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Abstract  7 

The sulfate bearing strata on Mars must have recorded rich information of its aqueous 8 

history. However, the hydrated sulfates observed in the surface thin layer by remote 9 

sensing, especially widespread kieserite, are likely weathering products other than 10 

pristine deposits. Here we report the results from the mineralogical investigations and 11 

environmental monitoring on the sulfate bearing Dalangtan Playa (an analogue site 12 

with Mars-like environmental conditions in northern Tibetan Plateau) to examine the 13 

depositional and secondary processes of hydrated sulfates. The regional deposition 14 

characters of DLT Playa were described based on our mineralogical results. 15 

Widespread kieserite was identified in situ by portable laser Raman spectrometer on 16 

the weathered surface of the Mg-sulfates rich section, which formed from the 17 

hexahydrite dehydration after exposed to the ambient conditions in six months 18 

covering the summer, and survived in the winter. During summer days, wind and 19 

sunlight may have facilitated the dehydration process, leading the formation of 20 

kieserite from dehydration. On the basis of the observed kieserite formation, the 21 

recorded local environment conditions, as well as previously reported phase diagrams 22 

for Mg-sulfates, we suggest that the current diurnal relative humidity-temperature 23 

circles at low latitudes of Mars favor the formation of kieserite through secondary 24 

processes.  25 
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Introduction: 31 
Various minerals closely related to the aqueous history of Mars have been 32 

identified or indicated, including clays (e.g. Bishop et al. 2008; Carter et al. 2010; 33 

Ehlmann et al. 2009; Glotch et al. 2006; Mustard et al. 2008; Wang et al. 2006a), 34 

carbonates (e.g. Boynton et al. 2009; Carter and Poulet, 2012; Ehlmann et al. 2008; 35 

Michalski and Niles 2010; Morris et al. 2010), sulfates (e.g. Arvidson et al. 2005; 36 

Gendrin et al. 2005; Kounaves et al. 2010; Langevin et al. 2005; Lichtenberg et al. 37 

2010; Murchie et al. 2009; Squyres et al. 2006; Wang et al. 2006b), and chlorides 38 

(Glotch et al., 2010; Jensen and Glotch, 2011; Murchie et al. 2009a; Osterloo et al. 39 

2008, 2010; Ruesch et al. 2012; Wray et al. 2009). It is reasonable to get information 40 

on the aqueous history of Mars from the detailed study of these minerals.  41 

Abundant calcium sulfates, mostly gypsum occur near the north polar region of 42 

Mars (Langevin et al. 2005). Mg-sulfates have the largest quantities and widest 43 

distribution at low latitudes of Mars. For example, those discovered by Observatoire 44 

pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA) fill most part of Valleys 45 

Marineris and nearby lowlands (Gendrin et al. 2005). Stratigraphic relations of 46 

sulfates with different hydration degrees (poly- and monohydrated sulfates) were 47 

reported on the basis of comprehensive orbital data sets (Mangold et al. 2008), and 48 

clarified for the Martian light-tone layered deposits (ILD) at various sites combining 49 

the high resolution Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 50 

with the Context Camera (CTX) data sets (e.g. Bishop et al. 2009; Flahaut et al. 2010; 51 

Lichtenberg et al. 2010; Milliken et al. 2010; Murchie et al. 2009a, 2009b; Roach et al. 52 

2009, 2010; Wiseman et al. 2010), and kieserite (monohydrated Mg-sulfate) was 53 

specified to be widespread at low latitudes (e.g. Arvidson et al. 2005; Bishop et al. 54 

2009; Gendrin et al. 2005; Mangold et al. 2008; Roach et al. 2009).  55 

The hydration states of sulfates are strongly influenced by the relative humidity 56 
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(RH) and temperature (T) of ambient environments. Thus the hydrated sulfates on 57 

Martian surface might be the products from the weathering of primary deposits under 58 

Mars atmosphere. Many studies through laboratory experiments or thermodynamic 59 

modeling have been carried out to investigate the stability properties under different 60 

RH and T conditions for sulfates (e.g., Chipera and Vaniman 2007; Chou and Seal 61 

2003, 2007; Grevel et al. 2012; Kong et al. 2011; Steiger et al. 2011; Vaniman et al. 62 

