| 1  |                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                  |
| 3  | <b>REVISION 2</b>                                                                                                                                |
| 4  |                                                                                                                                                  |
| 5  | Strontiohurlbutite, SrBe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> , a new mineral from Nanping No. 31                                        |
| 6  | pegmatite, Fujian Province, Southeastern China                                                                                                   |
| 7  |                                                                                                                                                  |
| 8  | Can Rao <sup>1, 2,</sup> *, Rucheng Wang <sup>1</sup> , Frédéric Hatert <sup>3</sup> , Xiangping Gu <sup>4</sup> , Luisa Ottolini <sup>5</sup> , |
| 9  | HUAN HU <sup>1</sup> , CHUANWAN DONG <sup>2</sup> , FABRICE DAL BO <sup>3</sup> , AND MAXIME BAIJOT <sup>3</sup>                                 |
| 10 |                                                                                                                                                  |
| 11 | <sup>1</sup> State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and                                                    |
| 12 | Engineering, Nanjing University, Nanjing 210093, P.R. China                                                                                      |
| 13 | <sup>2</sup> Department of Earth Sciences, Zhejiang University, Hangzhou 310027, P.R. China                                                      |
| 14 | <sup>3</sup> Laboratoire de Minéralogie, B18, Université de Liège, B–4000 Liège, Belgium                                                         |
| 15 | <sup>4</sup> School of Earth Sciences and Info-physics, Central South University, Changsha, Hunan                                                |
| 16 | 410083, P.R. China                                                                                                                               |
| 17 | <sup>5</sup> C.N.R.–Istituto di Geoscienze e Georisorse (IGG), Unità di Pavia, Via A. Ferrata 1, I–27100                                         |
| 18 | Pavia, Italy                                                                                                                                     |
| 19 |                                                                                                                                                  |
| 20 |                                                                                                                                                  |
| 21 | * E-mail: canrao@zju.edu.cn                                                                                                                      |
| 22 |                                                                                                                                                  |
|    |                                                                                                                                                  |

## ABSTRACT

| 24 | Strontiohurlbutite, ideally SrBe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> , is a new member of hurlbutite group discovered                                             |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25 | in the Nanping No. 31 pegmatite, Fujian province, southeastern China. Crystals are mainly                                                                                  |
| 26 | found in zones I, II and IV; they are platy, subhedral to anhedral, with a length from 5 $\mu m$ to                                                                        |
| 27 | 1.5 mm. Associated minerals mainly include quartz, muscovite, beryl, hurlbutite,                                                                                           |
| 28 | hydroxylherderite, apatite-group minerals, and phenakite. Strontiohurlbutite crystals are light                                                                            |
| 29 | blue, translucent to transparent, and have vitreous luster. The Mohs hardness is about 6, and                                                                              |
| 30 | the tenacity is brittle. Optically, strontiohurlbutite is biaxial (–), $\alpha = 1.563(3)$ , $\beta = 1.569(2)$ , $\gamma$                                                 |
| 31 | = 1.572(3) (white light), $2V_{\text{meas}} = 68.5(5)^{\circ}$ , and exhibits weak dispersion, r>v. The optical                                                            |
| 32 | orientation is $X = \mathbf{b}$ , $Y \approx \mathbf{c}$ . Electron-microprobe and SIMS analyses (average of 16) give SrO                                                  |
| 33 | 29.30, P <sub>2</sub> O <sub>5</sub> 51.05, CaO 0.91, BaO 0.64, and BeO 17.71 wt%; total 99.61 wt%. The empirical                                                          |
| 34 | formula, based on 8 O apfu, is $(Sr_{0.81}Ca_{0.05}Ba_{0.01})_{\Sigma 0.87}Be_{2.02}P_{2.05}O_8$ . The stronger eight lines of                                             |
| 35 | the measured X-ray powder-diffraction pattern [ $d$ in Å( $l$ )( $hkl$ )] are: 3.554(100)(121);                                                                            |
| 36 | 3.355(51)(211); 3.073(38)(022); 2.542(67)(113); 2.230(42) (213); 2.215(87)(321);                                                                                           |
| 37 | 2.046(54)(223); 1.714(32)(143). Strontiohurlbutite is monoclinic, space group $P2_1/c$ ; unit-cell                                                                         |
| 38 | parameters refined from single-crystal X-ray diffraction data are: $a = 7.997(3)$ , $b = 8.979(2)$ , $c$                                                                   |
| 39 | = 8.420(7) Å, $\beta$ = 90.18(6)°, V = 604.7(1) Å <sup>3</sup> (Z = 4, calculated density = 3.101 g/cm <sup>3</sup> ). The                                                 |
| 40 | mineral is isostructural with hurlbutite, CaBe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> , and with paracelsian, BaAl <sub>2</sub> Si <sub>2</sub> O <sub>8</sub> . The |
| 41 | formation of strontiohurlbutite is related to the hydrothermal alteration of primary beryl by                                                                              |
| 42 | late Sr- and P-rich fluids.                                                                                                                                                |
|    |                                                                                                                                                                            |

43 Keywords: Strontiohurlbutite, SrBe<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>, new mineral, hurlbutite, Nanping No. 31
44 pegmatite, Fujian province, China

| 45 |                                                                                            |
|----|--------------------------------------------------------------------------------------------|
| 46 |                                                                                            |
| 47 | INTRODUCTION                                                                               |
| 48 | The new mineral strontiohurlbutite, a Sr-dominant analog of hurlbutite, was discovered in  |
| 49 | the Nanping No. 31 pegmatite, Fujian province, southeastern China. Polarizing microscopy,  |
| 50 | electron-microprobe analyses, X-ray diffraction measurements, Raman spectroscopy, and      |
| 51 | Secondary-ion Mass Spectrometry (SIMS), were used to determine its petrographic features,  |
| 52 | chemical composition and crystal structure. The species and the name have been approved by |
| 53 | the International Mineralogical Association, Commission on New Minerals, Nomenclature      |
| 54 | and Classification (CNMNC) (IMA 2012-032) (Williams et al. 2012). The co-type specimen     |
| 55 | used for the electron-microprobe analyses, X-ray powder diffraction, XPS, Raman and        |
| 56 | optical measurements is deposited at the Geological Museum of China, Beijing, China,       |
| 57 | catalogue number M11803. The co-type sample used for the single-crystal structure          |
| 58 | measurements is stored at the Laboratory of Mineralogy, University of Liège, catalogue     |
| 59 | number 20387. This paper presents the occurrence of this new Sr phosphate with the         |
| 60 | hurlbutite-type structure, and discusses the origin of strontiohurlbutite in the Nanping   |
| 61 | pegmatite.                                                                                 |
| 62 |                                                                                            |
| 63 | <b>O</b> CCURRENCE AND PARAGENESIS                                                         |
| 64 | Strontiohurlbutite was found in the Nanping No. 31 pegmatite, Fujian Province,             |
| 65 | southeastern China, which is located at longitude E 118°06', latitude N 26°40', about 8 km |

