1	REVISION 1
2	
3	Color of Mn-bearing gahnite: A first example of electronic transitions in
4	heterovalent exchange coupled ^{IV} Mn ²⁺ - ^{VI} Mn ³⁺ pairs in minerals
5	ULF HÅLENIUS ¹¹ AND FERDINANDO BOSI ²
6	
7	¹ Department of Geosciences, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm,
8	Sweden
9	² Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185
10	Rome, Italy
11	
12	ABSTRACT
13 14	A natural yellow and transparent crystal of Mn-bearing, Mg-rich gahnite (ZnAl ₂ O ₄) from
15	Nordmark (Sweden) was studied by electron microprobe, single crystal X-ray diffraction and
16	optical absorption spectroscopy. The empirical structural formula of the crystal,
17	$^{T}(Zn_{0.52}Mg_{0.34}Mn^{2+}{}_{0.08}Al_{0.06})_{\Sigma1.00} \ ^{M}(Al_{1.88}Mn^{3+}{}_{0.06}Fe^{3+}{}_{0.01}Mg_{0.04}Mn^{2+}{}_{0.01})_{\Sigma2.00} O_{4}, \ shows \ that$
18	Mn^{2+} and Mn^{3+} are almost completely ordered at the T and M sites, respectively. The
19	electronic absorption spectrum of the spinel shows, in addition to a strong UV-absorption
20	edge ($O^{2-}Mn^{3+}$ and $O^{2-}Fe^{3+}$ ligand-metal charge transfers) and two broad ^{VI} Mn ³⁺ -bands, a set
21	of relatively narrow absorption bands at energies comparable to those caused by spin-
22	forbidden electron transitions in tetrahedrally coordinated Mn^{2+} in oxide spinel. However, the
23	set of bands in the present spectrum is shifted to lower energies and they are intensified by
24	approximately an order of magnitude compare to those recorded for spin-forbidden $^{IV}Mn^{2+}$ -
25	bands in spinel. These characteristic differences in combination with the determined cation
26	distribution in the present gabnite demonstrates that electronic transitions in exchange
27	coupled $^{IV}Mn^{2+}-^{VI}Mn^{3+}$ pairs cause its color.

28	
29	Key words: Gahnite, crystal structure, electronic spectra
30	
31	INTRODUCTION
32	Color is one of the fundamental physical properties that commonly is used for mineral
33	identification. Color in minerals has also an economic dimension. The value of gems and also
34	of several industrial minerals is strongly dependent on their colors. Consequently, knowledge
35	about the processes that create mineral colors is important. The majority of the common
36	ferromagnesian rock-forming minerals owe their characteristic colors and pleochroism to
37	electronic transitions in iron cations that are present in their structures. These electronic
38	processes occur at energies corresponding to those of visible light and they may either be
39	electron excitations that take place between energy levels within single ions of Fe^{2+} or Fe^{3+} or
40	more importantly, they may represent electron hopping between heterovalent neighboring
41	cations in the crystal, the so called $Fe^{2+}-Fe^{3+}$ intervalence charge transfer processes (IVCT).
42	
43	Numerous examples of Fe-related IVCT processes as the main cause for color and
44	pleochroism in the common silicates of the amphibole, pyroxene and mica mineral groups
45	have been observed (Burns 1993 and references therein). Color caused by electron transitions
46	in magnetically exchange coupled homonuclear cation pairs (ECP), trimers or larger clusters
47	have also been documented in minerals (e.g., Rossman 1975; Rossman1976). Intensity
48	enhanced absorption bands caused by exchange coupled heterovalent Fe ²⁺ -Fe ³⁺ pairs have
49	been reported in spectra of tourmaline (Mattson and Rossman 1986) and spinel minerals
50	(Taran et al. 2005). However, there exist a limited number of documented examples of non-
51	iron IVCT or ECP processes that create color in minerals. Examples of heteronuclear

¹ E-mail: ulf.halenius@nrm.se

9/25

52	processes involving Fe are though known. The most common ones are Fe ²⁺ -Ti ⁴⁺ IVCT
53	processes in silicates and oxide minerals (e.g., Mattson and Rossman 1988; Taran and Koch-
54	Müller 2011).

55

56 In view of the large number of examples of Fe-related IVCT and ECP coloring processes in 57 minerals it is surprising that the number of reported IVCT and ECP cases in Mn-bearing 58 minerals are so scarce. Considering the terrestrial abundance of manganese, the natural 59 occurrence of differently charged Mn-cations, cation radii that proxy those of iron cations, 60 and the number of common Mn-bearing minerals, one would expect a comparable number of documented examples of $Mn^{2+}-Mn^{3+}$ or $Mn^{2+}-Me^{n+}$ IVCT or ECP causing mineral coloration. 61 Rossman and Mattson (1986) suggested that Mn²⁺-Ti⁴⁺ IVCT occurred in Mn-rich yellow 62 tourmaline. In addition, exchange coupled pairs of octahedrally coordinated Mn²⁺ and 63 tetrahedrally coordinated Fe^{3+} in trioctahedral micas have been proposed as the cause for the 64 color and the reverse pleochroism in some phlogopite samples (Smith et al. 1982). 65 66 Furthermore, Mn-related ECP processes have been proposed for a small number of minerals: 67 Mn-bearing diopside (Hålenius and Skogby 1996), genthelvite-helvite solid solution minerals 68 (Hålenius 2011), tephroite and rhodochrosite (Hålenius et al. 2007). 69 70 It is notable that in contrast to the above very restricted number of mineral examples, the 71 coloring power of electronic transitions in exchange coupled pairs of Mn cations has long 72 been known and documented for a large number of inorganic compounds (e.g., Ferguson et al. 73 1965b and 1966b; Lohr and McClure 1968). These cases demonstrate that Mn-related ECP-74 transitions may occur even in compounds diluted in manganese and also that ECP-transitions 75 in homonuclear as well as heteronuclear Mn-related pairs are common (e.g., Ferguson et al. 76 1965a). Ferguson et al. (1966b) summarized theoretical considerations on the nature of the

