10/30

1	Revision 2
2	Hutcheonite, Ca ₃ Ti ₂ (SiAl ₂)O ₁₂ , a new garnet mineral from the Allende
3	meteorite: An alteration phase in a Ca-Al-rich inclusion
4	Chi Ma ¹ * and Alexander N. Krot ²
5	¹ Division of Geological and Planetary Sciences, California Institute of Technology,
6	Pasadena, California 91125, USA
7	² Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa,
8	Honolulu, Hawaiʻi 96822, USA
9	
10	ABSTRACT
11	Hutcheonite (IMA 2013-029), Ca ₃ Ti ₂ (SiAl ₂)O ₁₂ , is a new garnet mineral that occurs
12	with monticellite, grossular and wadalite in secondary alteration areas along some
13	cracks between primary melilite, spinel and Ti,Al-diopside in a Type B1 FUN
14	(Fractionation and Unidentified Nuclear effects) Ca-Al-rich inclusion (CAI) Egg-3
15	from the Allende CV (Vigarano type) carbonaceous chondrite. The mean chemical
16	composition of type hutcheonite by electron probe microanalysis is (wt%) CaO 34.6,
17	TiO ₂ 25.3, SiO ₂ 20.9, Al ₂ O ₃ 15.7, MgO 2.1, FeO 0.7, V ₂ O ₃ 0.5, total 99.8, giving rise
18	to an empirical formula of $Ca_{2.99}(Ti^{4+}_{1.53}Mg_{0.25}Al_{0.17}Fe^{2+}_{0.05}V^{3+}_{0.03})(Si_{1.68}Al_{1.32})O_{12}$.
19	The end-member formula is $Ca_3Ti_2(SiAl_2)O_{12}$. Hutcheonite has the <i>Ia-3d</i> garnet
20	structure with $a = 11.843$ Å, $V = 1661.06$ Å ³ , and $Z = 8$, as revealed by electron
21	back-scatter diffraction. The calculated density using the measured composition is
22	3.86 g/cm ³ . Hutcheonite is a new secondary phase in Allende, apparently formed by
23	iron-alkali-halogen metasomatic alteration of the primary CAI phases like melilite,
24	perovskite, and Ti,Al-diopside on the CV chondrite parent asteroid. Formation of the
25	secondary Ti-rich minerals like hutcheonite during the metasomatic alteration of the
26	Allende CAIs suggests some mobility of Ti during the alteration. The mineral name
27	is in honor of Ian D. Hutcheon, cosmochemist at Lawrence Livermore National
28	Laboratory, California, USA.
29	

30 **Keywords**: hutcheonite, Ca₃Ti₂(SiAl₂)O₁₂, new mineral, schorlomite group, garnet 31 supergroup, Allende meteorite, carbonaceous chondrite, Ca-Al-rich inclusion 32 _____ 33 *E-mail: chi@gps.caltech.edu 34 35 **INTRODUCTION** 36 During a nanomineralogy investigation of the Allende meteorite, a new Ti-rich 37 silicate, Ca₃Ti₂(SiAl₂)O₁₂ with the *Ia-3d* garnet structure, named "hutcheonite", was 38 identified in a Ca-Al-rich inclusion (CAI) Egg-3 (Fig. 1). The Allende meteorite, which fell 39 at Pueblito de Allende, Chihuahua, Mexico on February 8, 1969, is a CV3 (Vigarano type) 40 carbonaceous chondrite. Egg-3 is a coarse-grained igneous Type B1 FUN (Fractionation and 41 Unidentified Nuclear effects) CAI from Allende (Wasserburg et al. 2012). 42 Electron probe microanalysis (EPMA), high-resolution scanning electron microscope 43 (SEM) and electron back-scatter diffraction (EBSD) have been used to characterize its composition and structure. Synthetic Ca₃Ti₂(SiAl₂)O₁₂ has not been reported to date. 44 45 However, Grew et al. (2013) suggested that the Ti-Zr-Al-rich garnet (schorlomite) reported 46 by Koritnig et al. (1978) from the Harz Mountains, Germany, could be a natural Al-47 dominant analogue of schorlomite. We describe here the first occurrence of 48 Ca₃Ti₂(SiAl₂)O₁₂ in a meteorite, as a new mineral, being an alteration phase in a CAI from a 49 carbonaceous chondrite, and discuss its origin and significance for secondary alteration 50 processes that affected CV chondrites (e.g., Brearley and Krot 2012 and references therein). 51 52 MINERAL NAME AND TYPE MATERIAL 53 The new mineral and its name have been approved by the Commission on New 54 Minerals, Nomenclature and Classification of the International Mineralogical Association 55 (IMA 2013-029) (Ma and Krot 2013). The mineral name is in honor of Ian D. Hutcheon 56 (born in 1947), cosmochemist and physicist at Lawrence Livermore National Laboratory, 57 Livermore, California, USA, for his many contributions to cosmochemistry and meteorite 58 research. The type specimen is in section MQM803 in G. J. Wasserburg's Meteorite 59 Collection of Division of Geological and Planetary Sciences, California Institute of 60 Technology, Pasadena, California 91125, USA.

