Synthesis of K-dominant tourmaline

Eleanor Berryman1,*, Bernd Wunder2 and Dieter Rhode2

1Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, 13355 Berlin, Germany.

2GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany.

*E-mail: berryman.eleanor@gmail.com

Abstract

K-dominant tourmaline was synthesized in the system MgO-Al\textsubscript{2}O\textsubscript{3}-B\textsubscript{2}O\textsubscript{3}-SiO\textsubscript{2}-KCl-H\textsubscript{2}O at 700 °C and 4.0 GPa. The crystals were zoned and characterized by less-potassic cores (1.46 wt\% K\textsubscript{2}O) and more-potassic rims (up to 3.44 wt\% K\textsubscript{2}O). The K-dominant tourmaline rims are represented by the average structural formula

\[(K_{0.64(3)}-0.36(3))(Mg_{2.60(7)}Al_{0.40(7)})(Al_{5.97(3)}Si_{0.03(3)})(Si_{5.99(1)}Al_{0.01(1)})(BO_3)_{3/2}(OH)_{3.92(8)}O_{0.08(8)}, \]

which is analogous to the structural formula of dravite and is referred to here as “K-dravite”; the maximum K content (3.44 wt\% K\textsubscript{2}O) represents occupancy of the X site by 0.71 K pfu. The addition of Na to the system, in approximately equal molar proportions to K results in the crystallization of K-bearing, Na-rich dravitic tourmaline, dramatically reducing the K content to an average value of 0.47 wt\% K\textsubscript{2}O, corresponding to 0.10 K pfu. This suggests that a K-dominated bulk composition is necessary for K-dominant tourmaline crystallization.

Compositional zoning shows that solid solution exists between end-member compositions of “K-dravite” [(KMg\textsubscript{5}Al\textsubscript{3}Si\textsubscript{6}O\textsubscript{15}(BO\textsubscript{3})\textsubscript{3}(OH)\textsubscript{3}(OH)] and dravite via the isovalent exchange xK(xNa)$_x$, magnesio-foitite via the coupled substitution xKyMg(x-yAl)$_{2y}$, and “K-olenite” via the coupled
substitution $^\text{Y}$MgOH($^\text{Y}$AlO)$_4$. Structural refinement of the powder X-ray data provides a unit-cell volume for the synthesized “K-dravite” of 1580.1(5) Å3, which is greater than that determined for K-bearing dravitic tourmaline synthesized at the same conditions (1574.9(4) Å3). We interpret this to reflect expansion of the crystal structure due to incorporation of the relatively large K$^+$ ion.

Keywords: tourmaline, potassium end-member, high pressure, synthesis, Na-K solid solution

Introduction

Tourmaline, with the general formula $^{[n]}X^{[6]}Y_{3}^{[6]}Z_{6}^{[6]}T_{4}^{[6]}O_{18}^{[6]}$(BO$_3$)$_3V_3$W (Hawthorne and Henry 1999; Hamburger and Buerger 1948), is known for its ability to incorporate a wide range of elements, resulting in the 28 different end-members currently accepted by the International Mineralogical Association’s Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC) and additional end-members continuously being discovered (e.g., London et al. 2006; Wodara and Schreyer 2001; Selway et al. 1998). The tourmaline supergroup has been subdivided into three primary types based on the dominant occupancy of the X-site: the alkali-, calcic-, and X-vacant (\textendash) tourmaline groups (Henry et al. 2011). The alkali-tourmaline group includes tourmalines which have (Na$^+$ + K$^+$) > Ca$^{2+}$ and (Na$^+$ + K$^+$) > at their X-site (Henry et al. 2011). Even though K-dominant tourmaline has been found in nature (e.g., “K-oxy-dravite” with 2.75 wt% K$_2$O or 0.576 K pfu by Shimizu and Ogasawara (2005, 2013), and “K-povondraite” with 2.2 wt% K$_2$O or 0.56 K pfu by Grice et al. (1993) or 0.60 K pfu by Žďaček et al. (2000)), its rarity has precluded it from being recognized as a distinct end-member, and only Na, Ca, and X-vacant end-members are currently defined. In addition, K$^+$ is typically considered incompatible in tourmaline, likely because of its large ionic radius (1.55 Å in nine-fold
coordination), which is 25% larger than Na$^+$ (1.24 Å in nine-fold coordination) (Shannon 1976).

