Revision # 2

Low intra-crystalline closure temperatures of Cr-bearing spinels from the mantle xenoliths of the Middle Atlas Neogene-Quaternary Volcanic Field (Morocco): A mineralogical evidence of a cooler mantle beneath the West African Craton

Davide Lenaz¹*, Nasrrddine Youbi²,³, Angelo De Min¹, Moulay Ahmed Boumehdi², and Mohamed Ben Abbou⁴

¹Department of Mathematics and Geosciences, Università degli Studi di Trieste, Via Weiss 8, 34127 Trieste, Italy, lenaz@units.it; demin@univ.trieste.it
²Geology Department, Faculty of Sciences-Semlalia, Cadi Ayyad University, Prince Moulay Abdellah Boulevard, P.O. Box 2390, 40 000 Marrakech, Morocco, e-mail: youbi@uca.ma
³Centro de Geologia da Universidade de Lisboa (CeGUL), Faculdade de Ciências (FCUL), Departamento de Geologia (GeoFCUL), Campo Grande C6, 1749-016 Lisboa, Portugal
⁴Geology Department, Faculty of Sciences Dhar Al Mahraz, Sidi Mohammed Ben Abdellah University, P.O. Box 1796, Fès-Atlas, 30003 Fès, Morocco

*Corresponding author: Davide Lenaz, lenaz@units.it

ABSTRACT

The crystal chemistry of nine Cr-spinels from lherzolite and harzburgite xenoliths from the Middle Atlas Neogene-Quaternary Volcanic Field of Morocco have been studied by means of X-ray single crystal diffraction and electron microprobe analyses. Cell edges are usually within the range 8.13-8.14 Å, but there are three samples with longer a value, so that the whole analyzed series is within the range 8.1334 (4) – 8.2021 (2) Å, while the oxygen positional parameter values are very similar ranging between 0.2626 (1) and 0.2629 (2) for all of them. The cation distribution shows that the crystal structure is ordered with almost all divalent cations in the tetrahedral site and trivalent cations in the octahedral site. The determined intracrystalline temperatures are in the range 550-
750°C, that are the lowest values ever found for Cr-spinels from mantle xenoliths as these are usually higher than 730°C. If we consider the behavior of some geotherms from literature, the determined temperatures are confined in a depth range of about 20-40 Km. Lithospheric models for the studied area indicate that the lower crust reaches its deepest value in a range between 30 and 40 Km. Consequently, we can assume that the studied xenoliths were emplaced at a “shallow” depth of about 20-30 Km, just beneath the lower crust, where they were disrupted and brought to the surface from the ascending alkaline lavas. This assumption is consistent with the concomitant presence of some crustal xenoliths. It is important to notice that even in the case of a mantle xenoliths where all the silicates could be heavily altered, the presence of one single crystal of Cr-spinel and the study of its oxygen coordinates (u), inversion parameters (i), Cr content, and calculated closure temperatures can be used to validate the thermal history of the mantle xenoliths. The combined approach of structural data, intra- and inter-crystalline temperatures and the literature geophysical data seems to be an interesting tool to assess the pre-exhumation history of the mantle xenoliths.

KEYWORDS: Cr-spinels, mantle xenoliths, crystal chemistry, intracrystalline temperature, Morocco.

Introduction

The unit cell of the spinel structure can be described as a slightly distorted cubic close-packed (ccp) array of 32 oxygen atoms with 8 cations at tetrahedrally coordinated T sites, and 16 cations at
octahedrally coordinated M sites (Hill et al. 1979). The T and M sites lie on special positions with -43m and -3m symmetry, respectively. The only variable geometrical parameters are the unit-cell edge \((a)\) and oxygen coordinate \((u,u,u)\), which is related to the oxygen packing distortion. The ideal ccp structure shows \(u = 0.25\), but it is observed that \(u > 0.25\) for all the Cr-bearing spinels. The observed distortion is a consequence of similar M-O and T-O bond distances \((u = 0.2625\) when distances are equal; Hill et al. 1979).

By the middle of the 80s, single crystal diffraction studies on Cr bearing spinels from mantle xenoliths started (Della Giusta et al. 1986; Princivalle et al. 1989) continuing till today (Carraro 2003; Uchida et al. 2005; Nédli et al. 2008). Princivalle et al. (1989) observed that \(u\) displays a constant value within the spinels from individual geological settings, even if there is a variation in bulk chemistry, whereas spinels with similar bulk chemistry but belonging to different geological environments exhibit a wide range of \(u\) values.

Mantle xenoliths enclosed in the Plio-Quaternary alkaline basalts from the Middle Atlas, Morocco, are characterized by a wide range of lithological and chemical heterogeneity, consistent with metasomatism of their lithospheric mantle source (Raffone et al 2009). They consist of porphyroclastic to protogranular spinel-lherzolites associated with websterites exhibiting major and trace element signatures, along with a depleted mantle isotopic affinity, testifying ancient melt extraction processes, possibly during Neo- to Paleoproterozoic times. This scenario is similar to that inferred for other Cenozoic Central-Northern African volcanic centers, such as Hoggar (Algeria; Beccaluva et al. 2007) and Gharyan (Libya; Beccaluva et al. 2008; Raffone et al. 2009).