61	
62	APPEARANCE, PHYSICAL, AND OPTICAL PROPERTIES
63	Hutcheonite occurs as small irregular single crystals, 500 nm – 4 μ m in size (Figs. 2–3),
64	which are the holotype material. Color, lustre, streak, hardness, tenacity, cleavage, fracture,
65	density, and optical properties could not be determined because of the small grain size.
66	Hutcheonite is non-cathodoluminescent under the electron beam in an SEM. The calculated
67	density is 3.86 g/cm ³ using the empirical formula.
68	
69	OCCURRENCE AND ASSOCIATED MINERALS
70	Hutcheonite occurs alone or in contact with monticellite, grossular and wadalite in
71	alteration areas along some cracks between primary melilite, spinel and Ti,Al-diopside in the
72	core area of the CAI (Figs. 1–3). Melilite with spinel, Ti,Al-diopside and anorthite occupies the
73	mantle-core area with a Wark-Lovering rim consisting of Ti,Al-diopside and forsterite. Other
74	secondary phases found in the CAI include nepheline, sodalite, celsian and Na-rich melilite.
75	Trace of Ni-Fe-rich metal is present in <i>Egg-3</i> . The matrix around the CAI consists of ferroan
76	olivine, nepheline, diopside-hedenbergite pyroxenes, and minor troilite and pentlandite.
77	
78	CHEMICAL COMPOSITION
79	Backscatter electron (BSE) images were obtained using a ZEISS 1550VP field emission
80	SEM and a JEOL 8200 electron microprobe with solid-state BSE detectors. Quantitative
81	elemental microanalyses (6) were carried out using the JEOL 8200 electron microprobe operated
82	at 10 kV (for smaller interaction volume) and 5 nA in focused beam mode. Analyses were
83	processed with the CITZAF correction procedure (Armstrong 1995) using the Probe for EPMA
84	program from Probe Software, Inc. On-peak interference of VK α by TiK β was corrected using
85	the Probe for EPMA. Analytical results are given in Table 1. No other elements with atomic
86	number greater than 4 were detected by WDS scans. The empirical formula (based on 12 oxygen
87	atoms pfu) of type hutcheonite is Ca _{2.99} (Ti ⁴⁺ _{1.53} Mg _{0.25} Al _{0.17} Fe ²⁺ _{0.05} V ³⁺ _{0.03})(Si _{1.68} Al _{1.32})O ₁₂ .
88	According to the newly-approved nomenclature on the garnet supergroup (Grew et al. 2013), this
89	Ti-rich silicate is a new garnet, giving 66% schorlomite charge arrangement, 22% morimotoite
90	charge arrangement, and 12% grossular charge arrangement. Thus, this garnet belongs to the
91	schorlomite group with $Al^{3+} > Fe^{3+}$ at Z. The general formula is $Ca_3(Ti,Mg,Al)_2(Si,Al)_3O_{12}$. The

