	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4499 10/2
1	Revision 3
2	Correction Date 08/31/13
3	Structural and dynamical relationships of Ca ²⁺ and
4	H ₂ O in smectite/ ² H ₂ O systems
5	Geoffrey M. Bowers ^{1,2} , Jared W. Singer ² , David L. Bish ³ , and R. James Kirkpatrick ⁴
6	¹ Division of Chemistry, College of Liberal Arts and Sciences, Alfred University, Alfred, New
7	York 14802, USA.
8	² Department of Materials Engineering, Kazuo Inamori College of Engineering, Alfred
9	University, Alfred, New York 14802, USA.
10	³ Department of Geosciences, Indiana University, Bloomington, Indiana 47405, USA.
11	⁴ College of Natural Science, Michigan State University, East Lansing, Michigan 48824, USA.
12	ABSTRACT
13	We present an X-ray diffraction and multi-nuclear (² H and ⁴³ Ca) NMR study of Ca-exchanged
14	hectorite (a smectite clay) that provides important new insight into molecular behavior at the
15	smectite-H ₂ O interface. Variable temperature ⁴³ Ca MAS NMR and controlled humidity XRD
16	indicate that Ca ²⁺ occurs as proximity-restricted outer-sphere hydration complexes between -120
17	°C and +25 °C in a two-layer hydrate and at $T \le -50$ °C in a 2:1 water/solid paste. Changes in
18	the ⁴³ Ca NMR peak width and position with temperature are more consistent with diffusion-

1

19 related processes than with dynamics involving metal-surface interactions such as site exchange. 20 The ²H NMR signal between -50 °C and +25 °C for a two-layer hydrate of Ca-hectorite is similar to that of Na- and other alkali metal hectorites and represents ²H₂O molecules experiencing 21 anisotropic motion describable using the ${}^{2}H$ C₂/C₃ jump model we proposed previously. ${}^{2}H$ T₁ 22 23 relaxation results for Ca- and Na-hectorite are well fit with a fast-exchange limit, rotational diffusion model for ²H₂O dynamics, yielding GHz-scale rotational reorientation rates compatible 24 with the C₃ component of the C_2/C_3 hopping model. The apparent activation energy for ${}^{2}H_2O$ 25 26 rotational diffusion in the two-layer hydrate is greater for Ca-hectorite than Na-hectorite (25.1 kJ/mol vs. 21.1 kJ/mol), consistent with the greater affinity of Ca^{2+} for H₂O. The results support 27 28 the general principle that the dynamic mechanisms of proximity-restricted H₂O are only weakly 29 influenced by the cation in alkali metal and alkaline earth metal smectites and provide critical 30 evidence that the NMR resonances of charge-balancing cations in smectites become increasingly 31 influenced by diffusion-like dynamic processes at low temperatures as the charge density of the 32 unhydrated cation increases.

33 KEYWORDS: ⁴³Ca NMR, ²H NMR, dynamics, interface, clay, water.

34

INTRODUCTION

Processes at fluid-solid interfaces influence the behavior of many chemical and natural systems but are difficult to study because of the inherently multi-phase character of the systems and the disordered structure of the interface due to static and dynamic effects. The high surface area, layered structures of clay minerals offer an excellent opportunity to investigate fundamental structural and dynamical questions about the behavior of H₂O molecules, cations, and other fluids at fluid-solid interfaces. In particular, the smectite clay minerals (swelling clays) have been extensively studied because of the ease with which they exchange their charge-balancing

42 cations and their ability to incorporate large amounts of H_2O in their interlayer space, in some 43 cases swelling to many times their initial volume. The interfacial behavior in clay mineral 44 systems has been studied using a wide range of experimental and computational techniques, 45 although most work has focused on systems involving alkali metal cations as the charge-46 balancing species (Bish et al., 2003; Bowers et al., 2008a; Bowers et al., 2011; Chipera et al., 47 1997; Fripiat et al., 1982; Gates et al., 2012; Guichet et al., 2008; Loring et al., 2012; McKinley 48 et al., 2001; Park and Sposito, 2004; Pons et al., 1982; Porion et al., 2001a; Porion and Delville, 49 2005; Sposito et al., 1999; Wang et al., 2006; Zachara et al., 2002; Weiss et al., 1990a; Weiss et 50 al., 1990b). Currently, there is consensus from NMR spectroscopy, neutron scattering, and 51 computational molecular dynamics simulations that proximity-restricted H₂O (molecules within 52 5 Å of an external or interlayer surface or cation) in hydrated alkali metal smectites (those with 53 alkali metal charge-balancing cations) cannot be adequately described structurally or 54 dynamically as either bulk liquid H₂O or ice at most temperatures (see Bowers et al., 2011 and 55 the references therein for a more detailed review). In addition, this proximity-restricted H₂O diffuses at rates 4-5 times slower than in bulk H₂O at room temperature. ¹H and ²H NMR results 56 57 (Bowers et al., 2011; Ishimaru and Ikeda, 1999; Tenorio et al., 2008) provide insight into the 58 reorientation mechanisms of proximity-restricted H₂O molecules, and ²H NMR suggests 59 variability in the geometry of the charge-balancing cation hydration shell for proximity-restricted 60 alkali metal smectites (Bowers et al., 2011). The H₂O content of the system, total permanent 61 charge on the clay layers, and the location of isomorphic substitution sites causing the layer 62 charge (octahedral vs. tetrahedral substitutions) are known to influence H₂O dynamics, cation 63 diffusion and sorption/desorption behavior, and interlayer expansion and delamination (Delville

and Laszlo, 1990; Grandjean, 1997; Greathouse and Sposito, 1998; Labouriau et al., 1997;

65 Porion and Delville, 2005; Sposito et al., 1999).

66 NMR spectroscopy is an effective, element-specific probe of structure and dynamics of 67 hydrated alkali metal smectites in the Hz to GHz frequency range (Bowers et al., 2008b; Bowers 68 et al., 2011; Delville et al., 1981; Delville and Porion, 2003; Delville et al., 2000; Kim et al., 69 1996; Kim and Kirkpatrick, 1997; Labouriau et al., 1997; Porion and Delville, 2005; Porion et 70 al., 2007; Porion et al., 1998; Porion et al., 2001b; Weiss et al., 1990a; Weiss et al., 1990b), but 71 as noted above, has rarely been applied to alkaline earth metal smectite-H₂O systems. The lack 72 of NMR data for alkaline earth smectites is a result of the poor NMR sensitivity of the NMR-73 active isotopes of these elements due to their low resonance frequencies, frequently large 74 quadrupole couplings leading to broad resonances (up to 100s of kHz in width), and in many cases a low isotopic abundance. We have found only two published ²⁵Mg NMR studies of 75 phyllosilicates, both of which focus on structural Mg^{2+} in the octahedral layers and its evolution 76 with temperature rather than the interfacial behavior of charge-balancing Mg^{2+} (MacKenzie and 77 Meinhold, 1994a; MacKenzie and Meinhold, 1994b). There are no reported ⁴³Ca NMR studies 78 of Ca-phyllosilicates, and the only published ⁸⁷Sr study of Sr-phyllosilicates focuses on the 79 room-temperature structure of bound Sr²⁺ in a synthetic fluoromica and did not examine ⁸⁷Sr 80 dvnamic behavior (Bowers et al., 2006). Two published ²H NMR studies examined ²H₂O 81 dynamics in a mixed Ca²⁺/alkali metal smectite (Grandjean, 1997; Weiss and Gerasimowicz, 82 83 1996). Both of these studies used diffusional exchange/isotropic rotational diffusion models to 84 explain the dynamic behavior. Two recent neutron scattering studies of H₂O diffusion in Ca-85 montmorillonites (Gates et al., 2012; Gonzalez et al., 2008) reported slower diffusion for 86 proximity-restricted H₂O than in bulk water and show that the identity of the charge-balancing

cation exerts a small but detectable influence on H₂O dynamics. Activation energies for H₂O diffusion in several Ca-clays have also been reported from neutron scattering results (Gonzalez et al., 2008) and from ²H NMR relaxation data (Giese and Fripiat, 1979; Weiss and Gerasimowicz, 1996). We are unaware of any published NMR or neutron scattering studies of H₂O dynamics in Mg²⁺, Sr²⁺, or Ba²⁺ smectites and can find only two other neutron scattering studies of smectites with multi-valent transition metals as charge-balancing species (Ni²⁺ and Sm³⁺) (Sobolev et al., 2011; Sobolev et al., 2009).

Of the alkaline earth metals, ⁴³Ca is the most promising isotope for examining alkaline earth 94 95 metal binding structure and dynamics in smectite clays with NMR, because it has a much smaller nuclear electric quadrupole moment than Mg^{2+} or Sr^{2+} [-40 mb vs. 199.4 mb and 335 mb, 96 respectively (Pyykkö, 2001)]. This means that the ⁴³Ca NMR resonances are much narrower 97 98 than for the other alkaline earth elements, leading to greater sensitivity and allowing greater resolution that may permit identification of multiple ⁴³Ca structural environments. However, 99 ⁴³Ca has the lowest natural abundance of all the NMR-active isotopes of the alkaline earth metals 100 101 (~0.135%; Holden 1995), making efficient data acquisition challenging and rendering variable temperature/multi-dimensional NMR studies nearly impossible without ⁴³Ca enrichment. This is 102 103 particularly true of complex structures susceptible to many types of disorder such as smectites. Unfortunately, 43 Ca is guite expensive (~ \$US 6,000-10,000 per 100 mg of ~60% 43 CaCO₃), 104 limiting the application of ⁴³Ca NMR in glasses and other disordered materials (Brvce, 2010: 105 106 Laurencin and Smith, 2012). To overcome the abundance-related sensitivity limitations, all ⁴³Ca NMR experiments in this paper were performed on 30% ⁴³Ca-enriched Ca-hectorite. 107 108 The data presented here show that the dynamical processes that influence the NMR resonances

109 of charge-balancing metal ions at smectite/H₂O interfaces become progressively more dominated

10/2

110 by diffusion-related effects relative to metal-surface interactions at lower temperatures as the 111 charge density of the unhydrated metal ion increases. This statement is more general than in our 112 previous paper (Bowers et al., 2011), which focused on ionic radius in the series of alkali metal smectites. Here we evaluate this hypothesis by comparing new variable temperature ⁴³Ca NMR 113 114 results for Ca-hectorite equilibrated at atmospheric humidity and in a ~2:1 by mass ²H₂O:smectite paste with similar ²³Na NMR results for Na-hectorite published previously 115 (Bowers et al., 2011). This comparison is an effective test, because Na^+ and Ca^{2+} have similar 116 Pauling ionic radii (1.02 Å vs. 1.00 Å, respectively, for six-fold coordination; Shannon, 1976). 117 Thus, Ca^{2+} has a larger charge density than Na^{+} due only to its larger charge. The data show that 118 the resulting greater affinity of Ca^{2+} for H₂O [hydration energy = -1592 kJ/mol vs. -405 kJ/mol 119 for Na^+ (Burgess, 1978)] dominates the larger electrostatic attraction between Ca^{2+} and the 120 mineral surface, leading to diffusion-dominated dynamic averaging of the ⁴³Ca NMR resonances 121 122 at temperatures < -20 °C (the onset of fast diffusion effects in Na-hectorite pastes). Analysis of companion ²H NMR experiments shows that the C_2/C_3 jump motion model developed for 123 proximity-restricted ²H₂O motion in alkali metal smectites (Bowers et al., 2011) also applies to 124 125 the two-layer hydrate of Ca-hectorite, that isotropic rotational diffusion of ²H₂O adequately 126 accounts for the C_3 -type motion in the model, and that the deviation from ideal octahedral 127 symmetry of the metal hydration shell along the surface normal/C₃ symmetry axis is only slightly reduced when Ca^{2+} is substituted for Na⁺. New ²H T₁ relaxation data also support the hypothesis 128 that the greater affinity of Ca^{2+} for H₂O vs. Na⁺ leads to larger activation energy for fast 129 rotational diffusion of ²H₂O in two-layer hydrates of Ca-hectorite versus Na-hectorite. 130 131

