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Abstract

Microscale analysis of ferrous:ferric iron ratios in silicate minerals has
the potential to constrain geological processes but has proved challeng-
ing because textural information and spatial resolution are limited with
bulk techniques, and in-situ methods have limited spatial resolution. Syn-
chrotron methods, such as XANES, have been hampered by the sensitivity
of spectra to crystal orientation and matrix effects.

In an attempt to break this nexus, biotites from Tanzania were char-

acterised with a combination of optical microscopy, electron microprobe,
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Méssbauer analysis, Electron Back Scatter Diffraction (EBSD) and X-ray
Absorption Near Edge Structure (XANES) spectroscopy. Pre-edge and
edge characteristics of the Fe Ka absorption feature were compared to
orientation information derived by EBSD and ferric iron content derived
from Mossbauer analysis.

Statistically significant correlations between measured spectral fea-
tures and optic/crystallographic orientation were observed for individual
samples. However, orientation corrections derived from these correlations
did not reduce the uncertainty in Fe3t /Fetor. The observations are consis-
tent with matrix- and ordering-dependency of the XANES features, and
further work is necessary if a general formulation for orientation correc-
tions is to be devised. (185 words)

Keywords: Fe, oxidation, XANES, biotite, orientation

Introduction

The oxidation state of iron in minerals is a critical control on mineral properties
and is a strong determinant of the oxidation state of the host rock, which in
turn, affects parameters such as rheology (Mackwell et al., 1990; Keefner et al.,
2011), melting characteristics (Wyllie, 1995; Foley, 2011), and the release of
elements of environmental and economic interest (e.g. S, C, Cu, Au) by melting
and devolatilisation (Mavrogenes and O’Neill, 1999; Jugo et al., 2005; Jugo,
2009).

Fe3t /Feyot in minerals can vary on a micron scale (Schmid et al., 2003; De-
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laney et al., 1998; Berry et al., 2010), and acquisition of this information could
provide invaluable information on geological processes. However, measurement
of Fe3* /Fey is challenging. Wet chemical and bulk Méssbauer methods (Mey-
rowitz, 1963; Li et al., 2005) require a bulk sample and so cannot resolve micron
scale spatial variation of Fe3* /Fetor. In-situ Mossbauer has the potential to
reach 50 micron spatial resolution, but the measurements are time-consuming
and impractical for detailed studies of within-grain Fe3* /Fetor variation (Me-
Cammon et al. 2004, McCammon 2005). EELS (Electron Energy Loss Spec-
troscopy) also has potential (e.g. Garvie et al., 2004; Keast et al., 2001) but
requires a TEM thickness sample, so textural information is often lost during
sample preparation.

Synchrotron XANES-based methods provide a promising opportunity for
in-situ Fe®* /Feyo; analysis on beamlines with micro-focus capability. Spatial
resolution is typically less than 10 microns and potentially less than 1 um on
the new high-resolution beamlines. Analysis can be achieved in minutes to tens
of minutes, even at iron concentrations less than one weight percent. Early work
provided calibrations based on the position of the centroid of the 1s to 3d Fe K
pre-edge peak for iron in octahedral compounds (Bajt et al., 1994) and glasses
(Berry et al., 2003, 2004). Further study revealed that the characteristics of the
pre-edge peak are a complex function of site geometry, co-ordination, matrix
composition, and mineral orientation. These functional relationships have been
studied by a combination of experimental and theoretical methods (Randall

et al., 1995; Arrio et al., 2000; Dyar et al., 2001, 2002a,b; Petit et al., 2001;
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Wilke et al., 2004, 2005; Delaney et al., 2005; Wilke et al., 2007).

Results from these studies indicate that, for minerals with a high-spin elec-
tron arrangement such as biotite, the pre-edge peak intensity is mostly a function
of the extent of electric dipole coupling induced by hybridisation of the 3d-4p
orbitals, because the 1s to 3d transition is forbidden unless hybridisation occurs.
Such hybridisation is facilitated by non-centrosymmetric site geometries for iron
and thus peak intensities are higher for tetrahedrally coordinated than for oc-
tahedrally coordinated iron. The asymmetry of coordination polyhedra is also
enhanced when bond lengths decrease. So, pre-edge peaks for Fe3t are more
intense than those for Fe?* because the higher charge on Fe3* results in shorter
Fe-O distances. The more intense pre-edge peaks for Fe?* are also caused by
the greater probability of 1s to 3d transitions for Fe3*, which occurs because
there are more vacancies in the d levels for the higher valence oxidation state.

There is a broad correlation between pre-edge peak energy and oxidation
state. Electrons are more tightly held in Fe3T because of the greater charge,
so transitions related to this oxidation state are at slightly higher energy (1-2
eV) than for Fe?*. The number of sub-peaks in the composite pre-edge can
be predicted via molecular orbital (MO) calculations (Rehr et al., 2009; Westre
et al., 1997b). Octahedral Fe?* should have three peaks, while tetrahedral Fe?*
has four. Octahedral Fe3* and tetrahedral Fe3* should both have two peaks,
but only those for octahedral Fe?t are expected to be resolvable. Tetrahedral
Fe3* is expected to produce a single intense peak because the separation of

the two sub-peaks is small (< 0.7 €V). However, with typical configurations for
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X-ray spectroscopy it is difficult to deconvolute XANES pre-edge peak informa-
tion properly for minerals such as biotite with octahedral and tetrahedral ferric
and ferrous iron, because spectrometer resolution, even with a high resolution
monochromator, is insufficient.