2004, 2006b; Wang et al. 2009, 2011; Xu and Parise 2012), as well as for sulfates 63 

associated with smectites under Mars-like RH and T conditions (Wilson and Bish, 64 

2012). These studies have provided critical information for discussing how these 65 

observed hydrated sulfates originate.  66 

In nature, complex factors might be involved to constrain the occurrence of 67 

specific sulfate species, thus studies on terrestrial analogue sites with similar 68 

mineralogy and environmental conditions are needed to help linking these 69 

fundamental studies with Mars observations.  70 

Terrestrial analogue studies have focused on various aspects and have served 71 

critical information for Mars explorations (e.g. Bishop et al. 2001, Marchant and Head 72 

2007) Since 2008, we have started the expedition at saline playas in a hyperarid 73 

region on Tibet Plateau, a terrestrial Mars analogue site, to investigate the mineralogy, 74 

geology, bio-signatures, and climatic conditions (Kong et al. 2009, 2013a, 2013b; 75 

Mayer et al. 2009; Sobron et al. 2009; Wang and Zheng 2009; Zheng et al. 2009). In 76 

this report, we focus on the depositional and weathering processes of hydrated 77 

sulfates in one of these saline playas (i.e., Dalangtan Playa). 78 

Dalangtan Playa on Tibetan Plateau 79 

Dalangtan (DLT) Playa formed from the drying up of sulfate brine in the centered 80 

depression of the DLT secondary basin (38°0′-38°40′N, 91°10′- 92°10′E, Figure 1) 81 



 

4 
 

that locates on the north-west of Qaidam Basin, northern margin of the Tibetan 82 

Plateau. The Tibetan Plateau (average elevation of about 4500 m) blocks the humid 83 

air carried by the Indian monsoon, leading to the hyperarid (Aridity Index (AI) < 0.04) 84 

Qaidam Basin (32-35° N, 90-100° E) (Zheng et al. 2009). DLT basin is the 85 

depositional center of the western Qaidam Basin and the high elevation (~ 3000 m) of 86 

the DLT Playa induces a low mean annual temperature (276-278 K) as well as the 87 

large diurnal, seasonal temperature variation (from 303 K to 253 K) (Kong et al. 88 

2013a). The combination of these factors (sulfate rich sediments, cold and dry weather, 89 

low pressure, and high UV radiation) makes the DLT Playa one of the best sites to 90 

carry out Mars analogue studies. 91 

Samples and methods 92 

Sample collection 93 

In the recent two expeditions to DLT Playa (September 2012, and January 2013), 94 

four vertical sections (i.e. DP1, 2, 3, and 4; 2-4 meters depth) have been sampled at 95 

locations with different distances to its depositional center (Figure 1). The sections 96 

were made during mining activities and have a depth of 2-4 m. All these four sections 97 

exhibit obvious interbedded layers (e.g. Figure 2 for DP2), and fresh samples were 98 

systematically collected and numbered on the each layer after removing the weathered 99 

crust.  100 

In situ Raman analysis at DLT:  101 

During the expeditions, we used a portable Raman spectrometer (iRaman 532, BW 102 

Tec, spectral resolution 4cm-1) for in situ characterization of the original deposition 103 

sequence as well as the weathered surface for the sulfate-bearing sections (Figure 2). 104 

For sections DP1, 3, 4, the Raman spectrometer was used to measure the fresh digged 105 

surfaces before sampling. For DP2 section, the Raman spectrometer was used to 106 
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carefully examine the mineral phases in the weathered materials on the outer surface. 107 

Laboratory mineralogical analysis of collected samples:  108 

Samples were well sealed and stored in a 233 K freezer to prevent unexpected 109 

phase change due to dehydration or rehydration after delivered back (about one week 110 

for delivery). For mineralogy characterization, each sample was analyzed by X-ray 111 

diffraction (XRD), laser Raman spectroscopy and polarizing petrographic microscopy. 112 

The samples used for these measurements were carefully chosen, for example, we 113 

only use coarse blocky samples that did not show any feature from dehydration or 114 

rehydration. 115 

Laboratory laser Raman analysis was conducted using a Renishaw System-2000 116 

spectrometer (514 nm laser and spectral resolution, 1-2 cm-1) for point measurement 117 

on all samples. The laser wavelength calibration was made using a Si wafer and 118 

resulted in Raman peak position accuracy of 1 cm-1 and precision of 0.5 cm-1. 119 