66 west of the Nanping city. The No. 31 pegmatite is a highly evolved and well-zoned pegmatite

| 67 | in the Nanping pegmatite district. Five discontinuous mineralogical-textural zones were              |
|----|------------------------------------------------------------------------------------------------------|
| 68 | distinguished from the outermost zone inward (Yang et al. 1987): quartz – albite – muscovite         |
| 69 | zone (Zone I), saccharoidal albite ± muscovite zone (Zone II); quartz – coarse albite –              |
| 70 | spodumene zone (Zone III); quartz – spodumene – amblygonite zone (Zone IV); and blocky               |
| 71 | quartz – K-feldspar zone (Zone V). The petrography and mineral paragenesis of different              |
| 72 | textural zones in this pegmatite have been well described in previous publications (e.g., Yang       |
| 73 | et al. 1987; Rao et al. 2009, 2011). Strontiohurlbutite was found in samples from zones I, II        |
| 74 | and IV.                                                                                              |
| 75 | Strontiohurlbutite from zone I forms subhedral to euhedral crystals up to to 1.5 mm long,            |
| 76 | mainly in close association with quartz (Fig. 1a). Back-scattered electron (BSE) images show         |
| 77 | the crystals to be weakly heterogeneous (Fig. 1a), and the brighter areas are slightly richer in     |
| 78 | Sr than the darker areas. Other associated minerals include muscovite, fluorapatite, and             |
| 79 | hurlbutite. In zone II, strontiohurlbutite occurs as small aggregates about 5 to 100 $\mu$ m across. |
| 80 | They are closely associated with beryl, hurlbutite, hydroxylherderite, fluorapatite, and             |
| 81 | phenakite, forming the Be silicate + phosphate mineral associations interstitial to albite           |
| 82 | crystals (Fig. 1b, Rao et al. 2011: Fig. 4a, the brightest areas). In zones I and IV,                |
| 83 | strontiohurlbutite also forms aggregates with a size ranging from 2 to 50 $\mu$ m; it surrounds      |
| 84 | hurlbutite crystals from zone I, and is distributed along the fractures of Cs-rich beryl from        |
| 85 | zone IV (Fig. 1c). Other secondary phases observed in this aggregates include beryl,                 |
| 86 | hurlbutite, hydroxylapatite and muscovite.                                                           |
| 87 |                                                                                                      |

**PHYSICAL AND OPTICAL PROPERTIES** 

| 89                                                                                                    | Strontiohurlbutite forms platy, subhedral crystals and anhedral grains. More than 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 90                                                                                                    | grains were found in zones I and II; they are light blue, transparent to translucent, and have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 91                                                                                                    | vitreous luster. The Mohs hardness is about 6, the tenacity is brittle, and no cleavage was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 92                                                                                                    | observed. The calculated density, based on the empirical formula and single-crystal unit cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 93                                                                                                    | parameters, is 3.101 g/cm <sup>3</sup> . Optically, strontionulbutite is biaxial negative, with $\alpha = 1.563$ (2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 94                                                                                                    | $\beta = 1.569$ (2), $\gamma = 1.572$ (3), measured in white light. The 2 <i>V</i> angle, measured directly by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 95                                                                                                    | conoscopic observations, is 68.5 (5)°; the calculated $2V$ is 70°. It exhibits weak dispersion,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 96                                                                                                    | $r > v$ , and it is colorless. The optical orientation is $X = b$ , $Y \approx c$ , and pleochroism is absent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 97                                                                                                    | Based on the calculated density and the measured indices of refraction, the compatibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 98                                                                                                    | index $[1 - (K_P/K_C)]$ is -0.006, and corresponds to the "Superior" category (Mandarino 1981).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100                                                                                                   | <b>R</b> AMAN SPECTROSCOPY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100<br>101                                                                                            | <b>RAMAN SPECTROSCOPY</b><br>Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 101                                                                                                   | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 101<br>102                                                                                            | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser<br>Raman microprobe in the State Key Laboratory for Mineral Deposits Research at Nanjing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 101<br>102<br>103                                                                                     | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser<br>Raman microprobe in the State Key Laboratory for Mineral Deposits Research at Nanjing<br>University. A 514.5 nm $Ar^+$ laser with a surface power of 5 mW was used for exciting the                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 101<br>102<br>103<br>104                                                                              | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser<br>Raman microprobe in the State Key Laboratory for Mineral Deposits Research at Nanjing<br>University. A 514.5 nm $Ar^+$ laser with a surface power of 5 mW was used for exciting the<br>radiation. Silicon (520 cm <sup>-1</sup> Raman shift) was used as a standard. Raman spectra were                                                                                                                                                                                                                                                                                                                    |
| 101<br>102<br>103<br>104<br>105                                                                       | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser<br>Raman microprobe in the State Key Laboratory for Mineral Deposits Research at Nanjing<br>University. A 514.5 nm $Ar^+$ laser with a surface power of 5 mW was used for exciting the<br>radiation. Silicon (520 cm <sup>-1</sup> Raman shift) was used as a standard. Raman spectra were<br>acquired from 100 to 1000 cm <sup>-1</sup> and the accumulation time of each spectrum is 60 s. Raman                                                                                                                                                                                                            |
| <ol> <li>101</li> <li>102</li> <li>103</li> <li>104</li> <li>105</li> <li>106</li> </ol>              | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser<br>Raman microprobe in the State Key Laboratory for Mineral Deposits Research at Nanjing<br>University. A 514.5 nm Ar <sup>+</sup> laser with a surface power of 5 mW was used for exciting the<br>radiation. Silicon (520 cm <sup>-1</sup> Raman shift) was used as a standard. Raman spectra were<br>acquired from 100 to 1000 cm <sup>-1</sup> and the accumulation time of each spectrum is 60 s. Raman<br>spectra were collected on single crystals of strontiohurlbutite on polished thin section chips.                                                                                                |
| <ol> <li>101</li> <li>102</li> <li>103</li> <li>104</li> <li>105</li> <li>106</li> <li>107</li> </ol> | Raman spectra of strontiohurlbutite were collected using a Renishaw RM2000 Laser<br>Raman microprobe in the State Key Laboratory for Mineral Deposits Research at Nanjing<br>University. A 514.5 nm Ar <sup>+</sup> laser with a surface power of 5 mW was used for exciting the<br>radiation. Silicon (520 cm <sup>-1</sup> Raman shift) was used as a standard. Raman spectra were<br>acquired from 100 to 1000 cm <sup>-1</sup> and the accumulation time of each spectrum is 60 s. Raman<br>spectra were collected on single crystals of strontiohurlbutite on polished thin section chips.<br>Figure 2 shows the Raman spectrum of strontiohurlbutite, which is remarkably similar to the |

| 111 | and weak sharp peaks at 1178, 1135, 492, 421 and 176 cm <sup>-1</sup> , respectively. The Raman shifts                                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 112 | of (PO <sub>4</sub> ) groups were observed at 1022 ( $v_1$ ), 421, 442( $v_2$ ), 1135, 1178 ( $v_3$ ) and 550, 575 and                                         |
| 113 | 587 cm <sup>-1</sup> ( $v_4$ ). The Be-O vibration modes are probably at 204 and 492 cm <sup>-1</sup> , and the Raman                                          |
| 114 | shifts at 176 and 343 cm <sup>-1</sup> certainly correspond to Sr-O vibrations.                                                                                |
| 115 |                                                                                                                                                                |
| 116 | CHEMICAL COMPOSITION                                                                                                                                           |
| 117 | The chemical composition of strontiohurlbutite (Table 1) was obtained with a JEOL                                                                              |
| 118 | JXA-8100M electron microprobe (WDS mode, 15 kV, 20 nA, beam diameter $1\mu m$ ) at the                                                                         |
| 119 | State Key Laboratory for Mineral Deposits Research, Nanjing University. The following                                                                          |
| 120 | standards were used: synthetic Ba <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> (Ba $L\alpha$ , P $K\alpha$ ), synthetic SrSO <sub>4</sub> (Sr $L\alpha$ ), and |
| 121 | hornblende (Ca Ka).                                                                                                                                            |