The difficulty associated with resolution of individual peaks within the pre-
edge peak for specific mineral phases means that existing calibrations (Wilke
et al., 2001; Berry et al., 2003, 2004; Wilke et al., 2007, 2009), are largely em-
pirical, although if the Fe co-ordination is known then plots of the type first
reported by Wilke et al. (2001) can be used as a generalised calibration for the
pre-edge peak. An empirical calibration for Fe3T /Feyo in garnet (Berry et al.,
2010) that uses main edge and post-main edge features has also been produced,
and, at least for garnet, the main edge calibrations are more sensitive and pro-
vide higher precision than those based on pre-edge features. However, features
at and above the main edge are strongly related to structural environment and
thus display greater matrix dependence than pre-edge features, which record
local environment to a greater extent. Existing calibrations allow accurate and
precise measurements of Fe3* /Fey in isotropic or powdered material, so long as
excellent matrix-matched calibration standards are available. It is also possible
to make measurements of relative Fe3* /Fei,; within single anisotropic grains
(Schmid et al., 2003; Vidal et al., 2006; Munoz et al., 2006). However, measure-
ment of absolute Fe3t /Fey in-situ for anisotropic grains is still hampered by
uncertainties related to matrix composition and crystal orientation (Dyar et al.,

2001, 2002a) which limit precision in Fe?* /Feqo; to 10 — 15% absolute. Brouder
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(1990) derives and presents relationships between X-ray absorbance and crystal
orientation for a wide range of crystal symmetries. It is therefore theoretically
possible to account for orientation effects if crystal orientation is known.
Electron Back Scatter Diffraction (EBSD) provides a non-destructive way to
precisely and accurately determine the orientation of crystals accurately with
respect to a sample reference frame, and it is therefore possible that combination
of this technique with XANES could eliminate, or substantially reduce, crystal
orientation-related uncertainties in Fe3* /Feiot. In this study, we examine the
characteristics of XANES spectra as a function of EBSD-derived mineral orien-
tation, and assess the potential utility of the combined technique. Biotite grains
from three samples are characterised using microprobe, Mossbauer, XANES and
EBSD. Pre-edge peak and main edge XANES features were examined, and rela-
tionships between the areas of the component peaks and orientation parameters
were investigated, and the potential for quantitative predictive calibrations as-

sessed.

Material and Methods

The criteria for sample selection were that: the samples should contain sig-
nificant modal proportions of biotite with homogeneous composition; the sam-
ples should not contain excessive magnetite that could contaminate the picked
minerals; and that samples should cover a range of ferromagnesian assem-

blages, with the expectation that this would produce a range of ferric:ferrous
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ratios in the biotites. Three samples were chosen from a suite of partially
retrogressed eclogites and granulites from western Tanzania. Samples T01-
23 (S07°08’7.2” E036°08’10.9”) and T01-28A (507°07°49.0” E036°0722.4”) are
Palaeoproterozoic metamorphic rocks of the Isimani Unit of the Usagaran Oro-
gen (Reddy et al., 2003; Collins et al., 2004). Both samples are high-grade
quartzo-feldspathic gneiss that show minor signs of lower grade metamorphic
overprints (e.g. trace epidote and actinolite). “°Ar/3?Ar data from micas in this
region record an isotopic disturbance consistent with a weak Pan-African green-
schist facies thermal overprint (Reddy et al., 2004). Sample T01-54 (S07°34°44.0”
E036°45’45.0”) is a strongly foliated banded gneiss comprising alternating lay-
ers of amphibole-rich and amphibole-poor quartzo-feldspathic layers. The sam-
ple analysed contains red-brown biotite, garnet and amphibole, plagioclase, K-
feldspar and quartz. The sample was collected from the road section adjacent
to the Great Ruaha River, close to the entrance of the Udzungwa Mountains
National Park and is probably a Neoarchaean protolith reworked at high-grade
conditions during Neoproterozoic Pan-African orogeny (Vogt et al., 2006).
Each sample was crushed for about 5 seconds in a tungsten carbide TEMA
mill to produce grains a few hundred microns in size. The crushed sample was
then passed repeatedly through a Frantz magnetic separator to concentrate the
ferromagnesian fraction. 30 micrograms of biotite was hand-picked from each
sample for Mdssbauer analysis. Microprobe analysis, EBSD and XANES analy-
sis were performed on polished thin sections. Thin sections were prepared in the

normal way, plus a final polish with 0.06 pm colloidal silica NaOH suspension
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(pH 9.8) for ca. 2 hours on a Buehler Vibromet II polisher. A thin (~ 5 nm)

carbon coat was applied before EBSD analyses to reduce surface charging.

Mineral composition analysis

Mineral compositions were analysed using the JEOL JXA-8530F hyperprobe
located at the CMCA (Centre for Microscopy, Characterisation and Analysis)
at the University of Western Australia. Accelerating voltage was 15 KeV, and
the beam current was 20nA. Cation occupancies were calculated using the Ax

software (Holland, pers. comm.)

Mossbauer

Approximately 30 mg of the sample was crushed to a fine powder with sugar un-
der acetone before mounting in a sample holder confined by sellotape. Mdssbauer
spectra were acquired at 295K using a source of 80 mCi 57Co in Rh on a WEB
Research Co. model WT302 spectrometer (Mount Holyoke College). Run times
were 6 — 24 hours, and results were calibrated against a-Fe foil; baseline counts
ranged from 2 — 8 million.

Mossbauer spectra were modeled using the Mex-Fieldd program, which was
acquired from the University of Ghent courtesy of E. DeGrave. The program
uses Lorentzian line shapes and solves full Hamiltonians for isomer shift and

quadrupole splitting. Errors are 0.02 mm/s on isomer shift and as high as 0.05
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mm/s for quadrupole splitting (Dyar et al., 2008). Errors on Fe3T /Fey,; are
1-3% absolute based on repeated fits to the same spectra. Doublet areas are
assumed to correspond directly to the abundances of the species present (but
see Dyar et al. (2008)).

Two of the samples appeared to contain a small amount of impurity that
is a magnetic phase; only the center two peaks of the sextet are visible at this
velocity range. Their locations suggest that this phase is hematite, which is
weakly magnetic. However, the emphasis of this work is to use Mossbauer
spectroscopy to determine the ferric iron proportion in biotite so confirmation

of this suggestion is not necessary.

EBSD

EBSD mapping was undertaken at the Microstructural Analysis Facility, Curtin
University, Western Australia, using a W-source Philips XL.30 SEM operating at
20 kV and a 15 mm working distance. The SEM is fitted with a Nordlys I EBSD
acquisition camera, two forescatter OCI detectors, and an Oxford Instruments
(formerly HKL Technologies) EBSD system. All EBSD data were acquired and
processed using Oxford Instruments Channel 5 (SP9) software.

