This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4601

1	Revision 2
2	
3	Lavinskyite, K(LiCu)Cu ₆ (Si ₄ O ₁₁) ₂ (OH) ₄ , isotypic with planchéite, a new mineral
4	from the Wessels mine, Kalahari Manganese Fields, South Africa
5	
6 7	Hexiong Yang ¹ , Robert T. Downs ¹ , Stanley H. Evans ¹ , and William W. Pinch ²
8	² 19 Stonebridge Lane, Pittsford, New York 14534, U.S.A.
9	
10	Corresponding author: hyang@u.arizona.edu
11	
12	Abstract
13	A new mineral species, lavinskyite, ideally K(LiCu ²⁺)Cu ²⁺ ₆ (Si ₄ O ₁₁) ₂ (OH) ₄ (IMA
14	2012-028), has been found in the Wessels mine, Kalahari Manganese Fields, Northern
15	Cape Province, South Africa. Associated minerals include wesselsite, pectolite, richterite,
16	sugilite, and scottyite. Lavinskyite crystals are tabular [parallel to (010)]. The mineral is
17	light blue, transparent with very pale blue streak and vitreous luster. It is brittle and has a
18	Mohs hardness of ~5; cleavage is perfect on $\{010\}$ and no parting was observed. The
19	measured and calculated densities are 3.61(3) and 3.62 g/cm ³ , respectively. Optically,
20	lavinskyite is biaxial (+), with $\alpha = 1.675(1)$, $\beta = 1.686(1)$, $\gamma = 1.715(1)$, $2V_{\text{meas}} = 64(2)^{\circ}$.
21	An electron microprobe analysis produced an average composition (wt.%) of SiO_2
22	42.85(10), CuO 46.13(23), K ₂ O 4.16(2), MgO 1.53(17), Na ₂ O 0.27(4), BaO 0.18(6), and
23	MnO 0.08(1), plus Li ₂ O 1.38 from the LA-ICP-MS measurement and H ₂ O 3.22 (added to
24	bring the analytical total close to 100%), yielding a total of 99.79 % and an empirical
25	chemical formula
26	$(K_{0.99}Ba_{0.01})_{\Sigma=1.00}(Li_{1.04}Cu_{0.93}Na_{0.10})_{\Sigma=2.07}(Cu_{5.57}Mg_{0.43}Mn_{0.01})_{\Sigma=6.01}(Si_{4.00}O_{11})_2(OH)_4.$
27	Lavinskyite is isotypic with planchéite, Cu ₈ (Si ₄ O ₁₁) ₂ (OH) ₄ ·H ₂ O, an amphibole
28	derivative. It is orthorhombic, with space group $Pcnb$ and unit-cell parameters $a =$

29	19.046(2), $b = 20.377(2)$, $c = 5.2497(6)$ Å, and $V = 2037.4(4)$ Å ³ . The key difference
30	between lavinsky ite and planchéite lies in the coupled substitution of $K^{\!\!+}$ and $Li^{\!\!+}$ in the
31	former for H_2O and Cu^{2+} in the latter, respectively. The structure of lavinskyite is
32	characterized by the undulating, brucite-like layers consisting of three distinct octahedral
33	sites occupied mainly by Cu. These layers are sandwiched by the amphibole-type double
34	silicate chains extending along the c axis, forming a sheet structure of compact silicate-
35	Cu-silicate triple layers. Adjacent sheets are linked together by K and M4 (= Cu + Li)
36	cations, as well as hydrogen bonding. The M4 site is split, with Cu and Li occupying two
37	different sites. Lavinskyite exhibits more amphibole-like structural features than
38	planchéite, as a consequence of K in the large cavity between the two back-to-back
39	double silicate chains.
40	
41	Key words: lavinskyite, K(LiCu)Cu ₆ (Si ₄ O ₁₁) ₂ (OH) ₄ , planchéite, crystal structure, X-ray
42	diffraction, Raman spectra
43	
44	
45	Introduction
46	A new mineral species, lavinskyite, ideally K(LiCu)Cu ₆ (Si ₄ O ₁₁) ₂ (OH) ₄ , has been
47	found in the Wessels mine, Kalahari Manganese Fields, Northern Cape Province,
48	Republic of South Africa. It is named in honor of Dr. Robert Matthew Lavinsky (born in
49	1973), the founder and manager of Arkenstone, a sole proprietorship for dealing in
50	collectible mineral specimens and crystals. The Arkenstone website (www.iRocks.com)
51	was one of the first to bring mineral specimens to sale over the Internet. Dr. Lavinsky has
52	been a donor of important mineral specimens to the Smithsonian Institution, Harvard
53	University, California Institute of Technology, University of Arizona, and other
54	institutions. He is also the largest contributor of information and photography to Mindat
55	(an online public-access database of mineralogical information) and the sponsor of the