However, the occurrence of micro-diamond inclusions in "K-oxy-dravite" from the Kokchetav Massif, Kazakhstan, raised the question of whether K is incorporated more readily at high pressure (Shimizu and Ogasawara 2005, 2013; Ota et al. 2008), or in the presence of K-rich fluids (Marschall et al. 2009). We report here the first synthesis of "K-dravite", which forms a solid-solution with the Na-bearing end-member dravite \([\text{NaMg}_3\text{Al}_6\text{Si}_6\text{O}_{18}(\text{BO}_3)_3(\text{OH})_2\text{OH}]\) via \(\text{X}^+\text{K}^+\text{Na},_1\) exchange.

Experimental details

K-bearing tourmaline was synthesized at 4.0 GPa and 700 °C after 4 days using an end-loaded piston-cylinder press. A mixture of solid MgO, γ-Al₂O₃, SiO₂, and H₂BO₃ in the atomic proportions of end-member dravite with 20-mol% excess SiO₂ and 100-mol% excess H₂BO₃ to facilitate tourmaline crystallization (Werding and Schreyer 1984) was ground for two hours. Prior to being weighed, MgO and γ-Al₂O₃ were dried at 400 °C for 1 day to reverse any hydration or carbonatization that may have occurred during storage. Two experiments were prepared using clean gold capsules (10-mm length, 3-mm outer diameter, 0.25-mm wall thickness) that had been fired at 600 °C for 2 days. The capsule for run #EB1 was filled with 10.81 mg of the solid mixture and 3.39 mg of a KCl-saturated solution (3.85 M KCl), and the capsule for run #EB2 with 10.87 mg of the solid mixture, 2.58 mg of a 3.85-M KCl solution, and 2.08 mg of a 5-M NaCl solution. The capsules were welded shut, reweighed after being left in an oven at 100 °C overnight to ensure a good seal, and placed together in a steel furnace assembly with sodium chloride as a pressure medium. Pressure was calibrated according to the quartz-coesite transition (Mirwald and Massonne 1980), which is accurate within 50 MPa. Temperature was measured with a Ni-CrNi thermocouple placed into the assembly close to the center of the
two capsules; its error is estimated to be ± 10 °C. Once pressure was stable at 4.0 GPa, the
system was heated to 700 °C within 30 minutes and left for 4 days. Pressure was maintained
within 50 MPa throughout the duration of the experiment. At the end of the experiment, the
samples were quenched isobarically to a temperature below 200 °C in less than 15 seconds prior
to the slow release of pressure. Once removed from the assembly, the capsules were cleaned and
rewieghed to check for leakage. Finally, the sample material was carefully removed and prepared
for analysis by optical microscopy, electron microprobe (EMP) and X-ray diffraction (XRD).

Chemical Analysis

EMP-analyses were done on the epoxy-mounted, polished, and carbon-coated samples
using a JEOL Hyperprobe JXA-8500F equipped with a thermal field-emission cathode and five
wavelength-dispersive spectrometers operated with a 8.0-kV accelerating voltage, a 10-nA beam
current, and a 1–5-μm beam diameter. Signals for all elements were counted for 20 s, except for
Na, which had a 10-s counting time. The standards used were orthoclase (K, Si, and Al), jadeite
(Na), and periclase (Mg). Data reduction was done using a ϕ(pZ) correction scheme (CITZAF;
Armstrong 1995). Under these conditions, analytical errors and detection limits (1σ) are 0.98%
and 280 ppm for Si, 0.63% and 205 ppm for Al, 1.18% and 189 ppm for Mg, 4.82% and 251
ppm for Na and 13.19% and 383 ppm for K, respectively. Wavelength-dispersive element X-ray
maps were obtained using a moving-stage program with an 8.0-kV accelerating voltage, a 10-nA
beam current, and a 0.10-μm step interval. The counting time per step was 250 ms for element
X-ray maps of tourmaline synthesized in the presence of a KCl fluid (#EB1, Fig. 1) and 300 ms
for those synthesized in the presence of a KCl-NaCl fluid (#EB2, Fig. 2). The X-ray intensities
were measured for K, Mg, Al, and Si in both samples and, in the case of EB2, additionally for Na and plotted on separate element maps based on a color scale.