132

MATERIALS AND METHODS

133 Samples

The isotopically enriched ⁴³Ca-hectorite samples were prepared by ion exchange with a Na-134 135 saturated hectorite prepared from the $< 1 \mu m$ fraction isolated from the standard San Bernardino 136 hectorite (SHCa-1) available from the Clav Mineral Society's Source Clavs Repository. 137 Hectorite is a trioctahedral smectite clay with a permanent negative charge of -0.36/formula unit due to substitution of Li⁺ for Mg²⁺ in the octahedral sheet. The chemical composition of the 138 139 specific hectorite fraction used in this study, the procedure for isolating this fraction, and Na-140 exchange procedures were published previously (Bowers et al., 2011; Weiss et al., 1990a). The 30% ⁴³Ca-enriched CaCO₃ starting material was prepared by grinding the appropriate amount of 141 142 62% ⁴³Ca CaCO₃ (Isoflex USA) and unenriched, reagent grade CaCO₃ in an agate pestle and 143 mortar. This material was dissolved in HCl to produce a 0.1 M solution of CaCl₂ (pH of 6-6.5) at roughly 30% ⁴³Ca using previously published procedures (Singer et al., 2012). For the Ca-144 exchange, two 500 mg aliquots of Na-saturated hectorite were suspended in \sim 50 mL of the 43 Ca-145 146 enriched CaCl₂ solution in 80 mL centrifuge tubes, shaken vigorously, and placed on a 147 mechanical rocker for 12 hours. During rocking, the suspended hectorite formed weak 148 agglomerates that settled to the bottom of the tubes. The agglomerates were re-suspended as 149 much as possible by vigorous shaking and separated from the solution by centrifugation at 5000 150 rpm ($\sim 2100 g$) for 15 minutes. The supernatant solutions were decanted, combined, and saved for recovery of the ⁴³Ca. The clay fractions were washed by re-suspension in ~50 mL of 151 152 deionized H₂O followed by centrifuging at 5000 rpm for two cycles. After the second rinse, the 153 clay was freeze-dried and one fraction was gently ground by mortar and pestle and sieved to 154 collect the <106 µm fraction. Gentle grinding of the Ca-hectorite was critical to avoid smearing. Similar smearing behavior was not observed for the Na-saturated form. The second ⁴³Ca-155

exchanged sample was stored without grinding after the freeze-drying procedure. The ground sample was held at room conditions for subsequent NMR analysis. We denote any sample with ⁴³Ca enrichment as "⁴³Ca-hectorite" in the remainder of the text. Table 1 provides a listing of sample names and compositions.

A sample of Ca-hectorite without ⁴³Ca enrichment was prepared for X-ray diffraction (XRD) 160 and ²H NMR analysis using the same ion exchange procedure. After freeze-drying and grinding, 161 the split for XRD was held at room conditions prior to analysis. A second split of this non-⁴³Ca 162 enriched smectite was placed into a desiccator over K₂CO₃-saturated ²H₂O [H₂O activity 163 164 equivalent to ~43% relative humidity (RH)] and allowed to equilibrate for several days. The 165 equilibrated sample was removed from the desiccator and immediately loaded into a cut 5 mm 166 quartz NMR tube. After packing, the tube was sealed with water-tight epoxy, weighed, and 167 placed on the benchtop. The tube packing/sealing procedure was repeated several times until a 168 sealed sample was obtained that exhibited no weight gain or loss for at least three days. This sealed sample was shipped to the Pennsylvania State University for ²H NMR analysis. The ²H-169 equilibrated, non-⁴³Ca enriched hectorite will be called "(²H)Ca-hectorite" in the remainder of 170 171 the discussion.

Use of non-⁴³Ca enriched material for XRD and ²H NMR analysis was motivated by a desire to minimize loss of the expensive isotopically enriched sample. Although we cannot rule out some effects on the results due to Ca-related isotope effects, Ca^{2+} has a sufficiently large mass that isotope effects on its binding structure and interfacial dynamic behavior should be minimal.

176 XRD

177 The Ca-hectorite fraction with no isotopic enrichment (Ca-hectorite) was examined by 178 controlled-humidity X-ray powder diffraction using an automated Bruker D8 powder

diffractometer mated with a SolX detector. Samples were deposited as aqueous slurries on an off-axis cut quartz plate. The relative humidity was stepped from 0% to 90% and back to 0% in 10% increments using an InstruQuest V-Gen dew point/RH generator and a custom-built humidity control stage. All other conditions were the same as in our previous work on Nahectorite (Bowers et al., 2011). The *d* values reported here were calculated using center-of-mass methods for each basal (001) reflection.

185 $^{43}Ca NMR$

Variable temperature (VT) ⁴³Ca Bloch-decay NMR experiments were performed using the 186 20.0 T (850 MHz⁻¹H frequency) Agilent DD2 NMR spectrometer at the William R. Wiley 187 Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National 188 Laboratory. Magic angle spinning (MAS) spectra were obtained for the ⁴³Ca-hectorite 189 190 equilibrated at atmospheric conditions using an Agilent 4mm HXY probe. The atmospheric 191 conditions at EMSL were well within the range of H₂O activities that produce a two-layer hydrate based on the controlled RH XRD results (see results below). Static and MAS ⁴³Ca NMR 192 spectra were also obtained for an ~2:1 by mass ${}^{2}\text{H}_{2}\text{O}/{}^{43}\text{Ca-hectorite paste}$. This $({}^{2}\text{H})^{43}\text{Ca-hectorite paste}$. 193 194 hectorite paste was prepared by adding the appropriate amount of ²H₂O to the room RH 195 equilibrated ⁴³Ca-hectorite directly on a balance. The water/hectorite mixture was then 196 mechanically kneaded to bread-dough like consistency with no separate liquid-rich phase or dry 197 material visible. The paste was loaded into an open-top NMR rotor within five minutes of 198 preparation and the pre- and post-weight of each sample was monitored to evaluate H₂O gain/loss during the NMR experiments. Actual paste ²H₂O content varied such that the 199 200 2 H₂O:clay ratios were between 2:1 and 1.8:1 by mass over the course of the NMR experiments.

9

201 ⁴³Ca NMR spectra were obtained at sample temperatures between -120°C and +25°C using a 202 standard Agilent VT stack and liquid nitrogen-cooled dry nitrogen cooling gas stream. MAS spectra for the 2WL-⁴³Ca-hectorite sample were acquired using a 10 kHz rotation rate, 350 203 transients, a 60 s pulse delay, and a 3 μ s pulse ($\pi/2$ pulse width for CaO was 9 μ s at the power 204 205 levels employed). All spectra for this sample are referenced to 1 M CaCl₂ (aq) via a secondary 206 standard of CaO as suggested by Gervais and colleagues (Gervais et al., 2008). All other data acquisition and processing conditions were identical to those of our previously published ⁴³Ca 207 208 NMR spectra of amorphous calcium carbonates (Singer et al., 2012). Based on the MAS results, static spectra of (²H)⁴³Ca-hectorite paste and 2WL-⁴³Ca-hectorite were obtained using a pulse 209 210 delay of 5 s and a central transition selective $\pi/2$ pulse width of 5 µs. The number of transients 211 varied from 650 to 6500 with decreasing temperature due to the need to maintain similar 212 signal/noise ratios in the face of increasing peak widths with decreasing temperature and 213 potential temperature-dependent relaxation effects discussed in greater detail below. Static 214 spectra are referenced with respect to 1 M CaCl₂ (aq) via a secondary standard of calcite using 215 the left-hand singularity (21.6 ppm). The spectra in our figures were processed using a left-shift 216 of four data points to remove artifacts from probe ringing and received apodizations equivalent 217 to 20, 50, or 100 Hz depending on the natural linewidth (the largest linewidths received the 218 greatest apodization). The resonance line shapes were fit with Lorentzian and stretched 219 Lorentzian (Bowers et al., 2011) functions using the Abscissa software written by Rudiger Bruhl. 220 Attempts to fit the spectra to MAS quadrupolar lineshapes in DMFit (Massiot et al., 2002) did 221 not improve the fit quality.

A room-temperature double frequency sweep (DFS, Kentgens, 1991) Bloch-decay ⁴³Ca MAS
 NMR spectrum of 2WL-⁴³Ca-hectorite was also collected using the Varian Inova 21.1 T NMR

224 spectrometer at EMSL and a home-built 5 mm HX high-temperature MAS probe in order to estimate the ⁴³Ca quadrupolar parameters. These 21.1 T experiments used a 3.5 µs central 225 226 transition selective $\pi/2$ pulse width, a 60 s pulse delay, and 40 kHz spectral width to acquire 2064 data points. The DFS conditions were optimized using a ⁴³Ca-enriched sample of CaCO₃ 227 228 and swept a frequency region from 15 kHz to 1.4 MHz from the transmitter frequency over a 229 period of 600 µs using a 12 kHz rf field strength. The zero filling, exponential apodization, and other processing conditions were identical to those used for the ⁴³Ca spectra acquired at 20.0 T. 230 231 The room temperature peak maximum of the resonances at 20.0 and 21.1 T were compared to 232 estimate the isotropic chemical shift and quadrupolar product according to the procedure of 233 Mueller et al. (1991). All spectra at 21.1 T are referenced to 1 M CaCl₂ (aq) via a secondary 234 standard of CaO.

 $235 ^{2}HNMR$

Variable temperature ²H NMR spectra were obtained for 2WL-(²H)Ca-hectorite using a wide-236 237 line ²H NMR probe, a Tecmag HF-3 Apollo console, and a 7.6 T magnet at the Pennsylvania 238 State University NMR facility. Spectra were acquired at -80°C, -50°C, -35°C, -20°C, -10°C, 0° C, $+10^{\circ}$ C, $+25^{\circ}$ C, and $+40^{\circ}$ C with the quadrupolar echo pulse sequence and a 40 µs echo 239 240 delay. The temperature measured by the VT stack thermocouple was within ± 0.1 °C of the 241 temperature given by a thermocouple placed in the sample coil during a calibration test. All other 242 ²H NMR experimental conditions and data processing parameters were identical to those in our previous work (Bowers et al., 2011), including referencing the spectra to the ²H signal of 99% 243 244 $^{2}\mathrm{H}_{2}\mathrm{O}.$

²H inversion-recovery T₁ experiments were conducted at -50 °C, -30 °C, -20 °C, and 0 °C for 246 $2WL-(^{2}H)Ca$ -hectorite and a sample of Na-hectorite equilibrated in ~ 43% RH $^{2}H_{2}O$ to gain

10/2

insight into the dynamics of proximity-restricted ²H₂O in the vicinity of the ²H Larmor 247 248 frequency, which is 45.653 MHz at this field. Both of these samples are predominantly 2-layer 249 hydrates at this humidity. Thirty-five points were acquired for the T_1 curve using a 5 s pulse 250 delay and 16 dummy scans. Sixty-four transients were acquired at each T_1 point. All other 251 conditions were identical to the quadrupolar echo experiments described in the previous 252 paragraph. The T_1 data were fit with a single exponential function involving a parameter to 253 account for incomplete inversion of the equilibrium magnetization by the π pulse. Variability in T_1 over the width of the ²H NMR resonance was also calculated at each temperature for the 254 255 2WL-(²H)Na-hectorite and proved to be within the limits of uncertainty for these calculations. 256 The associated fast-exchange limit correlation times for ²H₂O rotational diffusion were 257 calculated using the methods of Grandiean and Laszlo (1989) and Weiss and Gerasimowicz 258 (1996) assuming a 230 kHz quadrupole coupling constant and an asymmetry parameter of 0.1 for 2 H in 2 H₂O (Wittebort et al., 1988). Arrhenius plots were constructed from these data to 259 260 determine the activation energy for rotational diffusion analogous to the procedure of Weiss and 261 Gerasimowicz (1996). 262 263 RESULTS 264 XRD 265