77	ECP-transitions and the character of the selection rule relaxations that allow enhanced					
78	transition probabilities. Reviews on optical absorption spectroscopy of exchange coupled					
79	cation pairs, providing several examples of spectroscopic active homonuclear and					
80	heteronuclear 3d transition element pairs in chemical compounds, have been published by,					
81	e.g., Lohr (1972) and McCarthy (1988). Articles within different fields of physics and					
82	chemistry demonstrate the broad and continued interest in exchange interactions in transition					
83	metal pairs. Published studies on Ni ²⁺ -Mn ²⁺ (Ferguson et al. 1966a), Cu ²⁺ -Mn ²⁺ (Ferre and					
84	Regis 1978; Cador et al. 2000), Mn ²⁺ -Mn ³⁺ (Franz et al. 2003; Cox et al. 2011; Xie et al.					
85	2012), Mn ³⁺ -Mn ³⁺ (Pelletier 1995) and Mn ³⁺ -Mn ⁴⁺ pairs (Birkelbach et al. 1998) are some					
86	examples that reflect this interest.					
87						
88	With the aim to explore the potential occurrence of electronic transitions in exchange coupled					
89	pairs of Mn in spinel minerals, we have studied a natural Mg-rich gahnite (ZnAl ₂ O ₄) that					
90	contains an appreciable Mn-content by means of electron microprobe, single-crystal X-ray					
91	diffraction and single-crystal optical absorption technique.					
92						
93	EXPERIMENTAL					
94	Sample					
95	The studied gahnite single crystal was selected from a calcite-rich layer with hausmannite,					
96	manganosite and feitknechtite at the manganese ore at Kittelgruvan, Nordmark, Värmland,					
97	Sweden. The small (up 0.5 mm) gahnite single crystals occur as transparent, octahedra					
98	displaying a yellow color similar to those observed in synthetic Mn-bearing spinels (Bosi et					
99	al. 2007; Hålenius et al. 2011). The same selected crystal was used in all the performed					
100	experiments.					

102 Single-crystal structure refinement

103	X-ray diffraction measurements were performed at Earth Sciences Department, Sapienza
104	University of Rome, with a Bruker KAPPA APEX-II single-crystal diffractometer, equipped
105	with CCD area detector ($6.2 \times 6.2 \text{ cm}^2$ active detection area, 512×512 pixels) and a graphite
106	crystal monochromator, using MoK α radiation from a fine-focus sealed X-ray tube. The
107	sample-to-detector distance was 4 cm. A total of 4268 exposures (step = 0.2° , time/step = 10
108	s) covering a full reciprocal sphere were collected. The orientation of the crystal lattice was
109	determined from more than 500 strong reflections ($I > 100 \sigma_I$) evenly distributed in the
110	reciprocal space, and used for subsequent integration of all recorded intensities. Final unit-cell
111	parameters were refined by means of the Bruker AXS SAINT program from ca. 1328
112	recorded reflections with $I > 10 \sigma_I$ in the range $9^\circ < 2\theta < 90^\circ$. The intensity data were
113	processed and corrected for Lorentz, polarization and background effects with APEX2
114	software program of Bruker AXS. The data were corrected for absorption using multi-scan
115	method (SADABS). The absorption correction led to a significant improvement in R_{int} . No
116	violation of $Fd\overline{3}m$ symmetry was noted. Sporadic appearance of forbidden space-group
117	reflections was recognized as double reflections.
118	Structural refinements were carried out with the SHELXL program (Sheldrick 2008). Setting
119	the origin at $\overline{3}m$, initial atomic positions for oxygen atoms were taken from the structure of
120	spinel (Bosi et al. 2010). Variable parameters were overall scale factor, extinction coefficient,
121	atomic coordinates, site scattering values expressed as mean atomic number (m.a.n.), and
122	atomic displacement factors. No chemical constraint was applied during the refinement. To
123	obtain the best values of statistical indexes ($R1$ and $wR2$) the oxygen site was modeled with
124	neutral versus fully ionized oxygen scattering curves, while neutral curves were used for the
125	cation sites. In detail, the T site was modeled considering the presence of Zn and Mg
126	scattering factors, whereas the M site was modeled by Al scattering factor. Three full-matrix

127 refinement cycles with isotropic displacement parameters for all atoms were followed by 128 anisotropic cycles until convergence was attained, that is, when the shifts in all refined 129 parameters were less than their estimated standard deviation. No correlation over 0.7 between 130 parameters was observed at the end of refinement. Table 1 summarizes structural parameters 131 and refinement details. 132 133 **Chemical analyses** 134 Electron microprobe analyses were done by wavelength-dispersive spectroscopy with a 135 Cameca SX50 instrument at the "Istituto di Geologia Ambientale e Geoingegneria (Rome, 136 Italy), CNR", operating at an accelerating potential of 15 kV, a sample current of 15 137 nA and a spot size of 1 μ m. Minerals and synthetic compounds were used as standards: 138 magnetite (Fe), rutile (Ti), corundum (Al), periclase (Mg), sphalerite (Zn) and metallic Mn.

