Revision 2

Lavinskyite, $\mathrm{K}(\mathrm{LiCu}) \mathrm{Cu}_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$, isotypic with planchéite, a new mineral from the Wessels mine, Kalahari Manganese Fields, South Africa

Hexiong Yang ${ }^{1}$, Robert T. Downs ${ }^{1}$, Stanley H. Evans ${ }^{1}$, and William W. Pinch ${ }^{2}$
${ }^{1}$ Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A.
${ }^{2} 19$ Stonebridge Lane, Pittsford, New York 14534, U.S.A.

Corresponding author: hyang@u.arizona.edu

Abstract

A new mineral species, lavinskyite, ideally $\mathrm{K}\left(\mathrm{LiCu}^{2+}\right) \mathrm{Cu}^{2+}{ }_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$ (IMA 2012-028), has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, South Africa. Associated minerals include wesselsite, pectolite, richterite, sugilite, and scottyite. Lavinskyite crystals are tabular [parallel to (010)]. The mineral is light blue, transparent with very pale blue streak and vitreous luster. It is brittle and has a Mohs hardness of ~ 5; cleavage is perfect on $\{010\}$ and no parting was observed. The measured and calculated densities are $3.61(3)$ and $3.62 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. Optically, lavinskyite is biaxial (+), with $\alpha=1.675(1), \beta=1.686(1), \gamma=1.715(1), 2 V_{\text {meas }}=64(2)^{\circ}$. An electron microprobe analysis produced an average composition (wt. \%) of SiO_{2} 42.85(10), $\mathrm{CuO} 46.13(23), \mathrm{K}_{2} \mathrm{O} 4.16(2)$, MgO 1.53(17), $\mathrm{Na}_{2} \mathrm{O} 0.27(4), \mathrm{BaO} 0.18(6)$, and MnO $0.08(1)$, plus $\mathrm{Li}_{2} \mathrm{O} 1.38$ from the LA-ICP-MS measurement and $\mathrm{H}_{2} \mathrm{O} 3.22$ (added to bring the analytical total close to 100%), yielding a total of 99.79% and an empirical chemical formula $\left(\mathrm{K}_{0.99} \mathrm{Ba}_{0.01}\right)_{\Sigma=1.00}\left(\mathrm{Li}_{1.04} \mathrm{Cu}_{0.93} \mathrm{Na}_{0.10}\right)_{\Sigma=2.07}\left(\mathrm{Cu}_{5.57} \mathrm{Mg}_{0.43} \mathrm{Mn}_{0.01}\right)_{\Sigma=6.01}\left(\mathrm{Si}_{4.00} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$. Lavinskyite is isotypic with planchéite, $\mathrm{Cu}_{8}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$, an amphibole derivative. It is orthorhombic, with space group Pcnb and unit-cell parameters $a=$

19.046(2), $b=20.377(2), c=5.2497(6) \AA$, and $V=2037.4(4) \AA^{3}$. The key difference between lavinskyite and planchéite lies in the coupled substitution of K^{+}and Li^{+}in the former for $\mathrm{H}_{2} \mathrm{O}$ and Cu^{2+} in the latter, respectively. The structure of lavinskyite is characterized by the undulating, brucite-like layers consisting of three distinct octahedral sites occupied mainly by Cu . These layers are sandwiched by the amphibole-type double silicate chains extending along the c axis, forming a sheet structure of compact silicateCu -silicate triple layers. Adjacent sheets are linked together by K and $\mathrm{M} 4(=\mathrm{Cu}+\mathrm{Li})$ cations, as well as hydrogen bonding. The M4 site is split, with Cu and Li occupying two different sites. Lavinskyite exhibits more amphibole-like structural features than planchéite, as a consequence of K in the large cavity between the two back-to-back double silicate chains.

Key words: lavinskyite, $\mathrm{K}(\mathrm{LiCu}) \mathrm{Cu}_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$, planchéite, crystal structure, X-ray diffraction, Raman spectra

Introduction

A new mineral species, lavinskyite, ideally $\mathrm{K}(\mathrm{LiCu}) \mathrm{Cu}_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$, has been found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is named in honor of Dr. Robert Matthew Lavinsky (born in 1973), the founder and manager of Arkenstone, a sole proprietorship for dealing in collectible mineral specimens and crystals. The Arkenstone website (www.iRocks.com) was one of the first to bring mineral specimens to sale over the Internet. Dr. Lavinsky has been a donor of important mineral specimens to the Smithsonian Institution, Harvard University, California Institute of Technology, University of Arizona, and other institutions. He is also the largest contributor of information and photography to Mindat (an online public-access database of mineralogical information) and the sponsor of the

Tucson Mineral and Gem Show Juniors' Award. Dr. Lavinsky recognized that some mineral specimens he brought to the USA from South Africa appeared to represent new mineral species and provided samples to our laboratory. The new mineral and its name have been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA 2012028). Part of the cotype sample has been deposited at the University of Arizona Mineral Museum (Catalogue \# 19335) and the RRUFF Project (deposition \# R120057). The holotype sample is in the collection of W.W. Pinch.