The controlled-RH XRD data show that Ca-hectorite can be well described as predominantly a two-layer hydrate (containing two full layers of H₂O molecules between each clay layer) at most RH values near room temperature and imply that the Ca-hectorite paste is probably a mixture or interstratification of two-layer, three-layer, and more-expanded hydrates, most likely including a small fraction of delaminated T-O-T layers (Fig. 1). While the specific basal spacings at each

270 temperature do not agree precisely with similar previous studies of a synthetic hectorite by 271 Karmous et al. (2007, 2009), our conclusions regarding the number of water layers and RH stability range for two-layer Ca-hectorite hydrate are in close agreement. The (001) spacing at 272 0% RH was $\sim 12.8 \pm 0.2$ Å, statistically identical to the Karmous et al. results at 10% RH 273 274 (Karmous et al., 2009). This value shows that Ca-hectorite exists primarily as a one-layer hydrate 275 with a small fraction of two-layer hydrates even in a dry atmosphere. Basal spacings of ~9.6 Å 276 represent collapsed clay interlayers (analogous to talc and pyrophyllite), spacings of ~12.5 Å are 277 associated with a single layer of H₂O molecules in the interlayer (one-layer hydrates), and that 278 basal spacings of ~ 15 Å are associated with two layers of H₂O in the interlayer space (two-layer 279 hydrates). With increasing RH, the (001) spacing of our sample increases to ~15 Å at 30% RH, 280 showing that essentially all interlayers contain two H₂O layers at this RH. We are aware of no 281 experimental evidence of distinct non-integer H₂O layers in studies of hectorite hydration. Thus, 282 the intermediate (001) spacings at lower RH values most likely reflect a mixture or 283 interstratification of one- and two-layer hydrates, with the two-layer hydrate fraction increasing 284 with increasing RH. The (001) spacing continues to increase with increasing RH, but the two-285 layer hydrate fraction dominates between 30% RH and 60% RH, as reported by Karmous et al. 286 (2009). The widths and maxima of the reflections are quite similar in this RH range. At 70% RH 287 and above, the (001) spacing is greater than 16.5 Å, indicating that a substantial fraction of the 288 sample enters the osmotic swelling regime or becomes a three-layer hydrate. These observations are supported by the presence of XRD intensity between 2° and $12^{\circ} 2\theta$ (Fig. 1). Note that there 289 290 is minor hysteresis in the hydration/dehydration curve above 70% RH that is absent at lower RH 291 values that can also be observed in the XRD patterns directly. This results contrasts with the 292 hysteresis observed over the full RH range for Na-hectorite (Bowers et al., 2011).

$293 \quad {}^{43}Ca NMR$

The variable temperature ⁴³Ca MAS NMR spectra of the room humidity 2WL-⁴³Ca-hectorite 294 295 are dominated by narrow, featureless, and symmetric resonances with maxima near 0 ppm, the value for Ca^{2+} in dilute aqueous $CaCl_2$ solution (Fig. 2, Table 2). The peaks narrow progressively 296 297 and their maxima shift slightly to lower resonance frequencies (more negative peak positions or more shielded chemical environments) with increasing temperature. They are well-fit with 298 299 single Lorentzian functions at -100 °C and above. Use of quadrupolar MAS lineshapes did not improve the quality of the fits, consistent with small ⁴³Ca quadrupolar couplings and suggesting 300 301 that the resonance widths are dominated by chemical shift dispersion and dynamic effects. The 302 small temperature-dependent shift to lower resonance frequency with increasing temperature is similar to that observed in ²³Na MAS NMR spectra of a 1.5:1 water:solid ratio Na-hectorite 303 304 paste, which show a symmetric resonance that moves to lower resonance frequency with increasing temperature above -20 °C (Bowers et al., 2011). The ⁴³Ca linewidths at all 305 temperatures are always broader than those of Ca^{2+} in aqueous solution at room temperature and 306 307 20.0 T (28 \pm 2 Hz), indicating a strong surface association. At -120 °C, there is also observable 308 intensity to the high-frequency edge (more positive chemical shift values) of the symmetric ⁴³Ca resonance that may indicate resolution of a second local Ca^{2+} environment at this temperature. 309 The ⁴³Ca nutation behavior of the room humidity 2WL-⁴³Ca-hectorite under MAS conditions 310 is intermediate between rigid 43 Ca in crystalline CaCO₃ and Ca²⁺ in a saturated aqueous CaCl₂ 311 solution at 25 °C, but it is more similar to the rigid limit throughout the temperature range of this 312

study (Fig. 3). Some of the nutation patterns have an unusual appearance (developing a constant intensity near zero at longer pulse widths) suggestive of varying degrees of saturation and potentially temperature-dependent variations in the 43 Ca T₁. However, since an identical pulse

316 delay value of 60 s was used for all of the nutation experiments, we would expect to observe identical effects of T₁ on the shape of the room-temperature nutation patterns of ⁴³Ca-hectorite, 317 calcite, and CaCl₂(aq) if the local molecular-scale ⁴³Ca environments were the same in these 318 materials. The intermediate behavior of the 2WL-⁴³Ca hectorite is consistent with the idea that 319 the proximity-restricted ⁴³Ca in this sample at room humidity is intermediate between a rigid 320 321 solid and a dynamically averaged solution, in agreement with the linewidth observations (Fig. 3). 322 In most rigid solids only the central (1/2, -1/2) nuclear transition is excited and observed, whereas 323 for fully dynamically averaged species in solution, all transitions are excited and observed. For 324 these data, dynamical averaging occurs but is incomplete, which leads to a partial intensity 325 contribution in the observed resonance from the satellite transitions and the intermediate nutation 326 behavior observed. The multiple field ⁴³Ca data at room temperature for room humidity 2WL-⁴³Ca-hectorite reveal 327 328 little regarding the role of quadrupolar interactions on the observed resonances, but indicate that

329 any quadrupolar contribution to the lineshape is relatively small. Assuming the center-of-mass at 21.1 T corresponds to the observed chemical shift at this field, the ⁴³Ca quadrupolar product 330 $(P_0 = C_0 \sqrt{1 + \eta^2/3})$ is 1.4 ± 1.4 MHz. The large uncertainty spans the range of ⁴³Ca 331 332 quadrupolar products determined from computation and experiment for Ca compounds with 333 predominantly oxygen in the nearest neighbor Ca coordination sphere (Gervais et al., 2008) and 334 occurs because the peak maximum at 20.0 T falls within the peak maximum uncertainty at 21.1 335 T (Fig. 4). The resonance obtained at 21.1 T is quite broad and asymmetric because of field 336 inhomogeneity resulting from an inability of the shim stack to overcome field distortions 337 generated by the specialized materials in the high-temperature probe that was used to acquire these data. However, the presence of small quadrupolar couplings for ⁴³Ca in ⁴³Ca-hectorite is 338

consistent with the lack of features in the 43 Ca NMR spectra, the fit quality obtained using single Lorentzian rather than quadrupolar MAS patterns for these 43 Ca spectra, and the idea of a quite symmetrical, fully hydrated interlayer Ca²⁺ coordination indicated by the XRD data. Data for this sample from a lower field, where a greater difference in the observed resonance frequency will result if the quadrupolar interactions are significant, are required to resolve the issue.

The observed resonances in the static ⁴³Ca NMR spectra of 2WL-⁴³Ca-hectorite and (²H)⁴³Ca-344 hectorite paste are also symmetrical and featureless and have decreasing widths with increasing 345 346 temperature (Fig. 5). At all temperatures, the static peak maxima of the paste occur at higher 347 resonance frequencies than for the room humidity sample, and the peak widths are smaller. The 348 static peak maxima for the room humidity sample are at slightly lower frequencies than the peak 349 maxima for this sample under MAS conditions, and the static peak widths are considerably greater. The static spectra show no evidence for multiple Ca^{2+} sites or quadrupolar lineshapes, 350 supporting the existence of small ⁴³Ca quadrupolar coupling constants in these systems. 351

 $352 \quad {}^{2}HNMR$

The ²H NMR spectra of the 2WL-(²H)Ca-hectorite sample are dominated by one ²H resonance 353 354 indicative of anisotropic motional averaging that varies little between -50 °C and +25 °C (Fig. 6, 355 Table 3). These spectra are very similar to the 2 H NMR spectra for a predominantly two-layer 356 mixed one-laver/two-laver Na-hectorite published previously (Bowers et al., 2011). As for Na-357 hectorite, the quadrupolar dominated ²H line shape and the similarity of the linewidths and splittings over a wide temperature range is the result expected for a system in which the ${}^{2}H_{2}O$ is 358 closely associated with the clay layers (so-called proximity restricted ²H₂O), where little bulk or 359 360 "free" ²H₂O is present in the system, and when the rates of the motions responsible for the line shape are at least an order of magnitude greater than the static peak widths over the entire 361

temperature range. These proximity-restricted ²H₂O molecules may be located either in the 362 interlayer region or on external crystallite surfaces. The ²H spectra of the 2WL-(²H)Ca-hectorite 363 at 0 °C and +25 °C do contain a small, narrow central feature indicative of ²H₂O undergoing 364 365 rapid isotropic motion analogous to that of bulk water, probably due to external, surfaceadsorbed ${}^{2}\text{H}_{2}\text{O}$ or ${}^{2}\text{H}_{2}\text{O}$ in pores. The integrated intensity of this peak is only 1-2% of the total, 366 367 as expected for a sample equilibrated at ~43% RH. At temperatures below 0 °C, the rapid 368 motion of this population appears to be frozen out and the resulting low intensity, broadened 369 signal is not resolvable above the noise.

The ²H quadrupolar splitting for the 2WL-(²H)Ca-hectorite is approximately 3-4 kHz less than for the 2WL-(²H)Na-hectorite at all temperatures (Table 3), and as for the Na-hectorite, the spectral line shapes at -50 °C and above are well-fit by the combined C_2/C_3 jump motion model derived from a Na-hectorite paste sample (Bowers et al., 2011) (See discussion below.)

The most prominent difference between the 2WL-(²H)Ca-hectorite and 2WL-(²H)Na-hectorite 374 375 ²H NMR spectra occur at the lowest temperature studied (-80 °C). At this temperature, the Na-376 hectorite resonance retains its dynamically averaged, quadrupolar peak shape, whereas the Ca-377 hectorite resonance experiences a dramatic loss in both observable intensity and definition of the 378 quadrupolar powder pattern. These differences suggest that the frequency of the dynamical 379 process causing the well-defined anisotropic line shape is approaching the static peak width for 380 the Ca-hectorite at -80 °C, but that the frequency of these processes in Na-hectorite exceeds that 381 of the peak width by at least an order of magnitude at this temperature. This observation is consistent with the greater affinity of Ca^{2+} for H₂O as reflected in the cation hydration energies. 382 causing the H₂O molecules to be more tightly bound to the Ca²⁺ and thus hopping between sites 383 384 in and outside the cation hydration shell at lower frequencies.