To determine the BeO content of strontiohurlbutite, SIMS measurements were 122 performed with a Cameca IMS-4F ion microprobe installed at CNR-IGG, Pavia (Italy). The 123 experimental conditions are similar to those reported in the literature (Ottolini et al. 1993, 124 2002; Hatert et al. 2011). We selected a sample of beryllonite (*courtesy* of S. Philippo, 125 126 Natural History Museum of Luxembourg) as standard for Be. The calibration factor for Be in 127 the standard was obtained through the calculation of the experimental Be ion yield, having chosen P as the inner element for the matrix. We thus derived the IY(Be/P), defined as 128  $(Be^{+}/P^{+})/((Be(at)/P(at)))$  where Be<sup>+</sup> and P<sup>+</sup> are the current intensities detected at the electron 129 130 multiplier and (at) is the elemental atomic concentration. The IY (Be/P) was then used to calculate the Be concentration in the strontiohurlbutite, resulting in  $17.71\pm0.464(1\sigma)$  BeO 131

| 132                                           | wt%. Additionally, a few H <sub>2</sub> O about $0.066\pm0.010(1\sigma)$ wt% is detected in strontiohurlbutite;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 133                                           | lithium is absent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 134                                           | Representative analyses of strontiohurlbutite (Table 1) lead to the empirical formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 135                                           | $(Sr_{0.81}Ca_{0.05}Ba_{0.01})_{\Sigma 0.87}Be_{2.02}P_{2.05}O_8$ , based on 8 O atoms per formula unit. The idealized,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 136                                           | end-member formula is SrBe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> , which requires 35.06 wt% SrO, 16.92 wt% BeO, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 137                                           | 48.02 wt% P <sub>2</sub> O <sub>5</sub> ; total 100.00 wt. %. A careful examination of chemical data (Table 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 138                                           | indicates significant amounts of Ca and Ba, reaching 3.10 wt% CaO and 0.22 wt% BaO, in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 139                                           | strontiohurlbutite from zone IV. This indicates the existence of a possible solid solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 140                                           | between hurlbutite and strontiohurlbutite; such a solid solution is confirmed by the high Sr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 141                                           | contents observed in some hurlbutite grains, reaching 10 wt% SrO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 142                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 143                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 144                                           | X-RAY POWDER DIFFRACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 144<br>145                                    | X-RAY POWDER DIFFRACTION<br>The X-ray powder diffraction pattern of strontionurlbutite was collected using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 145                                           | The X-ray powder diffraction pattern of strontiohurlbutite was collected using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 145<br>146                                    | The X-ray powder diffraction pattern of strontiohurlbutite was collected using micro-diffraction data on 5 crystals, with a RIGAKU D/max Rapid IIR micro-diffractometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 145<br>146<br>147                             | The X-ray powder diffraction pattern of strontiohurlbutite was collected using<br>micro-diffraction data on 5 crystals, with a RIGAKU D/max Rapid IIR micro-diffractometer<br>(CuK $\alpha$ , $\lambda$ = 1.54056 Å) at the School of Earth Sciences and Info-physics, Central South                                                                                                                                                                                                                                                                                                                                                                     |
| 145<br>146<br>147<br>148                      | The X-ray powder diffraction pattern of strontiohurlbutite was collected using<br>micro-diffraction data on 5 crystals, with a RIGAKU D/max Rapid IIR micro-diffractometer<br>(CuK $\alpha$ , $\lambda$ = 1.54056 Å) at the School of Earth Sciences and Info-physics, Central South<br>University, China. The micro-diffractometer was operated under these conditions: 48 kV, 250                                                                                                                                                                                                                                                                      |
| 145<br>146<br>147<br>148<br>149               | The X-ray powder diffraction pattern of strontiohurlbutite was collected using<br>micro-diffraction data on 5 crystals, with a RIGAKU D/max Rapid IIR micro-diffractometer<br>(CuK $\alpha$ , $\lambda = 1.54056$ Å) at the School of Earth Sciences and Info-physics, Central South<br>University, China. The micro-diffractometer was operated under these conditions: 48 kV, 250<br>mA, 0.05 mm collimator diameter, and 5-hours exposure time. The hurlbutite-based                                                                                                                                                                                  |
| 145<br>146<br>147<br>148<br>149<br>150        | The X-ray powder diffraction pattern of strontiohurlbutite was collected using<br>micro-diffraction data on 5 crystals, with a RIGAKU D/max Rapid IIR micro-diffractometer<br>(CuK $\alpha$ , $\lambda = 1.54056$ Å) at the School of Earth Sciences and Info-physics, Central South<br>University, China. The micro-diffractometer was operated under these conditions: 48 kV, 250<br>mA, 0.05 mm collimator diameter, and 5-hours exposure time. The hurlbutite-based<br>structural model (Huminicki and Hawthorne 2002), in which Ca sites are occupied by Sr                                                                                         |
| 145<br>146<br>147<br>148<br>149<br>150<br>151 | The X-ray powder diffraction pattern of strontiohurlbutite was collected using<br>micro-diffraction data on 5 crystals, with a RIGAKU D/max Rapid IIR micro-diffractometer<br>(CuK $\alpha$ , $\lambda = 1.54056$ Å) at the School of Earth Sciences and Info-physics, Central South<br>University, China. The micro-diffractometer was operated under these conditions: 48 kV, 250<br>mA, 0.05 mm collimator diameter, and 5-hours exposure time. The hurlbutite-based<br>structural model (Huminicki and Hawthorne 2002), in which Ca sites are occupied by Sr<br>atoms, was used to index the powder diffraction data. Table 2 shows the main indexed |

|     |                                                           | -                         |
|-----|-----------------------------------------------------------|---------------------------|
| 154 | 3.073(38)(022); 2.542(67)(113); 2.230(42) (213); 2.215(8) | 87)(321); 2.046(54)(223); |

155 1.714(32)(143). The X-ray powder diffraction studies on the crystals of strontiohurlbutite

gave the following unit-cell parameters: a = 8.005 (4), b = 8.998 (5), c = 8.426 (5) Å,  $\beta =$ 156

- 90.05 (5)°, V = 606.9 (3) Å<sup>3</sup>, Z = 4, and space group  $P 2_1/c$ . 157
- 158