Lavinskyite is a Cu-bearing silicate with amphibole-type double chains. Cu bearing chain silicates are relatively rare in nature. In addition to lavinskyite, planchéite $\mathrm{Cu}_{8}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Evans and Mrose 1977), shattuckite $\mathrm{Cu}_{5}\left(\mathrm{Si}_{2} \mathrm{O}_{6}\right)_{2}(\mathrm{OH})_{2}$ (Evans and Mrose 1966, 1976; Kawahawa 1977) and liebauite $\mathrm{Ca}_{6} \mathrm{Cu}_{10}\left(\mathrm{Si}_{18} \mathrm{O}_{52}\right)$ (Zöller et al. 1992) also belong to this group. Nonetheless, there have been a number of reports on synthetic Cu -bearing chain silicates, such as $\mathrm{Na}_{2} \mathrm{Cu}_{3}\left(\mathrm{Si}_{4} \mathrm{O}_{12}\right)$ (Kawamura and Kawahara 1976), $\mathrm{Na}_{4} \mathrm{Cu}_{2}\left(\mathrm{Si}_{8} \mathrm{O}_{20}\right)$ (Kawamura and Kawahara 1977), $\mathrm{CuMg}\left(\mathrm{Si}_{2} \mathrm{O}_{6}\right)$ (Breuer et al. 1986), $\mathrm{CaBa}_{3} \mathrm{Cu}\left(\mathrm{Si}_{6} \mathrm{O}_{17}\right)$ (Angel et al. 1990), and $\mathrm{Li}_{2}(\mathrm{Mg}, \mathrm{Cu}) \mathrm{Cu}_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{6}\right)_{2}$ (Horiuchi et al. 1997). Moreover, Kawamura et al. (1976) successfully synthesized planchéite under hydrothermal conditions at $350-500^{\circ} \mathrm{C}$ and 1-2 kbars. This paper describes the physical and chemical properties of lavinskyite and its structure determination using single-crystal X-ray diffraction.

Sample Description and Experimental Methods

Occurrence, physical and chemical properties, and Raman spectra
Lavinskyite was found on two specimens originating from the central-eastern ore body of the Wessels mine, Kalahari Manganese Fields, Northern Cape Province, Republic of South Africa. It is in a massive assemblage associated with wesselsite
$\mathrm{SrCuSi}_{4} \mathrm{O}_{10}$, scottyite $\mathrm{BaCu}_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$, pectolite $\mathrm{NaCa}_{2} \mathrm{Si}_{3} \mathrm{O}_{8}(\mathrm{OH})$, richterite $\mathrm{Na}(\mathrm{CaNa}) \mathrm{Mg}_{5} \mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}$, and sugilite $\mathrm{KNa}_{2} \mathrm{Fe}^{3+}{ }_{2}\left(\mathrm{Li}_{3} \mathrm{Si}_{12}\right) \mathrm{O}_{30}$ (Figs. 1 and 2). The mineral assemblage probably formed as a result of a hydrothermal event. Conditions during metamorphism were in the range of $270-420^{\circ} \mathrm{C}$ at $0.2-1.0 \mathrm{kbar}$ (Kleyenstuber 1984; Gutzmer and Beukes 1996). Detailed reviews of the geology and mineralogy of the Kalahari Manganese Fields have been given by Kleyenstuber (1984), Von Bezing et al. (1991), and Gutzmer and Beukes (1996).

Lavinskyite crystals are tabular [parallel to (010); broken pieces are usually bladed, elongated along [001], up to $0.5 \times 0.3 \times 0.1 \mathrm{~mm}$. No twinning is observed. The mineral is light blue, transparent with very pale blue streak and vitreous luster. It is brittle and has a Mohs hardness of ~ 5; cleavage is perfect on $\{010\}$ and no parting is observed. The measured and calculated densities are $3.61(3)$ and $3.62 \mathrm{~g} / \mathrm{cm}^{3}$, respectively. Optically, lavinskyite is biaxial (+), with $\alpha=1.675(1), \beta=1.686(1), \gamma=1.715(1)$ (white light), 2 V (meas.) $=64(2)^{\circ}, 2 \mathrm{~V}($ calc. $)=64.2^{\circ}$, and the orientation $X=a, Y=b, Z=c$. The pleochroism is $X=$ dark blue, $Y=$ light blue, and $Z=$ light blue, and the absorption X $>Y=Z$. No dispersion was observed. Lavinskyite is insoluble in water, acetone, or hydrochloric acid.