X-ray crystallography

Powder-XRD patterns for both samples were recorded on a STOE Stadi P diffractometer equipped with a position-sensitive detector (PSD) using Cu Kα1 X-radiation measured in the 5–125° 2θ range, generated with a 40-kV accelerating voltage, a 40-mA beam current, and a germanium (111) primary monochromator. Cell dimensions were determined by Rietveld refinement using the GSAS software package (Larson and Von Dreele 1987). Initial structure models for tourmaline (dravite), coesite, sanidine, and sylvinite applied the structural parameters of Buerger et al. (1962), Geisinger et al. (1987), Zachariasen and Plettner (1963), and Barrett and Wallace (1954), respectively. In the tourmaline structure-refinement, average site-occupancy values as determined by EMP were used.

Results and discussion

The experiments produced a product assemblage of tourmaline, coesite, and, in the Na-free system, sanidine (K₂Si₃O₈·4H₂O) and sylvinite. The synthesized tourmaline crystals were on average 10 µm long and 1–2 µm wide, but ones up to 50 µm long were observed. Tourmaline synthesized in the presence of a KCl fluid (EB1) had the highest K content, with up to 3.44 wt% K₂O measured with a 5-µm beam. As shown in Fig. 1, crystals were compositionally zoned, the darker cores being less potassic than the brighter rims (Table 1). The crystal cores have the lowest concentration of K (1.46 wt% K₂O, 0.30 K pfu), whereas the rims have up to 3.44 wt% K₂O (0.71 K pfu), thereby forming K-dominant tourmaline. This zoning correlates with increasing Mg and decreasing Al incorporation with crystal growth. As a result, we interpret the
increased K incorporation towards the rims to reflect the coupled substitution $\text{XK}^+ + \text{YMg}^{2+} = \text{X}^-$
+ YAl^{3+}, discussed in greater detail below. Although the solution was saturated with respect to
KCl at atmospheric conditions, it was undersaturated at the experimental conditions. It is thus
likely that even greater K incorporation could occur with a more KCl-concentrated solution. The
addition of aqueous NaCl to the fluid (#EB2) reduced the concentration of KCl by 45%, from
3.85 M to 2.13 M. However, the proportion of K incorporated at the X-site decreased by far more
than 45%, down to 0.10 K pfu (Table 1). Even though this is still relatively K-rich compared to
tourmaline typically found in nature, the dominant occupancy of the X-site by Na indicates that
K-rich dravite was synthesized. The effect of varying fluid composition indicates that bulk
composition has a significant control on the crystallization of “K-drajvite” and that a K-dominant
and Na-poor fluid is required for its crystallization.