385	The variable temperature ² H T_1 relaxation times for 2WL-(² H)Na- and 2WL-(² H)Ca-hectorites
386	decrease with decreasing temperature and are of a similar magnitude, but at a given temperature
387	the values for Ca-hectorite are always smaller than for Na-hectorite (Table 3). To characterize
388	the dynamical processes at frequencies of the order of the ² H Larmor frequency (~48 MHz), we
389	followed the approach of Weiss and Gerasimowicz (1996) to calculate rotational correlation
390	times for ² H diffusional exchange in the fast-exchange limit. The resulting rotational correlation
391	times for both our samples fall on linear Arrhenius relationships between -50 °C and +25 °C, as
392	previously observed in a different Na-hectorite/H2O system (Weiss and Gerasimowicz, 1996)
393	(Table 3; Fig. 7). This result suggests that the fast-exchange limit diffusional exchange model for
394	² H ₂ O is appropriate for the 2WL-(² H)Na- and 2WL-(² H)Ca-hectorite systems examined in this
395	study. The apparent activation energies for ² H diffusional exchange are larger for 2WL-(² H)Ca-
396	hectorite than for 2WL-(² H)Na-hectorite (25.1 kJ/mol vs. 21.1 kJ/mol; Fig. 7), consistent with
397	the greater affinity of Ca^{2+} for H ₂ O. Reorientation of the ² H ₂ O molecules at the calculated
398	correlation times ($\tau_c = 10^{-11}$ to 10^{-9} s) is intermediate between the correlation times for librational
399	motions captured in infrared spectroscopy $(10^{-14} \text{ to } 10^{-15} \text{ s})$ and the correlation times for fast-limit
400	motion based on the static ${}^{2}\text{H}_{2}\text{O}$ peak width in ice (10 ⁻⁶ to 10 ⁻⁷ s), as required for the C ₃ hopping
401	component of the fast C_2/C_3 jump motion model (Bowers et al., 2011). Thus, the T_1 results
402	provide additional validation of the fast C_2/C_3 hopping model and support the existence of fast
403	C_2/C_3 jump motion at many temperatures in two-layer smectite hydrates regardless of the charge-
404	balancing cation present.

405

DISCUSSION

406 *Ca*²⁺*Structure and Dynamics*

10/2

The ²H and ⁴³Ca NMR data and the XRD data presented here are consistent with the 407 hypothesis that the vast majority of Ca^{2+} in a two-layer hydrate of Ca-hectorite is present on 408 proximity-restricted sites, i.e. those within 5 Å of a surface in the interlayer or on particle 409 410 exteriors. XRD shows that a majority of hectorite layers exist as two-layer hydrates at atmospheric RH values of 30-60%, putting interlayer Ca^{2+} at a maximum distance of ~2.5 Å 411 412 from an interlayer surface in these phases. The very small amount of water showing bulk behavior (1-2%) observed in the higher temperature ²H spectra under these conditions shows that 413 there is not enough bulk H₂O to develop a significant Ca^{2+} population at > 5 Å from the external 414 415 surfaces. A metal ion can only desorb from a smectite surface into a free state (one with no 416 restrictions on mobility) if excess H₂O is present in inter-particle domains, if the clay layers are 417 highly expanded, or if the hectorite particles are in a dilute suspension. In addition, there is no evidence for a narrow component in the 43 Ca spectra that would indicate Ca²⁺ in an isotropically 418 averaged, solution-like environment in the 2WL-⁴³Ca-hectorite. 419 For the (²H)⁴³Ca-hectorite paste, the ⁴³Ca NMR data suggest that both proximity-restricted and 420

free Ca²⁺ environments are present at some temperatures. At the lowest temperatures of the 421 study (-120 °C and -100 °C), the ⁴³Ca NMR resonances for the 2WL-⁴³Ca-hectorite and 422 $(^{2}H)^{43}$ Ca-hectorite paste are essentially identical (Fig. 5), suggesting that the Ca²⁺ is present in 423 424 the paste only in proximity restricted domains at these temperatures. This is expected based on 425 the known ability of ice to exclude solvated ions. The ²H NMR data for Na-hectorite pastes 426 (Bowers, et al., 2011) shows the presence of bulk ice-1h domains at low temperatures, and the 427 Ca-hectorite system should behave in the same way. Ice in inter-particle pores or between highly 428 expanded hectorite layers forces the Ca^{2+} ions to the hectorite surfaces, where they are required for charge-balance, leading to only proximity-restricted Ca^{2+} at these temperatures. However, as 429

430	the temperature increases, the static linewidths of the $(^{2}H)^{43}$ Ca-hectorite paste become narrower
431	than those of the room humidity 2WL- ⁴³ Ca-hectorite (Table 2), and are nearly fully liquid-like at
432	0 °C and +25 °C [~80 \pm 35 Hz vs. 28 \pm 2 Hz for Ca ²⁺ in a saturated CaCl ₂ (aq) solution]. The
433	very narrow resonances at and above the freezing point of bulk ice-1h with a slightly greater
434	residual linewidth than Ca^{2+} in bulk aqueous solution suggest desorption of Ca^{2+} from the surface
435	into a "free" solution-like state and, given the need for balance of the negative layer charge of the
436	clay, probably indicate rapid exchange between bulk solution and surface-sorbed environments
437	(although other dynamic averaging mechanisms are possible; see discussion below). The "free"
438	Ca ²⁺ may occur in bulk liquid domains in highly expanded interlayers (the layers may even be
439	fully delaminated) and/or in liquid-rich pores between particles. Significant layer expansion at
440	high ${}^{2}\text{H}_{2}\text{O}$ activity is supported by the XRD results, which show a large fraction of basal
441	spacings well in excess of 15 Å at 90% RH. Similar desorption and potential delamination at
442	high temperatures has been reported previously in (² H)Na-hectorite pastes (Bowers et al., 2011).
443	The ⁴³ Ca NMR spectra and XRD results suggest that the proximity-restricted Ca ²⁺ is present as
444	principally outer-sphere complexes in both the two-layer hydrate and paste, consistent with the
445	idea that $Ca^{2+}-H_2O$ interactions dominate the direct Ca^{2+} -smectite surface interactions in
446	hectorite. Based on the similar ionic radii of Ca^{2+} and Na^{+} but the larger charge of Ca^{2+} , one
447	might anticipate that Ca ²⁺ would have a stronger attraction to the hectorite surface than Na ⁺ and
448	may even prevent interlayer expansion via stronger electrostatic bridging across the interlayer
449	space. However, the hydration energy of Ca^{2+} is nearly four times the value of Na^+ , reflecting
450	the much greater affinity of Ca^{2+} for H ₂ O. The XRD results clearly indicate that direct Ca^{2+} -
451	hectorite surface interactions do not present a significant barrier to layer expansion. In addition,
452	there is no evidence in the ⁴³ Ca static or MAS NMR spectra for broad quadrupolar signals

associated with a rigid, asymmetrical Ca^{2+} environment expected for Ca^{2+} on inner-sphere 453 sorption sites. For example, the ⁴³Ca NMR parameters reported for ackermanite (Ca₂MgSi₂O₇; 454 an anhydrous phase with Ca²⁺ layers located between to two 2-D magnesium silicate layers) 455 456 based on quantum chemical calculations show a small, positive isotropic chemical shift (7 ppm) and a quadrupolar product of 2.2 MHz (Gervais et al., 2008). It is likely that if Ca^{2+} were 457 458 associated with the mineral surface as an inner-sphere complex in a two-layer hydrate, the 459 resulting nearest-neighbor coordination sphere would be highly asymmetric, suggesting larger 460 values of the quadrupolar product via increased quadrupolar coupling, quadrupolar asymmetry, or both. However, the resonances from the Ca^{2+} in both the 2WL-⁴³Ca-hectorite and $(^{2}H)^{43}Ca$ -461 hectorite paste at +25 °C are on the low end of ⁴³Ca linewidths typically observed at +25 °C and 462 at 20.0 T for inorganic solids in which the Ca^{2+} atoms are rigidly held and directly coordinated to 463 464 the anions (Fig. 8) (Bryce, 2010; Gervais et al., 2008; Lin et al., 2004; Wong et al., 2006). The 465 width appears to be most similar to those of calcite and aragonite at this field, which have some of the smallest reported ⁴³Ca quadrupolar products (1.4 MHz and <0.68 MHz, respectively) and 466 are structurally ordered, in contrast to hectorite interlayers. A full hydration shell for Ca^{2+} in 467 ⁴³Ca-hectorite and lack of inner-sphere complex formation is also supported by the ⁴³Ca 468 chemical shifts, which are similar to those of Ca^{2+} in dilute aqueous $CaCl_2$ solutions at all 469 temperatures at both moisture contents. The large hydration energy for Ca^{2+} , the basal spacings 470 471 observed by XRD, and the variations in the XRD results with respect to Na-hectorite suggest that 472 hydration of the Ca²⁺ ions dominates the overall hectorite hydration behavior at water activities 473 <70% RH, lending additional weight to the idea of predominantly outer-sphere complex formation and weak direct Ca²⁺-hectorite surface interactions at all humidity levels above 30% 474 475 RH.

476

477

478

480

There is no evidence in the NMR results suggesting that Ca^{2+} occupies preferred surface or interlayer binding sites. Preferential siting of strongly hydrated metal cations near specific tetrahedral sites has only been observed in Monte Carlo and MD simulations for smectites with

also lead to inner-sphere complex formation (Chang et al., 1995; Greathouse and Sposito, 1998;

layer charge due to isomorphic substitution of Al³⁺ for Si⁴⁺ in the tetrahedral sheet, which can 479

481 Sposito et al., 1999). In contrast, the hectorite layer charge is developed predominantly by 482 octahedral substitution, and only Cs⁺ with its large ionic radius and small hydration energy has 483 been observed to occur as inner-sphere complexes in octahedrally substituted clays (Weiss et al., 484 1990a; Weiss et al., 1990b). Based on the XRD and NMR results, it appears that smaller, higher charge cations with large hydration energies (such as Ca^{2+}) probably do not have a strong

485 486 preference for specific sorption sites.

The ⁴³Ca NMR spectra at both hydration levels also contain evidence of dynamic averaging via 487 a process involving diffusional motion of the Ca^{2+} ions, diffusional motion of $H_2O/^2H_2O$ in the 488 Ca^{2+} hydration shell, or a combination of the two. The decreasing peak widths for the static and 489 MAS ⁴³Ca NMR spectra of 2WL-⁴³Ca-hectorite with increasing temperature demonstrate an 490 491 increasing rate of dynamical averaging, as also observed for ²³Na in Na-hectorite paste (Bowers 492 et al., 2011). For rigidly held ⁴³Ca under static conditions, possible line broadening mechanisms 493 include homonuclear and heteronuclear dipole-dipole interactions, chemical shift anisotropy 494 (CSA), and quadrupolar interactions along with dispersion of these parameters and the isotropic 495 chemical shift due to structural or dynamical disorder. Increasing motion at frequencies on the 496 order of and greater than the static linewidth decreases the contributions of these interactions to 497 the observed linewidth, and the observed narrowing of the static peak widths with increasing 498 temperature must be due to full or partial averaging of these interactions by dynamical processes.