The chemical composition of lavinskyite was determined using a CAMECA SX100 electron microprobe ($15 \mathrm{kV}, 20 \mathrm{nA},<1 \mu \mathrm{~m}$ beam diameter). The standards included chalcopyrite (Cu), NBS_K458 (Ba), diopside (Si, Mg), rhodonite (Mn), orthoclase (K), and albite (Na), yielding an average composition (wt.\%) (8 points) of $\mathrm{SiO}_{2} 42.85(10)$, $\mathrm{CuO} 46.13(23), \mathrm{K}_{2} \mathrm{O} 4.16(2), \mathrm{MgO}$ 1.53(17), $\mathrm{Na}_{2} \mathrm{O}$ 0.27(4), $\mathrm{BaO} 0.18(6)$, and MnO $0.08(1)$, and total $=95.19(26)$. The content of $\mathrm{Li}_{2} \mathrm{O}(1.38 \mathrm{wt} . \%)$ was measured with a LA-ICP-MS mass spectrometer. The $\mathrm{H}_{2} \mathrm{O}$ content ($3.22 \mathrm{wt} . \%$) was added to bring the analytical total close to 100%. The resultant chemical formula, calculated on the basis of 26 O apfu (from the structure determination), is
$\left(\mathrm{K}_{0.99} \mathrm{Ba}_{0.01}\right)_{\Sigma=1.00}\left(\mathrm{Li}_{1.04} \mathrm{Cu}_{0.93} \mathrm{Na}_{0.10}\right)_{\Sigma=2.07}\left(\mathrm{Cu}_{5.57} \mathrm{Mg}_{0.43} \mathrm{Mn}_{0.01}\right)_{\Sigma=6.01}\left(\mathrm{Si}_{4.00} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$, which can be simplified to $\mathrm{K}\left(\mathrm{LiCu}^{2+}\right) \mathrm{Cu}^{2+}{ }_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$.

The Raman spectrum of lavinskyite was collected from a randomly oriented crystal on a Thermo Almega microRaman system, using a 532-nm solid-state laser with a thermoelectric cooled CCD detector. The laser is partially polarized with $4 \mathrm{~cm}^{-1}$ resolution and a spot size of $1 \mu \mathrm{~m}$.

X-ray crystallography

The powder X-ray diffraction data of lavinskyite were collected on a Bruker D8 Advance diffractometer with $\mathrm{Cu} K_{\alpha}$ radiation. Listed in Table 1 are the experimental d spacing and relative intensity data for observed strong peaks, along with the corresponding values calculated from the determined structure using the program XPOW (Downs et al. 1993). Single-crystal X-ray diffraction data of lavinskyite were collected on a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphitemonochromatized Mo K_{α} radiation, with frame widths of 0.5° in ω and 30 s counting time per frame. All reflections were indexed on the basis of an orthorhombic unit-cell (Table 2). The intensity data were corrected for X-ray absorption using the Bruker program SADABS. The systematic absences of reflections suggest the unique space group Pcnb (\#60). The crystal structure was solved and refined using SHELX97 (Sheldrick 2008).

During the structure refinements, for simplicity, the small amounts of Na, Ba, and Mn , detected from the electron microprobe analysis, were ignored. A preliminary refinement indicated that the M2 and M3 sites are filled with Cu only, whereas the M1 and M4 sites show the mixed occupations by $(\mathrm{Cu}+\mathrm{Mg})$ and $(\mathrm{Cu}+\mathrm{Li})$, respectively. The A site is fully occupied by K. Furthermore, the M4 site appears to be split, with the M4a and M4b sites separated by about $0.9 \AA$. Thereby, the following assignments of atoms into different sites were made in the subsequent refinements: $\mathrm{A}=\mathrm{K}, \mathrm{M} 1=(0.775 \mathrm{Cu}+$
$0.225 \mathrm{Mg}), \mathrm{M} 2=\mathrm{Cu}, \mathrm{M} 3=\mathrm{Cu}, \mathrm{M} 4 \mathrm{a}=(0.5 \mathrm{Li}+\quad)$, and $\mathrm{M} 4 \mathrm{~b}=(0.5 \mathrm{Cu}+\quad)$, giving rise to the structure formula ${ }^{\mathrm{A}} \mathrm{K}^{\mathrm{M} 4}(\mathrm{LiCu})^{\mathrm{M1}}\left(\mathrm{Cu}_{1.57} \mathrm{Mg}_{0.43}\right)^{\mathrm{M} 2 \mathrm{M} 3} \mathrm{Cu}_{4}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$. The positions of all atoms were refined with anisotropic displacement parameters, except for H and Li atoms, the former being refined with a fixed $U_{\text {iso }}$ parameter $(=0.04)$ and the latter with $U_{\text {iso }}$ varied. Final coordinates and displacement parameters of atoms in lavinskyite are listed in Table 3, and selected bond-distances in Table 4.

Discussion

Crystal structure

Lavinskyite is isotypic with planchéite, demonstrated to be an amphibole derivative by Evans and Mrose (1977). Table 5 compares some mineralogical data for the two minerals. The key difference between lavinskyite and planchéite lies in the coupled chemical substitution of K^{+}and Li^{+}in the former for $\mathrm{H}_{2} \mathrm{O}$ and Cu^{2+} in the latter, respectively. The crystal structure of lavinskyite is characterized by the undulating, brucite-like layers consisting of M1, M2, and M3 octahedra. These layers are parallel to (010) and are sandwiched by the amphibole-type double silicate chains extending along the \mathbf{c} axis, forming a sheet structure in terms of the compact silicate- Cu -silicate triple layers (Figs. 3 and 4). Adjacent sheets are linked together by the A and M4 cations. Interestingly, our structure refinement shows that Cu and Li at the M 4 site are split, occupying different M4a and M4b sites, respectively. The compact silicate-Cu-silicate triple layer in lavinskyite explains its perfect $\{010\}$ cleavage and elongation along [001].