56	Tucson Mineral and Gem Show Juniors' Award. Dr. Lavinsky recognized that some
57	mineral specimens he brought to the USA from South Africa appeared to represent new
58	mineral species and provided samples to our laboratory. The new mineral and its name
59	have been approved by the Commission on New Minerals, Nomenclature and
60	Classification (CNMNC) of the International Mineralogical Association (IMA 2012-
61	028). Part of the cotype sample has been deposited at the University of Arizona Mineral
62	Museum (Catalogue # 19335) and the RRUFF Project (deposition # R120057). The
63	holotype sample is in the collection of W.W. Pinch.
64	Lavinskyite is a Cu-bearing silicate with amphibole-type double chains. Cu-
65	bearing chain silicates are relatively rare in nature. In addition to lavinskyite, planchéite
66	Cu ₈ (Si ₄ O ₁₁) ₂ (OH) ₄ ·H ₂ O (Evans and Mrose 1977), shattuckite Cu ₅ (Si ₂ O ₆) ₂ (OH) ₂ (Evans
67	and Mrose 1966, 1976; Kawahawa 1977) and liebauite $Ca_6Cu_{10}(Si_{18}O_{52})$ (Zöller et al.
68	1992) also belong to this group. Nonetheless, there have been a number of reports on
69	synthetic Cu-bearing chain silicates, such as Na ₂ Cu ₃ (Si ₄ O ₁₂) (Kawamura and Kawahara
70	1976), Na ₄ Cu ₂ (Si ₈ O ₂₀) (Kawamura and Kawahara 1977), CuMg(Si ₂ O ₆) (Breuer et al.
71	1986), CaBa ₃ Cu(Si ₆ O ₁₇) (Angel et al. 1990), and $Li_2(Mg,Cu)Cu_2(Si_2O_6)_2$ (Horiuchi et al.
72	1997). Moreover, Kawamura et al. (1976) successfully synthesized planchéite under
73	hydrothermal conditions at 350-500 °C and 1-2 kbars. This paper describes the physical
74	and chemical properties of lavinskyite and its structure determination using single-crystal
75 76 77	X-ray diffraction.
78	Sample Description and Experimental Methods
79	Occurrence, physical and chemical properties, and Raman spectra
80	Lavinskyite was found on two specimens originating from the central-eastern ore
81	body of the Wessels mine, Kalahari Manganese Fields, Northern Cape Province,
82	Republic of South Africa. It is in a massive assemblage associated with wesselsite

83	SrCuSi ₄ O ₁₀ , scottyite BaCu ₂ Si ₂ O ₇ , pectolite NaCa ₂ Si ₃ O ₈ (OH), richterite
84	$Na(CaNa)Mg_5Si_8O_{22}(OH)_2$, and sugilite $KNa_2Fe^{3+}_2(Li_3Si_{12})O_{30}$ (Figs. 1 and 2). The
85	mineral assemblage probably formed as a result of a hydrothermal event. Conditions
86	during metamorphism were in the range of 270-420 °C at 0.2-1.0 kbar (Kleyenstuber
87	1984; Gutzmer and Beukes 1996). Detailed reviews of the geology and mineralogy of the
88	Kalahari Manganese Fields have been given by Kleyenstuber (1984), Von Bezing et al.
89	(1991), and Gutzmer and Beukes (1996).
90	Lavinskyite crystals are tabular [parallel to (010); broken pieces are usually
91	bladed, elongated along [001], up to $0.5 \times 0.3 \times 0.1$ mm. No twinning is observed. The
92	mineral is light blue, transparent with very pale blue streak and vitreous luster. It is brittle
93	and has a Mohs hardness of \sim 5; cleavage is perfect on {010} and no parting is observed.
94	The measured and calculated densities are 3.61(3) and 3.62 g/cm ³ , respectively.
95	Optically, lavinskyite is biaxial (+), with $\alpha = 1.675(1)$, $\beta = 1.686(1)$, $\gamma = 1.715(1)$ (white
96	light), 2V (meas.) = 64(2)°, 2V (calc.) = 64.2°, and the orientation $X = a$, $Y = b$, $Z = c$.
97	The pleochroism is $X =$ dark blue, $Y =$ light blue, and $Z =$ light blue, and the absorption X
98	> Y = Z. No dispersion was observed. Lavinskyite is insoluble in water, acetone, or
99	hydrochloric acid.
100	The chemical composition of lavinskyite was determined using a CAMECA SX-
101	100 electron microprobe (15 kV, 20 nA, $< 1 \mu m$ beam diameter). The standards included
102	chalcopyrite (Cu), NBS_K458 (Ba), diopside (Si, Mg), rhodonite (Mn), orthoclase (K),
103	and albite (Na), yielding an average composition (wt.%) (8 points) of SiO_2 42.85(10),
104	CuO 46.13(23), K ₂ O 4.16(2), MgO 1.53(17), Na ₂ O 0.27(4), BaO 0.18(6), and MnO
105	0.08(1), and total = 95.19(26). The content of Li_2O (1.38 wt.%) was measured with a LA-
106	ICP-MS mass spectrometer. The H_2O content (3.22 wt.%) was added to bring the
107	analytical total close to 100%. The resultant chemical formula, calculated on the basis of
108	26 O apfu (from the structure determination), is