159

## **CRYSTAL STRUCTURE DETERMINATION**

160

| 161 | The X-ray intensity data, aimed to perform a structure refinement of strontiohurlbutite,                                     |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 162 | were collected on an Agilent Technologies Xcalibur four-circle diffractometer, equipped with                                 |
| 163 | an EOS CCD area-detector (University of Liège, Belgium) on a crystal fragment measuring                                      |
| 164 | $0.35 \times 0.35 \times 0.18$ mm. A total of 2186 frames with a spatial resolution of 1° were collected                     |
| 165 | by the $\phi/\omega$ scan technique, with a counting time of 10 s per frame, in the range 6.64° $<2\theta<$                  |
| 166 | 58.18°. A total of 26214 reflections were extracted from these frames, corresponding to 1566                                 |
| 167 | unique reflections. Unit-cell parameters refined from these reflections are $a$ 7.997(1), $b$                                |
| 168 | 8.979(1), c 8.420(1) Å, $\beta$ 90.18(1)°, V 604.7(1)Å <sup>3</sup> , space group P2 <sub>1</sub> /c, in good agreement with |
| 169 | those refined from the powder-diffraction data. A summary of the crystal data is presented in                                |
| 170 | Table 3. The data were corrected for Lorenz, polarization and absorption effects, the latter                                 |
| 171 | with an empirical method using the SCALE3 ABSPACK scaling algorithm included in the                                          |
| 172 | CrysAlisRED package (Oxford Diffraction 2007). The structure refinement was performed with                                   |
| 173 | anisotropic-displacement parameters for all atoms. The final conventional $R_1$ factor $[F_0 >$                              |
| 174 | $2\sigma(F_0)$ ] is 0.0197. Atomic coordinates and anisotropic displacement parameters, as well as                           |
| 175 | selected bond distances and angles, are given in Table 4 and Table 5, respectively.                                          |

| 176 | The structure of strontiohurlbutite is based on a tetrahedral framework consisting of                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 177 | corner-sharing BeO <sub>4</sub> and PO <sub>4</sub> tetrahedra (Fig. 3). BeO <sub>4</sub> and PO <sub>4</sub> tetrahedra are assembled in |
| 178 | 4- and 8-membered rings, respectively. The 4-membered ring consists of a pair of tetrahedra                                               |
| 179 | pointing upwards (U) and a pair of tetrahedra pointing downwards (D), showing the UUDD                                                    |
| 180 | type rings (Fig. 4a); the 8-membered ring shows the DDUDUUDU pattern (Fig. 4b). Sr                                                        |
| 181 | atoms are localized in the channels formed by the alignment of the 8-membered rings (Fig. 3).                                             |
| 182 | A view perpendicular to the $b$ direction shows that BeO <sub>4</sub> and PO <sub>4</sub> tetrahedra connected by                         |
| 183 | corner-sharing form a double crankshaft chain running along <i>a</i> (Fig. 4c).                                                           |
| 184 | The $Sr^{2+}$ ions are located in 10-coordinated polyhedra, characterized by 7 short bonds                                                |
| 185 | [ <sr-o> = 2.596(2)  Å] and 3 long bonds <math>[<sr-o> = 3.227(2)  Å]</sr-o></math>. This polyhedron can be</sr-o>                        |
| 186 | described as a combination of a square pyramid and of a trigonal prism, with one square face                                              |
| 187 | in common. Based on the empirical parameters of Brown and Altermatt (1965), the                                                           |
| 188 | bond-valence sums for strontiohurlbutite were calculated (Table 6). The bond-valence sums                                                 |
| 189 | for P (5.00-5.04), Be (2.05-2.07), and Sr (2.09) are very close to the theoretical values.                                                |
| 190 | The structure of strontiohurlbutite can be compared to those of hurlbutite (Mrose 1952;                                                   |
| 191 | Bakakin and Belov 1959; Lindbloom et al. 1974) and paracelsian (Smith 1953; Bakakin and                                                   |
| 192 | Belov 1960). The replacement of Ca in the structure of hurlbutite (effective ionic radius 1.06                                            |
| 193 | Å; Shannon 1976) by Sr in strontiohurlbutite (effective ionic radius 1.21 Å) leads to an                                                  |
| 194 | increase of the seven shorter $M^{2+}$ -O bonds from 2.469(6) Å to 2.596(2) Å, respectively. This                                         |
| 195 | larger crystallographic site also implies an increase of the unit-cell parameters of                                                      |
| 196 | strontiohurlbutite, compared to those of hurlbutite (Table 7).                                                                            |