Each double silicate chain in lavinskyite is composed of four unique SiO_{4} tetrahedra (Si1, $\mathrm{Si} 2, \mathrm{Si} 3$, and Si 4), with Si 1 and Si 2 forming the single silicate A chain and Si 3 and Si 4 the B chain (Fig. 3). Thus far, such a conformation of double silicate chains has only been observed in monoclinic P2/a amphibole (joesmithite) (Moore et al. 1993). In comparison, each double silicate chain in most common $C 2 / m, P 2_{1} / m$, and Pnma amphiboles comprises only two unique SiO_{4} tetrahedra. The kinking angle, defined
by the bridging oxygen atoms, of the B chain $\left(\angle \mathrm{O} 9-\mathrm{O} 10-\mathrm{O} 9=172.5^{\circ}\right)$ is greater than that of the A chain $\left(\angle \mathrm{O} 6-\mathrm{O} 7-\mathrm{O} 6=168.3^{\circ}\right)$. Moreover, the two SiO_{4} tetrahedra in the B chain are both more distorted than those in the A chain, as measured by the tetrahedral angle variance (TAV) and quadratic elongation (TQE) (Robinson et al. 1971) (Table 4).

Among four symmetrically non-equivalent Cu -dominant sites, the octahedrallycoordinated M1, M2, and M3 sites in the brucite-like layers are all distorted, with two MO bonds noticeably longer than the other four bonds (Table 4). The M4a site, however, is in a nearly square-planar coordination. In contrast, the M4b site, partially occupied by Li , is in a markedly distorted octahedral coordination, with the Li-O bond distances ranging from 1.907 (2) to $2.699(2) \AA$. The A site, occupied by K^{+}, is situated in a large cavity between the back-to-back double tetrahedral chains (Fig. 3), resembling that in amphiboles containing the A-type cations. The A site in planchéite is occupied by $\mathrm{H}_{2} \mathrm{O}$ (Evans and Mrose 1977).

There are two OH groups in the lavinskyite structure, $\mathrm{O} 12-\mathrm{H} 1$ and $\mathrm{O} 13-\mathrm{H} 2$. The H 1 and H 2 atoms are 0.76 and $0.74 \AA$ away from OH 12 and OH 13 , respectively. The bonding environment of the $\mathrm{O} 12-\mathrm{H} 1$ group is quite analogous to that of the OH groups in amphiboles, with two $\mathrm{O} 12-\mathrm{H} 1$ bonds pointing nearly to the A site from opposite directions $\left(\angle \mathrm{H} 1-\mathrm{A}-\mathrm{H} 1=169.4^{\circ}\right)($ Fig. 4). The nearest O atom $(\mathrm{O} 8)$ to O 12 is $3.37 \AA$ away, indicating that $\mathrm{O} 12-\mathrm{H}$ forms little or no hydrogen bonding with other O atoms. In contrast, the O13-H2 group forms a relatively strong hydrogen bond with $\mathrm{O} 5(\mathrm{O} 13-\mathrm{O} 5=$ $\left.2.91 \AA, \angle \mathrm{O} 13-\mathrm{H} 2 \ldots \mathrm{O} 5=170.7^{\circ}\right)$. However, this hydrogen bond is only found on one side of the M4 site, not on the opposite (Fig. 4). Such an unbalanced distribution of the hydrogen bond around the M4 site may account in part for the corrugation of the brucitelike octahedral layers. The hydrogen bonds are reported to be responsible for the corrugation of the $\mathrm{CoO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$ octahedral layers in the synthetic compound $\mathrm{Co}_{2.39} \mathrm{Cu}_{0.61}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Assani et al. 2010), as well as the Ca-polyhedral layers in vladimirite $\mathrm{Ca}_{4}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)\left(\mathrm{AsO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Yang et al. 2011).

Raman spectra

The Raman spectrum of lavinskyite is displayed in Figure 5. Based on previous Raman spectroscopic studies on planchéite (Frost and Xi 2012) and various amphiboles (Rinaudo et al. 2004; Makreshi et al. 2006; Apopei and Buzgar 2010, and references therein), we made a tentative assignment of major Raman bands for lavinskyite (Table 6). As expected, the Raman spectrum of lavinskyite shows some features similar to those for both amphiboles and planchéite, especially in the O-H stretching region. Specifically, whereas all O-H stretching bands (at least five obvious ones) in planchéite are between 2800 and $3500 \mathrm{~cm}^{-1}$ (Frost and Xi 2012), those (1 to 4 obvious ones, depending on chemical compositions) in hydroxyl amphiboles (Rinaudo et al. 2004; Makreshi et al. 2006) generally fall between 3600 and $3700 \mathrm{~cm}^{-1}$. For lavinskyite, we observe three apparent, sharp O-H stretching bands between 3600 and $3700 \mathrm{~cm}^{-1}$, as those in amphiboles, and a relatively weak and broad band (with a shoulder) at $3390 \mathrm{~cm}^{-1}$. Consequently, we attribute the three O-H stretching bands between 3600 and $3700 \mathrm{~cm}^{-1}$ to the vibrations of the amphibole-like O12-H1 group and the band at $3390 \mathrm{~cm}^{-1}$ to the $\mathrm{OH} 13-\mathrm{H} 2$ vibration. According to the correlation between $\mathrm{O}-\mathrm{H}$ stretching frequencies and $\mathrm{O}-\mathrm{H} . . . \mathrm{O}$ hydrogen bond lengths in minerals (Libowitzky 1999), the O-H stretching band at $3390 \mathrm{~cm}^{-1}$ would correspond to an O-H...O distance of $\sim 2.90 \AA$, in accordance with the value from our structural determination. For planchéite, the presence of the multiple O-H stretching bands between 2800 and $3500 \mathrm{~cm}^{-1}$ and the lack of the amphibole-like bands above $3600 \mathrm{~cm}^{-1}$ are apparently due to the existence of $\mathrm{H}_{2} \mathrm{O}$ in the A site and may suggest that all H atoms are likely engaged in hydrogen bonding.