10/30

92	end-member formula is Ca ₃ Ti ₂ (SiAl ₂)O ₁₂ , which requires SiO ₂ 12.3, TiO ₂ 32.6, Al ₂ O ₃ 20.8, CaO
93	34.3, total 100.0 wt%.
94	A potential terrestrial Al analogue of schorlomite has a formula of
95	$(Ca_{2.869}Mg_{0.118}Na_{0.008}Mn_{0.004}Y_{0.001})(Ti_{0.856}Zr_{0.546}Fe^{2+}_{0.212}Mg_{0.202}Fe^{3+}_{0.179}Cr_{0.003})$
96	$(Si_{2.021}Al_{0.637}Fe^{3+}_{0.342})O_{12}$ (recalculated from Koritnig et al. 1978), which corresponds to 49.0%
97	schorlomite charge arrangement, 41.6% moromotoite charge arrangement, 9.1% grossular charge
98	arrangement and 0.35% other, i.e., a significantly lower proportion of the schorlomite charge
99	arrangement than in the type hutcheonite, which has a much higher Ti and Al content, and thus
100	much closer to the end-member formula in composition.
101	
102	CRYSTALLOGRAPHY
103	Conventional X-ray studies could not be carried out because of the small crystal size.
104	Single-crystal electron backscatter diffraction (EBSD) analyses at a sub-micrometer scale were
105	performed using an HKL EBSD system on a ZEISS 1550VP SEM, operated at 20 kV and 6 nA
106	in focused beam mode with a 70° tilted stage and in a variable pressure mode (25 Pa) (Ma and
107	Rossman 2008a, 2009a). The EBSD system was calibrated using a single-crystal silicon
108	standard. The structure was determined and cell constants were obtained by matching the
109	experimental EBSD patterns with structures of grossular, schorlomite, kimzeyite, eringaite,
110	andradite and morimotoite.
111	The EBSD patterns can be indexed nicely by the <i>Ia-3d</i> garnet structure and give the best
112	fit using the grossular structure from Lager et al. (1987) (Fig. 4), with a mean angular deviation
113	of 0.35°. The cell parameters are taken directly from the data of the matching phase in Lager et
114	al. (1987). Cubic Space group: <i>Ia-3d</i> , $a = 11.843$ Å, $V = 1661.06$ Å ³ , $Z = 8$.
115	The X-ray powder-diffraction data (in Å for $CuK\alpha 1$, Bragg-Brentano geometry) are
116	calculated from the cell parameters of Lager et al. (1987) with the empirical formula from this
117	study, using Powder Cell version 2.4. The strongest calculated lines are [d in Å, intensity, I,
118	scaled to 100 for the most intense peak, (<i>h k l</i>)] [2.648, 100, (4 2 0)], [1.583, 63, (6 4 2)], [2.961,
119	54, (4 0 0)], [2.417, 41, (4 2 2)], [0.806, 30, (14 4 2)], [1.642, 27, (6 4 0)], [1.292, 18, (8 4 2)],
120	and [1.081, 16, (10 4 2)].
121	