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4547

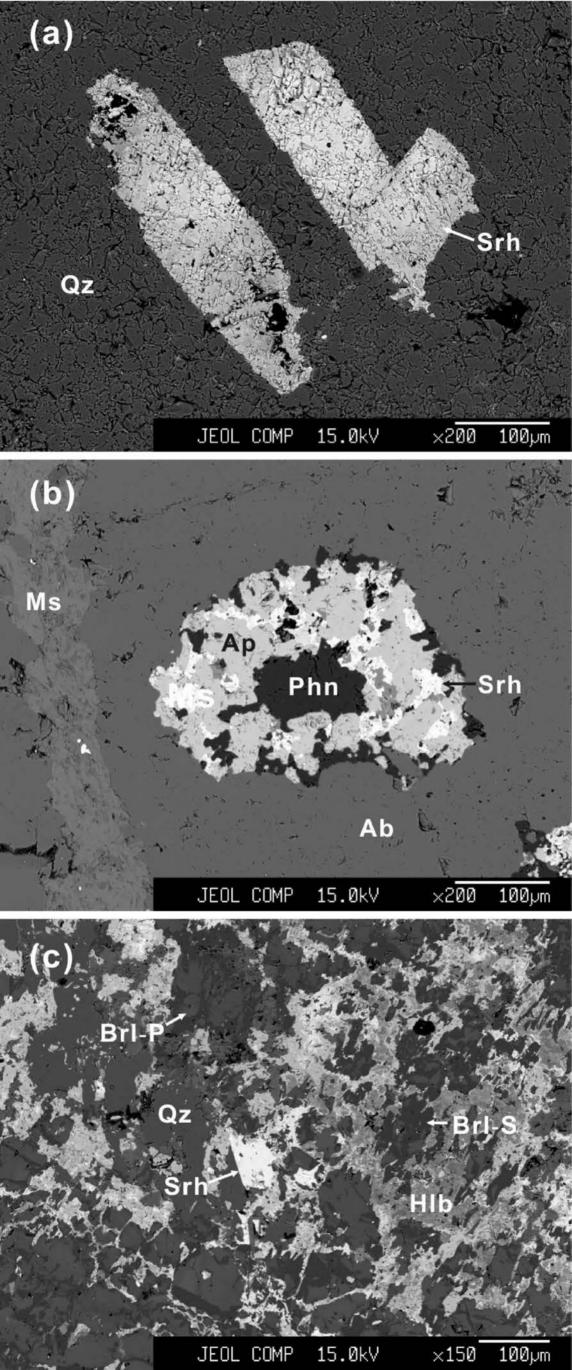
198

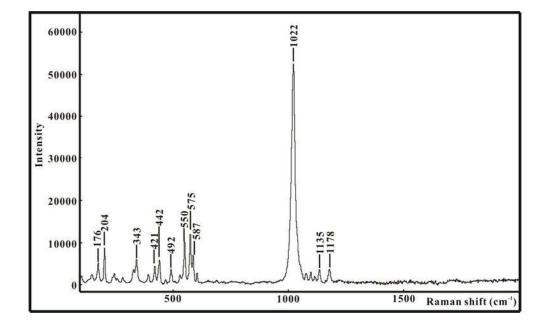
## **ORIGIN AND SIGNIFICANCE**

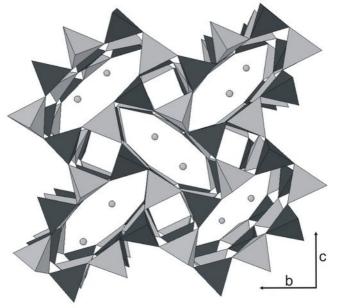
| 199 | Strontium is a widespread element in most rocks. Since its crystal-chemistry is similar to       |
|-----|--------------------------------------------------------------------------------------------------|
| 200 | that of calcium, Sr commonly substitutes for Ca in minerals, especially in phosphates.           |
| 201 | Various Sr-bearing phosphate minerals, including stronadelphite (Pekov et al. 2010),             |
| 202 | palermoite (Mrose 1953; Ni et al. 1993), goedkenite (Moore et al. 1975), and                     |
| 203 | strontiowhitlockite (Britvin et al. 1991), are known to have a Ca-bearing isostructural          |
| 204 | analogue. The new mineral species described in the present paper, strontiohurlbutite, is the     |
| 205 | Sr-dominant analogue of hurlbutite, and constitutes a new member of the hurlbutite group         |
| 206 | (Table 7).                                                                                       |
| 207 | Strontiohurlbutite occurs in close association with hurlbutite, thus indicating that both        |
| 208 | minerals may crystallize under a comparable range of physicochemical conditions. Their           |
| 209 | textural relationships suggest that the hurlbutite-group minerals evolved from hurlbutite to     |
| 210 | strontiohurlbutite. Strontiohurlbutite crystals are enriched in Ba in zones I-II and in Ca in    |
| 211 | zone IV (Table 1), thus indicating a solid solution with hurlbutite. Consequently, the activity  |
| 212 | of Sr in the pegmatite fluids seems to be an essential factor controlling the crystallization of |
| 213 | strontiohurlbutite.                                                                              |
| 214 | High Sr activity in late hydrothermal fluids affecting pegmatite systems was documented          |
| 215 | in the literature (e.g., Moore 1982; Charoy et al. 2003). This high activity induces the         |
| 216 | replacement of early minerals by secondary Sr-bearing minerals such as palermoite and            |
| 217 | goyazite (e.g., Ni et al. 1993; Galliski et al. 2012). In the Nanping No. 31 pegmatite,          |
| 218 | strontiohurlbutite occurs with hurlbutite along fractures of primary beryl (Fig. 1c); this       |
| 219 | petrographic texture indicates that the primary beryl was affected by a late Sr-, Ca- and P-rich |

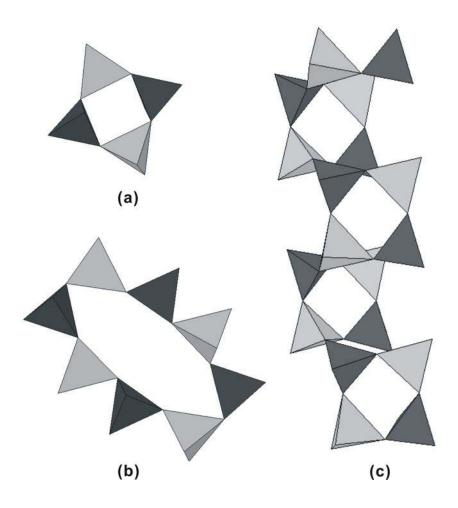
9/25

| 220 | hydrothermal fluid. Hurlbutite contains high SrO contents, from 5 to 10 wt%, thus indicating           |
|-----|--------------------------------------------------------------------------------------------------------|
| 221 | that Sr in the late hydrothermal fluids became a trigger for the transition from hurlbutite to         |
| 222 | strontiohurlbutite. In fact, other secondary Sr-bearing phosphate minerals such as palermoite,         |
| 223 | goyazite, hydroxylapatite, and bertossaite were found in the Nanping No. 31 pegmatite (Ni et           |
| 224 | al. 1993; Yang et a. 1994); the source of Sr in the hydrothermal fluids, responsible for the           |
| 225 | crystallization of these secondary minerals, remains to be determined in the future.                   |
| 226 |                                                                                                        |
| 227 |                                                                                                        |
| 228 | ACKNOWLEDGMENTS                                                                                        |
| 229 | Financial support for the research was provided by NSF of China (Grant No. 41102020,                   |
| 230 | 41230315), the Ministry of Science and Technology (Grant No. 2012CB416704), and by the                 |
| 231 | Fundamental Research Funds for the Central Universities. We are indebted to CHEN Guojian               |
| 232 | (Geological Survey of North Fujian) for his help during field work.                                    |
| 233 |                                                                                                        |
| 234 |                                                                                                        |
| 235 | <b>R</b> EFERENCES CITED                                                                               |
| 236 | Bakakin, V.V. and Belov, N.V. (1959) The crystalline structure of hurlbutite. Doklady Akademii Nauk    |
| 237 | SSSR, 125, 343-344.                                                                                    |
| 238 | Bakakin, V.V. and Belov, N.V. (1960) Crystal structure of paracelsian, Soviet Physics Crystallography, |
| 239 | 5, 826-829.                                                                                            |


- 240 Britvin, S.N., Pakhomovskii, Y.A., Bogdanova, A.N. and Skiba, V.I. (1991) Strontiowhitlockite,
- 241  $Sr_9Mg(PO_3OH)(PO_4)_6$ , a new mineral species from the Kovdor Deposit, Kola Peninsula, U.S.S.R.
- 242 Canadian Mineralogist, 29, 87-93.
- 243 Brown, I.D. and Altermatt, D. (1965) Bond-valence parameters obtained from a systematic analysis of
- the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
- 245 Charoy, B., Chaussidon, M., Carlier De Veslud, C.L. and Duthou, J.L. (2003) Evidence of Sr mobility
- in and around the albite-lepidolite-topaz granite of Beauvoir (France): an in-situ ion and electron
- probe study of secondary Sr-rich phosphates. Contributions to Mineralogy and Petrology, 145,
- 248 673-690.
- 249 Galliski, M.Á., Černý, P., Márquez-Zavalía, M.F. and Chapman, R. (2012) An association of
- 250 secondary Al-Li-Be-Ca-Sr phosphates in the San Elías pegmatite, San Luis, Argentina. Canadian
- 251 Mineralogist, 50, 933-942.
- 252 Hatert, F., Ottolini, L. and Schmid-Beurmann, P. (2011) Experimental investigation of the alluaudite
- + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to
- atural pegmatite phosphates. Contributions to Mineralogy and Petrology, 161, 531-546.
- 255 Huminicki, D.M.C. and Hawthorne, F.C. (2002) The Crystal Chemistry of the Phosphate Minerals.
- 256 Reviews in Mineralogy and Geochemistry, 48, 123-253.
- 257 Lindbloom, J.T., Gibbs, G.V. and Ribbe, P.H. (1974) The crystal structure of hurlbutite: a comparison
- with danburite and anorthite. American Mineralogist, 59, 1267-1271.
- 259 Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility concept and its
- application. Canadian Mineralogist, **19**, 441-450.