The discovery of lavinskyite adds a new member to the amphibole derivative group, and it evidently exhibits more amphibole-like structural features than planchéite, due to the presence of K in its large cavity between the two back-to-back double silicate chains. Furthermore, the crystal-chemical relationship between lavinskyite and planchéite
begs the question whether the amphibole structure can incorporate $\mathrm{H}_{2} \mathrm{O}$ in its A site as well, with the composition ${ }^{\mathrm{A}}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{M}_{7} \mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{2}$, where M represents divalent cations found in amphiboles. From the crystal structure point of view, there seems no obstacle for $\mathrm{H}_{2} \mathrm{O}$ to enter the A site in the amphibole structure, given its strong resemblance to that in planchéite. Based on the Raman spectroscopic measurement by Frost and Xi (2012), it appears that the occupation of $\mathrm{H}_{2} \mathrm{O}$ in the A site in planchéite result in the formation of multiple hydrogen bonds, as indicated by several obvious Raman bands between 2800 and $3500 \mathrm{~cm}^{-1}$. The three shortest distances between $\mathrm{O}_{\text {water }}$ in the A site and nearest $\mathrm{O}_{\text {bridging }}$ are 2.62, 2.99, and $3.04 \AA \AA$ in planchéite (Evans and Mrose 1977). Accordingly, similar Raman spectral features in the OH stretching vibration region can be expected for $\mathrm{H}_{2} \mathrm{O}$-bearing amphiboles if they could be found in nature or synthesized eventually.

Acknowledgements

This study was funded by the Science Foundation Arizona.

References Cited

Angel, B.J., Ross, N.L., Finger, L.W, and Hazen, R.M. (1990) $\mathrm{Ba}_{3} \mathrm{CaCuSi}_{6} \mathrm{O}_{17}$: A new $\{1 \mathrm{~B}, \mathrm{I}\}\left[{ }^{4} \mathrm{Si}_{6} 0_{17}\right]$ chain silicate. Acta Crystallographica, C46, 2028-2030.

Apopei, A.I. and Buzgar, N. (2010) The Raman study of amphiboles. Cuza Iasi Geologie, 56, 57-83.

Assani, A., Saadi, M., and EL Ammari, L. (2010) Dicobalt copper
bis[orthophasphate(V)] monohydrate, $\mathrm{Co}_{2.39} \mathrm{Cu}_{0.61}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$. Acta Crystallographica, E66, 144.

Breuer, K.-H., Eysel, W, and Behruzi, M. (1986) Copper(II) silicates and germanates with chain structures: II. Crystal chemistry. Zeitschrift für Kristallographie, 176, 219-232.

Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104-1107.

Evans, H.T., Jr., and Mrose, M.E. (1966) Shattuckite and planchéite: A crystal chemical study. Science, 154, 506-507.

Evans, H.T. and Mrose, M.E. (1977) The crystal chemistry of the hydrous copper silicates, shattuckite and planchéite. American Mineralogist, 62, 491-502.

Frost, R.L. and Xi, Y. (2012) A vibrational spectroscopic study of planchéite $\mathrm{Cu}_{8} \mathrm{Si}_{8} \mathrm{O}_{22}(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 91, 314-318.

Gutzmer, J. and Beukes, N.J. (1996) Mineral paragenesis of the Kalahari manganese field, South Africa. Ore Geology Reviews, 11, 405-428.

Horiuchi, H., Saito, A., Tachi, T., and Nagasawa, H. (1997) Structure of synthetic $\mathrm{Li}_{2}(\mathrm{Mg}, \mathrm{Cu}) \mathrm{Cu}_{2}\left(\mathrm{Si}_{2} \mathrm{O}_{6}\right)_{2}$: A unique chain silicate. American Mineralogist, 82, 143148.

Kawahara, A. (1976) The crystal structure of shattuckite. Mineralogical Journal, 8, 193199.

Kawamura, K., and Kawahara, A. (1976) The crystal structure of synthetic copper sodium silicate $\mathrm{Cu}_{3} \mathrm{Na}_{2}\left(\mathrm{Si}_{4} \mathrm{O}_{12}\right)$. Acta Crystallographica, B32, 2419-2422.
------ (1977) The crystal structure of synthetic copper sodium silicate $\mathrm{CuNa}_{2}\left(\mathrm{Si}_{4} \mathrm{O}_{10}\right)$. Acta Crystallographica, B33, 1071-1075.