4

109 $(K_{0.99}Ba_{0.01})_{\Sigma=1.00}(Li_{1.04}Cu_{0.93}Na_{0.10})_{\Sigma=2.07}(Cu_{5.57}Mg_{0.43}Mn_{0.01})_{\Sigma=6.01}(Si_{4.00}O_{11})_2(OH)_4$, which can be 110 simplified to $K(LiCu^{2+})Cu^{2+}_{6}(Si_{4}O_{11})_2(OH)_4$.

111 The Raman spectrum of lavinskyite was collected from a randomly oriented

112 crystal on a Thermo Almega microRaman system, using a 532-nm solid-state laser with a

thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm⁻¹

114 resolution and a spot size of 1 μ m.

115

116 *X-ray crystallography*

117 The powder X-ray diffraction data of lavinskyite were collected on a Bruker D8

118 Advance diffractometer with Cu K_{α} radiation. Listed in Table 1 are the experimental *d*-

spacing and relative intensity data for observed strong peaks, along with the

120 corresponding values calculated from the determined structure using the program XPOW

121 (Downs et al. 1993). Single-crystal X-ray diffraction data of lavinskyite were collected on

122 a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphite-

123 monochromatized Mo K_{α} radiation, with frame widths of 0.5° in ω and 30 s counting

124 time per frame. All reflections were indexed on the basis of an orthorhombic unit-cell

125 (Table 2). The intensity data were corrected for X-ray absorption using the Bruker

126 program SADABS. The systematic absences of reflections suggest the unique space

127 group *Pcnb* (#60). The crystal structure was solved and refined using SHELX97

128 (Sheldrick 2008).

129 During the structure refinements, for simplicity, the small amounts of Na, Ba, and

130 Mn, detected from the electron microprobe analysis, were ignored. A preliminary

refinement indicated that the M2 and M3 sites are filled with Cu only, whereas the M1

132 and M4 sites show the mixed occupations by (Cu + Mg) and (Cu + Li), respectively. The

133 A site is fully occupied by K. Furthermore, the M4 site appears to be split, with the M4a

and M4b sites separated by about 0.9 Å. Thereby, the following assignments of atoms

135 into different sites were made in the subsequent refinements: A = K, M1 = (0.775Cu +

136	0.225Mg), M2 = Cu, M3 = Cu, M4a = ($0.5Li + $), and M4b = ($0.5Cu + $), giving rise to
137	the structure formula ${}^{A}K^{M4}(LiCu)^{M1}(Cu_{1.57}Mg_{0.43})^{M2M3}Cu_4(Si_4O_{11})_2(OH)_4$. The positions
138	of all atoms were refined with anisotropic displacement parameters, except for H and Li
139	atoms, the former being refined with a fixed U_{iso} parameter (= 0.04) and the latter with
140	$U_{\rm iso}$ varied. Final coordinates and displacement parameters of atoms in lavinskyite are
141	listed in Table 3, and selected bond-distances in Table 4.
1.40	

- 142
- 143

Discussion

144 *Crystal structure*

145 Lavinskyite is isotypic with planchéite, demonstrated to be an amphibole 146 derivative by Evans and Mrose (1977). Table 5 compares some mineralogical data for the 147 two minerals. The key difference between lavinskyite and planchéite lies in the coupled chemical substitution of K^+ and Li^+ in the former for H₂O and Cu^{2+} in the latter. 148 149 respectively. The crystal structure of lavinskyite is characterized by the undulating, brucite-like layers consisting of M1, M2, and M3 octahedra. These layers are parallel to 150 151 (010) and are sandwiched by the amphibole-type double silicate chains extending along the c axis, forming a sheet structure in terms of the compact silicate-Cu-silicate triple 152 153 layers (Figs. 3 and 4). Adjacent sheets are linked together by the A and M4 cations. 154 Interestingly, our structure refinement shows that Cu and Li at the M4 site are split, 155 occupying different M4a and M4b sites, respectively. The compact silicate-Cu-silicate 156 triple layer in lavinskyite explains its perfect {010} cleavage and elongation along [001]. 157 Each double silicate chain in lavinskyite is composed of four unique SiO₄ 158 tetrahedra (Si1, Si2, Si3, and Si4), with Si1 and Si2 forming the single silicate A chain 159 and Si3 and Si4 the B chain (Fig. 3). Thus far, such a conformation of double silicate 160 chains has only been observed in monoclinic P2/a amphibole (joesmithite) (Moore et al. 161 1993). In comparison, each double silicate chain in most common C2/m, $P2_1/m$, and 162 *Pnma* amphiboles comprises only two unique SiO_4 tetrahedra. The kinking angle, defined