Previous studies on the mineral phases present in these xenoliths include REE analyses of clinopyroxenes. Isotope and trace element variability found in these xenoliths supports a multistage metasomatic process in which clinopyroxene and amphibole are recent secondary additions to the lithospheric mantle (Malarkey et al. 2011). The Pb isotope evolution of the clinopyroxenes suggests that there was a metasomatic enrichment younger than 200 Ma, which discounts the volcanic activity due to the opening of the Atlantic and the onset of the collision of the African and Eurasian
plates as processes generating the lithophile element and isotope composition of this continental mantle root. Instead, the enrichment is thought to be associated with the Quaternary intra-plate volcanism in the Middle Atlas, and probably due to a carbonatitic metasomatism (Wittig et al. 2010). To our knowledge no previous crystallographic studies exist on the mineral phases of these xenoliths. The aim of this study is to analyze the structure of the Cr-bearing spinel, to calculate the cation distribution and, consequently, infer some information about the intracrystalline closure temperature of the spinels themselves. Successively these information will be compared with those of other Cr-spinels from mantle xenoliths worldwide.

Geological setting and sampling.

The Cenozoic volcanism of the Atlas system is exclusively of intraplate alkaline type (alkali basalts, basanites, nephelinites, and associated intermediate and evolved lavas), while in the Rif it evolved through time from calc-alkaline to shoshonitic and finally alkaline magmas (Hernandez and Bellon 1985; Hernandez et al. 1987; Berrahma and Delaloye 1989; Berrahma et al. 1993; El Bakkali et al. 1998, El Azzouzi et al. 1999, 2010; Maury et al. 2000, Duggen et al. 2005, 2009). It is located within a SW-NE trending volcanic strip (Fig. 1, inset), underlain by thinned lithosphere (Frizon de Lamotte et al. 2004; Teixell et al. 2005; Zeyen et al. 2005; Missenard et al. 2006), which crosscuts the major tectonic structures of central Morocco. This trend extends from the Siroua stratovolcano in the Anti-Atlas to the Mediterranean coast near Oujda (6.2 to 1.5 Ma, Tisserant et al. 1985, Andries and Bellon 1989; El Azzouzi et al. 1999; Duggen et al. 2005) and the Oran area in Algeria (4 to 0.8 Ma; Coulon et al. 2002). Gravimetric and geodetic modeling of the lithosphere suggests the role of an asthenospheric “hot lineament”, the so called Morocco Hot Line (MHL, e.g. Frizon de Lamotte et al. 2008 and references therein). This MHL could in fact extend from the Canary Islands to southeast Spain at least (e.g. Doblas et al. 2007; Duggen et al. 2009). According to available K-Ar ages (Harmand and Cantagrel 1984; Berrahma and Delaloye 1989; Berrahma et al. 1993; Morel and Bellon 1996; El Azzouzi et al. 1999, 2010), this volcanism was emplaced from the Miocene to
the Quaternary (16.25 to 0.6-0.5 Ma). However, dykes and sills of lamprophyres, phonolites, nepheline syenites, nephelinites and carbonatites (Bouabdli et al. 1988; Mourtada et al. 1997) crosscutting the Tamazert alkaline intrusion (High Atlas) and its limestone country rocks gave older (Eocene) ages between 45 and 35 Ma (Bernard-Griffiths et al. 1991). Other Eocene K-Ar ages were reported for Rekkam basanites and nephelinites, with sixteen results clustered between 50 and 39 Ma and two younger ages at 35 and 32.5 Ma (Rachdi et al. 1997), and for the Zebzate nephelinite in the Middle Atlas (35 ± 3 Ma, Harmand and Cantagrel 1984).