499 MAS at a 10 kHz spinning frequency provides mechanical averaging of the dipole-dipole, CSA 500 interactions, and first-order quadrupolar interactions; partial averaging of the second-order 501 quadrupolar interaction; and no averaging of static chemical shift dispersion. The data suggest that the MAS linewidths for 2WL-⁴³Ca-hectorite are dominated by chemical shift dispersion due 502 to a range of local Ca^{2+} structural environments, and thus the narrowing of the MAS resonances 503 with increasing temperature demonstrates dynamical averaging by atomic hopping of the Ca²⁺ 504 505 among environments with different chemical shifts and different second order quadrupole couplings (if present) or to rapid averaging of the local Ca^{2+} environments due to hopping of 506 coordinating ²H₂O molecules, or a combination of the two. These conclusions are supported by 507 the ⁴³Ca nutation data that show behavior intermediate between rigid and liquid-like character for 508 509 this sample. The progressive change of the peak maxima to lower resonance frequencies with 510 increasing temperature in the MAS spectra of this sample indicates a progressive weakening of the interactions of Ca^{2+} with its coordination shell, as also observed for ${}^{23}Na^{+}$ in (²H)Na-hectorite 511 512 paste above -20 °C (Bowers et al., 2011). If site exchange due to strong ion-surface interactions were the source of dynamic averaging, a single narrow resonance should appear at the weighted-513 514 average position between the exchange sites at all temperatures above the fast exchange limit, 515 and this peak would not shift with increasing temperature. In addition, separate resonances for 516 the different sites at temperatures sufficiently low to freeze out the exchange motion would be observed. There is no evidence of this in the data for either the $2WL^{43}Ca$ -hectorite or $(^{2}H)^{43}Ca$ -517 518 hectorite paste at temperatures as low as -120 °C. This observation does not completely rule out 519 the possibility of exchange, because colder temperatures may be required to freeze out the site 520 exchange dynamics, but the results down to -120 °C are fully consistent with diffusion-related 521 dynamic processes as the dominant dynamic averaging mechanism. We also note that obtaining

522 lower temperature data would require the use of specialized cryogenic NMR probes. The onset temperature for the progressive shift to more negative resonance frequencies for the 2WL-⁴³Ca-523 524 hectorite is much lower than for the Na-hectorite paste (Bowers et al., 2011), in agreement with 525 our proposal that diffusional dynamic effects influence the low temperature cation NMR signal 526 more than surface effects for cations with larger charge densities. The observation that the static 527 peak widths for the room humidity sample are always narrower under MAS than without 528 spinning shows that even at room temperature, interactions other than dispersion of the chemical 529 shift are present and are not fully averaged by atomic motion. As noted earlier, the peak widths 530 for the paste sample under static conditions are narrower than the MAS peak widths for the room 531 humidity sample at 0 °C and near room temperature, consistent with more rapid atomic motion occurring in larger interlayer galleries and/or free ²H₂O domains between hectorite particles in 532 the paste. The dynamic source of this line narrowing may be faster Ca^{2+} diffusion among surface 533 sites, more rapid ²H₂O hopping between coordinating and non-coordinating environments, 534 desorption and diffusion of Ca^{2+} to a non-proximity-restricted state, or any combination of these 535 mechanisms. For the $(^{2}H)^{43}$ Ca-hectorite paste, these processes are all facilitated by excess $^{2}H_{2}O$. 536 537 It is difficult to distinguish among these mechanisms based on the NMR data alone; molecular dynamics simulations at a variety of H₂O contents and neutron scattering studies of ²H₂O 538 539 diffusion are needed for a more detailed analysis.

540 ²*H* NMR and H_2O Dynamics

Recently, we proposed a model for ${}^{2}\text{H}_{2}\text{O}$ dynamics in alkali metal hectorites that involves simultaneous fast-motion limit libration and site hopping of water molecules (Bowers et al., 2011). This model is supported by computational molecular dynamics simulations (Morrow et al., 2013) and also provides an accurate description of the observed ${}^{2}\text{H}$ NMR spectra of the

545 2WL-(²H)Ca-hectorite generated in the current study. The so-called C_2/C_3 hopping model requires that the rate of libration or rotation of ²H₂O molecules about the C₂ symmetry axis of the 546 2 H₂O must be at least an order of magnitude faster than hopping of the water molecules among 547 548 sites with C₃ symmetry with respect to the surface normal. The model also requires that the rate of the C₃ hopping must be at least an order of magnitude faster than the observed static ²H 549 550 linewidth (~230 kHz). From an NMR perspective, these rates are in the fast-motion regime, 551 meaning that their influence on the observed spectrum is independent of the specific rates of 552 motion as long as they meet these criteria. Water librational motion about the orientation of the dipole moment occur at about around 500 cm⁻¹ in conventional IR spectra, meaning the rate of 553 554 C_2 hopping is expected to be in the range of 10s of THz. Thus, the range of rates for C_3 hopping that could lead to fast-motion limit ²H NMR spectra is very large, spanning from \sim 1 MHz to \sim 1 555 556 THz. The rotational correlation times obtained by applying the isotropic rotational diffusion 557 model discussed above to the room humidity (²H)Na-hectorite and (²H)Ca-hectorite show ²H 558 motion are in the narrower range of 1 to 100 GHz. Geometrically, if the time-averaged orientation of the O-²H vector with respect to the layer normal [the surface normal (SN)-O_{2H2O}-559 ²H angle] is at the octahedral angle (54.7°, also the NMR MAS magic angle), the ²H resonance 560 561 appears as a single sharp peak. If, however, the time averaged value of this angle is different 562 than 54.7° , there is a residual quadrupolar broadening that results in observable spectral features 563 characteristic of integer spin quadrupolar powder patterns. Both positive and negative difference 564 in orientation from the octahedral angle yield the same spectra due to symmetry, and thus two angular values are reported. Interlayer ²H₂O can be part of the interlayer cation coordination 565 566 shell, occupy an empty ditrigonal ring, or occur in a transient orientation between these stable states at any instant in time. The presence of a single resonance in the ²H NMR spectra of the 567

 $2WL-(^{2}H)Na-$ and $2WL-(^{2}H)Ca$ -hectorites shows that during the NMR T₂ observation time all $^{2}H_{2}O$ molecules occupy all types of sites that are present. The SN-O_{2H2O}-²H angle determined from the ²H NMR spectra is, thus, the average over all the ²H₂O populations in the hectorite interlayers and on external surfaces, which includes ²H₂O molecules in the cation hydration shell and those occupying other types of sites. Exchange between interlayer and external surface sites does not appear to be significant on the ms to 10s of ms timescales for these samples.

The ²H NMR results for the 2WL-(²H)Ca-hectorite sample show that substitution of Ca²⁺ for Na⁺ in hectorite does not greatly affect the types of motion that the proximity-restricted H₂O molecules undergo in the two-layer hydrates or how these motions affect the observed ²H lineshape. The ²H NMR spectra of the 2WL-(²H)Na- and 2WL-(²H)Ca-hectorites (Fig. 6) are very similar between -80 °C and +25 °C, and both are well fit by the model described above (Fig. 9). A similar independence of H₂O motion with respect to the charge balancing cation has been reported for montmorillonites based on neutron scattering results (Gonzalez et al., 2008).

The data do show that Ca²⁺ for Na⁺ substitution in hectorite has only a small effect on the time 581 averaged orientation of the ²H₂O molecules with respect to the clay surface. For the room 582 humidity Ca-hectorite, the ²H spectra from -50 to +25 °C are well fit with surface normal (SN)-583 584 O_{2H2O} ⁻²H angles of either 51.5° or 58.5°, which are closer to the octahedral angle than for Nahectorite, for which the spectra are best fit using angles of 51 or 59°. The ²H splittings are very 585 586 sensitive to the angle with respect to the surface normal (Bowers et al., 2011), and the 587 differences reported here are significant. Computational molecular dynamics studies suggest that the dipole moment of H₂O adjacent to the muscovite mica surface has an average SN-O_{H2O}-H 588 589 angle of 150-160° and that the average H₂O molecule is donating two H-bonds to the surface (Wang et al., 2005), making the expected SN-O_{2H2O}-²H angle in an ion-free ring ~ +25 ± 5°. 590

Although the SN- O_{2H2O} -²H angle is likely to be smaller in hectorite because it has effectively no 591 592 layer charge originating from tetrahedral substitutions, if we assume a similar orientation of 593 2 H₂O at the Ca-hectorite interface and account for the fact that the number of ring-sorbed H₂O molecules should be greater in Ca-hectorite than in Na-hectorite due to fewer Ca²⁺ being 594 595 required for charge balance, these data suggest that the nearest neighbor hydration shell around Ca²⁺ in the two-layer hydrate of hectorite may be closer to ideal octahedral geometry than that 596 around Na⁺. Thus, the angle θ_A , the SN-Ca²⁺-O_{2H2O} angle (Fig. 9), may be closer to 54.7° in 597 2WL-(²H)Ca-hectorite. This geometry is easily obtained in the interlayer with the ²H₂O 598 molecules located next to the basal oxygens and the Ca^{2+} in the center of the interlayer 599 600 equidistant from the basal surfaces.

 $^{2}H_{2}O$ Rotational Diffusion and Activation Energies

The activation energies for ²H₂O rotational diffusion reported here [25.1 kJ/mol for (²H)Ca-602 hectorite vs. 21.1 kJ/mol for (²H)Na-hectorite] are in good agreement with those in the literature 603 604 for other Na- and Ca-smectites, suggesting that the isotropic rotational diffusion model is applicable to ²H₂O in both alkali metal and Ca-hectorites. The values in this work are slightly 605 lower than the activation energies for ²H₂O rotational diffusion reported for other Na-smectites 606 and vermiculites based on ²H NMR (37.8 kJ/mol for Na-hectorite, 35.5 kJ/mol for Na-607 608 vermiculite) (Giese and Fripiat, 1979; Weiss and Gerasimowicz, 1996) and higher than those 609 reported for H₂O diffusion in one- and two-layer hydrates of Na- and Ca-montmorillonite from 610 neutron scattering (11-12 kJ/mol) (Gonzalez et al., 2008). However, direct comparison and 611 interpretation of the absolute values of apparent activation energies for complex processes is 612 difficult, and sample differences such as smectite composition, layer charge, type of isomorphic 613 substitution (tetrahedral vs. octahedral), and H₂O content are likely to influence the relaxation

times and apparent activation energies. Gonzalez-Sanchez et al. (2008) show that different types of phyllosilicates have different activation energies for H₂O diffusion, supporting this conclusion. In addition, the activation energies for H₂O diffusion in Na- and Camontmorillonites based on neutron scattering results relate to motion in the temperature range of 27-95 °C, which may result in different values if the Arrhenius behavior is not strictly exponential (Gonzalez et al., 2008).

The calculated rotational correlation times for ${}^{2}\text{H}_{2}\text{O}$ rotational diffusion (10-1000 ps) are also 620 621 similar to those determined in other NMR experiments with smectites and vermiculites, but are 622 larger than those determined from neutron scattering studies. Like our results, the rotational 623 correlation times determined for Na-hectorite and Na-saponite by Weiss and Gerasimowicz 624 (1996) also fall between 10 and 1000 ps between -35 °C and +25 °C and decrease with 625 increasing temperature. For Na- and Ca-montmorillonites, the rotational correlation times determined by neutron scattering are 1-2 ps and the average residence times of ${}^{2}H_{2}O$ in a 626 627 particular site determined from neutron scattering are between 10 and 20 ps (Gates et al., 2012; 628 Gonzalez et al., 2008). Based on these results, it appears that both NMR and neutron scattering 629 support the idea that the motion with C_3 symmetry in the C_2/C_3 hopping model is closely related 630 to hopping diffusion of ${}^{2}\text{H}_{2}\text{O}$, in good agreement with our conclusion that the importance of 631 diffusion-based dynamic averaging of metal ions in hydrated smectites at lower temperatures 632 increases as the metal ion charge density increases.