Biotite has significant issues with multiple solutions because of the pseudo
threefold axis around the pole to (001), i.e. <103>. Such pseudosymmetry is-
sues can create significant systematic misindexing of EBSD data. To reduce the

effect of this misindexing problem the camera distance was selected to increase
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the number of visible Kikuchi bands within each diffraction pattern. Prior to
data collection individual diffraction patterns were collected and calibrated man-
ually using >7 bands and solutions were checked against the empirically-derived
electron backscatter pattern (EBSP). During this process it became clear that
recognition of the correct solution is not possible by visually comparing so-
lutions with the EBSP. To facilitate the correct identification of biotite lattice
orientation multiple analyses of the biotite grains using automated mapping was
employed. Following this mapping, data were noise reduced to remove isolated
points with anomalous orientations from the data using the Tango wildspike cor-
rection tool, and a 6 nearest-neighbour extrapolation to reduce the proportion

of zero solutions.

XANES

XANES spectra were collected at beamline X26A at the National Synchrotron
Light Source (NSLS), which is sited at the Brookhaven National Laboratory,
Upton, New York, USA. Energy scans were made across the Fe K edge in four
regions: (i) from 7020 to 7096eV in 10eV steps with a 1 second counting time;
(ii) from 7096 to 7118 eV, which is the pre-edge peak region, with 0.1 eV steps
and five second count time; (iii) from 7118.2 eV to 7140 eV in 0.4 eV steps and
2 second count time; and finally (iv) from 7141 to 7220 €V in 3 eV steps with a
2 second count time. Spectra collection for each sample required approximately

30 minutes. The beam was located and beam size assessed by scans across the
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edge of a razor blade. Beam size was measured to be 7 pm x 11pm, with the
larger dimension in the horizontal plane; the beam was also highly polarised to
produce an electric vector lying in the horizontal plane. The extent of polarisa-
tion was not measured but for an NSLS bending magnet source is assumed to
be > 96% (Janssens et al., 1993). Beam energy was tuned by a Si(311) lattice,
channel-cut, monochromator, the crystals are cut to a 7 mm gap and cooled
to 11°C using a Neslab chiller. The Si(311) with a 0.2 mm upstream aperture
has an instrumental resolution of 0.36 eV at 6 keV. Adding this resolution in
quadrature with the natural Fe K width for the 1s electron level of 1.08 eV
(Krause and Oliver, 1979), and accounting for instrumental broadening of the
overall resolution yields an overall resolution of 1.3 eV. Microfocus is achieved
via a pair of 100 mm long rhodium-coated, grazing-incidence silicon mirrors in
a Kirkpatrick-Baez (KB) geometry. Photon flux at 7 keV is roughly 2.5x10%
photons second~! with the Si(311) monochromator. A 5X Mitutoyo long work-
ing distance objective with CCD digital image capture is mounted horizontally
so that the sample surface can be viewed normally.

Energy calibration was performed against samples of NMNH (National Mu-
seum of Natural History) magnetite and Balmat magnetite. Calibration was
based on the assumption that the centroid of the magnetite pre-edge peak was
at 7113.25 eV. Use of natural magnetites as reference standards requires caution
because natural samples with appreciable Cr and Ti may not be fully ordered
in the inverse spinel structure with all Fe>* on the octahedral site (Wilke et al.,

2001). If this is the case then the centroid position could vary from sample to
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sample. However, in this case, the Balmat and NMNH magnetites were mea-
sured sequentially and found to have identical Fe K pre-edge and main-edge
absorption energies, within the resolution of the system. Magnetite standards
were run after every beam fill, and every three to five samples to monitor for any
energy drift. Energy corrections were performed assuming that any monochro-
mator drift involved a linear relationship between time and drift between stan-
dard measurements as photon flux decreased relative to decaying current in the
NSLS X-ray storage ring. Total drift over the two day run was 0.25 eV. Spectra
were collected in a fluorescence geometry, and the thin sections were mounted
vertically at 45 degrees to the beam direction. After spectra from each grain
of interest on the thin section had been collected, the sample was rotated by
90° within the plane of the section and a second spectra was collected. Fluores-
cent X-rays were detected using a 9-element Canberra high purity germanium
(HPGe) detector. Count rates were normalised to the incident beam current

and corrected for dead time.

Data Processing

Spectra were corrected for monochromator energy drift using the Balmat mag-
netite analyses described above. The background was removed and the signal
was normalised using the Athena software (Ravel and Newville, 2005). Nor-
malisation involved division of the signal by an estimation of the signal at the

edge energy, taken to be 7120 eV. The estimated signal is calculated from the
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difference between pre-edge and post-edge lines extrapolated to 7120 eV. The
pre-edge line was constructed by regression of the data between 7050 and 7090
eV. The post-edge line is a quadratic polynomial regressed to the data between
35 and 100 eV above the edge. These values were chosen to encompass a single
oscillation in the post-edge spectra.

The biotite is Fe-rich (~20 wt%) so self absorption must be considered.
Absorption lengths were calculated using the Hephaestus software (Ravel and
Newville, 2005) and the microprobe-derived mineral formulae and were found
to be 60 microns in the pre-edge region and around 30 microns in the post-edge
region. The contribution of iron to the absorption is around 10% in the pre-edge
region and over 60% in the post-edge region. The thin sections are 30 microns
thick and the angle between the beam and the sample was 45 degrees, so the
effective thickness of biotite grains was a maximum of 42 microns. Thus, in
the pre-edge region ut is around 0.7, whereas it around 1.4 in the main edge
and post-edge regions. If self absorption is to be ignored then the element
of interest needs to be relatively dilute or ut needs to be significantly less, or
significantly greater than 1 (Pfalzer et al., 1999). The biotite analysed fulfils this
criteria in the pre-edge region, since Fe contributes only 10% of the absorption.
This conclusion is consistent with those of Bajt et al. (1994) and Berry et al.
(2010). However, self-absorption is likely to affect main edge characteristics -
see discussion in Berry et al. (2010) and below. Self-absorption may also affect
magnetite spectra, even in the pre-edge. However, magnetite was only used as

a monitor for monochromator calibration and each measurement would have
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suffered the same self absorption effects, so self absorption is not be a problem
for this application.