Kawamura, K., Kawahara, A., and Henmi, K. (1976) Hydrothermal synthesis and X-ray study of copper silicate hydrate minerals. Kobutsugaku Zasshi (Journal of Mineralogical Society of Japan), 12, 403-414.

Kleyenstuber, A.S.E. (1984) The mineralogy of the manganese-bearing Hotazel Formation of the Proterozoic Transvaal sequence of Griqualand West, South

Africa. Trans. Geol. Soc. South Africa, 87, 267-275.
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H $\cdots \mathrm{O}$ hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.

Makreski, P., Jovanovski, G., Kaitner, B., Gajovic, A., and Biljan, T. (2007) Minerals from Macedonia XVII. Vibrational spectra of some sorosilicates. Vibrational Spectroscopy, 44, 162-170.

Moore, P.B, Davis, A.M, Van Derveer, D.G, Sen Gutpa, P.K (1993) Joesmithite, a plumbous amphibole revisited and comments on bond valences. Mineralogy and Petrology 48, 97-113.

Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineralogical Magazine, 68, 455465

Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. Science, 172, 567-570.

Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.

Von Bezing, K.L., Dixon, R.D., Pohl, D., and Cavallo, G. (1991) The Kalahari Manganese Field, an update. Mineralogical Record, 22, 279-297.

Yang, H., Evans, S.H., Downs, R.T., Jenkins, R.A. (2011) The crystal structure of vladimirite, with a revised chemical formula, $\mathrm{Ca}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right) \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Canadian Mineralogist, 49, 1055-1064.

Zöller, M.H., Tillmanns, E., and Hentshel, G. (1992) Liebauite, $\mathrm{Ca}_{3} \mathrm{Cu}_{5} \mathrm{Si}_{9} \mathrm{O}_{20}$: A new silicate mineral with 14er single chain. Zeitschrift für Kristallographie, 200, 115126.

List of Tables

Table 1. Powder X-ray diffraction data for lavinskyite.
Table 2. Summary of crystallographic data and refinement results for lavinskyite.
Table 3. Coordinates and displacement parameters of atoms in lavinskyite.
Table 4. Selected bond distances (\AA) in lavinskyite.
Table 5. Mineralogical data for lavinskyite and planchéite.
Table 6. Tentative assignment of major Raman bands for lavinskyite.

List of Figure Captions

Figure 1. (a) Rock samples on which lavinskyite crystals are found; (b) A microscopic view of lavinskyite, associated with dark blue scottyite.

Figure 2. A backscattered electron image, showing the assemblage of scottyite (light gray), wesselsite (medium gray), and lavinskyite (dark gray).

Figure 3. Crystal structure of lavinskyite.
Figure 4. Crystal structure of lavinskyite. The aquamarine, yellow, green, and blue spheres represent $\mathrm{K}, \mathrm{Cu}(\mathrm{M} 4), \mathrm{Li}(\mathrm{M} 4)$, and H atoms, respectively.

Figure 5. Raman spectrum of lavinskyite.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

$200 . \mu \mathrm{m}$ BSE 15.kV

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 1. Powder diffraction data for strong peaks of lavinskyite

Experimental		Theoretical		
I	$d(\AA)$	I	$d(\AA)$	h k l
100	10.291	100	10.189	020
13	9.608	9	9.523	200
8	9.006	16	8.984	120
18	6.994	5	6.957	220
18	4.984	24	4.921	140
6	4.057	11	4.046	$\begin{array}{llll}3 & 0 & 1\end{array}$
11	3.964	19	3.973	340
2	3.578	11	3.590	14
27	3.321	30	3.343	160
6	2.979	9	2.995	360
3	1.571	11	1.568	1220

Table 2. Summary of crystal data and refinement results for lavinskyite

Ideal chemical formula	$\mathrm{K}(\mathrm{LiCu}) \mathrm{Cu}_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$
Crystal symmetry	Orthorhombic
Space group	Pcnb (\#60)
$a(\AA)$	19.046(2)
$b(\AA)$	20.377(2)
$c(\AA)$	5.2497(6)
$V\left(\AA^{3}\right)$	2037.4(4)
Z	4
$\rho_{\text {cal }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	3.616
$\lambda(\AA, \mathrm{MoK} \alpha)$	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	7.403
$2 \theta_{\text {max }}\left({ }^{\circ}\right)$ for data collection	65.36
No. of reflections collected	16336
No. of independent reflections	3702
No. of reflections with $I>2 \sigma(I)$	2639
No. of parameters refined	214
R(int)	0.048
Final $R_{1}, w R_{2}$ factors [$I>2 \sigma(I)$]	0.031, 0.057
Final $R_{1}, w R_{2}$ factors (all data)	0.058, 0.064
Goodness-of-fit	0.971