139 The PAP matrix correction procedure (Pouchou and Pichoir 1991) was applied to reduce the

raw data. The results are summarized in Table 2. Titanium was below its detection limits

141 (0.03 wt%).

142

143 **Optical absorption spectroscopy**

144 Unpolarised, room-temperature optical absorption spectra in the spectral range 270-1100 nm 145 $(37\ 037\ -9091\ \text{cm}^{-1})$ were recorded on a 46 μ m thick double-sided polished section of the 146 single crystal at a spectral resolution of 1 nm using a AVASPEC-ULS2048X16 spectrometer 147 attached via a 400 µm UV fiber cable to a Zeiss Axiotron UV-microscope. A 75 W Xenon arc 148 was used as a light source and Zeiss Ultrafluar $10 \times$ lenses served as objective and condenser. 149 The size of the circular measure aperture was $64 \,\mu\text{m}$ in diameter. The wavelength scale of the 150 spectrometer was calibrated against Ho₂O₃ doped and Pr₂O₃/Nd₂O₃ doped standards (Hellma glass filters 666F1 and 666F7) with accuracy better than 15 cm⁻¹ in the wavelength range 300-151

152 1100 nm. Recorded spectra were fitted using the Jandel PeakFit 4.12 software assuming

153 Gaussian peak shapes.

154

155	RESULTS AND DISCUSSION
156	The results of the chemical analyses (Table 2), which represent mean values of 6 spot
157	analyses, were performed to obtain the average chemical compositions and estimates of
158	compositional homogeneity. The studied crystal shows some chemical variations in terms of
159	Mg, Mn and Zn. However, the Mn-content is substantial with a lowest concentration
160	corresponding to \sim 5.2 wt% MnO. In addition, the analyses demonstrate that the transition
161	element chemistry of the sample is quite simple comprising a major Mn component and very
162	low concentrations of Fe (less than 0.43 wt% FeO). The spinel formula, calculated on the
163	basis of 4 oxygen atoms, show that the present sample is dominated by Al (1.94 atoms per
164	formula unit, apfu) and Zn (0.52 apfu) along with Mg (0.38 apfu). Hence, the studied spinel
165	can be classified as Mg-rich gahnite (ZnAl ₂ O ₄) containing significant amounts of both Mn^{2+}
166	and Mn^{3+} (0.10 apfu and 0.06 apfu, respectively) as confirmed by optical absorption spectra
167	(see below).

168

169 Site populations

170 The single-crystal-structure refinement results show that the m.a.n. at the tetrahedrally

171 coordinated T site and octahedrally coordinated M site are 22.6 and 13.5, respectively. These

- 172 values indicate that the T site is mainly occupied by Zn (Z = 30) and Mg (Z = 12) and the M
- 173 site is not only occupied by Al (Z = 13) but also by heavier cations such as Mn (Z = 25).
- 174 These site population is also supported by the values of T-O and M-O bond distances. In
- detail, the observed T-O =1.954 Å reflects a T site mainly occupied by Zn (expected value for
- ¹⁷⁶ ^TZn-O equals 1.950 Å, where the M site is dominated by Al, Bosi et al. 2011) along with

177	significant amounts of ^T Mg [ideal bond distance 1.966(1) Å, Lavina et al. 2002]. The
178	observed M-O = 1.921 Å reflects a M site dominated by Al [ideal distance 1.908(2) Å, Lavina
179	et al. 2002] along with relatively minor amounts of larger cations such ^M Mn ³⁺ [ideal distance
180	2.03(2) Å, Bosi et al. 2002; Lavina et al. 2002]. In order to translate the crystal chemical and
181	structural refinement results into quantitative site populations at T and M, experimental and
182	calculated data from the atom distribution were optimized. By using a least-squares program
183	and the ideal bond distances of Lavina et al. (2002), except for ^T Zn-O (Bosi et al. 2011), the
184	residuals between calculated and observed data (i.e., m.a.n. and bond distances) were
185	minimized. Final residuals were within experimental uncertainties. The final structural
186	formula for the present spinel is:
187	${}^{T}(Zn_{0.52}Mg_{0.34}Mn^{2+}{}_{0.08}Al_{0.06})_{\Sigma1.00}{}^{M}(Al_{1.88}Mn^{3+}{}_{0.06}Fe^{3+}{}_{0.01}Mg_{0.04}Mn^{2+}{}_{0.01})_{\Sigma2.00}O_{4}$
188	This formula is characterized by the almost complete dominance of divalent cations (i.e., Zn,
189	Mg, Mn^{2+}) at the T site and trivalent cations (i.e., Al, Mn^{3+}) at the M site. A small degree of
190	inversion (about 0.05), expressed as the fraction of divalent cations at M, also occurs.
191	