Subsequent processing was performed using custom-built functions written
in Mathematica™. The pre-edge peak was extracted from the data by subtrac-
tion of a baseline. The baseline was derived from an arctan function fit to the
data between 7100 and 7119 eV, excluding the peak which was considered to lie
between 7109 eV and 7116.5 eV. Variations on the fit windows described above
were tried and the chosen values were found to produce reproducible results
for all three samples with minimal artefacts. The pre-edge peak was then fit
to a combination of three Lorentzians in two stages. Initially, peak positions
and areas were fit. In all fits, peak widths were constrained to 1.3 eV, the the-
oretical width derived from the monochromator resolution and values for core
hole width at the Fe K edge. The most consistent fits were obtained with three
component peaks; fits with two peaks could not reproduce the data, and fits to
four peaks were non-unique and therefore underdetermined.

Fits that utilised pseudo-Voigt peaks were also attempted, where the pseudo-
Voigt peak is constructed from the sum of a Gaussian and Lorentzian peak.
Theoretically, Voigt or pseudo-Voigt peaks are better suited to XANES peak
fitting than simple Lorentzians (Wilke et al., 2001). The Lorentzian contribution
accounts for the true peak shape, while the Gaussian contribution is produced
by peak broadening due to limitations in the experimental energy resolution. A
number of strategies were tried that included Voigt peaks in the fit. First, the

Mathematica routine was modified to fit to three Voigt peaks, with Gaussian
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broadening of 1.3 eV and Lorentzian broadening of 1.08 eV. Fits utilising these
parameters were worse than those with simple Lorentzians. Fit attempts were
also made specifying the Lorentzian broadening parameters as fit parameters.
No improval in fit was noted and strict limits on the fit parameters were required
as the system started to become underdetermined. If these limits were omitted
then the fit parameters were often found to take physically unrealistic values.
The inclusion of pseudo-Voigt peaks, where the peaks are constructed from a
simple sum of Gaussian and Lorentzian terms was also considered. However,
the number of fit parameters introduced by the need to specify Gaussian and
Lorentzian proportions plus parameters to specify different peak widths for the
two components meant that the data available was insufficient to uniquely de-
termine the fit parameters. The failure of Voigt peaks to replicate the data any
better than the simple sum of Lorentzians led to retention of the Lorentzians.
Peak positions from the preliminary fit for each sample were plotted on a
histogram, and subsequent fitting exercises used the highest frequency peak en-
ergies from this histogram. The final fit to the data utilised these peak positions,
and peak areas were fit for set peak positions and widths. This two-step strategy
allowed a good combination of flexibility and consistency. Uncertainties were
derived from the residuals to the non-linear regression and propagated to give
uncertainties on the centroid and on the calculated Fe3+ /Fetor. The position of
the centroid was calculated from the peak areas and positions, and an estimate
of the apparent proportion of ferric iron was made using the expression derived

for micas by Dyar et al. (2001).
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Additionally, the energy at a normalised peak intensity of 0.9 (In = 0.9) was
measured, after correction for any monochromator drift, and used as a potential
calibration parameter. This was performed because Berry et al. (2010) found
that In = 0.9 in garnet correlated better with Fe3* /Fetot than any of the pre-
edge parameters. However, it should be noted that caution is necessary in the
application of main edge features to calculate Fe3* /Fey,; because main edge
features are much more sensitive to mineral characteristics on longer length
scales than the individual atom, such as ordering and the identity of an atom’s
nearest neighbours. Main edge features are also more likely to suffer from issues

related to self absorption.

Theory

EBSD results provided measurements of the orientations of the crystallographic
axes, and of the angle between the a and ¢ axes. This allowed the orientations
of the indicatrix axes, «, 8, and v to be calculated. The angles between the
electric vector (E) and the crystallographic and indicatrix axes, and [001], and
were calculated using stereonets and the program OSXStereonet (Allmendinger
et al., 2012).

The absorbance cross section due to the dipole transition in biotite, which
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belongs to the space group C2/m is

oP(e) = oP(0,0)—V3sin® ¢z [cos 2407 (2, 2) + sin 290 (2, 2)] - (1) (3cos? pz—1)aP(2,0)

V2
(1)

(Brouder, 1990). oP(e) is absorbance as a function of the polarisation vector
e, aP(0, 0) is the isotropic absorption cross section, which is the same as that
which would be measured on powders. P (2,0) is related to absorption of the
most anisotropic section, and oP7(2,2) and oP(2,2) refer to real and imaginary
parts of absorbance for (2,2) respectively. ¢z is the angle between the Z axis of
the absorbance ellipsoid and the electric vector and v is the angle of the electric
vector with respect to the X axis of the absorbance ellipsoid (Figure 1).
Interpretation of the spectra using Eqn 1 is problematic, partly because of
the pseudosymmetry issues encountered during the EBSD analysis, and partly
because the unknown orientation of the absorbance ellipsoid relative to the
indicatrix provides a number of unknowns too large to be determined with the
dataset acquired for this study. However, fortunately, the symmetry is close to
trigonal; a and «y diverge from the ¢ and a axes respectively by less than 5 degrees
for the samples studied here, and the § and y refractive indices have very similar
values, as indicated by the low birefringence of (001) sections. The absorbance
cross-section due to electric dipole interactions for crystal symmetries with a

rotation axis of order greater than two is

o2 (e) = oP(0,0) — (\2) (3cos2 gy — 1)0(2,0) )
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Brouder (1990). Eqn 2 can be simplified to

oP(e) = Al + A2cos? ¢y (3)

where Al is P (0,0) — i\/go) and A2 is L\/(;’O).