The presence of a small, second 43 Ca resonance with signal toward higher frequencies than the main resonance (more positive chemical shifts) in the -120°C MAS spectrum of the 2WL- 43 Cahectorite sample (Fig. 2) may be due to the presence of Ca²⁺ on external surfaces, but this

637 interpretation is not certain. It is possible that the rates of the processes causing dynamical line 638 narrowing may be sufficiently slow or different in the interlayers and external surfaces at this 639 temperature to allow resolution of these signals. The resonances are not separable in the static 640 spectra at any temperature, and experiments at even lower temperatures are required to explore 641 this observation in more detail. It does not seem likely that this second site would be innersphere Ca^{2+} , as this would suggest that full or partial dehydration of Ca^{2+} becomes easier at lower 642 643 temperatures, in contrast to what one might expect based on conventional thermodynamic arguments. If the second site were an alternate preferred sorption site for outer-sphere Ca^{2+} , we 644 would expect to observe the influence of exchange between several unique outer-sphere Ca²⁺ 645 646 environments on the higher temperature NMR spectra. It is also possible that this feature represents a second interlayer Ca^{2+} site. This is not likely, because it would most likely undergo 647 648 dynamical averaging with the main peak at higher temperatures, causing a shift of the peak 649 maximum to more positive values, which is not observed. In addition, as noted above, the observed ⁴³Ca MAS NMR spectra for 2WL-⁴³Ca-hectorite are not consistent with exchange type 650 651 behavior, where one would initially expect a shift to more positive resonance frequency with 652 increasing temperature if exchange between the two resolvable sites were occurring. It is 653 possible that such evidence is present at temperatures between -120 °C and -100 °C that were not 654 explored, however it is difficult to support a site exchange model between these two 655 environments using this data set. A true evaluation of the role of site exchange on the ⁴³Ca 656 spectra will best be evaluated using NMR data from lower temperatures, which once again 657 requires use of a specialized cryogenic NMR probe. For completeness, we also note that the 658 high-frequency feature cannot be described using quadrupolar MAS lineshapes, as they produce 659 "tails" on the low-frequency side of the resonance.

660

IMPLICATIONS

661	The 2 H NMR results presented in this study support the increasingly accepted notion that H ₂ O
662	within \sim 5 Å of a mineral surface has a structure and dynamical behavior unlike either ice-1h or
663	bulk liquid H ₂ O. For hectorite, the molecular-scale dynamical behavior of the proximity-
664	restricted ${}^{2}\text{H}_{2}\text{O}$ is similar whether the charge-balancing cation is Na ⁺ , K ⁺ or Ca ²⁺ , and in all the
665	cases we have explored, it is not possible to distinguish between proximity-restricted H ₂ O in the
666	interlayer galleries and on the external surface using ² H NMR. Together, the Ca-hectorite results
667	in this paper combined with the alkali metal hectorite results published previously are consistent
668	with the hypothesis that H ₂ O motion in any smectite dominated by isomorphic substitution in the
669	octahedral sheet can be described using the C_2/C_3 jump motion model over some range of
670	temperatures regardless of the valence of the charge-balancing cation. The general applicability
671	of this statement and details of the molecular-scale motion observable using ² H NMR associated
672	with the type $(Mg^{2+} \text{ for } Al^{3+} \text{ vs. } Fe^{2+} \text{ for } Al^{3+}, \text{ for example})$ or density of octahedral charge
673	substitution in smectites or for clays with tetrahedral substitution remain to be evaluated.
674	Combined MD and neutron spectroscopic results suggest that both H ₂ O translational diffusion
675	rates and slow rotations of hydrated charge balancing cation clusters are sensitive to the total
676	layer charge and charge location between 300 K and 350 K, which support the need for ² H NMR
677	investigations of similar samples over a broader range of temperatures (Marry et al., 2011;
678	Michot et al., 2012; Michot et al., 2007; Sanchez et al., 2009). The rates of ² H isotropic
679	rotational diffusion determined from ${}^{2}HT_{1}$ experiments reported here correlate well with the C ₃
680	process in the C_2/C_3 jump motion model for proximity-restricted ² H ₂ O, provide further validation
681	of this model, and correlate well with similar measurements made in other smectites using
682	neutron scattering techniques.

683

684 The charge density of the anhydrous metal cation correlates with the onset temperature for 685 diffusion-dominated dynamic averaging of that cation's NMR resonance (whether due to motion of the ions or H₂O of hydration) based on our data for Cs⁺, K⁺, Na⁺, and Ca²⁺ (Bowers et al., 686 687 2008b; Bowers et al., 2011; Weiss et al., 1990), implying that one can qualitatively predict the 688 dominant type of molecular-scale motion leading to averaging of the NMR signal for alkali and 689 alkaline earth metal ions in smectites and smectite-rich earth materials over a wide range of 690 temperatures based on the anhydrous cation charge density. For example, the charge densities of Sr^{2+} and Ba^{2+} in six-fold coordination fall within the correlation limits and bracket the value for 691 Na^{+} (+0.387/Å³ for Sr²⁺ and +0.259/Å³ for Ba²⁺ vs. +0.300/Å³ for Na⁺), suggesting that Ba²⁺ will 692 require a temperature above 253 K before diffusion-type dynamic averaging of the ¹³⁷Ba NMR 693 resonance will dominate the character of the NMR spectrum. The higher charge density of Sr²⁺ 694 suggests that the ⁸⁷Sr NMR spectrum will be dominated by diffusion-type dynamic averaging at 695 a lower temperature than Na⁺. Unfortunately, the rapid modulations of the ⁸⁷Sr quadrupolar 696 interaction (which is much larger than Na⁺) due to this type of dynamic process may lead to 697 698 unobservable resonances near room temperature due to lifetime broadening, consistent with the inability to observe charge-balancing ⁸⁷Sr in a smectite to date. While the correlation currently 699 700 contains data points only from alkali and alkaline earth metals where electrostatic interactions 701 with the mineral surface dominate, if the correlation between Z/r^3 holds in general across the 702 periodic table, one may be able to predict the type of dynamic averaging affecting the NMR resonance of heavy metal pollutants within and beyond the transition metals such as Pb^{2+} or Hg^{2+} 703 (charge densities of $+0.378/\text{Å}^3$ and $+0.600/\text{Å}^3$, respectively, which are within the limits of this 704 705 correlation). However, extreme caution is required when predicting the behavior of the

10/2

31

706	transition metals from a simple Z/r^3 correlation, since other factors such as the ion polarizability,
707	hydrated radius, effective charge, and coordination number may play a more significant role for
708	elements outside the alkaline and alkaline earth metals. NMR-accessible nuclei such as ²⁰⁷ Pb
709	(spin $I = 1/2$), ¹⁹⁹ Hg (spin $I = 1/2$), and ²⁰¹ Hg (spin $I = 3/2$) can and should be used for additional
710	testing of the correlation between cation properties and diffusion-type motion onset temperature
711	and are likely to be more amenable to VT NMR than the other alkaline earth metals such as
712	Mg^{2+} , Sr^{2+} , and Ba^{2+} . Comparing the spin $\frac{1}{2}$ and quadrupolar isotopes of the same element (e.g.
713	199 Hg vs. 201 Hg) may also help to determine whether cation or H ₂ O motion is principally
714	responsible for the observed dynamic averaging of the NMR signal and provide new insight as to
715	how the dynamics of the cations and H ₂ O molecules are related.
716	
717	The data presented here also provide an important baseline for understanding the behavior of
718	cations, H ₂ O, and organic compounds in hydrated organo-clay complexes. Natural organic
719	matter (NOM) and NOM coatings on minerals alter the mobility of many species, and Ca^{2+} is
720	thought to play an important role in the non-covalent aggregation of NOM. Its role in NOM-
721	smectite complexes is less clear, and it may provide bridges between NOM molecules and
722	mineral surfaces, facilitate formation of surface coatings, or impact the coating density.
723	Comparing data from the NOM-free systems in this study to those obtained in smectite-NOM
724	complexes may allow us to determine the relative roles of the organic matter and inorganic
725	mineral surface in the more complex OM-bearing system. Our group is currently undertaking
726	NMR and computational molecular modeling studies of such smectite-OM complexes to
727	evaluate how organic material alters the solid-fluid interfacial structure and dynamics.
728	

32

729

ACKNOWLEDGMENTS

1	0/2
---	-----

730	
	This work was supported by the United States Department of Energy, Office of Basic
731	Energy Science through grants DE-FG02-10ER16128 and DE-FG02-08ER15929. The ⁴³ Ca
732	NMR spectra were obtained using the High Field Magnetic Resonance User Facility housed at
733	the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored
734	by the Department of Energy's Office of Biological and Environmental Research and located at
735	Pacific Northwest National Laboratory. The authors thank Dr. Alan J. Benesi for acquiring the
736	² H NMR using facilities at Penn State University and for helpful consultations regarding the
737	dynamic interpretations of the ² H NMR spectra. They also thank Ms. Arielle Polakos and Dr.
738	Andrew Eklund for assistance in devising the ⁴³ Ca-enriched solution preparation procedure.
739	REFERENCES
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754	 Bak, M., Rasmussen, J.T., and Nielsen, N.C. (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. Journal of Magnetic Resonance, 147(2), 296-330. Bish, D.L., Carey, J.W., Vaniman, D.T., and Chipera, S.J. (2003) Stability of hydrous minerals on the martian surface. Icarus, 164(1), 96-103. Bowers, G.M., Bish, D.L., and Kirkpatrick, R.J. (2008a) Cation exchange at the mineral-water interface: H₃O⁺/K⁺ competition at the surface of nano-muscovite. Langmuir, 24(18), 10240-10244. (2008b) H₂O and Cation Structure and Dynamics in Expandable Clays: ²H and ³⁹K NMR Investigations of Hectorite. Journal of Physical Chemistry C, 112, 6430-6438. Bowers, G.M., Ravella, R., Komarneni, S., and Mueller, K.T. (2006) NMR study of strontium binding by a micaceous mineral. Journal of Physical Chemistry B, 110(14), 7159-7164. Bowers, G.M., Singer, J.W., Bish, D.L., and Kirkpatrick, R.J. (2011) Alkali Metal and H₂O Dynamics at the Smectite/Water Interface. Journal of Physical Chemistry C, 115, 23395-23407. Bryce, D.L. (2010) Calcium binding environments probed by ⁴³Ca NMR spectroscopy. Dalton

- Delville, A., Detellier, C., Gerstmans, A., and Laszlo, P. (1981) The Theoretical Interpretation of
 Na-23 NMR Chemical Shifts and Quadrupolar Coupling Constants, as Supported by New
 Experimental-Evidence. Journal of Magnetic Resonance, 42(1), 14-27.
- Delville, A., and Laszlo, P. (1990) The Origin of the Swelling of Clays by Water. Langmuir,
 6(7), 1289-1294.
- Delville, A., and Porion, P. (2003) Multinuclear NMR study of the structural and dynamical
 properties of aqueous dispersions of charged anisotropic colloids. Trends in Physical
 Chemistry, 9, 1-21.
- Delville, A., Porion, P., and Faugere, A.M. (2000) Ion diffusion within charged porous network
 as probed by nuclear quadrupolar relaxation. Journal of Physical Chemistry B, 104(7),
 1546-1551.
- Fripiat, J., Cases, J., Francois, M., and Letellier, M. (1982) Thermodynamic and microdynamic
 behavior of water in clay suspensions and gels. Journal of Colloid and Interface Science,
 89(2), 378-400.
- Gates, W.P., Bordallo, H.N., Aldridge, L.P., Seydel, T., Jacobsen, H., Marry, V., and Churchman, G.J. (2012) Neutron Time-of-Flight Quantification of Water Desorption Isotherms of Montmorillonite. Journal of Physical Chemistry C, 116, 5558-5570.
- Gervais, C., Laurencin, D., Wong, A., Pourpoint, F., Labram, J., Woodward, B., Howes, A.P.,
 Pike, K.J., Dupree, R., Mauri, F., Bonhomme, C., and Smith, M.E. (2008) New
 perspectives on calcium environments in inorganic materials containing calcium-oxygen
 bonds: A combine computational-experimental ⁴³Ca NMR approach. Chemical Physics
 Letters, 464, 42-48.
- Giese, R.F., and Fripiat, J.J. (1979) Water molecule positions, orientations, and motions in the
 dihydrates of Mg and Na vermiculites. Journal of Colloid and Interface Science, 71(3),
 441-450.
- Gonzalez, S.F., Juranyi, F., Gimmi, T., Van, L.L., Unruh, T., and Diamond, L.W. (2008)
 Translational diffusion of water and its dependence on temperature in charged and
 uncharged clays: A neutron scattering study. Journal of Chemical Physics, 129,
 174706/1-174706/11.
- Grandjean, J. (1997) Water sites at a clay interface. Journal of Colloid and Interface Science,
 185(2), 554-556.
- Grandjean, J., and Laszlo, P. (1989) Multinuclear and pulsed gradient magnetic resonance
 studies of sodium cations and water reorientation at the interface of a clay. Journal of
 Magnetic Resonance, 83, 128-137.
- Greathouse, J., and Sposito, G. (1998) Monte Carlo and molecular dynamics studies of interlayer
 structure in Li(H₂O)(3)-smectites. Journal of Physical Chemistry B, 102(13), 2406-2414.
- Guichet, X., Fleury, M., and Kohler, E. (2008) Effect of clay aggregation on water diffusivity
 using low field NMR. Journal of Colloid and Interface Science, 327, 84-93.
- Holden, N. (1995) Table of the Isotopes. In Lide, D.R. (ed) CRC Handbook of Chemistry and
 Physics, 75th ed. p.11-39 to 11-139. CRC Press, Boca Raton, Florida.
- Ishimaru, S., and Ikeda, R. (1999) NMR studies on dynamics of water intercalated in clay
 minerals. Zeitschrift fuer Naturforschung, A: Physical Sciences, 54(6/7), 431-436.
- Karmous, M.S., Oueslati, W., Ben Rhaiem, H., Robert, J.L., and Ben Haj Amara, A. (2007)
 Simulation of the XRD patterns, structural properties of a synthetic Na-hectorite
 exchanged Cu²⁺ and Ca²⁺. Zeitschrift fur Kristallographie Supplemental, 26, 503-508.