6

163 by the bridging oxygen atoms, of the B chain ($\angle O9-O10-O9 = 172.5^{\circ}$) is greater than that 164 of the A chain ($\angle 06-07-06 = 168.3^{\circ}$). Moreover, the two SiO₄ tetrahedra in the B chain 165 are both more distorted than those in the A chain, as measured by the tetrahedral angle 166 variance (TAV) and quadratic elongation (TQE) (Robinson et al. 1971) (Table 4). 167 Among four symmetrically non-equivalent Cu-dominant sites, the octahedrally-168 coordinated M1, M2, and M3 sites in the brucite-like layers are all distorted, with two M-169 O bonds noticeably longer than the other four bonds (Table 4). The M4a site, however, is 170 in a nearly square-planar coordination. In contrast, the M4b site, partially occupied by Li, 171 is in a markedly distorted octahedral coordination, with the Li-O bond distances ranging from 1.907(2) to 2.699(2) Å. The A site, occupied by K^+ , is situated in a large cavity 172 173 between the back-to-back double tetrahedral chains (Fig. 3), resembling that in 174 amphiboles containing the A-type cations. The A site in planchéite is occupied by H₂O 175 (Evans and Mrose 1977). 176 There are two OH groups in the lavinskyite structure, O12-H1 and O13-H2. The H1 and H2 atoms are 0.76 and 0.74 Å away from OH12 and OH13, respectively. The 177 178 bonding environment of the O12-H1 group is guite analogous to that of the OH groups in 179 amphiboles, with two O12-H1 bonds pointing nearly to the A site from opposite 180 directions (\angle H1-A-H1 = 169.4°) (Fig. 4). The nearest O atom (O8) to O12 is 3.37 Å 181 away, indicating that O12-H forms little or no hydrogen bonding with other O atoms. In 182 contrast, the O13-H2 group forms a relatively strong hydrogen bond with O5 (O13-O5 = 183 2.91 Å, $\angle O13$ -H2...O5 = 170.7°). However, this hydrogen bond is only found on one side of the M4 site, not on the opposite (Fig. 4). Such an unbalanced distribution of the 184 185 hydrogen bond around the M4 site may account in part for the corrugation of the brucite-186 like octahedral layers. The hydrogen bonds are reported to be responsible for the 187 corrugation of the $CoO_4(H_2O)_2$ octahedral layers in the synthetic compound 188 $Co_{2,39}Cu_{0.61}(PO_4)_2$ ·H₂O (Assani et al. 2010), as well as the Ca-polyhedral layers in 189 vladimirite Ca₄(AsO₃OH)(AsO₄)₂·4H₂O (Yang et al. 2011).

190

191 Raman spectra

192 The Raman spectrum of lavinskyite is displayed in Figure 5. Based on previous Raman spectroscopic studies on planchéite (Frost and Xi 2012) and various amphiboles 193 194 (Rinaudo et al. 2004; Makreshi et al. 2006; Apopei and Buzgar 2010, and references 195 therein), we made a tentative assignment of major Raman bands for lavinskyite (Table 6). 196 As expected, the Raman spectrum of lavinskyite shows some features similar to those for 197 both amphiboles and planchéite, especially in the O-H stretching region. Specifically, 198 whereas all O-H stretching bands (at least five obvious ones) in planchéite are between 2800 and 3500 cm⁻¹ (Frost and Xi 2012), those (1 to 4 obvious ones, depending on 199 200 chemical compositions) in hydroxyl amphiboles (Rinaudo et al. 2004; Makreshi et al. 2006) generally fall between 3600 and 3700 cm⁻¹. For lavinskyite, we observe three 201 apparent, sharp O-H stretching bands between 3600 and 3700 cm⁻¹, as those in 202 203 amphiboles, and a relatively weak and broad band (with a shoulder) at 3390 cm⁻¹. Consequently, we attribute the three O-H stretching bands between 3600 and 3700 cm⁻¹ 204 to the vibrations of the amphibole-like O12-H1 group and the band at 3390 cm⁻¹ to the 205 206 OH13-H2 vibration. According to the correlation between O-H stretching frequencies 207 and O-H...O hydrogen bond lengths in minerals (Libowitzky 1999), the O-H stretching band at 3390 cm⁻¹ would correspond to an O-H...O distance of ~2.90 Å, in accordance 208 209 with the value from our structural determination. For planchéite, the presence of the multiple O-H stretching bands between 2800 and 3500 cm⁻¹ and the lack of the 210 amphibole-like bands above 3600 cm^{-1} are apparently due to the existence of H₂O in the 211 212 A site and may suggest that all H atoms are likely engaged in hydrogen bonding. 213 The discovery of lavinsky adds a new member to the amphibole derivative 214 group, and it evidently exhibits more amphibole-like structural features than planchéite, 215 due to the presence of K in its large cavity between the two back-to-back double silicate 216 chains. Furthermore, the crystal-chemical relationship between lavinskyite and planchéite