The Middle Atlas basaltic province comprises the largest and youngest volcanic fields in Morocco. A hundred well-preserved strombolian cones and maars occur along a N-S trend ca. 70 km long between El Hajeb and Itzer (Fig. 1). Most of the volcanic units cap the flat karstic surface of a tabular Jurassic dolomitic limestone plateau (Martin 1981; Moukadiri 1983, 1999; Harmand and Moukadiri 1986). The latter overlies Triassic red beds and tholeiitic lava flows of the Central Atlantic Magmatic Province (CAMP) which in turn rest unconformably over a Paleozoic basement. K-Ar ages (Harmand and Cantagrel 1984; Morel and Bellon 1996; El Azzouzi et al. 1999, 2010) show that the Middle Atlas volcanic activity occurred during the Miocene, the Pliocene and the Quaternary until 0.6-0.5 Ma. However, the occurrence of younger eruptions cannot be discarded given the excellent preservation of some volcanic landforms (deep maar craters, breached strombolian craters, tumuli and pressure ridges on the surface of pahoehoe lava flows). Some maar deposits (Tafraoute, Bou-Ibalrhatene; outlined in Fig. 1) contain abundant mantle xenoliths (spinel lherzolites, pyroxenites, garnet-bearing pyroxenites) as well as granulites from lower crust (Moukadiri 1983; 1999; Moukadiri and Kornprobst 1984; Moukadiri and Bouloton 1998; Moukadiri and Pin 1998). The Bou-Ibalrhatene xenolith suite includes metasomatic amphibole-bearing lherzolites and harzburgites, wehrlites, websterites, pyroxenites and hornblendites (Raffone et al. 2009; Wittig et al. 2009, 2010a, 2010b; Malarkey et al. 2011; Natali et al. 2013). Numerous basaltic flows, some of them 30 to 50 km long, were emitted from the strombolian cones. The total
surface covered by the volcanics is rather large (960 km²), but the corresponding estimated volume remains low (20 km³) because of the limited thickness (usually 20 to 30 m) of the lava flow pile. The map shown in Figure 1 is partly based on the geomorphological study of Martin (1981), who provided excellent descriptions of volcanic landforms, on the geological maps of Azrou and El Hajeb (Du Dresnay and Suter 1975; Faure-Muret and Mesloub 2005) and the petrologic map of El Azzouzi et al. (2010). The N160-170°E trend defined by the main vents (Outgui, El Koudiate, Habri, Hebri, Bou Tagarouine, Tabourite, Tamarrakoït) is clearly oblique with respect to the main regional faults which trend N040°E (Tizi n’Trettène) to N050°E (North Middle Atlas Fault) (Charrière 1990). The volcanic cover is nearly continuous in the central part of the chain, between Azrou and Timahdite, where large lava fields flank the volcanic axis. Three important volcanic structures are located away from this central part (Fig 1): the J. Tamarrakoït in the south, and the El Koudiate and Outgui strombolian cones in the north. The pahoehoe lava flows emitted from the Outgui cone poured out over the Quaternary deposits of the Saïs plain close to Meknès. A number of small to very small volcanic edifices occur in the periphery of the main volcanic zone: Ariana and Tamahrart (W of El Koudiate), Ouaoussenfacht (E of El Koudiate), Lougnina and Am Laraïs (SE of Tamarrakoït), and Tabourite and Si Mguid (W of Timahdite village). Most of them are made of an ash and cinder cone and one (or a few) short lava flow(s) emitted from its crater.

Four types of mafic lavas are distinguished in the petrologic map (Fig. 1), based on a hundred major and trace element analyses (El Azzouzi et al. 2010). Intermediate and evolved compositions are lacking, a feature which contrasts with other Moroccan volcanic fields (Siroua and Saghro). Nephelinites (SiO₂ = 36–41%) usually form small strombolian cones and associated lava flows located along the borders of the volcanic plateau, and most of them were emplaced prior to the other petrologic types. The basanites (SiO₂ = 41–45%) are the youngest lava type, and make up most of the well preserved cones located between Azrou and Itzer. The corresponding lava flows generally overlie the alkali basalt flows. Alkali basalts (SiO₂ = 46–51%) represent the dominant petrographic
type, and their fissural lava flows cover most of the plateau surface, especially to the east (Oued Guigou Valley) and the west (Oued Tigrigra Valley) of the main volcanic axis. They also form the large northern cone of J. Outgui, whose flows covered the Quaternary formations of the Saiss plain. Finally, subalkaline basalts, richer in silica than the former types (SiO₂ = 52%), make up the El Koudiate cone and associated 20 km long lava flows. According to available datings (Harmand and Cantagrel 1984; Morel and Bellon 1996; El Azzouzi et al. 1999), the Middle Atlas Miocene volcanic events emplaced only nephelinites, from 14.6 Ma (Bekrit) to 5.9 Ma (Talzast). However, nephelinites also erupted during the Quaternary, around 1.6 Ma (J. Tourguejid) and 0.75 Ma (J. Tahabrit). Alkaline and subalkaline basalts as well as basanites seem to be exclusively Quaternary in age, and the youngest published ages have been measured on basanites (0.8 Ma at J. Tahabrit, 0.6 Ma at J. Am Larais, 0.5Ma at J. Ait el Haj; see also the recent work of El Azzouzi et al. 2010 for more detail).

The alkali basalts, basanites and nephelinites display strongly enriched incompatible element patterns. Their geochemical signatures are typically intraplate alkaline, and hardly distinguishable from those of ocean island alkali basalts (OIB) and related rocks. The progressive enrichment in the most incompatible elements from alkali basalts to nephelinites, is consistent with decreasing degrees of partial melting of an enriched mantle source (El Azzouzi et al. 1999, 2010; Duggen et al. 2009). Isotopic data indicate an enriched mantle source, with almost no radiogenic Sr, showing rather variable Nd isotopic ratios, and consistently rich in radiogenic Pb (El Azzouzi et al. 1999; Duggen et al. 2009). This isotopic signature is close to the HIMU end-member recognized in oceanic islands such as St. Helens and Tubuai. Such a signature is frequently found in Cenozoic alkali basalts and basanites from Europe, the western Mediterranean, northern Africa, and eastern Atlantic islands (Madeira, Canary archipelago). These lavas are thought to derive from a 2500 to 4000 km large giant asthenospheric plume which would have ascended below these areas during the Early Tertiary (Hoernle et al. 1995).
The studied mantle xenoliths were taken in two volcanoes: the maar of Bou-Ibalhatene (33°20'11.52"N - 5° 3'24.16"W) and the maar of Tafraoute (33°31'10.20"N - 4°41'37.60"W) that contain abundant mantle xenoliths (spinel lherzolites, pyroxenites) as well as granulites from lower crust (Fig. 1). The Bou-Ibalhatene mantle xenolith suite that includes metasomatic amphibole-bearing lherzolites and harzburgites, wehrlites, websterites, clinopyroxenites and hornblendites have been widely studied (Moukadiri 1983, 1999; Moukadiri and Kornprobst 1984; Raffone et al. 2009; Wittig et al. 2009, 2010a, 2010b; Malarkey et al. 2011; Natali et al. 2013) while the Tafraoute mantle suite has been briefly described by Moukadiri (1983, 1999).

