physics and Chemistry of Minerals, 30, 373–381.

- 559 Gaft, M., Reisfeld, R., and Panczer, G. (2005) Luminescence Spectroscopy of Minerals
- and Materials, Springer-Verlag (Berlin), 52.
- 561 Götze, J., Krbetschek, M.R., Habermann, D., and Wold, D. (2000) High-resolution
- 562 cathodoluminescence of feldspar minerals. In M. Pagel, V. Barbin, P. Blanc, and D.
- 563 Ohnenstetter, Eds., Cathodoluminescence, p. 245-270. Geosciences, Springer Verlag,
- 564 Berlin.
- 565 Ginibre, C., Wörner, G., and Kronz, A. (2004) Structure and dynamics of the Laacher
- see magma chamber (Eifel, Germany) from major and trace element zoning in sanidine:
- 567 A cathodoluminescence and electron microprobe study. Journal of Petrology, 45,
- 568 2197–2223.
- 569 Ikenaga, M., Nishido, H., and Ninagawa, K. (2000) Performance and analytical
- 570 conditions of cathodoluminescence scanning electron microscope (CL-SEM). The
- 571 Bulletin of Research Institute of Natural Sciences Okayama University of Science, 26,
- 572 **61–75**.
- Jambon, A., and Carron, J. P. (1976) Diffusion of Na, K, Rb and Cs in glasses of albite
- and orthoclase composition. Geochimica et Cosmochimica Acta, 40, 897–903.
- 575 Kayama, M., Nishido, H., and Ninagawa, K. (2009) Cathodoluminescence
- 576 characterization of tridymite and cristobalite: Effects of electron irradiation and sample

- 577 temperature. American Mineralogist, 94, 1018–1028.
- 578 Kayama, M., Nakano, S., and Nishido, H. (2010) Characteristics of emission centers in
- 579 alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution.
- 580 American Mineralogist, 95, 1783–1795.
- 581 Kayama, M., Nishido, H., Toyoda, S., Komuro, K., and Ninagawa, K. (2011a) Radiation
- effects on cathodoluminescence of albite, American Mineralogist, 96, 1238–1247.
- 583 Kayama, M. Nishido, H., Toyoda, S., Komuro, K., and Ninagawa, K. (2011b)
- 584 Combined Cathodoluminescence and Micro-Raman Study of Helium-Ion-Implanted
- 585 Albite. Spectroscopy Letters, 44, 526–529.
- 586 Kempe, U., Thomas, S-M., Geipel, G., Thomas, R., Plötze, M., Böttcher, R. Grambole,
- 587 G., Hoentsch, J., and Trinkler, M. (2010) Optical absorption, luminescence, and electron
- paramagnetic resonance (EPR) spectroscopy of crystalline to metamict zircon: Evidence
- 589 for formation of uranyl, manganese, and other optically active centers. American
- 590 Mineralogist, 95, 335–347.
- 591 King, G. E., Finch, A. A., Robinson, R. A. J., and Hole, D. E. (2011) The problem of
- 592 dating quartz 1: Spectroscopic ionoluminescence of dose dependence. Radiation
- 593 Measurements, 46, 1–9.
- 594 Kirsh, Y., Shoval, S., and Townsend, P.D. (1987) Kinetics and emission spectra of

- thermoluminescence in the feldspar albite and microcline. Physica status solidi (a), 101,
- 596 253–262.
- 597 Komuro, K., Horikawa, Y., and Toyoda, S. (2002) Development of radiation-damage
- 598 halos in low-quartz: cathodoluminescence measurement after He⁺ ion implantation.
- 599 Mineralogy and Petrology, 76, 261–266.
- 600 Krickl, R., Nasdala, L., Götze, J., Grambole, D., and Wirth, R. (2008) Alpha-irradiation
- effects in SiO2. European Journal of Mineralogy, 20, 517–522.
- Lee, M. R., Parsons, I., Edwards, P. R., and Martin, R. W. (2007) Identification of
- 603 cathodoluminescence activators in zoned alkali feldspars by hyperspectral imaging and
- electron-probe microanalysis. American Mineralogist, 92, 243–253.
- Marfunin, A. S. (1979) Spectroscopy, luminescence and radiation centers in minerals.
- 606 Springer-Verlag (Berlin), 352.
- 607 Marfunin, A.S. and Bershov, L.V. (1970) Electron-hole centers in feldspars and their
- possible crystalchemical and petrological significance. Doklady Akademii Nauk, 193,
- 609 412–414.
- 610 Mariano, A.N. and Ring, P.J. (1975) Europium-activated cathodoluminescence in
- 611 minerals. Geochimica et Cosmochimica Acta, 56, 175–185.
- 612 Mariano, A. N., Ito, J., and Ring, P. J. (1973) Cathodoluminescence of plagioclase

- feldspars. Geological Society of America, Abstract Program, 5, 726.
- Marshall, D. J. (1988) Cathodoluminescence of Geological Materials. Hyman (Boston),

615 146.