For this reason, preliminary interpretations of the data are made assuming
that biotite symmetry is pseudo-trigonal and that Eqn 3 can be used to describe
the relationship between crystal and absorbance orientation. In this case the z
axis of biotite is assumed to be parallel to the Z axis of the absorbance ellipsoid
and approximately parallel to the « axis of the absorbance ellipsoid. The § axis
of the indicatrix is parallel to the b crystallographic axis, and to the Y axis of
the absorbance ellipsoid. The  axis of the indicatrix is assumed parallel to the
a crystallographic axis, and to the X axis of the absorbance ellipsoid.

Additional absorbance may result from electric quadrupole interactions with
the X-ray beam (Brouder, 1990). Theoretically, absorbance due to electric
quadrupole interactions have been calculated to be around two orders of mag-
nitude weaker than that for electric dipole interactions, and quadrupole ab-
sorbance has been neglected in a number of studies of the angular dependence
of XAFS (e.g. Heald and Stern, 1977; Manceau et al., 1990; Dyar et al., 2002a;
Berry et al., 2010). However, the 1s to 3d transition, which is invoked as the
main cause of the Fe pre-edge peak (Shulman et al., 1976), is forbidden for com-
plexes in centrosymmetric environments (Westre et al., 1997a). In such cases,

quadrupole interactions can form a significant part of a weak pre-edge feature,
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as is observed for Cr3* and V3% in garnet (Cabaret et al., 2010). In non centro-
symmetric environments, the mixing of 4p with 3d orbitals allows electric dipole
1s to 4p transitions, and it is this transition that dominates the pre-edge peak
(e.g. Westre et al., 1997a). Brouder (1990) provides an equation for electric
quadrupole interactions as a function of ¢z and . Ideally, it would be possible
to assess the quadrupole interaction contribution to the pre-edge peak using this
equation. However, the quadrupole equation contains four calibration parame-
ters, and the signal is likely to be weak, due to the relatively asymmetric nature
of the iron-bearing sites in biotite. Under these circumstances it was considered
that the data set was insufficient to properly calibrate the electric quadrupole
signal and this contribution to the pre-edge peak was not considered further.

To test the applicability of Eqn 3, the areas and proportions of the three
Lorentzian peaks, the position of the centroid, and the energy of the normalised
spectra at In=0.9 were plotted against cos? ¢, and correlation coefficients were
calculated for each of the datasets.

Other potential orientation — XANES relationships were also tested. These
included testing for a link between absorbance and the angle between the {110}
lattice vectors and the electric vector, which is equivalent to testing for a rela-
tionship with v, as in Eqn 1. None of the more complex approaches produced
results any better than those derived from the simple approach based on the
assumption of pseudosymmetry, so only results based on Eqn 3 are presented

here.
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Results

The biotites measured (Fig. 2) were compositionally homogeneous (Table 1)
both within grains and between grains in a thin section. Fe/(Fe+Mg) was
between 0.46 — 0.56. Total Al varied between 1.3 and 1.5 cations per 11 oxygens,
and calculated Ti was 0.15 to 0.22 cations per 11 oxygens. The highest Ti values
occurred in the samples with red-brown biotite (T01-54). The site occupancy
calculations did not indicate any ferric iron, or iron on the tetrahedral sites, but
such calculations are not a reliable way to determine these parameters. The
interlayer cation site was dominated by K with K/(K+Na) values greater than
0.99.

Results of the Mossbauer analysis (Table 1; Fig 3) indicate ferric iron pro-
portions of 0.10, 0.23 and 0.21 for samples T01-23, T01-28, and T01-54 respec-
tively. Fit diagnostics indicate an excellent fit of the model to the data (Table
4). The ferric iron content does not correlate with the Fe/(Fe+Mg) value, Al
content or Ti content, or with the colour of the biotite. The two samples with
the green-brown biotites (T01-23 and T01-28) had the lowest and highest ferric
iron proportions respectively.

Despite the difficulty in polishing biotites for EBSD analysis, EBSPs for the
biotites were of acceptable quality (e.g. Fig. 4a) and were routinely indexed
by the Channel 5 software (Fig. 4b). For individual grains the proportion
of points indexed successfully was generally greater than 50% (e.g. Fig. 4c).

However, the indexed grains contain multiple solutions because of the pseudo-
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hexagonal symmetry of biotite (Fig. 4c). The different solutions represent 60
degree rotations around the pole to (001) and, as a result, poles to (001) record
only a single solution (Fig. 4d).

In detail, the orientation of (001) poles is seen to vary systematically along
small circles by up to 15 degrees (Fig. 4d). This is also reflected in the distribu-
tion of most of the other poles, with the exception of one pole, around which the
other poles appear to be dispersed (Fig. 4d). This pattern of dispersion is com-
monly seen in minerals deforming by dislocation creep and can be interpreted in
terms of the formation of tilt boundaries associated with the operation of par-
ticular slip systems (Reddy et al., 2007) associated with bending of the mineral
lattice. In the case of biotite, deformation commonly occurs by slip on the (001)
basal plane with <100> being a common Burgers vector. In this slip system
scenario, the pole to (010) would be expected to be the axis about which all
other poles are dispersed. In the example shown here, where the biotite grain is
bent through about 15 degrees, only one of the (010) poles records no dispersion
(Fig. 4d) so this must be the correctly indexed (010) pole. Consequently, the
analysis of slightly bent grains provides an opportunity to overcome the inherent
problem of systematic misindexing when trying to establish the orientation of
biotite grains.

Even using the methodology outlined above, very few of the analysed biotites
could be uniquely oriented because of the general absence of deformation within
individual bioitite grains. Hence, most of the orientation data have uniquely

oriented poles to (001) but less well-constrained {100} and {010} orientations.
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Fortunately, ¢z depends only on {001} so the potential misindexing does not
affect results acquired from Eqn 3.