- 261 Moore, P.B. (1982) Pegmatite minerals of P(V) and B(III). in Granitic Pegmatites in Science and
- 262 Industry ( P. Černý, ed.). Mineralogical Association of Canada Short Course Handbook E,
  263 267-291.
- 264 Moore, P.B., Irving, A.J. and Kampf, A.R. (1975) Foggite, CaAl(OH)<sub>2</sub>(H<sub>2</sub>O) [PO<sub>4</sub>]; goedkenite,
- 265  $(Sr,Ca)_2Al(OH)[PO_4]_2$ ; and samuelsonite,  $(Ca,Ba)Fe^{2+}_2Mn^{2+}_2Ca_8Al_2(OH)_2[PO_4]_{10}$ : three new
- species from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American
  Mineralogist, 60, 957-964.
- 268 Mrose, M.E. (1952) Hurlbutite, CaBe<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>, a new mineral. American Mineralogist, 37, 931-940.
- 269 Mrose, M.E. (1953) Palermoite and goyazite, two strontium minerals from the Palermo mine, North
- 270 Groton, N H. (abstr.). American Mineralogist, 38, 354.
- 271 Ni, Y.X., Yang, Y.Q. and Wang, W.Y. (1993) Palermoite-bertossaite in Nanping granitic pegmatites,
- Fujian. Acta mineralogica sinica, 13(4), 346-353 (in Chinese with English abstract).
- 273 Ottolini, L., Bottazzi, P. and Vannucci, R. (1993): Quantification of Lithium, Beryllium and Boron in
- 274 Silicates by Secondary Ion Mass Spectrometry Using Conventional Energy Filtering, Analytical
- 275 Chemistry, 65, 1960-1968.
- 276 Ottolini, L., Camara, F., Hawthorne, F.C. and Stirling, J. (2002): SIMS matrix effects in the analysis
- 277 of light elements in silicate minerals: Comparison with SREF and EMPA data, American
- 278 Mineralogist, 87, (2002), 1477-1485.
- 279 Oxford Diffraction (2007) CrysAlis CCD and CrysAlis RED, version 1.71. Oxford Diffraction, Oxford,
- 280 England.
- 281 Pekov, I.V., Britvin, S.N., Zubkova, N.V., Pushcharovsky, D.Y., Pasero, M. and Merlino, S. (2010)
- Stronadelphite, Sr<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F, a new apatite-group mineral. European journal of Mineralogy, 22(6),
  869-874.


- 284 Rao, C., Wang, R.C. and Hu, H. (2011) Paragenetic assemblages of beryllium silicates and
- 285 phosphates from the Nanping no. 31 granitic pegmatite dyke, Fujian province, southeastern
- china. Canadian Mineralogist, 49(5), 1175-1187.
- 287 Rao, C., Wang, R.C., Hu, H. and Zhang, W.L. (2009) Complex internal textures in oxide minerals
- from the Nanping No. 31 dyke of granitic pegmatite, Fujian province, Southeastern China.
- 289 Canadian Mineralogist, 47, 1195-1212.
- 290 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in
- halides and chalcogenides. Acta Crystallographica, A32, 751-767.
- 292 Smith, J.V. (1953) The crystal structure of paracelsian, BaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>. Acta Crystallographica, 6,
- 293 613**-**620.
- Williams, P. A., Hatert, F., Pasero, M. and Mills, S. J. (2012): New minerals and nomenclature
  modifications approved in 2012, Mineralogical Magazine, 76, 1281-128.
- 296 Yang, Y.Q., Ni, Y.X., Guo, Y.Q., Qiu, N.M., Chen, C.H., Cai, C.F., Zhang, Y.P., Liu, J.B. and Chen,
- 297 Y.X. (1987) Rock-forming and ore-forming characteristics of the Xikeng granitic pegmatites in
- 298 Fujian Province. Mineral Deposits, 6(3), 10-21 (in Chinese with English abstract).
- 299 Yang, Y.Q., Wang, W.Y., Lin G.X., Chen, C.H. and Zhu, J.H. (1994) Phosphate minerals and their
- 300 geochemical evolution of granitic pegmatite in Nanping, Fujian Province. Geology of Fujian,
- 301 13(4), 215-226 (in Chinese with English abstract).
- 302
- 303
- 304
- 305


| 306 |                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 307 | FIGURE CAPTIONS                                                                                                    |
| 308 |                                                                                                                    |
| 309 | FIGURE 1. BSE images showing occurrence and mineral associations of strontiohurlbutite. (a)                        |
| 310 | euhedral strontiohurlbutite crystals in close association with quartz in zone I. (b) Small                         |
| 311 | aggregate of strontiohurlbutite in a Be silicate + phosphate assemblage interstitial to albite                     |
| 312 | crystals in zone II. (c) Strontiohurlbutite associated with secondary phases (beryl, hurlbutite,                   |
| 313 | hydroxylapatite and muscovite) in the fractures of primary beryl from zone IV. Abbr.: Qz -                         |
| 314 | quartz, Srh - strontiohurlbutite, Brl-P - primary beryl, Brl-S - secondary beryl, Phn -                            |
| 315 | phenakite, Ab - albite, Hlb - hurlbutite, Ms - muscovite, Ap - apatite.                                            |
| 316 |                                                                                                                    |
| 317 | FIGURE 2. The Raman spectrum of strontionurlbutite.                                                                |
| 318 |                                                                                                                    |
| 319 | <b>FIGURE 3.</b> The crystal structure of strontionurlbutite. Note: $PO_4$ tetrahedra in dark gray; $BeO_4$        |
| 320 | tetrahedra in gray; circle for Sr atoms.                                                                           |
| 321 |                                                                                                                    |
| 322 | <b>FIGURE 4.</b> Chains and rings in the crystal structure of strontiohurlbutite (PO <sub>4</sub> tetrahedra: dark |
| 323 | gray; BeO <sub>4</sub> tetrahedra: gray). (a) 4-membered ring with the pattern UUDD; (b) 8-membered                |
| 324 | ring with the pattern DDUDUUDU; (c) double-crankshaft chain aligned along the $a$ axis.                            |
| 325 |                                                                                                                    |