- 616 Matyash, V. I., Bagmut, N. N., Litovchenko, C. A., and Proshko, Ya. V. (1982) Electron
- 617 paramagnetic resonance study of new paramagnetic centers in microcline-perthites from
- 618 pegmatites. Physics and Chemistry of Minerals, 8, 149–152.
- 619 McKeown, D. A. (2005) Raman spectroscopy and vibrational analyses of albite: From
- 620 25 °C through the melting temperature. American Mineralogist, 90, 1506–1517.
- 621 Nasdala, L., Lengauer, C. L., Hanchar, J. M., Kronz, A., Wirth, R., Blanc, P., Kennedy,
- 622 A. K., and Seydoux-Guikkaume, A. M. (2002) Annealing radiation damage and the
- recovery of cathodoluminescence, Chemical Geology, 191, 121–140.
- 624 Nogami, H., and Hurley, P. M. (1948) The absorption factor in counting alpha rays from
- thick mineral sources. American Geophysical Union Transactions, 29, 335–340.
- 626 Okumura, T., Nishido, H., Toyoda, S., Kaneko, T., Kosugi, S., and Sawada, Y. (2008)
- 627 Evaluation of radiation-damage halos in quartz by cathodoluminescence as a
- 628 geochronological tool. Quaternary Geochronology, 3, 342–345.
- Owen, M. R. (1988) Radiation-damage halos in quartz. Geology, 16, 529–532.
- 630 Parsons, I., Steele, D. A., Lee, M. R., and Magee, C. W. (2008) Titanium as a

- cathodoluminescence activator in alkali feldspar. American Mineralogist, 93, 875–879.
- 632 Perny, B., Eberhardt, P., Ramseyer, K., Mullis, J., and Pankrath, R. (1992)
- 633 Microdistribution of Al, Li, and Na in α -quartz: Possible causes and correlation with
- short-lived cathodoluminescence. American Mineralogist, 77, 534–544.
- 635 Petit, J. C., Dran, J. C., and Della Mea, G. (1987) Effects of ion implantation on the
- dissolution of minerals. In Part II. Selective dissolution. Bulletin de Minéralogie, 110,
- 637 25–42.
- 638 Petrov, I., Agel, A., and Hafner, S. S. (1989) Distinct defect centers at oxygen positions
- 639 in albite. American Mineralogist, 74, 1130–1141.
- 640 Słaby, E., Götze, J., Simon, K., and Wörner, G. (2008) K-feldspar phenocrysts in
- 641 microgranular magmatic enclaves: Cathodoluminescence and geochemical studies on
- 642 crystal growth as a marker of magma mingling dynamics. Lithos, 105, 85–97.
- 643 Smith, J.V. and Brown, W.L. (1988) Feldspar Minerals. 1. Crystal structures, physical,
- chemical, and microtextural properties, 828 p. Springer-Verlag, Berlin.
- 645 Smith, J. V., and Stenstrom, R. C. (1965) Electron-excited luminescence as a petrologic
- 646 tool. Journal of Geology, 73, 627–635.
- 647 Speit, B. and Lehmann, G. (1976) Hole centers in the feldspar sanidine. Physica status
- 648 solidi (a), 36, 471–481.

- 649 Stengel, M. O. von (1977) Normalschwingungen von Alkalifeldspäten. Zeitschrift für
- 650 Kristallographie, 146, 1–18.
- 651 Stevens-Kalceff, M. A. (2009) Cathodoluminescence microcharacterization of point
- defect in α-quartz. Mineralogical Magazine, 73, 585–605.
- 53 Stevens-Kalceff, M. A., Matthew, R. P., Anthony, R. M., and Kalceff, W. (2000)
- 654 Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. In M. Pagel,
- V. Barbin, P. Blanc, and D. Ohnenstetter, Eds., Cathodoluminescence in Geosciences,
- chapter 8, p. 193–223. Springer, Berlin.
- ⁶⁵⁷ Telfer, D.J., and Walker, G. (1978) Ligand field bands of Mn²⁺ and Fe³⁺ luminescence
- centers and their site occupancy in plagioclase feldspar. Modern Geology, 6, 199–210.
- 659 Watson, E. B., and Dohmen, R. (2010) Non-traditional Emerging Methods for
- 660 Characterizing Diffusion in Minerals and Mineral Aggregates. In Y. Zhang, and D. J.
- 661 Cherniak, Eds., Reviews in Mineralogy & Geochemistry. Mineralogical Society of
- 662 America Geochemical Society, p. 61–105.
- 663