XANES spectra showed significant variation in the characteristics of the pre-
edge peak, main edge, and post-edge features between samples, between grains
in a single sample, and as a function of orientation of individual grains (Fig.
5, Tables 5 — 7). A number of features showed consistent trends as a function
of ¢y if spectra collected at the highest and lowest values of ¢y are compared.
Spectra from samples oriented with a low ¢z showed a smaller pre-edge peak,
with, potentially, a slight skew to lower energy values, compared to spectra
collected from samples oriented with a high ¢z. The shape of the shoulder
on the main edge also varied, and was found to occur at a higher normalised
absorption for the spectra collected at low ¢yz. This feature may contribute
towards variation in the value of the energy at a normalised intensity of 0.9 (Ix
=0.9; Fig. 5a). With respect to edge and post-edge features, the total overall
intensity of the second peak (MP2 on Fig. 5) is higher for the high ¢z spectra,
and the ratio of the intensities of the first two peaks, MP1:MP2, is lower for the
high ¢z spectra. Systematic differences continue at higher energies. The fall
in energy after the third peak (MP3) occurs at higher energies for the spectra
collected at low ¢z. However, these systematic differences may be small relative
to the variation between grains and between samples, because the relationships

described above are not statistically significant if the full dataset is considered.

The isolated pre-edge peak data fit well to the combination of three Lorentzians

(Fig. 6). The relative proportions of the three peaks vary with the angle be-
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tween the electric vector and [001], and it appears, qualitatively, as though the
sample out of any pair of measurements with a greater value for ¢y also has
a greater proportion of the pre-edge peak accommodated in the lowest energy
peak, which is referred to as P1 (Figs 6a, ¢ and e versus b, e and f). The
middle and highest energy peaks are referred to as P2 and P3 respectively, but
there is little sign of a systematic relationship between the proportions of these
peaks and the grain orientation. Additionally, while the general trend of the
differences in relative peak area between measurements on a single grain seems
reasonably consistent, there appears to be significant variation between grains
and between samples.

The preliminary peak fitting exercise revealed three relatively well separated
groups of Lorentzian positions (Fig. 7). The P1 peak at 7111.4 eV was well
defined and in the same position for all three samples. The P2 peak varied more
and samples T01-23 and T01-28 was at slightly lower energies (7112.1 — 7112.9
eV) than for T01-54 (7112.7 — 7113.1 eV). A similar trend was observed for the
P3 peak, with the bulk of measurements for T01-23 and T01-28A at 7113.3 —
7114.1 eV and T01-54 at 7114.1 — 7114.4 eV. The similarity of T01-23 and T01-
28A, and the difference between these samples and T01-54 is not related to the
Mossbauer-derived estimates of Fe3t /Feio; (Table 4), which indicate that T01-
28A and T01-54 have very similar ferric iron contents whereas that of T01-23
is significantly less. However, T01-54 does differ in having significantly higher
Ti content (Table 3).

Ferric iron contents calculated using the formula of Dyar et al. (2001) are
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within error of the values measured by Mossbauer (compare Table 4 to Tables
5 to 7). However, the uncertainties are relatively large, and there is no signifi-
cant difference between T01-23, which has Méssbauer-derived Fe3t /Fegqy of 0.1,
and the other two samples, which have M&ssbauer-derived values of Fe3* /Fetot
of around 0.22. The standard deviation of the measurements of centroid and
Fe3* /Feqo for grains within a sample is much larger than the propagated error
on the individual measurements, which indicates that the observed variation as
a function of crystal orientation is real and not simply derived from uncertainties
associated with analysis and the fitting process.

Calculated correlation coefficients (Table 8) show that the measured param-
eter that has the most convincing relationship with cos?¢y is the energy at
In = 0.9, which correlates significantly with cos2¢y, for two of the three samples
and with a p value of less than 0.06 for the third (T01-54). The slope of the
data in cos?¢y — In = 0.9 space (Fig. 8a) was also similar for the three samples
considered. T01-23 and T01-28A (low Ti samples), which have significantly dif-
ferent Fe®* /Fey, plotted in approximately the same region, while the higher
Ti sample (T01-54) plotted at lower I = 0.9 values. There were no consistent
significant, or nearly significant, correlations between cos2¢y and the measured
centroid characteristics (e.g. Table 8; Figs 8b, ¢, d), though a significant corre-
lation was observed between the area of P1 and cos?¢z for T01-28A (p = 0.01);
a low p-value was calculated for the same pair of parameters for sample T01-54
(p=0.02). The other significant correlation was between the proportion of P3

and cos?¢y for T01-23 (p=0.009).
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Discussion and Concluding Remarks

In = 0.9 is the spectral characteristic that appears most reliably sensitive to
crystal orientation (Fig. 8a). However, there doesn’t seem to be any consistent
relationship between the energy at Iy = 0.9 and ferric iron content (Fig. 8a),
although Berry et al. (2010) record a positive correlation between Fe3™ /Fego
and the energy at In = 0.9 in garnet. It may be that I = 0.9 is insensitive to
biotite composition at the limits of resolution imposed by the analysis, or that
additional factors related to the sample matrix contribute to the edge position
and characteristics and obscure trends that might otherwise be discernible. The
size of the error bars suggests the former. However, it is also useful to consider
the potential effects of sample matrix.

It has been proposed that the shoulder on the main edge in biotite is caused
by interactions between photoelectrons ejected from Fe atoms and neighbouring
or second nearest neighbour Fe atoms, and that the characteristics of the feature
record Fe-ordering (Dyar et al., 2001). The position and size of this shoulder
affects In = 0.9, so it is possible that the characteristics of the shoulder are
sensitive to the composition of the matrix and depend on compositional param-
eters such as Fe/(Fe+Mg), the Al content of the biotite, the Ti content, as well
as other factors such as the temperature of equilibration, which would affect the

extent of ordering.

The temperature of equilibration, which affects ordering, also affects Fe3* /Feyot

in biotite via the stability of other minerals in the assemblage, if bulk rock
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Fe3t /Feo: is fixed or approximately fixed. This combination of causal links
could produce a false correlation. For example, the presence of moderate quan-
tities of epidote in the T01-23 sample could be interpreted to indicate that
this sample equilibrated at a lower temperature than the other two, which are
epidote-absent, and therefore have different ordering. Additionally, epidote,
which contains ferric iron, may have sequestered ferric iron present in the rock
so that the ferric iron in biotite is less than in the other two samples. Under
these circumstances, temperature could have controlled both Fe3T /Feyo, and
the energy at In = 0.9 via mineral stability and ordering, respectively. In this
case the presence or absence of correlation between the energy at In = 0.9 and
Fe3+ /Fetor should be treated cautiously.