- Karmous, M.S., Ben Rhaiem, H., Robert, J.L., Lanson, B., and Ben Haj Amara, A. (2009)
 Charge location effect on the hydration properties of synthetic saponite and hectorite
 saturated by Na⁺, Ca²⁺ cations: XRD investigation. Applied Clay Science, 46, 43-50.
- Kentgens, A.P.M. (1991) Quantitative Excitation of Half-Integer Quadrupolar Nuclei by a
 Frequency-Stepped Adiabatic Half-Passage. Journal of Magnetic Resonance, 95(3), 619 625.
- Kim, Y., Cygan, R.T., and Kirkpatrick, R.J. (1996) Cs-133 NMR and XPS investigation of
 cesium adsorbed on clay minerals and related phases. Geochimica et Cosmochimica
 Acta, 60(6), 1041-1052.
- Kim, Y., and Kirkpatrick, R.J. (1997) ²³Na and ¹³³Cs NMR study of cation adsorption on mineral surfaces: local environments, dynamics, and effects of mixed cations. Geochimica et Cosmochimica Acta, 61(24), 5199-5208.
- Labouriau, A., Johnston, C.T., and Earl, W.L. (1997) Cation and water interactions in the
 interlamellae of a smectite clay. Nuclear Magnetic Resonance Spectroscopy in
 Environmental Chemistry, 181-197.
- Laurencin, D., and Smith, M.E. (2013) Development of ⁴³Ca solid state NMR spectroscopy as a
 probe of local structure in inorganic and molecular materials. Progress in Nuclear
 Magnetic Resonance Spectroscopy, 1-40.
- Lin, Z., Smith, M.E., Sowrey, F.E., and Newport, R.J. (2004) Local structural environment of calcium by natural-abundance solid-state ⁴³Ca NMR. Physical Review B, 69, 224107.
- Loring, J.S., Schaef, H.T., Turcu, R.V.F., Thompson, C.J., Miller, Q.R.S., Martin, P.F., Hu, J.,
 Hoyt, D.W., Qafoku, O., Iton, E.S., Felmy, A.R., and Rosso, K.M. (2012) In situ
 molecular spectroscopic evidence for CO₂ intercalation into montmorillonite in
 supercritical carbon dioxide. Langmuir, 28(18), 7125-7128.
- MacKenzie, K.J.D., and Meinhold, R.H. (1994a) ²⁵Mg nuclear magnetic resonance spectroscopy
 of minerals and related inorganics: a survey study. American Mineralogist, 79, 250-60.
- -. (1994b) The thermal reactions of talc studied by ²⁹Si and ²⁵Mg MAS NMR. Thermochimica Acta, 244, 195-203.
- Marry, V., Dubois, E., Malikova, N., Durand-Vidal, S., Longeville, S., Breu, J. (2011) Water
 dynamics in hectorite clays: Influence of temperature studies by coupling neutron spin
 echo and molecular dynamics. Environmental Science and Technology, 45, 2850-2855.
- Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, S., Alonso, B., Durand, J.-O., Bujoli, B.,
 Gan, Z., and Hoatson, G. (2002) Modeling one- and two-dimensional solid-state NMR
 spectra. Magnetic Resonance in Chemistry, 40(1), 70-76.
- McKinley, J.P., Zeissler, C.J., Zachara, J.M., Serne, R.J., Lindstrom, R.M., Schaef, H.T., and
 Orr, R.D. (2001) Distribution and retention of Cs-137 in sediments at the Hanford Site,
 Washington. Environmental Science & Technology, 35(17), 3433-3441.
- Michot, L.J., Ferrage, E., Jiminez-Ruiz, M., Boehm, M., Delville, A. (2012) Anisotropic features
 of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer
 charge. A combined quasi-elastic neutron scattering and molecular dynamics simulations
 study. Journal of Physical Chemistry C, 116, 16619-16633.
- Michot, L.J., Delville, A., Humbert, B., Plazanet, M., Levitz, P. (2007) Diffusion of water in a
 synthetic clay with tetrahedral charges by combined neutron time-of-flight measurements
 and molecular dynamics simulations. Journal of Physical Chemistry C, 111, 9818-9831.

- Morrow, C.P., Yazaydin, A.O., Kalinichev, A.G., Bowers, G.M., and Kirkpatrick, R.J. (2013)
 Structure and dynamics of clay surfaces and interlayers: A molecular dynamics
 investigation of Na-hectorite, Journal of Physical Chemistry C, 117(10), 5172-5187.
- Mueller, K.T., Wu, Y., Chmelka, B.F., Stebbins, J., and Pines, A. (1991) High-Resolution O-17
 Nmr of Solid Silicates. Journal of the American Chemical Society, 113(1), 32-38.
- Park, S.H., and Sposito, G. (2004) Molecular Modeling of Clay Mineral Structure and Surface
 Chemistry. In S.M.C. Auerbach, K. A.; Dutta, P. K., Ed. Handbook of Layered Materials,
 p. 39-89. Marcel Dekker, Inc., New York.
- Pons, C.H., Rousseaux, F., and Tchoubar, D. (1982) Use of small-angle x-ray scattering for
 studying smectite swelling. II. Study of different water-smectite systems as a function of
 temperature. Clay Minerals, 17(3), 327-38.
- Porion, P., Al Mukhtar, M., Meyer, S., Faugere, A.M., van der Maarel, J.R.C., and Delville, A.
 (2001a) Nematic ordering of suspensions of charged anisotropic colloids detected by Na-23 nuclear magnetic resonance. Journal of Physical Chemistry B, 105(43), 10505-10514.
- Porion, P., and Delville, A. (2005) NMR studies and multi-scale modeling of the water and ionic
 mobilities within the porous networks limited by clay particles. Annales de Chimie
 (Cachan, France), 30(3), 263-276.
- Porion, P., Fauegre, A.M., and Delville, A. (2007) Dynamical properties of ions confined within
 dense dispersions of charged anisotropic colloids: A Na-23 quadrupolar NMR study.
 European Physical Journal-Special Topics, 141, 281-284.
- Porion, P., Faugere, M.P., Lecolier, E., Gherardi, B., and Delville, A. (1998) ²³Na Nuclear
 Quadrupolar Relaxation as a Probe of the Microstructure and Dynamics of Aqueous Clay
 Dispersions: An Application to Laponite Gels. Journal of Physical Chemistry B, 102(18),
 3477-3485.
- Porion, P., Mukhtar, M.A., Meyer, S., Faugere, A.M., van, d.M.J.R.C., and Delville, A. (2001b)
 Nematic Ordering of Suspensions of Charged Anisotropic Colloids Detected by ²³Na
 Nuclear Magnetic Resonance. Journal of Physical Chemistry B, 105, 10505-10514.
- Pyykkö, P. (2001) Spectroscopic nuclear quadrupole moments. Molecular Physics, 99(19), 16171629.
- Sanchez, F.G., Gimmi, T., Juranyi, F., van Loon, L., Diamond, L.W. (2009) Linking the
 diffusion of water in compacted clays at two different time scales: Tracer throughdiffusion and quasielastic neutron scattering. Environmental Science and Technology,
 43(10), 3487-3493.
- Shannon, R.D. (1976) Revised effective ionic radii and inter-nuclear distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
- Singer, J.W., Yazaydin, A.O., Kirkpatrick, R.J., and Bowers, G.M. (2012) Structure and
 transformation of amorphous calcium carbonate: A solid-state NMR and computational
 molecular dynamics investigation. Chemistry of Materials, 24, 1828-1836.
- Sobolev, O., Cuello, G.J., Scheinost, A.C., Johnson, M.R., Nikitenko, S., Le, F.L., Brendle, J.,
 and Charlet, L. (2011) The short-range order of ions in clay minerals: Sm³⁺ coordination.
 Physicus Status Solidi A, 208, 2293-2298.
- Sobolev, O., Le, F.L., Gonzalez, M.A., Russina, M., Kemner, E., Cuello, G.J., and Charlet, L.
 (2009) Hydration of Na⁺, Ni²⁺, and Sm³⁺ in the Interlayer of Hectorite: A Quasielastic
 Neutron Scattering Study. Journal of Physical Chemistry C, 113, 13801-13812.
10/2

- Sposito, G., Skipper, N.T., Sutton, R., Park, S.H., Soper, A.K., and Greathouse, J.A. (1999)
 Surface geochemistry of the clay minerals. Proceedings of the National Academy of
 Sciences of the United States of America, 96(7), 3358-3364.
- Tenorio, R.P., Alme, L.R., Engelsberg, M., Fossum, J.O., and Hallwass, F. (2008) Geometry and
 Dynamics of Intercalated Water in Na-Fluorhectorite Clay Hydrates. Journal of Physical
 Chemistry C, 112, 575-580.
- Wang, J.W., Kalinichev, A.G., and Kirkpatrick, R.J. (2006) Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study. Geochimica et Cosmochimica Acta, 70(3), 562-582.
- Wang, J.W., Kalinichev, A.G., Kirkpatrick, R.J., and Cygan, R.T. (2005) Structure, energetics,
 and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics
 simulation. Journal of Physical Chemistry B, 109(33), 15893-15905.
- Weiss, C.A., Jr., and Gerasimowicz, W.V. (1996) Interaction of water with clay minerals as
 studied by ²H nuclear magnetic resonance spectroscopy. Geochimica et Cosmochimica
 Acta, 60(2), 265-75.
- Weiss, C.A., Kirkpatrick, R.J., and Altaner, S.P. (1990a) The Structural Environments of Cations
 Adsorbed onto Clays Cs-133 Variable-Temperature MAS NMR Spectroscopic Study of
 Hectorite. Geochimica et Cosmochimica Acta, 54(6), 1655-1669.
- 913 -. (1990b) Variations in Interlayer Cation Sites of Clay-Minerals as Studied by Cs-133 MAS
 914 Nuclear Magnetic Resonance Spectroscopy. American Mineralogist, 75(9-10), 970-982.
- Wittebort, R.J., Usha, M.G., Ruben, D.J., Wemmer, D.E., and Pines, A. (1988) Observation of
 Molecular-Reorientation in Ice by Proton and Deuterium Magnetic-Resonance. Journal of
 the American Chemical Society, 110(17), 5668-5671.
- Wong, A., Howes, A.P., Dupree, R., and Smith, M.E. (2006) Natural abundance Ca-43 NMR
 study of calcium-containing organic solids: A model study for Ca-binding biomaterials.
 Chemical Physics Letters, 427(1-3), 201-205.
- Zachara, J.M., Smith, S.C., Liu, C.X., McKinley, J.P., Serne, R.J., and Gassman, P.L. (2002)
 Sorption of Cs⁺ to micaceous subsurface sediments from the Hanford site, USA.
 Geochimica Et Cosmochimica Acta, 66(2), 193-211.
- 924

FIGURE CAPTIONS

926

927 Figure 1. Controlled relative humidity (RH) XRD results for Ca-hectorite. The top image 928 shows the basal spacings of Ca-hectorite determined from the peak center-of-mass as a function 929 of RH. All values have an uncertainty between 0.15 and 0.25 Å. This sample occurs dominantly 930 as a two-layer hydrate over the RH range between 30% and 60% and exhibits negligible 931 hysteresis upon dehydration except at the highest RH values. The bottom image presents the 932 observed XRD patterns between 2° and $12^{\circ} 2\theta$, showing again a lack of hysteresis and nearly 933 identical widths and peak maxima as humidity is increased (blue lines in both figures) and 934 decreased (black lines in both figures). The red line in the bottom image is 90% RH pattern, the 935 maximum value used.