The EMP data were normalized to 15 cations at the Y, Z, and T sites (15 YZT) and
alternatively to 24.5 O (the number of oxygen atoms in tourmaline’s structure not associated
with B or H, assuming a structure with 4 OH), assuming 3 B pfu in both cases (Table 1). Both
normalizations assume the absence of B at the T site (14B), which, however, cannot be excluded.
The two normalization schemes are in good agreement, with discrepancies only in terms of the
W site. Although normalization to 15 YZT is normally favored because it permits the relative
occupancy of O$^2-$ and OH$^-$ in the W site to be calculated, in the case of the “K-drajvite” cores
(#EB1), an insufficient amount of positive charge among the cations results in the W site being
underfilled (Table 1; Fig. 3b). This is best explained by the initial crystallization of tourmaline
being nonstoichiometric, as observed in earlier tourmaline-synthesis experiments (e.g., von
Goerme et al. 1999), or by inaccuracy in the EMP measurements arising from porosity between
abundant crystal nuclei in the cores.
The “K-dravite” end-member formula is K\text{Mg}_3\text{Al}_6\text{Si}_8\text{O}_{18}(\text{BO}_3)_3(\text{OH})_2(\text{OH}) and is related to end-member dravite [Na\text{Mg}_3\text{Al}_6\text{Si}_8\text{O}_{18}(\text{BO}_3)_3(\text{OH})_2(\text{OH})] by isovalent substitution at the X site: K\text{+} \leftrightarrow Na\text{+}, i.e. the exchange vector $XK(\text{K}^{\text{Na}})_{1.1}$ (Fig. 4). Shimizu and Ogasawara (2005) noted this exchange in describing their K-rich tourmaline from the Kokchetav Massif in Kazakhstan as ranging from 0.11 to 0.55 $X_{\text{K-oxy-dravite}}$ and again when they showed that their most K-rich tourmaline was a continuous solid-solution with Ca-, Na- and γ-tourmaline (Shimizu and Ogasawara 2013). However, whereas they propose an end-member analogous to oxy-dravite $[\text{Na(Mg}_2\text{Al)}\text{Al}_6\text{Si}_8\text{O}_{18}(\text{BO}_3)_3(\text{OH})_2(\text{OH})]$, our synthetic K-tourmaline with $Y\text{Al}<1$ (Table 1) is analogous to dravite, as predicted by Henry et al. (2011). Furthermore, the compositional zoning of the synthesized “K-dravite” indicates that there is solid solution between the end-member compositions of “K-dravite” and X-site-vacant tourmaline, magnesio-foitite $[\text{Na}(\text{Mg}_2\text{Al)}\text{Al}_6\text{Si}_8\text{O}_{18}(\text{BO}_3)_3(\text{OH})_2(\text{OH})]$, via the coupled substitution $XK^+ + Y\text{Mg}^{2+} = X^- + Y\text{Al}^{3+}$ (exchange vector $XK^+Y\text{Mg}(X^-Y\text{Al})_{1.1}$; Fig. 3a), and, to a lesser extent, between the end-member compositions of “K-dravite” and the K analogue of the Al-tourmaline, olenite $[\text{KAl}_3\text{Al}_6\text{Si}_8\text{O}_{18}(\text{BO}_3)_3(\text{OH})_2(\text{OH})]$, via the coupled substitution $Y\text{Mg}^{2+} + (\text{OH}) = Y\text{Al}^{3+} + O^{2-}$ (exchange vector $Y\text{MgOH}(Y\text{AlO})_{1.1}$; Fig. 3b). Element X-ray mapping of radiating crystal clusters (Figs. 1 and 2) illustrates these solid solutions, particularly that with magnesio-foitite; concurrent with the increase in K (or Na in the sodium-bearing system), the Mg content is increased and Al content decreased in the crystal rims. In the case of the K-rich dravitic tourmaline crystals (#EB2), Mg and, to a lesser extent, K are also enriched in the crystal rim (Fig. 2). Concurrently, Na and Si also show increasing concentration with crystal growth. The increasing incorporation of Na in K-rich dravite (#EB2) is similar in behavior to the incorporation of K in “K-dravite” from #EB1. However, whereas Na steadily increases in concentration, the ratio of K to vacancies
remains relatively constant at 1:4 (dashed line in Fig. 4). The increased incorporation of Si is complementary to the decreasing Al content, based on the coupled substitution \(^{\gamma} \text{Al}^{3+} + ^{\gamma} \text{Al}^{3+} = ^{\gamma} \text{Mg}^{2+} + ^{\gamma} \text{Si}^{4+} \) (exchange vector \(^{\gamma} \text{Mg}^{2+}^{\gamma} \text{Si}^{4+}^{\gamma} \text{Al}^{3+}^{\gamma} \text{Al}^{3+} \)). The favoring of the early crystallization of Al-rich tourmaline in the crystal cores is attributed to the lower mobility of Al in the fluid and, along with increasing Mg content, is consistent with earlier tourmaline-synthesis experiments (e.g., von Goerne et al. 1999). Increasing Si content with crystal growth is also observed in the “K-dravite”, but is overshadowed by the solid solution with magnesio-foitite described above (Fig. 1).

Details and results of the Rietveld refinements of powder-XRD spectra from both experiments are given in Table 2. The relatively high sigma values result from the inhomogeneity of the synthesized tourmaline. Nonetheless, taken qualitatively, the unit-cell volumes of tourmaline synthesized in both experiments is smaller than that of end-member dravite (1595.1 Å\(^3\); Buerger et al. 1962). This is likely caused by significant vacancies at the X-site (Table 1). Furthermore, the larger unit-cell volume of the synthetic “K-dravite” (#EB1) likely reflects the increased incorporation of the relatively large K\(^+\) ion at the X-site compared to synthetic K-bearing dravite (#EB2). Erhl et al. (2008) showed that \(^{41}\text{B}\) content in Al-rich tourmaline is related to the unit-cell volume. Based on this relation, a unit-cell volume less than 1539.3 Å\(^3\) is necessary to indicate significant incorporation of B at the T site (Erhl et al. 2008).