192 **Optical absorption spectrum**

193 The recorded optical absorption spectrum (Fig. 1) shows a set of relatively narrow absorption bands centered at 26780, 25150, 23150, 21780 and 20300 cm⁻¹. In addition, there are two 194 relatively broad absorption features centered at 23600 and 21200 cm⁻¹. All these bands are 195 196 superimposed on a strong UV-edge absorption that rapidly falls off towards the visible 197 spectral region and becomes insignificant in the green region of the visible spectrum. 198 199 At a first glance, the spectrum seems, with the exception of the strong UV-absorption edge to 200 be almost identical to the spectrum of synthetic end-member galaxite, MnAl₂O₄, (Fig. 2) 201 recorded by Hålenius et al. (2007, 2011). The strong UV-absorption edge in the present

9	/2	5

202	spectrum is caused by O ²⁻ -Mn ³⁺ and O ²⁻ -Fe ³⁺ ligand-metal charge transfers (LMCT), which
203	cannot occur in the spectra of the exclusively Mn^{2+} -bearing galaxite. Detailed inspection of
204	the present spectrum discerns two additional major differences. Firstly, the narrow absorption
205	bands occur at distinctly lower wavenumbers than the absorption bands in the spectrum of the
206	end-member galaxite (Fig. 2). The absorption bands recorded in the galaxite spectrum
207	(Hålenius et al. 2007; 2011), which are caused by spin-forbidden transitions in tetrahedrally
208	coordinated Mn^{2+} , occur at 27780, 25970, 23390 [${}^{6}A_{1}(S) \rightarrow {}^{4}Eg^{4}A_{1g}(G)$ transition], 22250,
209	20245 cm ⁻¹ (Hålenius et al. 2007, 2011). The corresponding absorption bands in the present
210	Mn-bearing gahnite occur at energies that are up to 1000 cm ⁻¹ lower. Secondly, based on the
211	concentration of tetrahedrally coordinated Mn^{2+} , the molar absorption coefficients (ϵ) of the
212	bands in the present gahnite spectrum are in the range 3-25 L/mol·cm. This is one order of
213	magnitude higher than the values of 0.1-1.9 L/mol·cm recorded for the absorption bands
214	caused by spin-forbidden single ion transitions in tetrahedrally coordinated Mn^{2+} in spectra of
215	the spinel (sensu stricto)-galaxite series (Hålenius et al. 2007, 2011).
216	
217	The two broad bands observed in the present gahnite spectrum at 23600 and 21200 cm ⁻¹ occur
218	at the energies recorded for spin-allowed d - d transitions in octahedrally coordinated Mn ³⁺ in

219 spectra of synthetic Mn^{3+} -bearing spinels (Bosi et al. 2007). The widths of these two bands

are also comparable to those recorded in spectra of the synthetic samples. Based on the molar absorption coefficients of these two bands in spectra of the synthetic samples, the content of octahedrally coordinated Mn^{3+} in the present gahnite is calculated to be about 0.04 apfu. This

value is consistent with the content of 0.056 (± 0.020) apfu Mn³⁺ obtained from the electron

224 microprobe analyses.

225

A third relatively strong and broad absorption band at 10800 cm^{-1} was recorded in the

227	spectrum of synthetic Mn^{3+} -bearing spinels and was assigned to a spin-allowed d - d transition
228	in tetrahedrally coordinated Mn^{3+} (Bosi et al. 2007). This band is not observed in the present
229	spectrum of a Mn-bearing gahnite (Fig. 1 and 2). Consequently, it is concluded that Mn^{3+} is
230	ordered at the octahedrally coordinated site in the present sample.

231

232 The origin of the set of relatively narrow and intense absorption bands detailed earlier remains 233 to be discussed. We can initially conclude that the present spinel contains four different 234 transition element cations that may potentially give rise to narrow spectral bands through spin-forbidden electronic single ion transitions: ^{VI}Mn²⁺, ^{IV}Mn²⁺ and ^{VI}Mn³⁺, ^{VI}Fe³⁺. The last 235 236 species can be excluded as the content of octahedrally coordinated ferric iron is simply too 237 low to account for the intensity of the observed bands. Furthermore, the energies of the most intense spin-forbidden bands due to ${}^{VI}Fe^{3+}$ in spinel oxides are at 23000, 21600 [${}^{6}A_{1}(S) \rightarrow$ 238 ${}^{4}E_{g}{}^{4}A_{1g}(G)$ transition] and 15050 cm⁻¹ (Taran et al. 2005). We do not observe these bands in 239 240 the present spectra. On the basis of band intensities and comparisons with spectra of synthetic Mn³⁺-bearing spinel (Bosi et al. 2007), we can exclude spin-forbidden transitions in ^{VI}Mn³⁺ as 241 the origin for these bands. We can also exclude single ion ^{VI}Mn²⁺ transitions on the basis of 242 243 the comparatively low energy of the narrow absorption bands in the present spectrum. For instance, the characteristic, narrow and intense band due to the ${}^{6}A_{1}(S) \rightarrow {}^{4}E_{g}{}^{4}A_{1g}(G)$ 244 transition in octahedrally coordinated Mn^{2+} occurs at distinctly higher energies (24000-25000 245 246 cm⁻¹) in spectra of oxygen-based minerals (Burns 1993 and references therein, Hålenius et al. 247 2007). As mentioned previously, the set of narrow absorption bands in the present spectrum shows a strong similarity with the absorption spectrum due to ^{IV}Mn²⁺ in spinels. However, the 248 249 bands are displaced towards lower energies their intensities are an order of magnitude higher. 250 We can therefore conclude that the recorded narrow absorption bands observed in the 251 spectrum of the present Mn-bearing gahnite are not caused by any spin-forbidden single ion

transitions.