217	begs the question whether the amphibole structure can incorporate H_2O in its A site as
218	well, with the composition ${}^{A}(H_{2}O)M_{7}Si_{8}O_{22}(OH)_{2}$, where M represents divalent cations
219	found in amphiboles. From the crystal structure point of view, there seems no obstacle for
220	H ₂ O to enter the A site in the amphibole structure, given its strong resemblance to that in
221	planchéite. Based on the Raman spectroscopic measurement by Frost and Xi (2012), it
222	appears that the occupation of H ₂ O in the A site in planchéite result in the formation of
223	multiple hydrogen bonds, as indicated by several obvious Raman bands between 2800
224	and 3500 cm ⁻¹ . The three shortest distances between O_{water} in the A site and nearest
225	Obridging are 2.62, 2.99, and 3.04 Å in planchéite (Evans and Mrose 1977). Accordingly,
226	similar Raman spectral features in the OH stretching vibration region can be expected for
227	H ₂ O-bearing amphiboles if they could be found in nature or synthesized eventually.
228	
229	Acknowledgements
230	This study was funded by the Science Foundation Arizona.
231	
232	
233 234	References Cited
235	Angel, B.J., Ross, N.L., Finger, L.W, and Hazen, R.M. (1990) Ba ₃ CaCuSi ₆ O ₁₇ : A new
236	{1B, I} [⁴ Si ₆ 0 ₁₇] chain silicate. Acta Crystallographica, C46, 2028-2030.
237	Apopei, A.I. and Buzgar, N. (2010) The Raman study of amphiboles. Cuza Iasi Geologie,
238	56, 57-83.
239	Assani, A., Saadi, M., and EL Ammari, L. (2010) Dicobalt copper
240	bis[orthophasphate(V)] monohydrate, Co _{2.39} Cu _{0.61} (PO ₄) ₂ ·H ₂ O. Acta
241	Crystallographica, E66, i44.
242	Breuer, KH., Eysel, W, and Behruzi, M. (1986) Copper(II) silicates and germanates
243	with chain structures: II. Crystal chemistry. Zeitschrift für Kristallographie, 176,

82, 143-

244	219-232.
245	Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive
246	software for calculating and displaying X-ray or neutron powder diffractometer
247	patterns of crystalline materials. American Mineralogist, 78, 1104-1107.
248	Evans, H.T., Jr., and Mrose, M.E. (1966) Shattuckite and planchéite: A crystal chemical
249	study. Science, 154, 506-507.
250	Evans, H.T. and Mrose, M.E. (1977) The crystal chemistry of the hydrous copper
251	silicates, shattuckite and planchéite. American Mineralogist, 62, 491-502.
252	Frost, R.L. and Xi, Y. (2012) A vibrational spectroscopic study of planchéite
253	Cu ₈ Si ₈ O ₂₂ (OH) ₄ ·H ₂ O. Spectrochimica Acta Part A-Molecular and Biomolecular
254	Spectroscopy, 91, 314-318.
255	Gutzmer, J. and Beukes, N.J. (1996) Mineral paragenesis of the Kalahari manganese
256	field, South Africa. Ore Geology Reviews, 11, 405-428.
257	Horiuchi, H., Saito, A., Tachi, T., and Nagasawa, H. (1997) Structure of synthetic
258	Li ₂ (Mg,Cu)Cu ₂ (Si ₂ O ₆) ₂ : A unique chain silicate. American Mineralogist, 82, 143
259	148.
260	Kawahara, A. (1976) The crystal structure of shattuckite. Mineralogical Journal, 8, 193-
261	199.
262	Kawamura, K., and Kawahara, A. (1976) The crystal structure of synthetic copper
263	sodium silicate Cu ₃ Na ₂ (Si ₄ O ₁₂). Acta Crystallographica, B32, 2419-2422.
264	(1977) The crystal structure of synthetic copper sodium silicate $CuNa_2(Si_4O_{10})$.
265	Acta Crystallographica, B33, 1071-1075.
266	Kawamura, K., Kawahara, A., and Henmi, K. (1976) Hydrothermal synthesis and X-ray
267	study of copper silicate hydrate minerals. Kobutsugaku Zasshi (Journal of
268	Mineralogical Society of Japan), 12, 403-414.
269	Kleyenstuber, A.S.E. (1984) The mineralogy of the manganese-bearing Hotazel
270	Formation of the Proterozoic Transvaal sequence of Griqualand West, South