The unit-cell volume of tourmaline synthesized in both experiments is significantly larger than this value, supporting the assumption of no \(^{41}\text{B}\) in the normalization procedure (Table 2).

Two preliminary multi-anvil experiments with bulk compositions identical to #EB1 were done at 700 °C and 6 and 8 GPa, respectively, to investigate the upper-pressure stability of “K-dravite”. The experiments yielded mainly a combination of boro-muscovite and phengite, but no
tourmaline. These results suggest that the upper stability of “K-dravite” is between 4.0 GPa and 6.0 GPa, consistent with the stability of dravite in a silica-saturated system (4.5–5.0 GPa at 700 °C; Ota et al. 2008).

Implications

Although K⁺ is approximately 25% larger than Na⁺ (Shannon 1976), the tourmaline structure is able to incorporate K at the X site given the appropriate environment. Based on our synthesis experiments, high pressure and a fluid with at least 3.85 M K is required to incorporate significant amounts of K. However, additional experiments are needed to determine the minimum pressure required for the synthesis of K-dominant tourmaline. Although tourmaline still incorporates K in the presence of Na, the tourmaline structure preferentially incorporates the smaller Na ion. As a result, K incorporation is expected to be more prominent in Na-poor and probably Ca-poor environments.

Moreover, the alkali-tourmaline group can be subdivided to include both Na and K end-member tourmaline. Although the K-dominant tourmaline synthesized here is analogous to dravite, its solid solution with the Al-end-member olenite (Fig. 3b) suggests that a K-dominant olenite [KAl₃Al₀Si₆O₁₅(BO₃)₃O₃(OH)], namely “K-olenite”, may also exist. However, additional experiments are required to confirm its stability.

Acknowledgements

The authors thank H.-P. Nabein for generating the XRD patterns and U. Dittram for sample preparation. The authors are indebted to G. Franz and W. Heinrich for sharing ideas, insightful discussion and critical reading of earlier versions of the manuscript. Thoughtful reviews by H. Marschall, F.C. Hawthorne, and R. Shimizu improved the final version of the manuscript. This
study was financially supported by funding from the DFG granted to G. Franz and W. Heinrich (FR 557/31-1; HE 2015/16-1). E.B. is grateful for a scholarship awarded by NSERC.

References

Rossmanite, □(LiAl₂)Al₆(Si₆O₁₈)(BO₃)₃(OH)₄, a new alkali-deficient tourmaline:
Description and crystal structure. American Mineralogist, 83, 896-900.

Shimizu, R., and Ogasawara, Y. (2005) Discovery of K-tourmaline in diamond-bearing quartz-
rich rock from the Kokchetav Massif, Kazakhstan. Mitteilungen der Österreichischen
Mineralogischen Gesellschaft, 150, 141.

--- (2013) Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP
metamorphic rocks: A geochemical recorder from peak to retrograde metamorphic stages.
Journal of Asian Earth Sciences, 63, 39-55.

by the chamber method. European Journal of Mineralogy, 11, 1061-1077.

European Journal of Mineralogy, 13, 521-532.

Figure 1. Back-scattered-electron image (top right) and EMP wavelength-dispersive element X-ray maps of tourmaline synthesized in the presence of a KCl fluid after 4 days at 700 °C and 4.0 GPa (#EB1). The colour scale to the left of each element X-ray map ranges from black to red, representing low to high number of counts, respectively.

Figure 2. Back-scattered-electron image (top right) and EMP wavelength-dispersive element X-ray maps of tourmaline synthesized in the presence of a KCl-NaCl fluid after 4 days at 700 °C and 4.0 GPa (#EB2). The colour scale to the left of each element X-ray map ranges from black to red, representing low to high number of counts, respectively.