XRD measurements were carried out on an X-ray diffractometer (Y500 by 120 

CDRIG Ltd.) with Cu X-ray source, and all the XRD patterns were collected in the 2θ 121 

range of 3-80 °, with step size of 0.05 °. The peak positions were calibrated using the 122 

Si (111) spacing of a standard Si reference powder. All samples were measured 123 

immediately after they were grounded into powder by either an electric grinder or by 124 

an agate mortar. The total duration for the preparation and measurement of single 125 

sample is less than one hour. 126 

A Zeiss Axio Scope A1 polarized petrographic microscope was used to determine 127 

the mineralogy for all samples, and sulfates with different hydration states can be 128 

distinguished based on their different optical properties. 129 

Relative humidity and temperature (RH-T) monitoring 130 

A RHT10 data logger with a capacitance sensor by Extech was placed at the 131 
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surface of studied areas for more than two years (since 2010) to record the RH-T 132 

conditions near the surface. RH-T conditions were measured and recorded 133 

simultaneously every per hour, and the recorded data were collected manually for 134 

every 3-6 months. 135 

The RH values at subzero temperatures measured by the RHT10 logger were 136 

defined by actual H2O partial pressure in the air over saturated H2O partial pressure of 137 

ice, and these RH values were transformed to actual H2O partial pressure in the air 138 

over saturated H2O partial pressure of hypothetical supercooled pure water (i.e. RH% 139 

defined by the World Meteorological Organization) based on the Goff–Gratch 140 

equation (McDonald, 1965). And the RH values at subzero temperatures in this study 141 

all follow the definition by the World Meteorological Organization. 142 

Depositional characters 143 

Table 1 shows the chemical formula for the minerals involved in this study. The 144 

minerals identified in different layers of four sampled sections are listed in Table 2, 145 

and the order of appearance of each mineral indicates the estimated relative 146 

abundance (from large to small) in the layers. Epsomite can be easily dehydrated to 147 

hexahydrite even by grinding in XRD sample preparing (Wang et al., 2009), and the 148 

pristine Mg-sulfate phase in DP2 was determined to be hexahydrite based on the facts 149 

that: 1) hexahydrite was found to be the only Mg-sulfate in the analysis of well stored 150 

DP2 samples using petrographic microscope; and 2) none of XRD patterns of DP2 151 

samples showed any signal of epsomite. 152 

The uppermost layer (i.e. the weathered crust), rich in aeolian sands, is thicker in 153 

DP 3, 4 sections than in DP1 and 2, indicating an earlier dry up time at the edge of the 154 

depression, which is consistent with previous studies (e.g. Wang et al. 1993). 155 

Mirabilite dominates in the lower layers for DP 3 and DP 4, followed by the halite 156 
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dominating layers, while hexahydrite dominates in DP 2, showing an evolution of 157 

sulfate brine from the stage for mirabilite precipitation to that for hexahydrite 158 

precipitation, which is common on earth for both lacustrine and marine sediments. 159 

Halite occurs in almost all the deposited layers, which indicates that the sulfate brines 160 

that formed the studied sections are saturated with NaCl.  161 

The Mg-sulfate bearing DP2 is of the greatest interest among four sections for this 162 

study, which serves good opportunity to compare with Mg-sulfates on Mars. Five 163 

hexahydrite layers have been noticed in this section (Table 2), and carnallite was 164 

found to co-occur with hexahydrite in two of these five layers. Although 165 

K-Mg-Cl-SO4 brines had reached a late stage for the co-precipitation of hexahydrite 166 

and carnallite, the brines need to be further concentrated to reach the stage for 167 

kieserite precipitation (e.g. Braitsch 1971; Harvie and Weare, 1980). 168 

Apparent mineralogical differences have been found among the interbedded layers 169 

for section DP2 (Figure 2). Dark colored layers are rich in clays, which indicate 170 

increased supply of fresh waters under relatively wet climates. Whitish layers, 171 

dominated by hexahydrite and halite, have less or even no clays, thus would have 172 

formed under relatively dry climates with little or no fresh water supply (Zheng et al. 173 