253

254 In parallel with the assignment of intensity enhanced narrow absorption bands in spectra of gahnite to electronic transitions in exchange coupled ^{VI}Fe³⁺- ^{IV}Fe²⁺ pairs (Taran et al. 2005), 255 256 we must seek the origin of the observed narrow absorption bands (Fig. 1) in transitions taking 257 place in manganese cation pairs. The chemistry and cation distribution of the present gahnite sample allow for a number of possible cation pair candidates: ^{VI}Mn²⁺- ^{VI}Mn²⁺, ^{IV}Mn²⁺-258 $^{VI}Mn^{2+}$, $^{IV}Mn^{2+}$, $^{IV}Mn^{2+}$, $^{VI}Mn^{2+}$, $^{VI}Mn^{3+}$ and $^{IV}Mn^{2+}$, $^{VI}Mn^{3+}$. Most of these potential cation 259 260 pairs can be excluded by comparisons with the recorded spectra of crystals belonging to the 261 spinel (sensu stricto)-galaxite solid solution (Hålenius et al. 2011). The narrow absorption 262 bands in the spectra of their synthetic samples showed constant molar absorption coefficients (ϵ) with respect to [^{IV}Mn²⁺]-concentration and almost constant band energies within the entire 263 264 solid solution series although pair concentrations of their samples increased with increasing 265 total Mn-content (Hålenius et al. 2011). This suggests that the bands recorded in their spectra 266 of spinel-galaxite crystals were caused by spin-forbidden electronic transitions in single-ion Mn²⁺ cations. No trivalent manganese was present in their synthetic samples that contained 267 268 appreciable contents of divalent manganese at the octahedral M-site (up to 0.16 apfu) and the tetrahedral T-site (up to 0.84 apfu). Hence, their samples contained ^{VI}Mn²⁺-^{VI}Mn²⁺, ^{IV}Mn²⁺-269 VI Mn²⁺and IV Mn²⁺ IV Mn²⁺ cation pairs at concentration levels considerable higher than those 270 of the present gabnite sample ($^{IV}Mn^{2+} = 0.01$ apfu and $^{IV}Mn^{2+} = 0.08$ apfu). Still, their spectra 271 272 did not show any intense and narrow absorption bands at the band energies recorded in the present spectra. Consequently, the three pair configurations ^{VI}Mn²⁺- ^{VI}Mn²⁺, ^{IV}Mn²⁺-273 ^{VI}Mn²⁺and ^{IV}Mn²⁺- ^{IV}Mn²⁺ may be excluded as causes for the bands observed in the present 274 spectrum. Of the two remaining pair configurations, ^{IV}Mn²⁺- ^{VI}Mn³⁺ is the more likely one as 275 it necessitates smaller shifts in terms of energy and molar absorption coefficients with respect 276

9/25

to the corresponding formal single ion transitions in Mn^{2+} . For the proposed pair transition 277 related to the formal single ion ${}^{6}A_{1}(S) \rightarrow {}^{4}E_{g}{}^{4}A_{1g}(G)$ transition in Mn²⁺, the energy shift for 278 the corresponding ^{IV}Mn²⁺- ^{VI}Mn³⁺ pair transition is -240 cm⁻¹ [23390 cm⁻¹ in the spectrum of 279 end-member galaxite (Hålenius et al. 2011) compared to 23150 cm⁻¹ in the present spectrum] 280 281 and its molar absorption coefficient increases ~9 times [ϵ ~1.90 L/mol·cm in end-member 282 galaxite (Hålenius et al. 2007) compared to $\varepsilon \sim 17$ L/mol·cm in the present sample]. As single ion ^{VI}Mn²⁺ bands occur at distinctly higher energies and display molar absorption coefficients 283 approximately one order of magnitude smaller than single ion ^{IV}Mn²⁺ bands (Burns 1993 and 284 285 references therein), the resulting band energy shifts and band intensity enhancements would be considerably larger for a ^{VI}Mn²⁺-^{VI}Mn³⁺ pair transition assignment of the bands recorded in 286 287 the present spectra. Based on published energy data for spin-forbidden single ion ^{VI}Mn²⁺ bands (Burns 1993; Hålenius et al. 2007) the band energy of the present ${}^{6}A_{1}(S) \rightarrow {}^{4}E_{g}{}^{4}A_{1g}(G)$ 288 related transition is ~850 to ~1850 cm⁻¹ lower. The energy shift of the ${}^{6}A_{1}(S) \rightarrow {}^{4}E_{\sigma}{}^{4}A_{1\sigma}(G)$ 289 related transition in $Mn^{2+}-Me^{n+}$ pairs is generally very small with respect to the energy of the 290 corresponding transition in the unperturbed Mn^{2+} cation, although shifts of up to -300 cm⁻¹ 291 292 have been reported (Ferguson et al. 1966a). Consequently, we prefer the assignments of the observed absorption bands to electron transitions in ^{IV}Mn²⁺- ^{VI}Mn³⁺ pairs. 293 294