271	Africa. Trans. Geol. Soc. South Africa, 87, 267-275.
272	Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen
273	bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.
274	Makreski, P., Jovanovski, G., Kaitner, B., Gajovic, A., and Biljan, T. (2007) Minerals
275	from Macedonia XVII. Vibrational spectra of some sorosilicates. Vibrational
276 277	Spectroscopy, 44, 162-170.
278	Moore, P.B, Davis, A.M, Van Derveer, D.G, Sen Gutpa, P.K (1993) Joesmithite, a
279	plumbous amphibole revisited and comments on bond valences. Mineralogy and
280	Petrology 48, 97-113.
281	Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy
282	for the determination of amphibole asbestos. Mineralogical Magazine, 68, 455-
283	465
284	Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation, a quantitative
285	measure of distortion in coordination polyhedra. Science, 172, 567-570.
286	Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-
287	122.
288	Von Bezing, K.L., Dixon, R.D., Pohl, D., and Cavallo, G. (1991) The Kalahari
289	Manganese Field, an update. Mineralogical Record, 22, 279-297.
290	Yang, H., Evans, S.H., Downs, R.T., Jenkins, R.A. (2011) The crystal structure of
291	vladimirite, with a revised chemical formula, Ca ₄ (AsO ₄) ₂ (AsO ₃ OH)·4H ₂ O.
292	Canadian Mineralogist, 49, 1055-1064.
293	Zöller, M.H., Tillmanns, E., and Hentshel, G. (1992) Liebauite, Ca ₃ Cu ₅ Si ₉ O ₂₀ : A new
294	silicate mineral with 14er single chain. Zeitschrift für Kristallographie, 200, 115-
295	126.
296	
297	
298	

299	List of Tables
300	
301	Table 1. Powder X-ray diffraction data for lavinskyite.
302	
303	Table 2. Summary of crystallographic data and refinement results for lavinskyite.
304	
305	Table 3. Coordinates and displacement parameters of atoms in lavinskyite.
306	
307	l able 4. Selected bond distances (A) in lavinskylte.
200	Table 5 Mineralegical data for levingly its and planch its
309	rable 5. Wineralogical data for faviliskyne and planchene.
311	Table 6 Tentative assignment of major Raman hands for lavinskyite
312	Table 0. Tentative assignment of major Raman bands for favmskyne.
313	
314	
315	
316	
317	List of Figure Captions
318	
319	Figure 1. (a) Rock samples on which lavinskyite crystals are found; (b) A microscopic
320	view of lavinskyite, associated with dark blue scottyite.
321	
322	Figure 2. A backscattered electron image, showing the assemblage of scottyite (light
323	gray), wesselsite (medium gray), and lavinskyite (dark gray).
324	
325	Figure 3. Crystal structure of lavinskyite.
326	
327	Figure 4. Crystal structure of lavinskylte. The aquamarine, yellow, green, and blue $C_{1}(M_{1})$ $L_{2}(M_{2})$ and $L_{2}(M_{2})$ and $L_{2}(M_{2})$ such as the second structure of lavinskylte.
328 220	spheres represent K, Cu(M4), LI(M4), and H atoms, respectively.
329	Figure 5 Paman spectrum of lavingly ite
330	Figure 5. Kaman spectrum of favinskytte.
332	
333	
334	
335	
336	
337	
338	
339	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4601

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4601

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Exper	imental	T	heoretical	
I	<i>d</i> (Å)	Ι	<i>d</i> (Å)	h k l
100	10.291	100	10.189	0 2 0
13	9.608	9	9.523	2 0 0
8	9.006	16	8.984	1 2 0
18	6.994	5	6.957	2 2 0
18	4.984	24	4.921	1 4 0
6	4.057	11	4.046	3 0 1
11	3.964	19	3.973	3 4 0
2	3.578	11	3.590	1 4 1
27	3.321	30	3.343	1 6 0
6	2.979	9	2.995	3 6 0
3	1.571	11	1.568	12 2 0

Table 1. Powder diffraction data for strong peaks of lavinskyite

Table 2. Summary of crystal data and refinement results for lavinskyite

Ideal chemical formula Crystal symmetry Space group a(Å) b(Å) c(Å) $v(Å^3)$ Z $\rho_{cal}(g/cm^3)$ λ (Å, MoK α) μ (mm ⁻¹) $2\theta_{max}$ (°)for data collection No. of reflections collected No. of reflections with $I > 2\sigma(I)$ No. of parameters refined R(int) Final R_I , wR_2 factors $[I > 2\sigma(I)]$ Final R_I , wR_2 factors (all data)	K(LiCu)Cu ₆ (Si ₄ O ₁₁) ₂ (OH) ₄ Orthorhombic <i>Pcnb</i> (#60) 19.046(2) 20.377(2) 5.2497(6) 2037.4(4) 4 3.616 0.71073 7.403 65.36 16336 3702 2639 214 0.048 0.031, 0.057 0.058, 0.064
Final R_1 , wR_2 factors (all data)	0.058, 0.064
Goodness-of-fit	0.971