1997). 174 

Kieserite formation at DLT Playa 175 

The DP2 section was created in April 2012 by local mining activities and has been 176 

exposed to the ambient atmosphere for about 6 months before our first expedition 177 

(Sept. 2012). Kieserite was identified by in situ Raman measurements (e.g. the 178 

kieserite spectra in Figure 3C) from the whitish materials covering the surface of all 179 

five hexahydrite bearing layers in DP2 (Figure 2) for the two expeditions. The 180 

kieserite must have formed from the weathering of the hexahydrite layers during the 181 



 

8 
 

six months before the first expedition in Sept. 2012, and survived in the winter until 182 

the second expedition in Jan. 2013.  183 

Some in situ Raman spectra acquired on the pseudomorphic whitish materials 184 

(Figure 3B) that came from the hexahydrite dehydration do not show any spectral 185 

feature, and further observations under petrographic microscope for these whitish 186 

materials suggested the existence of amorphous Mg-sulfates. The Raman spectra of 187 

amorphous Mg-sulfates obtained in the laboratory laser Raman measurements do 188 

show a broadened peak at 1030 cm-1, however, this peak did not show up in our 189 

spectra due to the low sensitivity of the portable Raman spectrometer. Kieserite was 190 

also identified several millimeters deeper in these pseudomorphic materials.  191 

We excavated a horizontal section (at 1.5 meter depth) at DP2, from surface to 192 

interior for about 15 centimeters. In situ Raman measurements were made at 193 

individual spots on this section. The hydrous Mg-sulfates identified on the horizontal 194 

section show a trend of increasing hydration degree from the outermost weathered 195 

surface to the fresh interior, and they are kieserite and sanderite, starkeyite, 196 

pentahydrite, and finally hexahydrite (Figure 3). This clear trend from monohydrated 197 

kieserite to the primary hexahydrite indicates a gradient of RH-T conditions within 198 

the subsurface that controlled the dehydration/rehydration processes of Mg-sulfates at 199 

DP2 site. 200 

The RH-T stability fields of hydrated Mg-sulfates were substantially studied by 201 

different experimental methods at temperatures above 263 K (Chou et al. 2003, 2007; 202 

Chipera and Vaniman 2007; Peterson and Wang 2006; Steiger et al. 2011; Wang et al. 203 

2009, 2011), and was extrapolated to as low as 175K through thermodynamic 204 

calculation (Figure 4, Steiger et al. 2011). Although their results are consistent with 205 

each other in general, difference exists referring to the formation of kieserite through 206 
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dehydration processes.  207 

In the experiments by Wang et al. (2009) and Chipera and Vaniman (2007), 208 

kieserite can only form from dehydration of epsomite or hexahydrite at temperatures 209 

above 323 K, and the dehydration stop at starkeyite under DLT relevant temperatures. 210 

Starkeyite is metastable under all RH-T conditions (e.g. Chou et al 2007, Steiger et al. 211 

2011), and the dehydration process for starkeyite to kieserite is extremely slow 212 

(Steiger et al. 2011). This should be the reason why the dehydration seems to stop at 213 

starkeyite in these two sets of experiments (Wang et al. 2009; Chipera and Vaniman 214 

2007). At DP2, the hexahydrite dehydration product, starkeyite, continued to 215 

dehydrate at relatively low temperatures (mean annual T 276-278 K, Kong et al. 216 

2013a), and formed widespread kieserite on the outermost surface. In their 217 

experiments, constant RH-T conditions were controlled for the dehydration reaction. 218 

At DP2, more factors such as wind and sunlight may have been involved in the 219 

dehydration process. Wind and sunlight are effective factors to speed up evaporation, 220 

and the strong wind and sunlight at DLT Playa (e.g. > 3 m/s for monthly average wind 221 

speed at summer, Kong et al. 2013a) may have facilitated the dehydration of 222 

starkeyite by quickly removing the water vapor produced from dehydration and by 223 

serving more energy for the dehydration reaction respectively, thus kieserite formed at 224 