Mineral assemblages do not provide evidence of a difference in temperature
between the three samples examined. Sillimanite is present in T01-23 and T01-
28A, while K-feldspar is present in T01-28A and T01-54. The presence of silli-
manite indicates that the rocks equilibrated at temperatures in excess of 600°C
for reasonable geothermal gradients, and the presence of K-feldspar indicates
that temperatures were higher than the muscovite-out reaction which is consis-
tent with temperatures higher than around 650°C, for these bulk compositions.
Samples T01-23 and T01-28A were collected about 1500 m apart, and there is
no evidence of a major structural discontinuity between them, while the T01-54
sample site is separated from the other two by a significant shear zone. The
mineral assemblages in the three sections are too different and/or high variance

for reliable comparative thermobarometry and a full pseudosection approach
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is beyond the scope of this paper. For this reason, the Ti-in-biotite geother-
mometer of Henry et al. (2005) was applied to obtain a preliminary assessment
of temperature differences between the three samples. This geothermometer is
empirically calibrated for rutile-bearing assemblages in aluminous metapelites
and may, therefore, be unreliable for more mafic rocks such as T01-28A. Tem-
peratures calculated for the three samples are 677 £ 20 °C for T01-23; 682 + 20
°C for T01-28A, and 713° + 20 C for T01-54. These temperatures are within
uncertainty of each other, so it is not possible to confirm any significant differ-
ence in the temperature of equilibration between the three samples. However,
differences in temperature may affect ordering, and hence XANES features, and
this needs to be assessed in detail as part of any further development of the use
of XANES to measure Fe3T /Feqs.

Features of the pre-edge peak, on which most attention has been focussed
in previous work on Fe?! /Feyo, do not exhibit consistent relationships with
crystal orientation (Table 8). The area of the P1 peak presents the best pos-
sibility, because significant or nearly significant correlations were observed for
two samples (T01-23 and T01-54) but further work on this parameter is not
useful because after orientation corrections only two points would be obtained,

which are insufficient for determination of trends.
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Orientation corrections

The simplest possible orientation correction is to fit the parameter of interest as
a linear function of cos?¢z, (Eqn 3), and to project the parameter of interest to
a chosen value of ¢y. This correction was performed for the energy at Iy = 0.9.
The data were fit to

Ery—0.9 = mi cos® ¢z + ¢1 (4)

where Er,—¢.9 is the energy at Iy = 0.9, and m; and c¢; are constants. Eqn
4 has the same form as Eqn 3. The data from each sample were fit to Eqn
4 to provide expressions that allow calculation of Er,—g9 as a function of ¢z.
The value chosen was 45°, which is convenient because this value of ¢y can
be obtained if the cleavage of biotite in any (hk0) section is aligned vertically
during measurement. Values of the fit parameters, and their uncertainties are
shown in Table 9.

Values of Iy = 0.9 for ¢z = 45° were plotted against Mossbauer-derived
Fe3t /Feqot (Fig. 9). The results should be treated with caution since there are
only three data points, and two of these have similar Fe3*t /Fe;, values; however,
it can be seen that I = 0.9 is not a function of Fe3* /Feqy.

Orientation correction parameters for each of the samples are different (Table
9). This supports the possibility discussed above, i.e. that XANES characteris-
tics depend on factors other than orientation, such as biotite composition and
the extent of ordering. This proposal is supported by the work of Wong et al.

(1984) on vanadium spectra. Wong et al. (1984) recorded pre-edge peaks for
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octahedral trivalent V that were more intense when the V was held in roscoel-
lite, a V-bearing mica, relative to those caused by V in V50O3. The difference
was attributed to the fact that the Al neighbours of V in roscoellite are smaller
and more highly charged than V neighbours. Bonds in roscoellite would there-
fore take on a more ionic character, and the probability of transitions into the
3d orbitals would be enhanced as these bonding orbitals would be, on average,
more empty.

Under these circumstances, any biotite calibration, including the orientation
correction, would have to be very closely matrix-matched, although relative
changes in Fe3t /Fey,; within grains or between grains with similar compositions
could be considered robust. The need for matrix correction is further supported
by the distinctly different positions of the preliminary fit P2 and P3 Lorentzians
(Fig. 7) for the green-brown Ti-poor biotites, T01-23 and T01-28A, and the red-
brown Ti-rich biotite, T01-54. Further work, both experimental and theoretical,
is necessary to elucidate the nature of the matrix-dependency.

Alternatively, it may be that the simplifying assumptions made in the de-
velopment of the orientation correction are not justified and an improved ori-
entation correction might be devised if the obstacles that necessitated the as-
sumptions were removed. For example, it was assumed that the monoclinic
biotite symmetry could be approximated by trigonal symmetry because this as-
sumption greatly simplified the relationship between measured absorbance and
crystal orientation, since in trigonal systems the axes of the absorbance ellipsoid

are aligned with both the indicatrix axes and the [001] crystal axis.
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If electric quadrupole interactions contributed significantly to the pre-edge
peak then the use of Eqn 2 is inappropriate and a good fit of the data to the
model would not be expected. Previous workers (e.g. Heald and Stern, 1977;
Manceau et al., 1990; Dyar et al., 2002a; Berry et al., 2010) have neglected
quadrupole interactions for fits of iron pre-edge peaks, and the large number
of calibration parameters necessary to fit an electric quadrupole contribution
to the data made it impossible to fit the data to the more complex model.
However, in future, it would be informative to use ab-initio calculations to
constrain the contribution of the electric quadrupole contribution, and perform
a proper assessment on the likely significance of this feature.

It is also possible that orientation of the absorbance ellipsoid varies with the
energy of the X-ray beam, since the different bonds which absorb at energies
determined by crystal field splitting and symmetry constraints are oriented dif-
ferently within the crystal. The detailed data needed to resolve the potentially
complex nature of this problem was beyond the scope of the measurements made
for this study, and indeed, the good correlations between orientation and key
parameters such as Ep —g9 indicate that these effects are likely to be second
order. However, further work focussed on measurement of the orientation of
the absorbance ellipsoid might prove useful and allow reduction in orientation-
related uncertainties.