Ator	x u	Y	N	Uiso	U1 1	U2 2	U3 3	U2 3	U1 3	U12
	0.5	0.25	0.9725(2)	0.0239(2)	0.0200(5)	0.0279(6)	0.0238(5)	0	0	-0.0094(5)
Πl	0.45964(3)	0.00661(3)	0.25459(9)	0.0085(2)	0.0092(3)	0.0096(3)	0.0065(3)	0.0029(2)	-0.0024(2)	-0.0029(2)
MZ	0.37544(2)	0.02733(2)	(7)07677.0	0.0096(1)	0.0094(2)	0.0117(2)	0.0077(2)	0.0030(1)	-0.0018(1)	-0.0022(1)
M3	0.29265(2)	0.05185(2)	0.29637(6)	0.0092(1)	0.0095(2)	0.0122(2)	0.0058(2)	0.0027(1)	-0.0019(1)	-0.0034(1)
M4a	0.25019(3)	0.30433(3)	0.7061(1)	0.0145(2)	0.0116(3)	0.0074(3)	0.0244(4)	0.0003(2)	-0.0074(3)	0.0001(2)
M4b	0.208(2)	0.301(1)	0.814(7)	0.061(7)						
Si1	0.64168(4)	0.10879(4)	0.9294(1)	0.0066(2)	0.008(4)	0.0068(4)	0.0052(3)	0.0001(3)	-0.0007(3)	-0.0009(3)
Si2	0.56233(4)	0.12204(4)	0.4315(1)	0.0066(2)	0.008(4)	0.0068(4)	0.0050(3)	0.0002(3)	0.0000(3)	-0.0004(3)
Si3	0.40602(4)	0.15778(4)	0.4751(1)	0.0065(2)	0.007(3)	0.0075(4)	0.0052(3)	0.0004(3)	0.0003(3)	-0.0011(3)
Si4	0.32834(4)	0.18205(4)	0.9822(1)	0.0070(2)	0.009(4)	0.0075(4)	0.0048(3)	0.0002(3)	-0.0002(3)	-0.0008(3)
01	0.6279(1)	0.0311(1)	0.9193(4)	0.0088(4)	0.0103(10)	0.0074(10)	0.0087(9)	-0.0001(8)	-0.0010(8)	-0.0016(8)
02	0.5459(1)	0.0455(1)	0.4319(4)	0.0095(4)	0.0128(11)	0.0080(11)	0.0076(9)	0.0016(8)	0.0003(8)	-0.0020(8)
03	0.3809(1)	0.0825(1)	0.4653(4)	0.0086(4)	0.0108(10)	0.0078(10)	0.0071(9)	-0.0002(7)	-0.0017(8)	-0.0033(8)
04	0.2997(1)	0.1082(1)	0.9986(4)	0.0116(4)	0.0145(11)	0.0117(11)	0.0087(9)	0.0003(8)	-0.0022(8)	-0.0022(8)
05	0.7237(1)	0.1273(1)	0.9552(4)	0.0127(4)	0.0081(10)	0.0149(12)	0.0148(10)	0.0000(8)	-0.0022(8)	-0.0035(8)
06	0.5984(1)	0.1442(1)	0.1638(4)	0.0111(4)	0.0156(11)	0.0089(11)	0.0086(9)	0.0001(8)	0.0040(8)	0.0006(8)
07	0.6125(1)	0.1432(1)	0.6677(4)	0.0115(4)	0.0161(12)	0.0104(11)	0.0081(9)	0.0007(8)	-0.0041(8)	-0.0022(8)
08	0.4913(1)	0.1659(1)	0.4616(4)	0.0122(4)	0.0070(10)	0.0088(11)	0.0206(11)	-0.0007(8)	0.0018(8)	-0.0009(8)
60	0.3834(1)	0.1913(1)	0.7418(4)	0.0110(4)	0.0147(11)	0.0111(11)	0.0069(9)	-0.0016(8)	0.0044(8)	-0.0027(8)
010	0.3782(1)	0.1982(1)	0.2306(4)	0.0108(4)	0.0170(11)	0.0085(11)	0.0068(9)	0.0013(8)	-0.0032(8)	-0.0031(9)
011	0.2709(1)	0.2388(1)	0.9597(4)	0.0161(5)	0.0151(11)	0.0172(13)	0.0160(11)	-0.0019(9)	-0.0028(9)	0.0059(9)
012	0.4609(1)	0.0603(1)	0.9434(4)	0.0127(5)	0.0141(11)	0.0108(11)	0.0134(10)	0.0025(9)	-0.0033(9)	-0.0049(9)
013	0.2851(1)	0.0020(1)	0.6192(4)	0.0082(4)	0.0084(10)	0.0096(11)	0.0069(9)	0.0014(8)	-0.0002(7)	-0.0011(8)
Η1	0.274(3)	-0.032(3)	0.593(9)	0.04						
H2	0.469(3)	0.096(2)	0.916(9)	0.04						
=== Note	:: The site occ		A = K, M1 = (0)	.775Cu + 0.2	25Mg), M2=		M4a=0.5Cu	M4b = 0.5I	======================================	
		•			i					