Figure 2. Variable temperature ⁴³Ca MAS NMR spectra of 2WL-⁴³Ca-hectorite acquired at 20.0

937 T. The featureless and symmetric resonances progressively narrow and shift to more negative

938 peak maxima with increasing temperature. There is some intensity indicative of a second 43 Ca

environment on the left side of the dominant resonance at -120 °C that is not visible at any other

940 temperature or in the static 43 Ca results.

941 **Figure 3.** ⁴³Ca nutation curves for CaCO₃ (grey), saturated CaCl₂ (aq) (black), and the 2WL-

⁴³Ca -hectorite at 20 °C (blue/dotted), -50 °C (red/dashed), and -120 °C (green/long dash)

943 obtained at 20.0 T under MAS conditions. The ⁴³Ca nutation behavior of this hectorite sample is

between that expected for "rigid" 43 Ca in CaCO₃ and Ca²⁺ in concentrated aqueous solution at all

- 945 temperatures. These observations are consistent with the Ca^{2+} being in close association with the
- surface at all temperatures, as expected for proximity-restricted (< 5 Å from a surface or ion)

947 interlayer and external surface sites.

949	Figure 4. Comparison of the room temperature ⁴³ Ca MAS NMR spectra for 2WL- ⁴³ Ca-hectorite
950	at 21.1 T (top) and 20.0 T (bottom). Both peaks are narrow and featureless, and the maximum of
951	the spectrum at 20.0 T falls within the uncertainty of the value at 21.1 T, suggesting only a small
952	contribution from a time-averaged quadrupolar interaction to the line shape ($P_Q = 1.4 \pm 1.4$
953	MHz). The larger peak width and peak shape at 21.1 T is a result of uncorrectable magnetic
954	field inhomogeneitites due to the material requirements of the high temperature 5 mm MAS
955	probe used at this field.
956	Figure 5. Variable temperature ⁴³ Ca static NMR spectra of the 2WL (left) and paste (right)
957	samples of ⁴³ Ca-hectorite acquired at 20.0 T. See text for discussion of the peak shapes, positions
958	and intensities.
959	Figure 6. Variable temperature ² H NMR spectra for 2WL-(² H)Ca-hectorite compared to the ² H
960	spectra for Na-Hectorite at -80° and 25°C (top and bottom spectra). See text for interpretation.
961	Figure 7. An Arrhenius plot of the ${}^{2}H_{2}O$ rotational correlation time determined from the ${}^{2}H$
961 962	Figure 7. An Arrhenius plot of the 2 H ₂ O rotational correlation time determined from the 2 H NMR T ₁ relaxation times for 2WL-(2 H)Na-hectorite (red) and 2WL-(2 H)Ca-hectorite (blue). The
962	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The
962 963	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the
962 963 964	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the greater affinity of Ca ²⁺ for H ₂ O with respect to Na ⁺ , as expressed in their hydration energies.
962 963 964 965	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the greater affinity of Ca ²⁺ for H ₂ O with respect to Na ⁺ , as expressed in their hydration energies. The red point not included in the Arrhenius fit is likely part of the positively sloped region in the
962 963 964 965 966	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the greater affinity of Ca ²⁺ for H ₂ O with respect to Na ⁺ , as expressed in their hydration energies. The red point not included in the Arrhenius fit is likely part of the positively sloped region in the classic "V" shape in correlation times versus inverse temperature plots for NMR T ₁ data.
962 963 964 965 966 967	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the greater affinity of Ca ²⁺ for H ₂ O with respect to Na ⁺ , as expressed in their hydration energies. The red point not included in the Arrhenius fit is likely part of the positively sloped region in the classic "V" shape in correlation times versus inverse temperature plots for NMR T ₁ data. Figure 8. The room temperature ⁴³ Ca MAS NMR spectrum of 2WL- ⁴³ Ca-hectorite at 20.0 T
962 963 964 965 966 967 968	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the greater affinity of Ca ²⁺ for H ₂ O with respect to Na ⁺ , as expressed in their hydration energies. The red point not included in the Arrhenius fit is likely part of the positively sloped region in the classic "V" shape in correlation times versus inverse temperature plots for NMR T ₁ data. Figure 8. The room temperature ⁴³ Ca MAS NMR spectrum of 2WL- ⁴³ Ca-hectorite at 20.0 T (top) compared to simulated resonances of crystalline Ca compounds with Ca coordinated by
962 963 964 965 966 967 968 969	NMR T ₁ relaxation times for 2WL-(² H)Na-hectorite (red) and 2WL-(² H)Ca-hectorite (blue). The activation energy for rotational diffusion is larger for Ca-hectorite, as expected based on the greater affinity of Ca ²⁺ for H ₂ O with respect to Na ⁺ , as expressed in their hydration energies. The red point not included in the Arrhenius fit is likely part of the positively sloped region in the classic "V" shape in correlation times versus inverse temperature plots for NMR T ₁ data. Figure 8. The room temperature ⁴³ Ca MAS NMR spectrum of 2WL- ⁴³ Ca-hectorite at 20.0 T (top) compared to simulated resonances of crystalline Ca compounds with Ca coordinated by oxygen at this field using the parameters reported in the literature (Bryce, 2010; Gervais et al.,

10/2

972	difference is consistent with the Ca^{2+} in hectorite being in outer sphere complexes. The ⁴³ Ca
973	linewidth in the ⁴³ Ca-hectorite is most similar to calcite and aragonite, which have the smallest
974	quadrupolar products of the phases shown (1.4 MHz and 0.68 MHz, respectively), making it
975	likely that the quadrupolar product in ⁴³ Ca-hectorite is also small. Simulations were performed
976	using the SIMPSON simulation software (Bak et al., 2000) with the same MAS conditions and
977	line broadening that were applied to the experimental spectrum.
978	Figure 9. A visual representation of the important angles in the C_2/C_3 hopping model for the ² H
979	NMR spectra for Ca- and Na-hectorite. θ_A is the surface normal-Ca ²⁺ -O _{H2O} angle that is related
980	to the compression or extension of the Ca^{2+} hydration shell along the C_3 symmetry axis. θ_B is the
981	surface normal- O_{H2O} - ² H angle to which the ² H NMR line shape is sensitive. Two different H ₂ O
982	sites (H ₂ O in the Ca ²⁺ hydration shell and H ₂ O sorbed at the center of a hexagonal ring) are
983	represented with different θ_B values. The ² H NMR line shape reflects the time averaged θ_B value
984	and represents the probability-weighted average of all θ_B values in the sample assuming rapid
985	exchange of ${}^{2}\text{H}_{2}\text{O}$ molecules among all sites. Calcium ions are orange, oxygen is red, and
986	hydrogen/deuterium are white.

987

TABLES

989 **Table 1.** Summary of sample designation, experiments, and compositional characteristics.

Designation	Experiment(s)	Characteristics
Ca-hectorite	XRD	Natural abundance of ⁴³ Ca and ² H
2WL-(² H)Ca-hectorite	² H NMR	Natural abundance of 43 Ca, equilibrated at ~43% RH 2 H ₂ O (99.9% 2 H)
2WL- ⁴³ Ca-hectorite	⁴³ Ca NMR	30% ⁴³ Ca, equilibrated at atmospheric RH with natural abundance of ² H
(² H) ⁴³ Ca-hectorite paste	⁴³ Ca NMR	30% $^{43}Ca,$ mixed at 2:1 mass ratio of 99.9% $^{2}H_{2}O$:smectite
2WL-(² H)Na-hectorite	² H NMR	Natural abundance of 23 Na, equilibrated at ~43% RH 2 H ₂ O (99.9% 2 H)

990

Table 2. Fit results for the variable temperature ⁴³Ca NMR of 30% ⁴³Ca enriched Ca-hectorites.

			- ⁴³ Ca- te MAS	2WL- ⁴³ Ca- hectorite static		⁴³ Ca-hectorite paste static	
T (°C)	Type ^a	$\delta_{\rm CS}$ (± 0.35 ppm)	FWHM (± 20 Hz)	δ_{CS} (± 0.09 ppm)	FWHM (± 35 Hz)	$\delta_{\rm CS}$ (± 0.09 ppm)	FWHM (± 35 Hz)
25/20 ^b	1L	-1.33	139	-1.77	322	-0.56	81.2
0	1L	-0.80	141	-1.51	340	0.12	85.8
-30	1L	-0.04	153	-0.30	362	0.39	151
-50	1L	0.42	214	0.24	435	1.09	281
-75	1L	0.96	284	0.20	506	1.33	366
-100	1L	1.61	310	1.70	946	2.88	971
-120	1L	2.07	450	3.25	1705	4.65	1330
	2L	0.82	265				
		3.10	506				

992 δ_{CS} = observed chemical shift, FWHM = full width at half maximum

10/2

- ^aType of function used to fit the data. 1L is a fit to one pure Lorentzian and 2L is a fit to two
 Lorentzian functions
- ⁹⁹⁵ ^bThe highest temperature for the static VT experiments was 20°C
- 996
- 997 **Table 3.** ²H NMR and T₁ relaxation parameters, including the calculated rotational correlation
- 998 times (τ_c) for 2WL-(²H)Ca-hectorite and 2WL-(²H)Na-hectorite.

	2WL-(² H)Ca-hectorite			2WL-(² H)Na-hectorite		
T (K)	Splitting (kHz)	T ₁ (ms)	$\tau_{C} (10^{-10} s)$	Splitting (kHz)	T ₁ (ms)	$\tau_{\rm C} (10^{-10} {\rm s})$
298	21.48	-	-	24.44	67.0 ± 0.5	0.190
273	21.48	29.9 ± 1.3	0.425	25.62	40.1 ± 0.5	0.318
253	23.44	14.0 ± 0.7	0.910	26.56	19.3 ± 0.2	0.660
238	23.44	6.18 ± 0.41	2.06	27.02	8.94 ± 0.11	1.42
223	25.4	2.55 ± 0.25	5.00	26.87	4.01 ± 0.05	3.17
193	N/A	-	-	35.54	4.87 ± 0.06	2.61

999