10/30

122	ORIGIN AND SIGNIFICANCE
123	Hutcheonite $Ca_3Ti^{4+}_2(SiAl_2)O_{12}$ is the Al-analog of schorlomite $Ca_3Ti^{4+}_2(SiFe^{3+}_2)O_{12}$, and
124	the Ti analog of kimzeyite $Ca_3Zr^{4+}_2(SiAl_2)O_{12}$ or irinarassite $Ca_3Sn^{4+}_2(SiAl_2)O_{12}$. It is a new
125	member of the schorlomite group in the garnet supergroup (Grew et al. 2013).
126	Hutcheonite is found only in alteration regions of the Allende CAIs, in close association
127	with secondary monticellite, grossular, and wadalite (Figs. 1-3). These minerals resulted from in
128	situ alteration of the Allende CAIs during fluid-assisted thermal metamorphism of the CV
129	chondrite parent asteroid ~3 Myr after CAI formation (Brearley and Krot 2012). Based on these
130	observations, we infer that hutcheonite is also a secondary alteration phase, formed by iron-
131	alkali-halogen metasomatic alteration of the primary melilite, perovskite, and Ti,Al-diopside in
132	the CAI on the Allende parent asteroid. The secondary origin of hutcheonite can be tested by in
133	situ aluminum-magnesium and oxygen-isotope measurements. Egg-3 experienced an open-
134	system post-crystallization alteration that resulted in addition of Si, Na, Cl, and Fe, and loss of
135	Ca.
136	Primary Ti-rich minerals (i.e., refractory phases) identified in the Allende CAIs include
137	perovskite CaTiO ₃ , Ti,Al-diopside Ca(Mg,Ti)(Si,Al) ₂ O ₆ , tazheranite (Zr,Ti,Ca,Y)O _{1.75} (Ma and
138	Rossman 2008b), tistarite Ti_2O_3 (Ma and Rossman 2009a), rutile TiO_2 (Ma et al. 2009), davisite
139	Ca(Sc,Ti,Mg)AlSiO ₆ (Ma and Rossman 2009b), grossmanite CaTiAlSiO ₆ (Ma and Rossman
140	2009c), panguite (Ti,Sc,Al,Mg,Zr,Ca,□) ₂ O ₃ (Ma et al. 2012), kangite (Sc,Ti,Al,Zr,Mg,Ca,□) ₂ O ₃
141	(Ma et al. 2013) and paqueite Ca ₃ TiSi ₂ (Al,Ti,Si) ₃ O ₁₄ (Paque et al. 1994; Ma 2013). However,
142	hutcheonite and Ti,Al-diopside are the only secondary Ti-rich phases identified so far. Secondary
143	Ti,Al-diopside, (Ca,Na)(Mg,Al,Ti)(Si,Al) ₂ O ₆ with ~8 wt% TiO ₂ , was observed to occur with
144	dmisteinbergite (hexagonal $CaAl_2Si_2O_8$) and grossular in several alteration areas in an Allende
145	CAI in section MQM 866 (Fig. 5). Formation of the secondary Ti-rich minerals (hutcheonite and
146	Ti,Al-diopside) during the metasomatic alteration of the Allende CAIs suggests some mobility of
147	Ti during the alteration.
148	To date, six garnet minerals have been found in meteorites, as listed in Table 2.
149	Hutcheonite is the sixth garnet reported in a meteorite, joining grossular and andradite as
150	alteration products in CAIs. Pyrope in eclogitic clasts from the NWA 801 CR2 meteorite likely
151	formed by metamorphic process at high pressure conditions in a planet-sized body (Kimura et al.
152	2013), whereas majorite in shock veins from chondrites formed by high-pressure shock process