Petrographic outlines

All the investigated mantle xenoliths are lherzolites and harzburgites characterized by a protogranular to granular texture with grain size up to 6 mm. Moreover they contain, in particular the harzburgites, minor amounts of interstitial glass always surrounded by reaction rims. All the xenoliths are composed by four main primary minerals, olivine, orthopyroxene, clinopyroxene and very scarce spinel. All the olivine appears quite homogeneous in size (about 400-500 µm), slightly fractured and never altered. Orthopyroxene shows variable dimensions (about 100-600 µm) and only sometimes is characterized by the presence of exsolution lamellae. Clinopyroxene shows variable dimensions (in the range 50-400 µm) and is often fresh. Very rarely it is characterized by a spongy texture and by cleavages filled by indistinguishable oxides. Notably, these structures are homogeneously distributed and do not appear related to a contact with the interstitial glass. Finally, spinels are quite uncommon, pale brown in colour and always smaller than 200 µm, idiomorphic and located inside primary olivine or orthopyroxene crystals.

The blebs of glass are variably concentrated in the mantle xenoliths and appear to be aligned along preferential directions. All the blebs are surrounded by reaction rims where small crystals represented by clinopyroxene, orthopyroxene and very rare amphibole can be recognized as phases belonging to a secondary generation.

Experimental procedures
Nine spinels have been analyzed by means of X-ray diffraction and electron microprobe. X-ray diffraction data were collected on an automated KUMA-KM4 (K-geometry) diffractometer, using MoKα radiation, monochromatized by a flat graphite crystal. Data was collected, according to Della Giusta et al. (1996), with up to 55° of 2θ in the ω-2θ scan mode (scan width 1.8° 2θ, counting times from 20 to 50 s, depending on the peak standard deviation). Twenty-four equivalent reflections of 12 8 4 or 8 4 4 peaks (according to the size of the Cr-spinel), at about 80° or 50° of 2θ, respectively, were accurately centered at both sides of 2θ, and the α₁ peak barycenter was used for cell parameter determination. Corrections for absorption were performed according to North et al. (1968).

Structural refinement using the SHELX-97 program (Sheldrick 2008) was carried out against \(F_{o}^{2\ hkl}\) in the Fd–3m space group (with the origin at –3m), since no evidence of different symmetry appeared. Scattering factors were taken from Prince (2004) and Tokonami (1965). The crystallographic data are presented in Table 1.

Ten to fifteen spot analyses were performed on the same Cr-spinels used for X-ray data collection, using a CAMECA-CAMEBAX electron microprobe operating at 15 kV and 15 nA. A 20 s counting time was used for both peak and total background. Synthetic oxide standards (MgO, FeO, MnO, ZnO, NiO, Al₂O₃, Cr₂O₃ and TiO₂) were used. Raw data were reduced by PAP-type correction software provided by CAMECA. The mineral chemical analyses are reported in Table 2.

The cation distribution (Table 2) between the T and M sites was obtained with the method described by Carbonin et al. (1996) and Lavina et al. (2002), in which crystal chemical parameters are calculated as a function of the atomic fractions at the two sites and fitted to the observed values. Site atomic fractions were calculated by minimizing the function \(F(x)\) (Table 2), which takes into account the mean of the square differences between calculated and observed parameters divided by their squared standard deviations.

Results
Cell edges are usually within the range 8.13-8.14 Å, but there are three samples with longer a value, so that the whole analyzed spinels are within the range 8.1334 (4) – 8.2021 (2) Å, while the oxygen positional parameter is very similar ranging between 0.2626 (1) and 0.2629 (2) (Table 1). These values are rather common for spinels from mantle xenoliths as it can be seen in Figure 2 where the here studied spinels are compared with other mantle xenoliths (Della Giusta et al. 1986; Princivalle et al. 1989; Carraro 2003; Uchida et al. 2005; Nédli et al. 2008) and peridotite massif occurrences showing higher u values for similar cell edges (Ivrea-Verbano zone, Basso et al. 1984; Ronda, Lenaz et al. 2010).

From a chemical point of view the most variable oxides are the trivalent Al_2O_3 and Cr_2O_3 that ranges between 36 and 56 wt.% (1.205-1.713 atoms per formula unit, apfu) and 9.6 to 30 wt. % (0.197-0.664 apfu), respectively. MgO and iron oxides, both FeO and Fe$_2$O$_3$, show narrow ranges being comprised between 17-21 wt.% (0.731-0.813 apfu), 8-11 wt.% (0.174-0.258) and 4-6 wt.% (0.077-0.125 apfu), respectively. As regards the minor oxides NiO is lower than 0.4 wt.%, TiO$_2$ is comprised between 0.1 and 0.2 while MnO and ZnO are lower than 0.13.

The inversion degree is limited, i.e. the amount of trivalent cations present in T site and of the divalent cations in M site, with less than 0.2 apfu of trivalent cation in the tetrahedral site.