avinely ita 5 ÷ + Table 3

	lavinskyite	planchéite
	Distance (Å)	Distance (Å)
Si1-O1	1.606(2)	1.608
-05	1.613(2)	1.629
-07	1.640(2)	1.646
-06	1.648(2)	1.637
Ave.	1.630	1.630
TAV*	7.93	
TQE*	1.002	
Si2-O2	1.592(2)	1.635
-07	1.624(2)	1.704
-06	1.628(2)	1.530
-08	1.629(2)	1.612
Ave.	1.630	1.620
TAV	7.98	
TQE	1.002	
Si3-03	1 607(2)	1 617
-010	1 615(2)	1 626
-09	1 617(2)	1 580
-08	1.635(2)	1.636
Ave.	1.618	1.615
TAV	15.80	
TQE	1.004	
Si4-O11	1.596(2)	1.649
-04	1.603(2)	1.637
-010	1.647(2)	1.659
-09	1.652(2)	1.585
Ave.	1.624	1.633
TAV	22.77	
TQE	1.005	
M1-O2	1.961(2)	1.690
-OH12	1.966(2)	1.844
-02	2.047(2)	2.158
-01	2.050(2)	2.155
-OH12	2.287(2)	2.467
-03	2.422(2)	2.469
Ave.	2.122	2.130

Table 4. Selected bond distances in lavinskyite and planchéite.

M2-OH12 -O1 -OH13 -O3 -O2 -O4	1.960(2) 1.979(2) 1.985(2) 2.000(2) 2.383(2) 2.473(2)	2.029 1.867 2.079 1.869 2.687 2.279
Ave.	2.130	2.135
M3-O4 -OH13 -O3 -OH13 -O4 -O1	1.944(2) 1.982(2) 2.000(2) 2.023(2) 2.353(2) 2.535(2)	2.220 1.736 2.063 2.215 2.242 2.641
Ave.	2.140	2.186
M4a-O11 -O11 -O5 -O5	1.902(2) 1.927(2) 1.975(2) 1.983(2)	1.945 1.798 1.839 2.022
Ave.	1.947	1.901
M4b-O11 -O5 -O11 -O5 -O6 -O10	1.907(2) 2.091(2) 2.286(2) 2.399(2) 2.494(2) 2.699(2)	
Ave.	2.313	
A -O9 x2 -O10 x2 -O6 x2 -O8 x2 -O8 x2	2.797(2) 2.886(2) 3.027(2) 3.091(2) 3.197(2)	
Ave.	2.998	

Note: According to Evans and Mrose (1977), "The bond lengths in planchéite are poorly determined ($\sigma > 0.1$ Å) and are not amenable to detailed interpretation".

*: TAV—tetrahedral angle variance; TQE—tetrahedral quadratic elongation (Robinson et al. 1971).

	Lavinskyite	Planchéite
Chemical formula	K(LiCu)Cu ₆ (Si ₄ O ₁₁) ₂ (OH) ₄	$Cu_8(Si_4O_{11})_2(OH)_4$ ·H ₂ O
a(Å)	19.046(2)	19.043(3)
b(A)	20.377(2)	20.129(5)
c(A)	5.2497(6)	5.269(1)
$V(A^3)$	2037.4(4)	2019.5(5)
Space group	<i>Pcnb</i> (#60)	<i>Pcnb</i> (#60)
Ζ	4	4
$\rho_{cal}(g/cm^3)$	3.62	3.82
Strong powder line	es 10.188(100)	10.064(100)
	3.343(32)	4.865(53)
	2.693(29)	2.694(47)
	2.522(27)	6.917(43)
	4.921(25)	3.943(31)
	2.316(22)	2.520(31)
	3.973(19)	3.304(27)
n _a	1.675	1.697
ne	1.686	1.718
p n _v	1.715	1.741
2 ['] V(°)	64(+)	88.5(+)
Reference	(1)	(2)

Table 5. Mineralogical data for lavinskyite and planchéite.

(1) This work; (2) Evans and Mrose (1977).

Table 6. Tentative assignments of major Raman bands for lavinskyite

Bands (cm ⁻¹)	Intensity	Assignment
3694, 3662, 3630 3390	Weak to Strong, sharp	O-H stretching vibrations
1090, 1043, 991 919, 891	Relatively weak and broad	Si-O symmetric and anti-symmetric stretching modes within SiO ₄ tetrahedra
685	Strong, sharp	Si-O-Si bending
580, 562, 503, 445 424, 401	Relatively strong	O-Si-O symmetric and anti-symmetric bending modes within SiO ₄ tetrahedra
<400	Strong to weak	SiO ₄ rotational modes, lattice vibrational modes, and Cu-O interactions