153	during impact events on asteroidal bodies (e.g., Chen et al. 1996). Meteoritic eringaite,					
154	Ca ₃ (Sc,Y,Ti) ₂ Si ₃ O ₁₂ , an ultrarefractory Sc-rich silicate identified in a cluster of CAI fragments					
155	from the Vigarano CV3 meteorite, is probably the first garnet formed in the solar system (Ma					
156	2012).					
157						
158	ACKNOWLEDGEMENTS					
159	SEM, EBSD and EPMA were carried out at the Geological and Planetary Science					
160	Division Analytical Facility, Caltech, which is supported in part by NSF grants EAR-0318518					
161	and DMR-0080065. This work was also supported by NASA grant NNX12AJ01G. We thank					
162	Edward S. Grew, Alan Rubin and editor Ian Swainson for very helpful and constructive reviews					
163	of this manuscript.					
164						
165	REFERENCES CITED					
166	Armstrong , J.T. (1995) CITZAF: A package of correction programs for the quantitative electron					
167	beam X-ray analysis of thick polished materials, thin films, and particles. Microbeam					
168	Analysis, 4, 177–200.					
169	Brearley, A.J. and Krot, A.N. (2012) Metasomatism in the early solar system: The record from					
170	chondritic meteorites. In Metasomatism and the Chemical Transformation of Rock -					
171	Lecture Notes in Earth System Sciences, 659–789.					
172	Chen, M., Sharp, T.G., El Goresy, A., Wopenka, B., and Xie, X. (1996) The majorite-pyrope +					
173	magnesiowüstite assemblage: Constraints on the history of shock veins in chondrites.					
174	Science, 271, 1570–1573.					
175	Fuchs, L.H. (1971) Occurrence of wollastonite, rhonite, and andradite in the Allende meteorite.					
176	American Mineralogist, 56, 2053–2068.					
177	Fuchs, L.H. (1974) Grossular in the Allende (Type III carbonaceous) meteorite. Meteoritics, 9,					
178	11–18.					
179	Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V., and Hålenius, U. (2013)					
180	Nomenclature of the garnet supergroup. American Mineralogist, 98, 785-811.					
181	Kimura, M., Sugiura, N., Mikouchi, T., Hirajima, T., Hiyagon, H., and Takehana, Y. (2013)					
182	Eclogitic clasts with omphacite and pyrope-rich garnet in the NWA 801 CR2 chondrite.					
183	American Mineralogist, 98, 387–393.					

- 184 Koritnig, S., Rösch, H., Schneider, A., and Seifert, F. (1978) Der Titan-Zirkon- Granat aus den
- 185 Kalksilikatfels-Einschlüssen des Gabbro im Radautal, Harz, Bundesrepublik
- 186 Deutschland. Tschermaks Mineralogische und Petrographische Mitteilungen, 25, 305–
 187 313.
- Lager, G.A., Rossman, G.R., Rotella, F.J., and Schultz, A.J. (1987) Neutron-diffraction structure
 of a low-water grossular at 20K. American Mineralogist, 72, 766–768.
- Ma, C. (2012) Discovery of meteoritic eringaite, Ca₃(Sc,Y,Ti)₂Si₃O₁₂, the first solar garnet.
 Meteoritics & Planetary Science, 47 (S1), A256.
- Ma, C. (2013) Paqueite, IMA 2013-053. CNMNC Newsletter No. 17, October 2013, page 3002.
 Mineralogical Magazine, 77, 2997–3005.
- Ma, C. and Krot, A.N. (2013) Hutcheonite, IMA 2013-029. CNMNC Newsletter No. 16, August
 2013, page 2707. Mineralogical Magazine, 77, 2695–2709.
- Ma, C. and Rossman, G.R. (2008a) Barioperovskite, BaTiO₃, a new mineral from the Benitoite
 Mine, California. American Mineralogist, 93, 154–157.
- Ma, C. and Rossman, G.R. (2008b) Discovery of tazheranite (cubic zirconia) in the Allende
 meteorite. Geochimica et Cosmochimica Acta 72, A577.
- Ma, C. and Rossman, G.R. (2009a) Tistarite, Ti₂O₃, a new refractory mineral from the Allende
 meteorite. American Mineralogist, 94, 841–844.
- Ma, C. and Rossman, G.R. (2009b) Davisite, CaScAlSiO₆, a new pyroxene from the Allende
 meteorite. American Mineralogist, 94, 845–848.
- Ma, C. and Rossman, G.R. (2009c) Grossmanite, CaTi³⁺AlSiO₆, a new pyroxene from the
 Allende meteorite. American Mineralogist, 94, 1491–1494.
- 206 Ma, C., Beckett, J.R., Rossman, G.R., Connolly, H.C., Guan. Y., Eiler, J.M., and Hofmann, A.E.
- 207 (2009) In-situ discovery of a cluster of refractory grains in an Allende ferromagnesian
- 208 chondrule. Lunar and Planetary Science Conference 40, Abstract # 2138.
- 209 Ma, C., Tschauner, O., Beckett, J.R., Rossman, G.R., and Liu, W. (2012) Panguite,
- 210 $(Ti^{4+},Sc,Al,Mg,Zr,Ca)_{1.8}O_3$, a new ultra-refractory titania mineral from the Allende
- 211 meteorite: Synchrotron micro-diffraction and EBSD. American Mineralogist, 97,
- 212 1219–1225.