Intracrystalline closure temperatures calculated by using the Princivalle et al. (1999) geothermometer are in the range 550-750°C. This geothermometer takes into account the Mg- and Al-content of the Cr-spinels and their distribution among the octahedral and tetrahedral sites. The presence of other cations is accounted for by coefficients present in the equation of the geothermometer.

Discussion and conclusions

As mentioned above, the structural parameters of the present spinels show relevant variations in unit cell values and insignificant variations in u parameters. Previous studies showed that large variations in trivalent cations, especially Cr, are the most responsible of variations in the cell edges and this fact is not restricted to the mantle xenoliths occurrences but also to Cr-spinels and
chromites from layered complexes (Lenaz et al. 2007, 2011, 2012), ophiolites (Derbyshire et al. 2013), komatiites (Lenaz et al. 2004a), kimberlites and diamond inclusions (Lenaz et al. 2009). As far as concern the mantle xenoliths this fact can be easily recognized in Figure 3, where the Moroccan spinels are compared with other mantle xenoliths worldwide (Della Giusta et al. 1986; Princivalle et al. 1989; Carraro 2003; Uchida et al. 2005; Nédli et al. 2008; Princivalle et al., 2014).

The most peculiar geometrical parameter, in spinels from mantle xenoliths, is u. In fact, as previously noted by Princivalle et al. (1989) it is characteristic of each suite of mantle xenoliths. In the case of the Moroccan xenoliths the average value is 0.2628 (1) for the BI and the TF samples as well, while it is 0.2624 (1) for Mt. Leura, 0.2625 (1) for NE Brazil and Mt. Noorat, 0.2627 (1) for Assab (Princivalle et al. 1989), 0.2628 (1) for Predazzo (Carraro 2003) and 0.2629 (1) for San Carlos (Arizona; Uchida et al. 2005). As the u values of each suite is more or less constant, those authors related the u values of the mantle xenoliths spinels to their cooling history. On the contrary, all the other occurrences show that the u values too, are mainly related to the chemistry of the spinels. An interesting fact came out from the analyses and comparisons of the intracrystalline closure temperatures (Fig. 4). For Moroccan samples they are rather low, in the range 550-750°C, comparable only with spinels from Hannuoba (China; Princivalle et al., 2014), while for all the other occurrences they are higher than 730°C (minimum temperature recorded in Predazzo spinels; Carraro 2003). It is supposed that the intracrystalline closure temperature of the spinels is that recorded in the mantle and it is not conditioned by the temperature of the ascending magma, i.e. no re-equilibration occurs. Considering this, why is the temperature of the Moroccan spinels so low in comparison with the others? As these temperatures are related to the cooling history of the spinels themselves and to the oxygen positional parameter we can suppose that the cooling was similar to that of the other mantle xenoliths having comparable inversion degree. The oxygen positional parameter is similar to that of other spinels from mantle xenoliths considered having higher intracrystalline closure temperature. Given that, having similar cooling history but different intracrystalline temperature, we suppose that below the West Africa Craton, when the spinels
formed, the mantle possibly had temperature lower of those of the other considered xenoliths, even if actually this area is characterized by a high geothermal gradient (Rimi 2001) and tomographic data suggest that the underlying asthenospheric mantle is anomalously hot (Spakman et al. 1993; De Jonge et al. 1994; Hoernle et al. 1995; Goes et al. 1999). Moreover, it is interesting to notice that spinels from Ronda has higher u values (Fig. 5) but, for those with similar Cr contents the same intracrystalline closure temperatures. Lenaz et al. (2010) noticed that the intracrystalline closure temperature seem to be reached faster for Cr-spinels in mantle xenoliths and is usually higher than that of Cr-spinels in mantle peridotite and associated dikes. At now, we have the evidence of two occurrences possibly derived from almost the same mantle. The Ronda massif emplaced in Early Miocene times being exhumed from about 66 km depths (Platt et al. 2003). According to the mantle diapir model (Obata 1980), the Ronda peridotite is interpreted in terms of an ascending hot, slowly cooling peridotite mass, where the spinel tectonites represent an old lithospheric mantle, isolated from the convective mantle at 1.36 Ga (Reisberg and Lorand 1995). Lenaz et al. (2010) noticed that the intracrystalline temperatures of Ronda spinels is about 0-150°C lower than the intercrystalline temperature calculated by Li et al. (1995) by using the olivine-spinel thermometer and the same is also for chromite samples from Oman (unpublished data), disseminated spinels in peridotite from Rum Island show intra- and inter-crystalline temperatures that are comparable (Lenaz et al. 2011). Given that we can assume that the intercrystalline temperature for the here studied occurrences are in the range 600-850°C. Considering the behavior of some geotherms found in the literature, like the Catalonia or the SE Australia, the assumed temperatures (600-850°C) are confined in a depth of about 20-40 Km (Puziewicz et al. 2012). Lithospheric models proposed by Teixell et al. (2005) for the studied area indicate that the lower crust reaches its deepest value in a range between 30 and 40 Km. Consequently, we can assume that the here studied xenoliths were emplaced at a “shallow” depth of about 20-40 Km, just beneath the lower crust, where they were disrupted and brought to the surface from the ascending alkaline lavas together with some crustal xenoliths similarly to what happened also in Hannuoba (China; Princivalle et al., 2014).
Implications from this study