Table 3. Atomic coordinates and displacement parameters for lavinskyite

Atom		Y	z	Uiso	U11	U22	U33	U23	U13	U12
A	0.5	0.25	0.9725 (2)	0.0239 (2)	0.0200 (5)	0.0279 (6)	0.0238 (5)	0	0	-0.0094 (5)
M1	0.45964 (3)	0.00661 (3)	0.25459 (9)	0.0085 (2)	0.0092 (3)	0.0096 (3)	0.0065 (3)	$0.0029(2)$	-0.0024 (2)	-0.0029 (2)
M2	0.37544 (2)	0.02733 (2)	0.77970 (7)	0.0096 (1)	$0.0094(2)$	0.0117 (2)	0.0077 (2)	0.0030 (1)	-0.0018(1)	-0.0022 (1)
M3	0.29265 (2)	0.05185 (2)	0.29637 (6)	0.0092 (1)	0.0095 (2)	0.0122 (2)	0.0058 (2)	0.0027 (1)	-0.0019 (1)	-0.0034 (1)
M4a	0.25019 (3)	0.30433 (3)	0.7061 (1)	0.0145 (2)	0.0116 (3)	0.0074 (3)	0.0244 (4)	$0.0003(2)$	-0.0074(3)	0.0001 (2)
M4b	0.208(2)	0.301 (1)	0.814 (7)	$0.061(7)$						
Sil	0.64168 (4)	0.10879 (4)	0.9294 (1)	0.0066 (2)	0.008 (4)	0.0068 (4)	0.0052 (3)	$0.0001(3)$	-0.0007(3)	-0.0009 (3)
Si2	0.56233 (4)	0.12204 (4)	0.4315 (1)	0.0066 (2)	0.008 (4)	0.0068 (4)	0.0050 (3)	$0.0002(3)$	0.0000 (3)	-0.0004 (3)
Si3	$0.40602(4)$	0.15778 (4)	0.4751 (1)	0.0065 (2)	0.007 (3)	0.0075 (4)	0.0052 (3)	$0.0004(3)$	$0.0003(3)$	-0.0011 (3)
Si4	0.32834 (4)	0.18205 (4)	0.9822 (1)	0.0070 (2)	0.009 (4)	0.0075 (4)	0.0048 (3)	$0.0002(3)$	-0.0002(3)	-0.0008(3)
01	0.6279 (1)	0.0311 (1)	0.9193 (4)	0.0088 (4)	$0.0103(10)$	0.0074 (10)	0.0087 (9)	-0.0001(8)	-0.0010 (8)	-0.0016 (8)
02	0.5459 (1)	0.0455 (1)	0.4319 (4)	0.0095 (4)	$0.0128(11)$	0.0080 (11)	0.0076 (9)	0.0016 (8)	0.0003 (8)	-0.0020 (8)
03	$0.3809(1)$	0.0825 (1)	0.4653 (4)	0.0086 (4)	$0.0108(10)$	0.0078 (10)	0.0071 (9)	-0.0002(7)	-0.0017(8)	-0.0033 (8)
04	0.2997 (1)	$0.1082(1)$	0.9986 (4)	0.0116 (4)	0.0145 (11)	$0.0117(11)$	0.0087 (9)	$0.0003(8)$	-0.0022 (8)	-0.0022 (8)
05	0.7237 (1)	0.1273 (1)	$0.9552(4)$	0.0127 (4)	$0.0081(10)$	0.0149 (12)	0.0148 (10)	0.0000 (8)	-0.0022 (8)	-0.0035 (8)
06	0.5984 (1)	0.1442 (1)	0.1638 (4)	0.0111 (4)	0.0156 (11)	0.0089 (11)	0.0086 (9)	$0.0001(8)$	0.0040 (8)	0.0006 (8)
07	0.6125 (1)	0.1432 (1)	0.6677 (4)	0.0115 (4)	$0.0161(12)$	$0.0104(11)$	0.0081 (9)	$0.0007(8)$	-0.0041(8)	-0.0022 (8)
08	0.4913 (1)	0.1659 (1)	0.4616 (4)	0.0122 (4)	0.0070 (10)	0.0088 (11)	0.0206 (11)	-0.0007(8)	0.0018 (8)	-0.0009 (8)
09	0.3834 (1)	0.1913 (1)	0.7418 (4)	0.0110 (4)	$0.0147(11)$	$0.0111(11)$	0.0069 (9)	-0.0016 (8)	0.0044 (8)	-0.0027(8)
010	0.3782 (1)	0.1982 (1)	0.2306 (4)	$0.0108(4)$	0.0170 (11)	0.0085 (11)	0.0068 (9)	0.0013 (8)	-0.0032 (8)	-0.0031 (9)
011	0.2709 (1)	0.2388 (1)	0.9597 (4)	$0.0161(5)$	$0.0151(11)$	0.0172 (13)	0.0160 (11)	-0.0019(9)	-0.0028(9)	0.0059 (9)
012	0.4609 (1)	0.0603 (1)	0.9434 (4)	0.0127 (5)	0.0141 (11)	$0.0108(11)$	0.0134 (10)	0.0025 (9)	-0.0033 (9)	-0.0049 (9)
013	0.2851 (1)	0.0020 (1)	0.6192 (4)	0.0082 (4)	$0.0084(10)$	0.0096 (11)	0.0069 (9)	0.0014 (8)	-0.0002(7)	-0.0011 (8)
H1	0.274 (3)	-0.032 (3)	0.593 (9)	0.04						
H2	0.469 (3)	0.096 (2)	0.916(9)	0.04						