- 213 Ma, C., Tschauner, O., Beckett, J.R., Rossman, G.R., Liu, W. (2013) Kangite,
- 214 (Sc,Ti,Al,Zr,Mg,Ca,□)₂O₃, a new ultrarefractory scandia mineral from the Allende
- 215 meteorite: Synchrotron micro-Laue diffraction and electron backscatter diffraction.
- 216 American Mineralogist, 98, 870–878.
- 217 Paque, J.M., Beckett, J.R., Barber, D.J., and Stolper, E. (1994) A new titanium-bearing calcium
- aluminosilicate phase: I. Meteoritic occurrences and formation in synthetic systems.
- 219 Meteoritics, 29, 673–682.
- 220 Wasserburg G.J., Wimpenny, J., and Yin, Q.-Z. (2012) Mg isotopic heterogeneity, Al-Mg
- isochrons, and canonical ${}^{26}Al/{}^{27}Al$ in the early solar system. Meteoritics & Planetary
- 222 Sciences, 47, 1980–1997.
- 223
- 224

Table 1. Analytical data for type hutcheonite.

226

Constituent*	wt%	Range	SD	Probe Standard
SiO ₂	20.9	20.4-21.2	0.3	anorthite
TiO ₂	TiO ₂ 25.3 25.0-26			TiO ₂
Al ₂ O ₃	15.7	15.3-15.9	0.2	anorthite
CaO	34.6	34.3-34.9	0.2	grossular
MgO	2.1	1.9-2.3	0.2	forsterite
FeO	0.7	0.5-1.0	0.2	fayalite
V ₂ O ₃	0.5	0.3-0.6	0.1	V ₂ O ₅
Total	99.8			

*Average of 6 point analyses.

228

229

230 Table 2. Garnet minerals in meteorites.

231

Mineral Name	X	Y	Ζ	0	Туре	Reference
grossular	Ca ₃	Al ₂	Si ₃	O ₁₂	alteration	e.g. Fuchs 1974
andradite	Ca ₃	Fe ₂	Si ₃	O ₁₂	alteration	e.g. Fuchs 1971
hutcheonite	Ca ₃	Ti ₂	SiAl ₂	O ₁₂	alteration	This study
ругоре	Mg ₃	Al ₂	Si ₃	O ₁₂	metamorphic	Kimura et al. 2013
majorite	Mg ₃	SiMg	Si ₃	O ₁₂	high pressure	e.g. Chen et al. 1996
eringaite	Ca ₃	Sc ₂	Si ₃	O ₁₂	ultrarefractory	Ma 2012

233

234 235

Figure 1. BSE image showing part of the Type B1 CAI Egg-3 in MQM803. The location of 236 hutcheonite is enclosed by a rectangle box.

237

238 239

Figure 2. Enlarged BSE image revealing secondary hutcheonite, monticellite, grossular and 240 wadalite in the alteration area between primary melilite and Ti,Al-diopside.

- 247
- 248

10/30

250 251

249

Figure 4. (a) EBSD pattern of the hutcheonite crystal in Fig. 3b, and (b) the pattern indexed with the *Ia-3d* garnet structure.

- 254
- 255
- 256
- 257 Figure 5. (a)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4761

Figure 5. BSE images revealing secondary Ti,Al-diopside, dmisteinbergite and grossular in 266 267 alteration areas in the Allende CAI in section MQM866. 268