Mantle xenoliths, as well as, other mafic and ultramafic rocks are mainly constituted by olivines ± pyroxenes that are usually subjected to different degrees of alteration and weathering. As an example, Ahmed et al. (2005) and Sobolev and Logvinova (2005) pointed out that, in many cases, ultramafic rocks including kimberlite, lamproite, and peridotite of orogenic massifs are heavily serpentinized and that such alterations present difficulties in identifying the presence of olivine and pyroxene, and the same is also true for ophiolite occurrences (Lenaz et al. 2000, and references therein). On the contrary, Cr-bearing spinel may be present as the sole-surviving primary mineral. This implies that even in the case of a mantle xenoliths where all the silicates could be heavily altered, the presence of one single crystal of Cr-spinel and the study of its oxygen coordinates (u), inversion parameters (i), Cr content, and calculated closure temperatures can be used to validate the thermal history of the mantle xenoliths. The combined approach of structural data, intra- and inter-crystalline temperatures and the geophysical data seems to be an interesting tool to assess the pre-exhumation history of the mantle xenoliths.

Acknowledgements

The Italian C.N.R. financed the installation and maintenance of the microprobe laboratory in Padova. L. Furlan, R. Carampin and L. Tauro are kindly acknowledged for technical support. DL would like to thanks the PRIN 2010-11 fund (SPIN GEO TECH). RA Fregola and an anonymous referee are kindly acknowledged for their comments.

References

Implications for chromitite petrogenesis and late-stage alteration in the upper mantle portion of a supra-subduction zone ophiolite. Lithos, 162-163, 279-300.

Notes et Mémoires Service Géologique Maroc, no 461.

Ayarza, H. Robert-Charrue, C. Chalouan, A. Zizi, M. Teixell, A. Arboleya, M.L. Alvarez-
Rif, Moroccan Meseta, High Atlas, Jbel Saghro, Tindouf Basin, in Cavazza W. Roure F.
SpakmanW. Stampfli G.M. Ziegler P.A. (Eds.), The TRANSMED Atlas – the

Frizon De Lamotte, D. Zizi, M. Missenard, Y. Hafid, M. El Azzouzi, M. Maury, R.C. Charrière, A.
Michard, O. Saddiqi, A. Chalouanand D. Frizon De Lamotte, Eds. Continental evolution:
the geology of Morocco. Structure, stratigraphy and tectonics of the Africa-Atlantic-
Mediterranean triple junction. – Lecture Notes in Earth Sciences, 116, Springer-Verlag,

Atlas (Maroc): chronologie K/Ar et cadre géodynamique. Journal of African Earth Sciences,
2, 51-55.

Harmand, C. Moukadiri, A. (1986) Synchronisme entre tectonique compressive et volcanisme
alcalin: exemple de la province Quaternaire du Moyen Atlas (Maroc). Bulletin de la
Société Géologique de France, 4, 595-603.

Lenaz, D. and Lughi, V. (2013) Raman study of MgCr₂O₄–Fe²⁺Cr₂O₄ and MgCr₂O₄–MgFe²⁺O₄ synthetic series: the effects of Fe²⁺ and Fe³⁺ on Raman shifts. Physics and Chemistry of Minerals, 40, 491-498.

Figures captions

Figure 1. Simplified geologic map of Middle Atlas Volcanic Field showing the distribution of the four petrographic types (El Azzouzi et al. 2010). Inset: Main tectonic structures of Morocco, location of the Middle Atlas and distribution of Neogene and Quaternary volcanism.

Figure 2. Oxygen positional parameter, \(u \), vs. cell edge, \(a \). Full circle: BI samples (this study); full diamond: TF samples (this study). Mantle xenoliths, open square: Mt. Leura (Della Giusta et al. 1989); open triangle: NE Brazil (Princivalle et al. 1989); open diamond: Assab (Princivalle et al. 1989); cross: Mt. Noorat (Princivalle et al. 1989); asterisk: Predazzo (Carraro, 2003); open circle: San Carlos (Uchida et al. 1989); plus: Hungary (Nédli et al. 1989). Peridotite massif, full triangle: Balmuccia (Della Giusta et al. 1986), full square: Ronda (Lenaz et al. 2010).

Figure 3. Cell edge, \(a \), vs. Cr content in atoms per formula unit (apfu). Full diamond: this study. Mantle xenoliths, open square: Mt. Leura (Della Giusta et al. 1989); open triangle: NE Brazil (Princivalle et al. 1989); open diamond: Assab (Princivalle et al. 1989); cross: Mt. Noorat (Princivalle et al. 1989); asterisk: Predazzo (Carraro, 2003); open circle: San Carlos (Uchida et al. 2005); plus: Hungary (Nédli et al. 2008). Peridotite massif, full triangle: Balmuccia (Della Giusta et al. 1986), full square: Ronda (Lenaz et al. 2010). Error bars within the symbols.

Figure 4. Range of intracrystalline closure temperatures for the studied spinels and mantle xenoliths used for comparison (Mt. Leura, Della Giusta et al. 1989; Mt. Noorat, NE Brazil, Assab, Princivalle et al. 1989; San Carlos, Uchida et al. 2005; Predazzo, Carraro 2003; Hannuoba, unpublished data).