DLT. In the laboratory experiment by Wang et al. 2009, amorphous Mg-sulfates form 225 

in the quick dehydration processes, and it cannot form under DLT relevant RH-T 226 

conditions. Thus the occurrence of amorphous Mg-sulfates at DLT playa indicates 227 

very quick dehydration processes, which was probably induced by wind and sunlight. 228 

Wang et al. (2011) suggested that kieserite can form from the amorphous 229 

Mg-sulfates that firstly formed from dehydration under Mars relevant temperatures. 230 

At DP2, the amorphous Mg-sulfates overlay or mix with kieserite (Figure 3), and this 231 
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occurrence does not support that amorphous Mg-sulfates had formed prior to kieserite. 232 

Thus we believe that the kieserite at DLT playa mostly formed directly from the 233 

dehydration of hexahydrite, and the starkeyite identified (Figure 3) might be the 234 

intermediate product of the hexahydrite-kieserite dehydration process.  235 

In the work by Steiger et al. (2011), the epsomite-kieserite transition boundary was 236 

obtained by a different experimental technique, which suggests kieserite can form 237 

from dehydration under DLT relevant temperatures. Our field observation that 238 

kieserite formed from the dehydration of hexahydrite at DLT Playta (mean annual T 239 

276-278 K and relative humidity < 30%, Kong et al. 2013) give terrestrial evidence to 240 

support their results.  241 

Implications for the observed Mg-sulfates on Mars 242 

Although starkeyite is a metastable phase under all RH-T conditions, the 243 

dehydration of starkeyite is extremely slow as observed by many experimental studies, 244 

thus starkeyite has been suggested to have the most common occurrence under current 245 

diurnal RH-T circles on Martian surface (e.g. Steiger et al. 2011 Wang et al., 2011). 246 

However, this does not help much on explaining whether the widespread Martian 247 

kieserite came from deposition or from the weathering of higher hydrated Mg-sulfates. 248 

Our observations of kieserite formation at DLT playa might be able to give some clues 249 

referring to this question. 250 

The diurnal surface RH-T conditions of a typical summer and a winter day at the 251 

DLT playa are shown in Figure 5, and the diurnal RH-T circles have been plotted in 252 

Figure 4 for comparison. A typical summer diurnal RH-T circle locates wholly in the 253 

RH-T stability field of kieserite (Figure 4), with a diurnal average T of 294 K, and 254 

kieserite have formed from hexahydrite dehydration under such conditions in less 255 

than 6 months, neglecting the less kieserite favored spring and autumn conditions. 256 
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The typical winter diurnal RH-T circle locates wholly outside the kieserite RH-T 257 

stability field (diurnal average T of 257 K, Figure 4), however, the previously formed 258 

kieserite survived the winter and was detected all over the weathered surfaces of DP2 259 

in our second expedition in Jan. 2013. These facts support previous observation 260 

through laboratory experiments that the kieserite formation from dehydration at 261 

higher temperatures in the kieserite RH-T stability field is much easier than 262 

rehydrating to other phases at lower temperatures outside kieserite field (e.g. Vaniman 263 

and Chipera 2006a). And factors such as wind and sunlight make it feasible to observe 264 

the kieserite formation from dehydration at DLT Playa.  265 

As indicated by Figure 4, the diurnal RH-T conditions in the Martian summer at 266 

low latitudes covers the RH-T stability fields of three stable Mg-sulfates, i.e. kieserite, 267 

epsomite, meridianite. At summer daytime on Martian surface, the RH-T conditions 268 

locates in the RH-T stability field of kieserite, and wind (with maximum of 7 m/s, 269 

Hess et al., 1977) and sunlight can also facilitate the dehydration process of hydrated 270 

Mg-sulfates, leading to the formation of kieserite. Although the maximum 271 

temperature (255 K) used in this study for Mars is about 48 K lower than that at DLT 272 

Playa (303K), the formation of minor amount of kieserite can be expected. Once 273 

kieserite had formed during the summer daytime, it has great chance to survive in the 274 

low temperature nighttime due to low rehydration rates at the minimum temperature 275 

of 195 K, which is about 58 K lower than the minimum temperature in the winter 276 

night at DLT Playa (Figure 4). Although the diurnal RH-T circle discussed here is 277 

adapted from a summer day, it would be easier for the summer formed kieserite to 278 

survive a much colder winter on Mars than that at DLT Playa (Smith et al. 2006; 279 