295 Implications

296 The present study of a Mn-bearing gabnite demonstrates that electronic transitions in

297 exchange coupled pairs (ECP) of non-iron transition metal cations may have significant

298 effects on the physical properties of minerals. We have based our interpretation on arguments

299 related to energies and molar absorption coefficients (ϵ) of bands recorded in optical

300 absorption spectra. However, a large set of additional spectroscopies, ideally carried out at

301 different pressures and temperatures, and magnetic susceptibility measurements are available

302	for detection of exchange interactions in transition metal cation pairs. We believe that detailed
303	examinations of Fe-free or Fe-poor minerals rich in other transition element cations using
304	combinations of these methods will show that non-iron related IVCT and ECP transitions are
305	much more common as the cause for mineral color than so far realized. In particular, spectra
306	of close-packed mineral structures, as, e.g., oxide spinel minerals will most likely show a
307	large range of ECP and IVCT transitions, as, e.g., the recently recorded Cu ⁺ -Cu ²⁺ IVCT in
308	Cu-bearing spinels (Fregola et al. 2012).
309	
310	ACKNOWLEDGEMENTS
311	We thank Kjell Gatedal for donating the spinel-bearing specimen from Kittelgruvan.
312	Chemical analyses were carried out with the kind assistance of Marcello Serracino to whom
313	we are grateful. We are thankful for detailed and helpful comments by the official reviewers
314	George Rossman and Michail Taran. We appreciate the efficient handling of the manuscript
315	by the associate editor Kristina Lilova.
316	
317	References cited
318	
319	Birkelbach, F., Flörke, U., Haupt, HJ., Butzlaff, C, Trautwein, A.X., Wieghardt, K. and
320	Chaudhuri, P. (1998) Competing exchange interactions and ground-state variability: Linear
321	homo- and heterotrinuclear manganese(III/IV) complexes with
322	tris(dimethylglyoximato)metalate(II) tetraanions as bridging ligands. Inorganic Chemistry,
323	37 , 2000-2008.
324	
325	Bosi, F., Hålenius, U., Andreozzi, G., Skogby, H. and Lucchesi, S. (2007): Structural
326	refinement of Mn-doped spinel: a case for tetrahedrally coordinated Mn ³⁺ in an oxygen-based

327 structure. American Mineralogist, 92, 27-33.

328

- 329 Bosi, F., Lucchesi, S., and Della Giusta, A. (2002) Structural relationships in (Mn₁₋
- 330 $_xZn_x)Mn_2O_4$ ($0 \le x \le 0.26$): The "dragging effect" of the tetrahedron on the octahedron.
- 331 American Mineralogist, 87, 1121–1128.
- 332
- 333 Bosi, F., Hålenius, U., and Skogby, H. (2010) Crystal chemistry of the MgAl₂O₄-MgMn₂O₄-
- 334 MnMn₂O₄ system: Analysis of structural distortion in spinel- and hausmannite-type
- 335 structures. American Mineralogist, 95, 602–607.
- 336
- 337 Bosi, F., Andreozzi, G.B., Hålenius, U., and Skogby, H. (2011) Zn-O tetrahedral bond length

338 variations in normal spinel oxides. American Mineralogist, 96, 594–598.

- 339
- 340 Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory (2nd edition), 551 p.
- 341 Cambridge University Press, Cambridge, U.K.
- 342 Ferre, J. and Regis (1978) .Solid State Communications, 26, 225-228.
- 343
- 344 Cador, O., Mathonière, C. and Kahn, O. (2000) Single crystal polarized optical absorption
- 345 spectroscopy of the one-dimensional ferrimagnet $Mn^{II}Cu^{II}(pba)(H_2O)_3 \cdot 2H_2O$ (pba = 1,3-
- 346 propylenebis(oxamato)). *Inorganic Chemistry*, **39**, 3799-3804.
- 347
- 348 Cox, N., Ames, W., Epel, B., Kulik, L.V., Rapatskiy, L., Neese, F., Messinger, J., Wieghardt,
- 349 K. and Lubitz, W. (2011) Electronic structure of a weakly antiferromagnetically coupled
- 350 MnIIMnIII model relevant to manganese proteins: A combined EPR, 55Mn-ENDOR, and
- 351 DFT study. *Inorganic Chemistry*, **50**, 8238-8251.

I	issue	IS IN	/e.)	DOI:	nttp:/	/ax.

352			
353	Ferguson, J., Guggenheim, H.J., and Tanabe, Y. (1965a) Absorption of light by pairs of like		
354	and unlike transition-metal ions. Physical Review Letters, 14, 737-738.		
355			
356	Ferguson, J., Guggenheim, H.J., and Tanabe, Y. (1965b) Exchange effects in electronic		
357	absorption spectrum of Mn(2) in perovskite fluorides. Journal of Applied Physics, 36, 1046-		
358	1047.		
359			
360	Ferguson, J., Guggenheim, H.J., and Tanabe, Y. (1966a) Absorption of light by pairs of		
361	exchange-coupled manganese and nickel ions in cubic perovskite fluorides. Journal of		
362	<i>Chemical Physics</i> , 45 , 1134-1141.		
363			
364	Ferguson, J., Guggenheim, H.J., and Tanabe, Y. (1966b) The effects of exchange interactions		
365	in the spectra of octahedral manganese II compounds. Journal of the Physical Society of		
366	Japan, 21 , 692-704.		
367			
368	Ferre, J. and Régis, M (1978) Optical determination of the Cu-Mn – exchange interaction in		
369	K ₂ Cu _{1-x} Mn _x F ₄ . Solid State Communications, 26 , 225-228.		
370			
371	Franz, P., Ambrus, C., Hauser, A., Chernyshov, D., Hostettler, M., Hauser, J., L., Keller,		
372	Krämer, K., Stoeckli-Evans, H., Pattison, P., Bürgi, HB. and Decurtins, S. (2004)		
373	Crystalline, mixed-valence manganese analogue of Prussian Blue: Magnetic, spectroscopic,		
374	X-ray and neutron diffraction studies. Journal of the American Chemical Society, 126, 16472-		
375	16477.		