Figure 3. EMP-analyses of compositional zoning in tourmaline, with growth direction indicated by arrows; (a) from #EB1 (circles) and #EB2 (triangles) representing solid solution between end-member magnesio-foitite $[\square\text{Mg}_2\text{Al}]\text{Al}_6\text{Si}_3\text{O}_{18}(\text{BO}_3)\text{O}_3(\text{OH})]$ and end-member “K-dravite” $[\text{KMg}_3\text{Al}_6\text{Si}_6\text{O}_{18}(\text{BO}_3)\text{O}_3(\text{OH})]$ via the exchange vector $^x\text{K}\text{Mg}(\square\text{Al})_2$, or end-member dravite $[\text{NaMg}_3\text{Al}_6\text{Si}_6\text{O}_{18}(\text{BO}_3)\text{O}_3(\text{OH})]$ via the analogous exchange vector $^x\text{Na}\text{Mg}(\square\text{Al})_2$; (b) from #EB1 representing a solid solution between end-member “K-dravite” and end-member “K-olenite” $[\text{KAl}_3\text{Al}_6\text{Si}_6\text{O}_{18}(\text{BO}_3)\text{O}_3(\text{OH})]$ via the exchange vector $^x\text{MgOH}(\text{AlO})_2$.

Figure 4. Ternary diagram of the occupancy of the X-site for tourmaline formed in the presence of a KCl fluid (circles, #EB1) and in the presence of a KCl-NaCl fluid (triangles, #EB2). The dashed line indicates values of variable Na content with a ratio of 1K:4$^-$ (X-vacant). Arrows indicate the direction of crystal growth.
Table 1. Composition (EMP-analyses) and stoichiometry of synthesized tourmaline normalized to 15 YZT and 24.5 O pfu

<table>
<thead>
<tr>
<th>oxide (wt%)</th>
<th>100 mol% KCl</th>
<th>49 mol% KCl, 51mol% NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 YZT</td>
<td>24.5 O</td>
</tr>
<tr>
<td>K</td>
<td>3.13(14)</td>
<td>1.46(53)</td>
</tr>
<tr>
<td>Na</td>
<td>0.02(2)</td>
<td>0.03(3)</td>
</tr>
<tr>
<td>Mg</td>
<td>10.89(31)</td>
<td>10.24(57)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>33.85(41)</td>
<td>35.40(94)</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.64(40)</td>
<td>36.49(100)</td>
</tr>
<tr>
<td>Total</td>
<td>85.52(57)</td>
<td>83.61(99)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normalization</th>
<th>15 YZT</th>
<th>24.5 O</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>K</td>
<td>0.64(3)</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>0.00(1)</td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>0.36(3)</td>
</tr>
<tr>
<td>Y₃</td>
<td>Mg</td>
<td>2.60(7)</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>0.40(7)</td>
</tr>
<tr>
<td>Z₆</td>
<td>Al</td>
<td>5.97(3)</td>
</tr>
<tr>
<td></td>
<td>Si</td>
<td>0.03(3)</td>
</tr>
<tr>
<td>T₆</td>
<td>Si</td>
<td>5.99(1)</td>
</tr>
<tr>
<td></td>
<td>Al</td>
<td>0.01(1)</td>
</tr>
<tr>
<td>(BO₃)₃</td>
<td>B</td>
<td>3.00⁻</td>
</tr>
<tr>
<td>V₃</td>
<td>OH</td>
<td>3.00⁻</td>
</tr>
<tr>
<td>W</td>
<td>OH</td>
<td>0.92(8)</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>0.08(8)</td>
</tr>
</tbody>
</table>

Note: *Values fixed during normalization. n is the number of analyses.
Table 2. Unit-cell parameters of synthesized tourmaline

<table>
<thead>
<tr>
<th>Refinement details</th>
<th>#EB1</th>
<th>#EB2</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>2.01</td>
<td>1.63</td>
</tr>
<tr>
<td>DWd</td>
<td>1.03</td>
<td>1.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tourmaline</td>
</tr>
<tr>
<td>Coesite</td>
</tr>
<tr>
<td>Santite</td>
</tr>
<tr>
<td>Sylvite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit-cell parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = b$</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>V</td>
</tr>
</tbody>
</table>

Note: DWd indicates the Durbin-Watson statistic for the refinement. Phase proportions are approximate values (± 2 wt%).