FIGURE AND TABLE CAPTION

665

664

Figure 1. (a) Panchromatic CL image of a cross-section of He⁺-ion-implanted (a)

11/20

667	sanidine (Sa09C), (b) orthoclase (Or08C) and (c) microcline (Mc08C). White lines		
668	indicate trace of CL and Raman line analyses for the alkali feldspars, shown in Figures		
669	$2a$ and $4d$. Scale bars are $20\ \mu\text{m}.$		
670			
671	Figure 2. Plot of the relationship of CL emission intensity over the 300–800 nm range		
672	obtained by CL line analysis from the $\text{He}^{+}\text{-ion-implanted}$ surface to 20 $\mu\text{m}.$ The samples		
673	analyzed are Sa09C, Or08 and Mi08. The path of the line analysis is indicated by the		
674	white lines in Figure 1.		
675			
676	Figure 3. CL spectra of (a) unimplanted (Sa00S) and He ⁺ -ion-implanted sanidine		
677	(Sa09S), (b) unimplanted (Or00S) and He ⁺ -ion-implanted orthoclase (Or08S), and (c)		
678	unimplanted microcline (Mi00S) and He ⁺ -ion-implanted microcline (Mi08S).		
679			
680	Figure 4. Plot showing the change in intensity of the Raman peak at 515 cm ⁻¹ from the		
681	implanted surfaces of cross-section samples of Sa09C, Or08C and Mi08C to 20 μm		
682	depth. A slight decrease in the intensity at 515 cm^{-1} is observed at ~10 μ m, which is		
683	responsible for the cracks. Measured areas of the Raman line analysis are indicated in		

686	Figure 5. Deconvolution of CL spectra in energy units obtained from					
687	He ⁺ -ion-implanted (a) sanidine (Sa09S), (b) orthoclase (Or08S) and microcline (Mi08S).					
688	Data are fitted by several Gaussian curves.					
689						
690	Figure 6. A plot of the intensity of the Gaussian component at 2.09 eV obtained using					
691	CL spectral deconvolution against dose density of He ⁺ ion implantation for the sanidine					
692	(Sa00S to Sa10S), orthoclase (Or00S to Or08S) and microcline (Mi00S to Mi08S).					
693						
694	Figure 7. Plots of intensities of Gaussian components at (a) 3.05 eV, (b) 2.81 eV, (c)					
695	1.68 eV and (d) 1.73 eV obtained using CL spectral deconvolution for the sanidine					
696	(Sa00S to Sa10S) against dose density of He^+ ion implantation.					
697						
698	Figure 8. Plots of intensities of Gaussian components at (a) 3.05 eV, (b) 2.81 eV and (c)					
699	1.68 eV obtained using CL spectral deconvolution for the orthoclase (Or00S to Or08S)					
700	against dose density of He^+ ion implantation.					
701						
702	Figure 9. Plots of intensities of Gaussian components at (a) 3.05 eV, (b) 2.81 eV, (c)					

- 1.68 eV and (d) 1.73 eV obtained using CL spectral deconvolution for the microcline
- (Mi00S to Mi08S) against dose density of He^+ ion implantation...
- 705

706 **Table 1.** Samples of alkali feldspars for CL and Raman measurements.

707

No.	Dose density (C/cm ²)	No.		Dose density (C/cm ²)
Sa00	Unimplanted	Or00	Mi00	Unimplanted
Sa01	2.18 × 10 ^{−6}	Or01	Mi01	4.83 × 10 ^{−6}
Sa02	4.02 × 10 ⁻⁶	Or02	Mi02	9.65 × 10 ^{−6}
Sa03	2.54 × 10 ⁻⁵	Or03	Mi03	2.41 × 10 ⁻⁵
Sa04	6.97 × 10 ⁻⁵	Or04	Mi04	4.83 × 10 ⁻⁵
Sa05	1.07 × 10 ⁻⁴	Or05	Mi05	9.42 × 10 ⁻⁵
Sa06	1.19 × 10 ⁻⁴	Or06	Mi06	1.77 × 10 ⁻⁴
Sa07	1.40 × 10 ⁻⁴	Or07	Mi07	2.32 × 10 ⁻⁴
Sa08	1.49 × 10 ⁻⁴	Or08	Mi08	4.64 × 10 ⁻⁴
Sa09	3.03 × 10 ⁻⁴			
Sa10	6.33 × 10 ⁻⁴			

Sa, Or and Mi indicate sanidine, orthoclase and microcline, respectively.