It was also assumed that the beam was fully polarised, whereas, in reality,
the use of the Kirkpatrick-Baez mirrors for focussing introduces a small degree

of elliptical polarisation. Under these circumstances the electric vector has
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an additional orthogonal component. If the extent to which the synchrotron
beam was elliptically polarised was known then it would be possible, though not
trivial (compare Sambridge et al. (2008) to Libowitzky and Rossman (1996)),
to develop equations for a two dimensional beam. If the extent of polarisation
could be controlled then this feature could be used to constrain the orientation
of the absorbance ellipsoid. However, the precise shape of the beam was not
determined for this study.

It would also be possible to improve the resolution of the data if a standard
were continuously monitored, such that the drift corrections did not involve
interpolation in time. However, the drift corrections noted for this project were
small relative to the variation in the energy at In = 0.9 and the variation in
centroid position so it is unlikely that the lack of an off-line standard had a
serious impact on the quality of the results.

To summarise, pre-edge peak parameters do not correlate with biotite crystal
orientation, but Er —¢.9 is significantly correlated with ¢z in two of the three
samples and relatively well correlated in the third. Once the measurements are
corrected for orientation, there is no significant relationship between Ep,—¢.9
and Fe?t /Fetor. The absence of a correlation is attributed to composition-
or temperature-related differences in ordering and/or simplifying assumptions
used in the development of the model. Further work should include careful
calibrations on matrix-matched standards and ab-initio modelling to assess the
relative contributions of electric dipole and quadrupole to the pre-edge peak. If

this work were performed then it may be possible to improve the precision and
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accuracy of synchrotron measurement of Fe3* /Fe;. in non-powdered samples.
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843 Figure Captions

sa  Figure 1: Schematic illustration of the absorption ellipsoid, showing the direc-

85 tion of the beam, the electric vector and angles discussed in the text.

s Figure 2: Plane polarised photomicrographs of (a) T01-23; (b) T01-28A; (c)

847 TO01-54. Labels indicate the biotite grains analysed.

ss  Figure 3: Results of Mdssbauer spectroscopy on (a) T01-23; (b) T01-28A; (c)

849 TO01-54.

0 Figure 4. Electron backscatter diffraction data from biotite grain EB5 (Sam-

81 ple T01-23). a) Typical EBSP from the grain. Although the bands can
852 be seen they are relatively faint due to the difficulty in polishing biotite.
853 b) the indexed orientation derived from comparison of bands identified in
854 (a) with a theoretical diffraction pattern for biotite. ¢) Orientation map
855 created by applying red, green and blue colours to each of the 3 Euler ori-
856 entations required to define the orientation of the lattice at each pixel. The
857 variation in colour indicates an apparent change in orientation associated
858 with a systematic misindexing due to the pseudo-hexagonal symmetry of
850 biotite. d) pole figures for {100}, {010} and {001} for the grain shown in
860 (c). Colours represent the orientations shown in (¢) The misindexing is
861 shown by the presence of three clusters in the {100} and {010} data. Only
862 {001} shows a single orientation indicating that the misindexing represents
863 an apparent 60 rotation around the {001} pole. The dispersion of data for
41
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864 most of the poles by 15° around small circles are consistent with deforma-
865 tion by dislocation creep. The absence of dispersion around the centrally
866 located {010} pole, combined with the knowledge of biotite deformation
867 mechanisms allows this pole to be identified as the real orientation of the
868 grain despite the systematic misindexing problem (see text for details).

wo  Figure 5. XANES. (a,b) absorption edge and pre-edge peak for T01-23; (c,d)

870 absorption edge and pre-edge peak for T01-28A; (e, f) absorption edge
871 and pre-edge peak for TO1-54. Orientations chosen to show high and low
872 ¢y for a given grain.

es  Figure 6. Fit to pre-edge peak for spectra shown in Fig. 5 (a, b) T01-23; ((c,
a4 d) T01-28A; (e, f) T01-54. Dots indicate measured absorption values with

875 background removed. Lines indicate the fit Lorentzian peaks.

ers  Figure 7. Histogram illustrating the positions of Lorentzians obtained during

877 preliminary pre-edge peak analysis.

s Figure 8. Relationships between cos?¢z and measured parameters for the three

879 samples investigated. (a) Energy at Iy = 0.9; (b) Centroid energy; (c)
880 Proportion of pre-edge peak component at 7111.4 eV (P1); (d) Proportion
881 of pre-edge peak component P3.

sz Figure 9. Orientation-corrected values of energy at In = 0.9 plotted against
883 Mossbauer-derived Fe3+ /Fetor. Energy at Iy = 0.9 values are corrected

884 to a value of ¢z using Eqn 4.
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Table 4: Mossbauer data

T01-23 TO01-28A T01-54

Fe?Tt in biotite B 1.13
A 2.34
r 0.24
area 36
Fe?* in biotite ) 1.13 1.13 1.13
A 2.6 2.61 2.63
r 0.24 0.24 0.24
area 58 60 20
Fe2T in biotite 0 1.15 1.07 1.12
A 1.98 2.09 1.97
r 0.38 0.35 0.4
area 13 15 23
Fe3t in biotite ) 0.43 0.45 0.48
A 0.56 0.57 0.58
r 0.3 0.41 0.34
area 6 20 21
Fe?T in biotite B 0.4 0.42
A 1.14 1.22
r 0.37 0.3
area 4 3
Center 2 peaks from Fe¥ oxide 6 0.35 0.35
A 2.04 2.08
r 0.24 0.24
area 19 3
2 0.99 0.85 1.15
%Fe3t in biotite 10 23 21
o %Fe?t in biotite 2 2 2
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Table 9: Orientation correction function information
T01-23 T01-28 TO01-54

m(In = 0.9 225 252 191
Ton(In=0.9 0.38 0.45 0.84
c(In =0.9 7122.87 7122.85 7122.35
Oelin=0.9 0.11 0.12 0.27
In = 0.9 @45° 7121.74 7121.58 7121.40
Ole—09 @45°  0.11 0.13 0.31
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