9/25









|               |             | Strontioh    | Average      | Ideal<br>strontiohurlbutite |         |          |       |        |
|---------------|-------------|--------------|--------------|-----------------------------|---------|----------|-------|--------|
|               | NP-66       | (zone I)     | NP-14 (      | (zone II)                   | NP-54 ( | zone IV) |       |        |
| $P_2O_5$ wt.% | 50.54       | 50.54        | 50.54        | 52.73                       | 50.75   | 51.20    | 51.05 | 48.02  |
| SrO           | 29.04       | 29.67        | 30.02        | 28.88                       | 30.61   | 27.57    | 29.30 | 35.06  |
| BeO*          | 17.71       | 17.71        | 17.71        | 17.71                       | 17.71   | 17.71    | 17.71 | 16.92  |
| CaO           | 0.07        | 0.17         | 0.15         | 0.18                        | 1.80    | 3.10     | 0.91  |        |
| BaO           | 1.21        | 0.87         | 1.18         | 0.18                        | 0.18    | 0.22     | 0.64  |        |
| Total         | 98.11       | 98.55        | 99.23        | 99.81                       | 100.98  | 99.81    | 99.61 | 100.00 |
| Structural fo | rmulas calc | ulated on th | e basis of O | =8 atoms                    |         |          |       |        |
| P apfu        | 2.051       | 2.047        | 2.043        | 2.087                       | 2.025   | 2.036    | 2.048 | 2.000  |
| Sr            | 0.807       | 0.823        | 0.831        | 0.783                       | 0.837   | 0.751    | 0.805 | 1.000  |
| Ве            | 2.039       | 2.035        | 2.031        | 1.989                       | 2.006   | 1.999    | 2.016 | 2.000  |
| Са            | 0.004       | 0.009        | 0.008        | 0.009                       | 0.091   | 0.156    | 0.046 | -      |
| Ва            | 0.023       | 0.016        | 0.022        | 0.003                       | 0.003   | 0.004    | 0.012 | -      |

TABLE 1. Representative electron-microprobe results of strontionurlbutite from the Nanping No. 31 pegmatite dyke

\*: BeO was measured by SIMS.

|   | ,              |                  |                       |                       |                  |
|---|----------------|------------------|-----------------------|-----------------------|------------------|
| h | k              | 1                | d <sub>meas</sub> (Å) | d <sub>calc</sub> (Å) | I <sub>rel</sub> |
| 0 | 1              | 1                | 6.150                 | 6.150                 | 9                |
| 1 | 1              | 0                | 5.985                 | 5.981                 | 3                |
| 2 | 1              | 0                | 3.653                 | 3.657                 | 5                |
| 1 | 2              | 1                | 3.554                 | 3.555                 | 100              |
| 2 | 1              | 1                | 3.355                 | 3.354                 | 51               |
| 0 | 2              | 2                | 3.073                 | 3.075                 | 38               |
| 1 | 3              | 0                | 2.810                 | 2.809                 | 27               |
| 0 | 1              | 3                | 2.678                 | 2.681                 | 9                |
| 1 | 1              | 3                | 2.542                 | 2.542                 | 67               |
| 0 | 2              | 3                | 2.380                 | 2.383                 | 26               |
| 3 | 2              | 0                | 2.294                 | 2.295                 | 1                |
| 2 | 1              | 3                | 2.230                 | 2.227                 | 42               |
| 3 | 2              | 1                | 2.215                 | 2.215                 | 87               |
| 2 | 3              | 3<br>1<br>2<br>3 | 2.083                 | 2.086                 | 26               |
| 2 | 2              | 3                | 2.046                 | 2.047                 | 54               |
| 3 | 3              | 0                | 1.994                 | 1.994                 | 19               |
| 1 | 1              | 4                | 1.986                 | 1.986                 | 13               |
| 3 | 2              | 3                | 1.776                 | 1.777                 | 16               |
| 2 | 2              | 4                | 1.721                 | 1.722                 | 21               |
| 1 | 4              | 3                | 1.714                 | 1.715                 | 32               |
| 0 | 1              | 5                | 1.655                 | 1.656                 | 11               |
| 3 | ī              | $\frac{1}{4}$    | 1.627                 | 1.627                 | 31               |
| 3 | 1              | 4                | 1.623                 | 1.625                 | 6                |
| 1 | $\overline{2}$ | 5                | 1.549                 | 1.549                 | 10               |
| 4 | 2              |                  | 1.531                 | 1.532                 | 4                |
| 5 | 1              | <b>3</b><br>3    | 1.376                 | 1.375                 | 6                |

 TABLE 2. Powder X-ray diffraction data for strontiohurlbutite

| Crystal size (mm)                                         | 0.35 × 0.35 × 0.18                                     |
|-----------------------------------------------------------|--------------------------------------------------------|
| Color                                                     | Light blue                                             |
| Space group                                               | P21/c                                                  |
| a, b, c (Å)                                               | 7.997(1), 8.979(1), 8.420(1)                           |
| β(°)                                                      | 90.18(1)                                               |
| V (Å <sup>3</sup> )                                       | 604.7(1)                                               |
| Ζ                                                         | 4                                                      |
| D(calc) (g/cm <sup>3</sup> )                              | 3.101                                                  |
| $2\theta_{min}, 2\theta_{max}$                            | 6.64°, 58.18°                                          |
| Range of indices                                          | $-10 \le h \le 10, -12 \le k \le 12, -11 \le l \le 11$ |
| Measured intensities                                      | 26214                                                  |
| Unique reflections                                        | 1566                                                   |
| Independent non-zero $[l > 2\sigma(l)]$ reflections       | 1473                                                   |
| $\mu (mm^{-1})$                                           | 9.451                                                  |
| Refined parameters                                        | 118                                                    |
| $R_1 \left[ F_0 > 2\sigma(F_0) \right]$                   | 0.0197                                                 |
| $R_1$ (all)                                               | 0.0234                                                 |
| wR <sub>2</sub> (all)                                     | 0.0467                                                 |
| S (goodness of fit)                                       | 1.106                                                  |
| Max $\Delta \sigma$ in the last l.s. cycle                | 0.001                                                  |
| Max peak and hole in the final $\Delta F$ map ( $e/Å^3$ ) | +0.44 and -0.42                                        |

 TABLE 3. Crystal data and refinement parameters for strontiohurlbutite

TABLE 4. Atomic coordinates and displacement parameters  $(\text{\AA}^2)$  for strontiohurlbutite