Spanovich et al. 2006). Thus the current diurnal RH-T circles might favor the 280 

formation of kieserite. 281 
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Beside, RH deviation from equilibrium can also have influence on the dehydration 282 

or rehydration rates. However, to our knowledge, no reliable data are available on 283 

how much the influence is. For dehydration, there seems no big difference between 284 

the RH derivations from equilibrium in daytime on Mars and that in summer at DLT 285 

Playa (Figure 4). For rehydration, the RH derivation from equilibrium seems to be 286 

larger in nighttime on Mars than that in winter at DLT Playa. However, the 287 

temperature decreases as the RH derivation from equilibrium goes larger, which may 288 

lead to stronger influence on decreasing the rehydration rates. Thus we believe 289 

temperature variations dominate the dehydration or rehydration rates for Mg-sulfates 290 

referring to the kieserite formation under current diurnal RH-T conditions on Mars. 291 

If the surface diurnal RH-T circles at low latitude regions on current Mars truly 292 

favor the formation of kieserite through dehydration, why are there polyhydrated 293 

Mg-sulfates in the vicinity of kieserite bearing regions on Mars as indicated by 294 

OMEGA and CRISM observations (e.g. Bishop et al. 2009; Flahaut et al. 2010; 295 

Gendrin et al. 2005; Lichtenberg et al. 2010; Milliken et al. 2010; Roach et al. 2009). 296 

As reviewed by Murchie et al. (2009a), the polyhydrated sulfates (including Mg 297 

bearing phases) tend to occur at stratigraphically higher parts, while kieserite tends to 298 

occur at lower parts. We propose that the temperature difference between the 299 

atmosphere hundreds of meters above the surface and the surface (about 10 K 300 

difference for the first two hundred meters for the Martian atmosphere, Sorbjan et al. 301 

2009) might be one important factor that causes this observed stratigraphic relation 302 

for monohydrated and polyhydrated Mg-sulfates. As shown in Figure 4, the hydrated 303 

Mg-sulfates on the stratigraphically higher parts have less chance to experience 304 

relative high temperatures, thus has a less possibility for dehydrating to kieserite. 305 

However, this observed stratigraphic relation is not strict, even interbedded layers of 306 
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monohydrated and polyhydrated Mg-sulfates were noticed (Roach et al. 2009), and 307 

this can be explained by other factors that influences the Mg-sulfate stability 308 

properties, such as various abundance of coexisting smectites, which can buffer local 309 

RH and prevent the dehydration of coexisting Mg-sulfates (Wilson and Bish 2012). 310 

Our scenario for the kieserite formations suggests that the widespread kieserite 311 

may have formed through the weathering of hydrated Mg-sulfates under current Mars 312 

conditions, which does not require the observed kieserite to be the direct precipitation 313 

product from Mg-S-bearing brines.  314 

Summary  315 

Two expeditions have been carried out on DLT Playa (mean annual T 276-278 K , 316 

RH < 30%）in Sept. 2012 and Jan. 2013. The mineralogy of four sulfate bearing 317 

sections (DP 1-4) (2-4 meters depth) in this playa were investigated both in situ and 318 

on the collected samples in the laboratory. On the basis of obtained mineralogical 319 

results, the evolution of the sulfate brines in this region is discussed. All these four 320 

sections contain obvious interbedded layers, and hexahydrite was determined to be the 321 

major minerals for five layers in section DP2. 322 

Hydrated magnesium sulfates including kieserite, sanderite, starkeyite, and 323 

pentahydrite have been observed following a trend of increasing hydration state from 324 

the weathered surface to the fresh interior.  325 

Widespread kieserite was identified on the weathered surface of five hexahydrite 326 

bearing layers in DP2 through in situ measurements by a portable laser Raman 327 

spectrometer for both expeditions. Based on mineralogical results, it is concluded that 328 

kieserite observed at DLT came from the dehydration of hexahydrite, and possibly 329 

with intermediate product of starkeyite. On the basis of the occurrence of kieserite and 330 

stability properties of Mg-sulfates determined by previous studies, we suggest that 331 
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factors such as wind and sunlight may have facilitated the dehydration of Mg-sulfates, 332 