Figure 5. Oxygen positional parameter, \(u \), vs. intracrystalline closure temperatures of mantle xenoliths worldwide and peridotite massif. Symbols as in Figure 3.
<table>
<thead>
<tr>
<th>Sample</th>
<th>MAR-BI2</th>
<th>MAR-BI4</th>
<th>MAR-BI16</th>
<th>MAR-BI24</th>
<th>MAR-TF6</th>
<th>MAR-TF7</th>
<th>MAR-TF8</th>
<th>MAR-TF21</th>
<th>MAR-TF28</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>8.1334 (4)</td>
<td>8.1454 (5)</td>
<td>8.2021 (2)</td>
<td>8.1727 (5)</td>
<td>8.1339 (3)</td>
<td>8.13506 (9)</td>
<td>8.1704 (4)</td>
<td>8.1391 (6)</td>
<td>8.1499 (2)</td>
</tr>
<tr>
<td>(u)</td>
<td>0.2628 (1)</td>
<td>0.2628 (1)</td>
<td>0.26275 (7)</td>
<td>0.2627 (2)</td>
<td>0.2628 (1)</td>
<td>0.26283 (7)</td>
<td>0.2629 (2)</td>
<td>0.26285 (9)</td>
<td>0.2626 (1)</td>
</tr>
<tr>
<td>T-O</td>
<td>1.942 (2)</td>
<td>1.946 (2)</td>
<td>1.957 (1)</td>
<td>1.950 (2)</td>
<td>1.941 (2)</td>
<td>1.942 (1)</td>
<td>1.952 (3)</td>
<td>1.943 (1)</td>
<td>1.942 (1)</td>
</tr>
<tr>
<td>M-O</td>
<td>1.935 (1)</td>
<td>1.938 (1)</td>
<td>1.9516 (5)</td>
<td>1.945 (1)</td>
<td>1.935 (1)</td>
<td>1.9351 (5)</td>
<td>1.943 (2)</td>
<td>1.9358 (7)</td>
<td>1.9402 (7)</td>
</tr>
<tr>
<td>m.a.n.T</td>
<td>15.4 (2)</td>
<td>15.2 (5)</td>
<td>17.4 (1)</td>
<td>16.5 (4)</td>
<td>15.4 (2)</td>
<td>15.3 (2)</td>
<td>16.2 (4)</td>
<td>15.8 (3)</td>
<td>15.3 (2)</td>
</tr>
<tr>
<td>m.a.n.M</td>
<td>14.3 (2)</td>
<td>15.6 (4)</td>
<td>16.0 (2)</td>
<td>16.3 (3)</td>
<td>14.6 (2)</td>
<td>14.32 (9)</td>
<td>16.2 (5)</td>
<td>15.2 (3)</td>
<td>15.1 (3)</td>
</tr>
<tr>
<td>U (M)</td>
<td>0.0043 (3)</td>
<td>0.0057 (4)</td>
<td>0.0033 (1)</td>
<td>0.0054 (3)</td>
<td>0.0050 (3)</td>
<td>0.0041</td>
<td>0.0048 (4)</td>
<td>0.0053 (2)</td>
<td>0.0054 (2)</td>
</tr>
<tr>
<td>U (T)</td>
<td>0.0063 (4)</td>
<td>0.0070 (4)</td>
<td>0.0046 (2)</td>
<td>0.0079 (4)</td>
<td>0.0061 (3)</td>
<td>0.0060 (3)</td>
<td>0.0070 (5)</td>
<td>0.0069 (3)</td>
<td>0.0066 (3)</td>
</tr>
<tr>
<td>U (O)</td>
<td>0.0083 (4)</td>
<td>0.0081 (5)</td>
<td>0.0062 (2)</td>
<td>0.0078 (5)</td>
<td>0.0081 (4)</td>
<td>0.0074 (2)</td>
<td>0.0074 (8)</td>
<td>0.0076 (3)</td>
<td>0.0085 (3)</td>
</tr>
<tr>
<td>N. refl.</td>
<td>114</td>
<td>125</td>
<td>169</td>
<td>112</td>
<td>113</td>
<td>157</td>
<td>100</td>
<td>133</td>
<td>133</td>
</tr>
<tr>
<td>R1</td>
<td>3.35</td>
<td>3.73</td>
<td>2.46</td>
<td>3.09</td>
<td>3.47</td>
<td>2.99</td>
<td>3.90</td>
<td>2.76</td>
<td>2.63</td>
</tr>
<tr>
<td>wR2</td>
<td>5.72</td>
<td>7.09</td>
<td>5.05</td>
<td>5.45</td>
<td>4.57</td>
<td>5.67</td>
<td>6.61</td>
<td>5.03</td>
<td>4.77</td>
</tr>
<tr>
<td>GooF</td>
<td>1.236</td>
<td>1.191</td>
<td>1.349</td>
<td>1.250</td>
<td>1.399</td>
<td>1.360</td>
<td>1.360</td>
<td>1.271</td>
<td>1.295</td>
</tr>
<tr>
<td>Diff.peaks</td>
<td>0.54; -1.30</td>
<td>1.03; -1.54</td>
<td>1.17; -1.29</td>
<td>0.69; -1.06</td>
<td>0.72</td>
<td>0.74; -1.93</td>
<td>0.81; -1.00</td>
<td>0.55; -1.03</td>
<td>1.43; -0.65</td>
</tr>
</tbody>
</table>