377	Fregola, R.A., Bosi, F., Skogby, H. and Hålenius, U. (2012) Cation oredring over short-range
378	and long-range scales in the MgAl ₂ O ₄ -CuAl ₂ O ₄ series. American Mineralogist, 97, 1821-
379	1827.
380	
381	Hålenius, U. & Skogby, H. (1996) Crystal field spectra of trivalent manganese in synthetic
382	and natural (Na ⁺ -Mn ³⁺)-substituted diopside. <i>European Journal of Mineralogy</i> , 8 , 1231-1240.
383	
384	Hålenius, U. (2011) Absorption of light by exchange coupled pairs of tetrahedrally
385	coordinated divalent manganese in the helvite-genthelvite solid solution. Periodico di
386	Mineralogia, 80 , 105-111.
387	
388	Hålenius, U., Bosi, F. and Skogby, H. (2007): Galaxite, MnAl ₂ O ₄ , a spectroscopic standard
389	for tetrahedrally coordinated Mn ²⁺ in oxygen-based mineral structures. American
390	Mineralogist 92 , 1225–1231.
391	
392	Hålenius, U., Bosi, F. and Skogby, H. (2011) A first record of strong structural relaxation of
393	TO ₄ tetrahedra in a spinel solid solution. American Mineralogist, 96, 617-622.
394	
395	Lavina, B., Salviulo, G., and Della Giusta, A. (2002) Cation distribution and structure
396	modeling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 10–18.
397	
398	Lohr, L.L. (1972) Spin-forbidden electronic excitations in transition metal complexes.
399	Coordination Chemistry Reviews, 8, 241-259.
400	
401	Lohr, L.L. and McClure, D.S. (1968) Optical spectra of divalent manganese salts II. The

403 3521.

- 405 Mattson, S.M. and Rossman, G.R. (1987) Fe²⁺-Fe³⁺ interactions in tourmaline. *Physics and*
- 406 *Chemistry of Minerals*, **14**, 163-171.
- 407
- 408 Mattson, S.M. and Rossman, G.R. (1988) Fe^{2+} -Ti⁴⁺ charge-transfer in stoichiometric Fe^{2+} ,
- 409 Ti⁴⁺-minerals. *Physics and Chemistry of Minerals*, **16**, 78-82.
- 410
- 411 McCarthy, P.J. and Güdel, H.U. (1988) Optical spectroscopy of exchange-coupled transition
- 412 metal complexes. *Coordination Chemistry Review*, **88**, 69-131.
- 413
- 414 Pelletier, Y. and Reber, C. (1995) Single-crystal absorption spectroscopy of binuclear
- 415 complexes of iron (III) and manganese (III) with the μ -oxo-bis(μ -acetato)dimetal core.
- 416 Canadian Journal of Chemistry, 73, 249-254.
- 417
- 418 Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified
- 419 microvolumes applying the model "PAP." In K.F.J. Heinrich and D.E. Newbury, Eds.,
- 420 Electron Probe Quantification, p. 31–75. Plenum, New York.
- 421
- 422 Rossman, G.R. (1975) Spectroscopic and magnetic studies of ferric iron hydroxy sulphates:
- 423 intensification of color in iron (III) clusters bridged by a single hydroxide ion. American
- 424 Mineralogist, 60, 698-704.
- 425
- 426 Rossman, G.R. (1976) Spectroscopic and magnetic studies of ferric iron hydroxy sulphates:

427 the series $Fe(OH)SO_4 \cdot nH_2O$ and the jarosites. *American Mineralogist*, **61**, 398-404.

428

- 429 Rossman, G.R. and Mattson, S.M. (1986) Yellow Mn-rich elbaite with Mn-Ti intervalence
- 430 charge transfer. *American Mineralogist*, **71**, 599-602.
- 431
- 432 Smith, G., Hålenius, U., Annersten, H. & Ackermann, L. (1983) Optical and Mössbauer
- 433 spectra of manganese-bearing phlogopites: Fe^{3+} -Mn²⁺ pair absorption as the origin of reverse
- 434 pleochroism. *American Mineralogist*, **68**, 759-768.
- 435
- 436 Taran, M. N., & Koch-Müller, M. (2011). Optical absorption of electronic Fe–Ti charge-
- 437 transfer transition in natural andalusite: the thermal stability of the charge-transfer band.
- 438 *Physics and Chemistry of Minerals*, **38**, 215-222.
- 439
- 440 Taran, M.N., Koch-Müller, M. and Langer, K. (2005) Electronic absorption spectroscopy of
- 441 natural (Fe^{2+} , Fe^{3+})-bearing spinels of spinel s.s.-hercynite and gahnite-hercynite solid
- solutions at different temperatures and high-pressures. *Physics and Chemistry of Minerals*, 32,
 175-188.
- 444
- 445 Xie, Q.-W., Chen, X., Hu, K.-Q., Wang, Y.-T., Cui, A.-L. and Kou, H.-Z. (2012) Mixed
- 446 valence trinuclear manganese (II/III) complexes of flexible tetradenate N₂O₂ ligands:
- 447 Ferromagnetic versus antiferromagnetic coupling. *Polyhedron*, **38**, 213-217.
- 448
- 449
- 450
- 451