Table 4. Selected bond distances in lavinskyite and planchéite.

	lavinskyite	planchéite
	Distance (\AA)	Distance (\AA)
Sil-O1	1.606(2)	1.608
-05	1.613(2)	1.629
-07	1.640(2)	1.646
-06	1.648(2)	1.637
Ave.	1.630	1.630
TAV*	7.93	
TQE*	1.002	
Si2-O2	1.592(2)	1.635
-07	1.624(2)	1.704
-06	1.628(2)	1.530
-08	1.629(2)	1.612
Ave.	1.630	1.620
TAV	7.98	
TQE	1.002	
Si3-O3	1.607(2)	1.617
-O10	1.615(2)	1.626
-09	1.617(2)	1.580
-08	1.635(2)	1.636
Ave.	1.618	1.615
TAV	15.80	
TQE	1.004	
Si4-O11	1.596(2)	1.649
-04	1.603(2)	1.637
-O10	1.647(2)	1.659
-09	1.652(2)	1.585
Ave.	1.624	1.633
TAV	22.77	
TQE	1.005	
M1-O2	1.961(2)	1.690
-OH12	1.966(2)	1.844
--02	2.047(2)	2.158
-O1	2.050(2)	2.155
-OH12	2.287(2)	2.467
-O3	2.422(2)	2.469
Ave.	2.122	2.130

M2-OH12	1.960(2)	2.029
-O1	1.979(2)	1.867
-OH13	1.985(2)	2.079
-O3	2.000(2)	1.869
-02	2.383(2)	2.687
-O4	2.473(2)	2.279
Ave.	2.130	2.135
M3-O4	1.944(2)	2.220
-OH13	1.982(2)	1.736
-O3	2.000(2)	2.063
-OH13	2.023(2)	2.215
-O4	2.353(2)	2.242
-O1	2.535(2)	2.641
Ave.	2.140	2.186
M4a-O11	1.902(2)	1.945
-O11	1.927(2)	1.798
-O5	1.975(2)	1.839
-O5	1.983(2)	2.022
Ave.	1.947	1.901
M4b-O11	1.907(2)	
-O5	2.091(2)	
-O11	2.286(2)	
-O5	2.399(2)	
-06	2.494(2)	
-O10	2.699(2)	
Ave.	2.313	
A-O9 x2	2.797(2)	
-O10 x2	$2.886(2)$	
-O6 x2	3.027(2)	
-08 x2	3.091(2)	
-O8 x2	3.197(2)	
Ave.	2.998	

Note: According to Evans and Mrose (1977), "The bond lengths in planchéite are poorly determined ($\sigma>0.1 \AA$) and are not amenable to detailed interpretation".
*: TAV-tetrahedral angle variance; TQE-tetrahedral quadratic elongation (Robinson et al. 1971).

Table 5. Mineralogical data for lavinskyite and planchéite.

	Lavinskyite	Planchéite
Chemical formula K	$\mathrm{K}(\mathrm{LiCu}) \mathrm{Cu}_{6}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4}$	$\mathrm{Cu}_{8}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
$\mathrm{a}(\AA)$	19.046(2)	19.043(3)
b (\AA)	20.377(2)	20.129(5)
$c(\AA)$	5.2497(6)	5.269(1)
$\mathrm{V}\left(\AA^{3}\right)$	2037.4(4)	2019.5(5)
Space group	Pcnb(\#60)	Pcnb(\#60)
Z	4	4
$\rho_{\text {cal }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	3.62	3.82
Strong powder lines	S 10.188(100)	10.064(100)
	3.343(32)	4.865(53)
	2.693(29)	2.694(47)
	2.522(27)	6.917(43)
	4.921 (25)	3.943(31)
	$2.316(22)$	2.520 (31)
	3.973(19)	3.304(27)
n_{α}	1.675	1.697
n_{β}	1.686	1.718
n_{γ}	1.715	1.741
$2 \mathrm{~V}\left({ }^{\circ}\right)$	64(+)	88.5(+)
Reference	(1)	(2)

(1) This work; (2) Evans and Mrose (1977).

Table 6. Tentative assignments of major Raman bands for lavinskyite

Bands (cm^{-1})	Intensity	Assignment
$\begin{aligned} & 3694,3662,3630 \\ & 3390 \end{aligned}$	Weak to Strong, sharp	O-H stretching vibrations
$\begin{aligned} & \text { 1090, 1043, } 991 \\ & 919,891 \end{aligned}$	Relatively weak and broad	Si-O symmetric and anti-symmetric stretching modes within SiO_{4} tetrahedra
685	Strong, sharp	Si-O-Si bending
$\begin{aligned} & 580,562,503,445 \\ & 424,401 \end{aligned}$	Relatively strong	$\mathrm{O}-\mathrm{Si}-\mathrm{O}$ symmetric and anti-symmetric bending modes within SiO_{4} tetrahedra
<400	Strong to weak	SiO_{4} rotational modes, lattice vibrational modes, and $\mathrm{Cu}-\mathrm{O}$ interactions