Table 2: Results of structure refinement \(a_{0}\): cell parameter (Å); \(u\): oxygen positional parameter; T-O and M-O: tetrahedral and octahedral bond lengths (Å), respectively; m.a.n.T and M: mean atomic number; U(M), U(T), U(O): displacement parameters for M site, T site and O; N. Refl.: number of unique reflections; R1 all (%), wR2 (%), GooF as defined in Sheldrick (2008). Diff.peaks: maximum and minimum residual electron density (± e/Å³). Space Group: Fd-3m. Origin fixed at –3m. Z=8. Reciprocal space range: -19 ≤ h ≤ 19; 0 ≤ k ≤ 19; 0 ≤ l ≤ 19. Estimated standard deviations in brackets.
<table>
<thead>
<tr>
<th>Sample</th>
<th>MAR-BI2</th>
<th>MAR-BI4</th>
<th>MAR-BI16</th>
<th>MAR-BI24</th>
<th>MAR-TF6</th>
<th>MAR-TF7</th>
<th>MAR-TF8</th>
<th>MAR-TF21</th>
<th>MAR-TF28</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgO</td>
<td>21.0 (2)</td>
<td>20.4 (3)</td>
<td>17.4 (1)</td>
<td>19.0 (3)</td>
<td>20.6 (3)</td>
<td>21.0 (2)</td>
<td>18.9 (3)</td>
<td>20.6 (3)</td>
<td>20.1 (3)</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>55.7 (4)</td>
<td>52.6 (4)</td>
<td>36.0 (2)</td>
<td>44.1 (4)</td>
<td>55.9 (5)</td>
<td>55.5 (4)</td>
<td>44.8 (3)</td>
<td>53.8 (3)</td>
<td>51.1 (3)</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.12 (2)</td>
<td>0.10 (2)</td>
<td>0.20 (2)</td>
<td>0.10 (1)</td>
<td>0.10 (2)</td>
<td>0.16 (2)</td>
<td>0.19 (2)</td>
<td>0.18 83)</td>
<td>0.15 (1)</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>9.58 (9)</td>
<td>13.0 (2)</td>
<td>29.6 (3)</td>
<td>21.69 (2)</td>
<td>10.1 (1)</td>
<td>10.1 (1)</td>
<td>21.1 (2)</td>
<td>12.3 (1)</td>
<td>14.8 (2)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.11 (3)</td>
<td>0.11 (3)</td>
<td>0.15 (3)</td>
<td>0.13 (2)</td>
<td>0.11 (3)</td>
<td>0.08 (2)</td>
<td>0.13 (3)</td>
<td>0.09 (3)</td>
<td>0.11 (3)</td>
</tr>
<tr>
<td>FeOOUT</td>
<td>12.1 (2)</td>
<td>12.9 (1)</td>
<td>16.2 (1)</td>
<td>13.8 (1)</td>
<td>12.1 (1)</td>
<td>11.9 (1)</td>
<td>14.0 (2)</td>
<td>12.1 (2)</td>
<td>12.6 (2)</td>
</tr>
<tr>
<td>NiO</td>
<td>0.40 (3)</td>
<td>0.37 (3)</td>
<td>0.27 (2)</td>
<td>0.28 (3)</td>
<td>0.40 (3)</td>
<td>0.33 (5)</td>
<td>0.37 (3)</td>
<td>0.34 (4)</td>
<td></td>
</tr>
<tr>
<td>ZnO</td>
<td>0.09 (3)</td>
<td>0.11 (4)</td>
<td>0.10 (4)</td>
<td>0.09 (3)</td>
<td>0.10 (4)</td>
<td>0.10 (4)</td>
<td>0.11 (3)</td>
<td>0.09 (4)</td>
<td>0.13 (5)</td>
</tr>
<tr>
<td>FeO</td>
<td>8.0 (2)</td>
<td>8.6 (1)</td>
<td>10.9 (1)</td>
<td>9.4 (1)</td>
<td>8.7 (1)</td>
<td>8.1 (1)</td>
<td>9.8 (2)</td>
<td>8.6 (2)</td>
<td>8.8 (2)</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.5</td>
<td>4.8</td>
<td>5.9</td>
<td>4.8</td>
<td>3.8</td>
<td>4.3</td>
<td>4.7</td>
<td>3.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Sum</td>
<td>99.58</td>
<td>100.03</td>
<td>100.51</td>
<td>99.85</td>
<td>99.81</td>
<td>99.66</td>
<td>99.98</td>
<td>99.91</td>
<td>99.70</td>
</tr>
</tbody>
</table>

Table 3 Chemical analyses and cation distribution. Mean chemical analyses (up to 15 spot analyses for each crystal) and cation distribution in T and M site of the analyzed Cr-spinels on the basis of four oxygen atoms per formula unit. Fe³⁺ from stoichiometry. F(x): minimization factor which takes into account the mean of square differences between calculated and observed parameters, divided by their standard deviations. Estimated standard deviations are in brackets. Intracrystalline closure temperature calculated by using the thermometer by Princivalle et al (1999).