9/25

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4670	9/25
452		
453		
454		
455		
456		
457	TABLES	
458		
459	TABLE 1. Selected X-ray diffraction data of the Mn-bearing gahnite from Nordmark (Sweden)
460	TABLE 2. Electron microprobe analyses of Mn-bearing gahnite from Nordmark (Sweden)	
461		
462		
463		
464		
465		
466	FIGURE CAPTIONS	
467		
468	FIGURE 1. Optical absorption spectrum of Mn-bearing gahnite. The recorded spectrum is	
469	shown by the black dotted line. Fitted UV-edge absorption, absorption bands and the total	
470	fitted spectrum are shown by thin solid lines.	
471		
472	FIGURE 2. Optical absorption spectrum of Mn-bearing gahnite (black solid line) compared	
473	with the spectrum of a synthetic end-member galaxite (dark grey solid line; from Hålenius et	
474	al. 2007). The $^{IV}Mn^{2+}$ content in the galaxite sample is 0.84 apfu (Hålenius et al. 2011), but is	3
475	only 0.08 apfu in the present gahnite. Corresponding absorption bands in the two spectra are	
476	connected by grey straight lines.	

TABLE 1. Selected X-ray diffraction data for the Mn-bearing gahnite from Nordmark (Sweden)

Crystal size (mm)	$0.20 \times 0.20 \times 0.22$	Reciprocal range hkl	$-15 \le h \le 12; -10 \le k \le 14; -15 \le l \le 14$
a (Å)	8.1123(3)	Set of read reflections	1527
u	0.26404(4)	Unique reflections	120
T-O (Å)	1.9536(6)	Redundancy	11
M-O (Å)	1.9210(3)	Absorption correction method	SADABS
T-m.a.n.	22.57(8)	Refinement method	Full matrix least squares on F^2
M-m.a.n.	13.46(4)	EXTI	0.0024(2)
T- <i>U</i> ¹¹ (Å ²)	0.00452(7)	<i>R</i> int. (%)	0.51
M-U ¹¹ (Å ²)	0.00388(9)	R1 (%) all reflections	0.90
M-U ¹² (Å ²)	-0.00035(6)	wR2 (%)	1.79
O- <i>U</i> ¹¹ (Å ²)	0.00415(11)	Goof	1.123
O- <i>U</i> ¹² (Å ²)	-0.00030(9)	Diff. Peaks (±e/Å ³)	-0.20; 0.21

Notes: a =unit-cell parameter; u =oxygen fractional coordinate; T-O and M-O = tetrahedral and octahedral bond lengths, respectively; Tand M-m.a.n.. = T- and M-mean atomic number; $U^{11} =$ atomic displacement parameter; $U^{11} = U^{22} = U^{33}$ and $U^{12} = U^{13} = U^{23}$ (= 0 for *T*-site due to symmetry reasons); EXTI = extinction parameter; *R* int. = merging residual value; *R*1 = discrepancy index, calculated from *F*-data; wR2 = weighted discrepancy index, calculated from F^2 -data; GooF = goodness of fit; Diff. Peaks = maximum and minimum residual electron density. Radiation, Mo-K α = 0.71073 Å. Data collection temperature = 293 K. Total number of frames = 1539. Range for data

collection 8° < 2 θ < 86°. Origin fixed at 3m. Space group Fd3m. Z = 8 formula units. Spinel structure has cations at Wyckoff positions 8 $a \equiv T$ (1/8, 1/8, 1/8) and 16 $d \equiv M$ (1/2, 1/2, 1/2), and oxygen anions at 32e (u, u, u).

Nordmark (Sweden)				
	Mean of 6 spots	Standard deviation		
Al ₂ O ₃ wt%	58.42	0.35		
MgO	9.10	0.77		

1.41

0.07

2.17

6.37

0.32

25.15

99.37

*MnO

*FeO

ZnO

Total

TABLE 2. Electron microprobe analyses of Mn-bearing gabnite from

Cations per formula unit based on four oxygen atoms				
AI	1.937	0.032		
Fe ³⁺	0.008	0.002		
Mn ³⁺	0.056	0.020		
Mg	0.382	0.030		
Mn ²⁺	0.096	0.026		
Zn	0.522	0.040		
Total	3.000			
e [–] _{EMPA} (epfu)	49.42			
e ⁻ _{SREF}	49.49			
*Notes: Fe ³⁺ an	ıd Mn ³⁺ cal	culated from stoichiometry. Standard de		

viation on cations calculated by error-propagation theory. $\dot{e_{\text{EMPA}}}$ and $\dot{e_{\text{SREF}}}$ = number of electrons per formula unit (epfu) derived from electron microprobe and structural refinement (respectively).

Figure 2

9/25