| Atom | x          | У          | z           | <b>U</b> 11 | U <sub>22</sub> | <b>U</b> 33 | U <sub>23</sub> | <b>U</b> <sub>13</sub> | <b>U</b> 12 | $U_{\rm eq}$ |
|------|------------|------------|-------------|-------------|-----------------|-------------|-----------------|------------------------|-------------|--------------|
| Sr   | 0.25553(2) | 0.91255(2) | 0.10887(2)  | 0.0093(1)   | 0.0075(1)       | 0.0092(1)   | -0.00060(7)     | -0.00046(7)            | 0.00024(7)  | 0.00867(7)   |
| P1   | 0.56332(7) | 0.69579(6) | -0.06627(6) | 0.0073(2)   | 0.0049(2)       | 0.0049(2)   | 0.0001(2)       | -0.0002(2)             | 0.0001(2)   | 0.0057(1)    |
| P2   | 0.06219(7) | 0.58553(6) | 0.23174(6)  | 0.0070(2)   | 0.0060(2)       | 0.0046(2)   | -0.0003(2)      | -0.0004(2)             | -0.0002(2)  | 0.0059(1)    |
| Be1  | 0.4288(3)  | 0.9193(3)  | -0.2734(3)  | 0.009(1)    | 0.008(1)        | 0.008(1)    | 0.000(1)        | -0.000(1)              | 0.001(1)    | 0.0080(5)    |
| Be2  | -0.0739(3) | 0.6931(3)  | -0.0633(3)  | 0.009(1)    | 0.009(1)        | 0.007(1)    | 0.001(1)        | -0.001(1)              | -0.000(1)   | 0.0084(5)    |
| 01   | 0.4369(2)  | 0.6818(2)  | 0.0703(2)   | 0.0101(7)   | 0.0093(7)       | 0.0075(7)   | 0.0009(6)       | 0.0014(6)              | 0.0008(6)   | 0.0090(3)    |
| 02   | 0.2404(2)  | 0.9069(2)  | -0.1991(2)  | 0.0074(7)   | 0.0162(8)       | 0.0071(7)   | 0.0005(6)       | 0.0000(6)              | -0.0004(6)  | 0.0102(3)    |
| O3   | 0.5490(2)  | 0.8580(2)  | -0.1277(2)  | 0.0106(7)   | 0.0062(7)       | 0.0082(7)   | 0.0018(6)       | -0.0025(6)             | 0.0001(6)   | 0.0083(3)    |
| O4   | 0.7383(2)  | 0.6626(2)  | -0.0085(2)  | 0.0082(7)   | 0.0111(8)       | 0.0119(7)   | 0.0029(6)       | -0.0001(6)             | -0.0003(6)  | 0.0104(3)    |
| O5   | 0.4906(2)  | 1.0885(2)  | -0.3003(2)  | 0.0143(7)   | 0.0067(7)       | 0.0074(7)   | 0.0018(5)       | -0.0028(6)             | -0.0011(6)  | 0.0095(3)    |
| O6   | -0.0063(2) | 0.9273(2)  | 0.3062(2)   | 0.0141(8)   | 0.0062(7)       | 0.0084(7)   | 0.0009(5)       | 0.0023(6)              | 0.0007(6)   | 0.0096(3)    |
| 07   | 0.0564(2)  | 0.6876(2)  | 0.0871(2)   | 0.0102(7)   | 0.0087(7)       | 0.0068(7)   | 0.0015(6)       | -0.0020(6)             | -0.0014(6)  | 0.0085(3)    |
| 08   | -0.0555(2) | 0.8622(2)  | -0.1352(2)  | 0.0090(7)   | 0.0067(7)       | 0.0084(7)   | 0.0017(6)       | 0.0022(6)              | 0.0004(6)   | 0.0080(3     |

| P1-O3    | 1.549(2)  | O2-Be1-O3 | 103.2(2) |
|----------|-----------|-----------|----------|
| P1-05    | 1.541(2)  | O5-Be1-O2 | 113.6(2) |
| P1-04    | 1.509(2)  | O5-Be1-O3 | 103.9(2) |
| P1-01    | 1.538(2)  | O1-Be1-O2 | 108.4(2) |
| Mean     | 1.535     | O1-Be1-O3 | 113.4(2) |
|          |           | O1-Be1-O5 | 113.9(2) |
| O5-P1-O3 | 108.92(8) | Mean      | 109.39   |
| O4-P1-O3 | 111.16(9) |           |          |
| O4-P1-O5 | 111.62(9) | Be2-08    | 1.642(3) |
| O4-P1-O1 | 110.68(8) | Be2-07    | 1.638(3) |
| O1-P1-O3 | 106.14(8) | Be2-O4    | 1.597(3) |
| O1-P1-O5 | 108.12(9) | Be2-06    | 1.635(3) |
| Mean     | 109.44    | Mean      | 1.628    |
|          |           |           |          |
| P2-08    | 1.539(2)  | 07-Be2-08 | 104.8(2) |
| P2-02    | 1.540(2)  | O7-Be2-O8 | 110.6(2) |
| P2-07    | 1.525(2)  | O7-Be2-O8 | 111.6(2) |
| P2-06    | 1.523(2)  | O7-Be2-O8 | 113.2(2) |
| Mean     | 1.531     | O7-Be2-O8 | 109.5(2) |
|          |           | O7-Be2-O8 | 106.8(2) |
| 08-P2-02 | 106.21(8) | Mean      | 109.40   |
| 07-P2-08 | 112.43(9) |           |          |
| 07-P2-02 | 107.53(9) | Sr-08     | 2.588(2) |
| O6-P2-O8 | 104.89(9) | Sr-08'    | 3.253(2) |
| O6-P2-O2 | 113.03(9) | Sr-02     | 3.295(2) |
| O6-P2-O7 | 112.64(9) | Sr-02'    | 2.596(2) |
| Mean     | 109.45    | Sr-03     | 2.591(2) |
|          |           | Sr-O3'    | 3.122(2) |
| Be1-O2   | 1.637(3)  | Sr-O5     | 2.588(2) |
| Be1-O3   | 1.651(3)  | Sr-07     | 2.579(2) |
| Be1-O5   | 1.614(3)  | Sr-06     | 2.680(2) |
| Be1-O1   | 1.600(3)  | Sr-01     | 2.551(2) |
| Mean     | 1.627     | Mean      | 2.784    |
|          |           |           |          |

TABLE 5. Selected bond distances (Å) and angles (°) for strontiohurlbutite

|    | Sr           | P1   | P2   | Be1  | Be2  | Σ    |
|----|--------------|------|------|------|------|------|
| 01 | 0.31         | 1.23 |      | 0.55 |      | 2.10 |
| 02 | 0.27<br>0.04 |      | 1.23 | 0.50 |      | 2.05 |
| O3 | 0.28<br>0.07 | 1.20 |      | 0.48 |      | 2.03 |
| O4 |              | 1.33 |      |      | 0.56 | 1.89 |
| O5 | 0.28         | 1.23 |      | 0.53 |      | 2.04 |
| O6 | 0.22         |      | 1.29 |      | 0.50 | 2.01 |
| 07 | 0.29         |      | 1.28 |      | 0.50 | 2.07 |
| O8 | 0.28<br>0.05 |      | 123  |      | 0.49 | 2.06 |
| Σ  | 2.09         | 5.00 | 5.04 | 2.07 | 2.05 |      |

Table 6. Bond valence sums for strontiohurlbutite

|                                                      | Strontiohurlbutite                                | Hurlbutite (Mrose 1952)                           |  |  |
|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|
| Color                                                | light blue                                        | colorless to greenish                             |  |  |
| Structural formula                                   | SrBe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> | CaBe <sub>2</sub> (PO <sub>4</sub> ) <sub>2</sub> |  |  |
| Space group                                          | P21/c                                             | P2 <sub>1</sub> /a                                |  |  |
| а                                                    | 7.997 (1) Å                                       | 8.29 Å                                            |  |  |
| b                                                    | 8.979 (1) Å                                       | 8.80 Å                                            |  |  |
| С                                                    | 8.420 (1) Å                                       | 7.81 Å                                            |  |  |
| β                                                    | 90.18 (1)°                                        | 90.5°                                             |  |  |
| V                                                    | 604.7 (1) Å <sup>3</sup>                          | 570 Å <sup>3</sup>                                |  |  |
| Z                                                    | 4                                                 | 4                                                 |  |  |
| Density                                              | 3.101* g/cm <sup>3</sup> (calc)                   | 2.90* g/cm <sup>3</sup> (calc)                    |  |  |
| * Density calculation based on the empirical formula |                                                   |                                                   |  |  |

TABLE 7. Comparison of the physical properties of strontiohurlbutite and hurlbutite