leading to the quick formation of kieserite at DLT Playa. 333 

Combining our field observations, the surface RH-T data recorded for the DLT 334 

Playa, and the RH-T phase diagram of Mg-sulfates determined by previous studies, a 335 

scenario is proposed for the formation of widespread Martian kieserite. Our scenario 336 

states that the current Mars surface diurnal RH-T circles at low latitudes favor the 337 

formation of kieserite through dehydration. The temperature difference between the 338 

atmosphere at hundreds of meters above the surface and the surface might be one 339 

important factor that controls the stratigraphic trend for monohydrated and 340 

polyhydrated Mg-sulfates observed on Mars. In this scenario, the Martian kieserite 341 

does not need to be the deposition product from brines, which might be favored by the 342 

atmospheric modeling studies for past Mars.  343 
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Captions for Figures and tables 592 

Figure 1. Location of Dalangtan (DLT) Playa in the Qaidam Basin on Tibetan Plateau. 593 

Samples were systematically collected on four sections (DP 1, 2, 3, 4) with different distances 594 

to the depositional center of DLT Playa. 595 

 596 

Figure 2. Photo of DP2 section and in situ Raman measurements 597 

 598 

Figure 3. Occurrence of hydrated Mg-sulfates at section DP2. A) Photo of a plane 599 

perpendicular to the weathered surface of DP2 section excavated for in situ Raman 600 

investigation. B) Photo of weathered material from section DP2, whitish pseudomorphic 601 

crystals come from hexahydrite dehydration, and darker colored halite crystals persist from 602 

weathering. C) In situ Raman spectra of Mg-sulfates (assigned based on Wang et al. (2006c)), 603 

and the markers on photo A (Ks, kieserite; Sa, sanderite; St, starkeyite; Pt, pentahydrite, and 604 

Hx, hexahydrite) show where the spectra were obtained. Epsomite cannot be distinguished in 605 

situ from hexahydrite due to limited spectral accuracy of the portable Raman spectrometer 606 

(Wang et al. 2006c), and epsomite was ruled out after the XRD and petrographic microscope 607 

analysis on collected samples. D) Major sulfate peaks of Raman spectra in C with peaks 608 

indicated. 609 

 610 
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Figure 4. Phase diagram of MgSO4-H2O system at low temperatures (adapted from Steiger 611 

et al. (2011)). Dashed curves are the phase boundaries for 11H2O-7H2O, 7H2O-6H2O, 612 

7H2O-4H2O and 6H2O-4H2O, and the dotted line represents the boundary for 6H2O-1H2O 613 

(above 293 K) and the 7H2O-1H2O boundary (below 293 K). Solid loop represents a daily cycle 614 

of present-day Mars conditions in summer at the Viking Lander 1 site (Savijärvi 1995). The 615 

dashed loop shows the diurnal change of the atmospheric conditions hundreds of meters 616 

above the surface inferred by Mini-TES on Spirit rover (Sorbjan et al. 2009). Dotted loops 617 

indicate the diurnal change of the surface conditions of DLT Playa for a typical summer and 618 

winter day, and the specific date is noted in the figure. 619 

 620 

Figure 5. Diurnal surface RH-T conditions of the DLT Playa for a typical summer and winter 621 

day (specific dates are marked in the figure). 622 

 623 

Table 1. Chemical formulas for salt minerals involved in this study. 624 

 625 

Table 2. Minerals identified in each layer from the top surface to the bottom of four sections. 626 
The order of appearance for each mineral indicates the estimated relative abundance (from 627 
large to small) in the layers. 628 













Minerals Chemical formula
meridianiite MgSO4•11H2O 

epsomite MgSO4•7H2O

hexahydrite MgSO4•6H2O, 6W

pentahydrite MgSO4•5H2O, 5W

starkeyite MgSO4•4H2O, 4W

sanderite MgSO4•2H2O, 2W

kieserite MgSO4•1H2O, 1W

halite NaCl
carnallite KCl•MgCl2•6H2O

gypsum CaSO4•2H2O

anhydrite CaSO4

mirabilite Na2SO4•10H2O

glauberite Na2Ca(SO4) 2
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