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ABSTRACT 12 

Five spinel single-crystal samples within the ulvöspinel-qandilite series [(Fe2-13 

xMgx)TiO4, 0.15 < x < 0.94] were synthesized and structurally and chemically 14 

characterized by X-ray diffraction and electron microprobe techniques. Site populations, 15 

derived from structural and chemical analysis, show that the tetrahedrally-coordinated 16 

site (T) is exclusively populated by Mg2+ and Fe2+, while the octahedrally-coordinated 17 

site (M) is populated by Ti4+, Mg2+, Fe2+ and minor amounts of Fe3+. The inverse cation 18 

distribution is characterized by parallel substitution of Mg2+ for Fe2+ at both the T and 19 

M sites along the series. 20 

The variation in the unit-cell parameter from 8.527 Å to 8.495 Å is mainly 21 

related to the occurrence of Mg2+ at the M site rather than the T site. In fact, the 22 

substitution of Mg2+ for Fe2+ yields significant variations in M-O (from 2.045 Å to 23 

2.034 Å) and only limited variation in T-O (from 2.007 Å to 2.002 Å). In conjunction 24 

with data from the literature, the present study provide a basis for quantitative analyses 25 



 
 

2  
 

of the variation in TMg-O bond distance from 1.966 Å for Mg-poor ulvöspinel to 1.990 26 

Å for the qandilite end-member. 27 

 28 

  29 

INTRODUCTION 30 

 Several substances such as multiple oxides, sulfides (e.g., ZnAl2S4), selenides 31 

(e.g., CuCr2Se4), halides (e.g., Li2NiF4), and pseudohalides [e.g., ZnK(CN)4] crystallize 32 

in the spinel-type structure. Spinel oxides are defined by the general formula AB2O4, 33 

where A and B are usually cations of either 2+ and 3+ valence (A2+B3+
2O4, so-called 2-3 34 

spinels), or of 4+ and 2+ valence (A4+B2+
2O4, so-called 4-2 spinels). The spinel 35 

structure, typically symmetry mFd 3 , can be described as a slightly distorted cubic 36 

close packed array of oxygen anions, in which the A and B cations are distributed in 37 

one-eighth of all tetrahedrally-coordinated sites (T) and half of all octahedrally-38 

coordinated sites (M) (e.g., Bragg 1915; Nishikawa 1915). The unit-cell parameters (a) 39 

and oxygen fractional coordinates (u, u, u) define the resulting tetrahedral (T-O) and 40 

octahedral (M-O) bond lengths (e.g., Lavina et al. 2002). The distribution of A and B 41 

cations over T and M sites leads to two different types of cation ordering: (1) normal 42 

spinel, where the A cation occupies T and the two B cations occupy M and (2) inverse 43 

spinel, where one of the B cations occupies T and the remaining A and B cations 44 

occupy M. Disordered cation distributions are often encountered among the 2-3 spinels, 45 

and can be described by the general formula T(A2+
1–iB3+

i)M(A2+
iB3+

2–i)O4 where i is 46 

defined as the inversion parameter. The value of the inversion parameter depends on the 47 

spinel composition and cation site preferences: for example, Cr3+ only occupies the M 48 

site, Al and Cu2+ exhibit preference for M, whereas Mg2+, Fe2+, Mn2+, Zn and Co2+ 49 
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exhibit preference for the T site (Andreozzi et al. 2001; Andreozzi and Lucchesi 2002; 50 

Lenaz et al. 2004; Bosi et al. 2010; Hålenius et al. 2011; Fregola et al. 2012; D’Ippolito 51 

et al. 2012; Bosi et al. 2012). In addition, the degree of inversion is strongly sensitive to 52 

temperature, and at high temperatures (around 1500 °C), the i-parameter may increase 53 

up to 0.35 for normal spinel and down to 0.70 for inverse spinel (Nell et al. 1989; 54 

O’Neill et al. 1992; Redfern et al. 1999; Andreozzi et al. 2000). The temperature 55 

dependence of cation ordering/disordering has petrological implications for cooling 56 

processes because it is strictly related to the closure temperature of spinel, i.e., the point 57 

where the ordering process is effectively quenched. Several studies have addressed this 58 

phenomenon (e.g., Princivalle et al. 1989; Della Giusta et al. 1996; Lucchesi and Della 59 

Giusta 1997; Lucchesi et al. 1998; Princivalle et al. 1999; Uchida et al. 2005; Lenaz et 60 

al. 2010; Lucchesi et al. 2010; Lenaz and Princivalle 2011; Princivalle et al. 2012). 61 

Extensive solid-solution occurs between various spinel end-members, particularly 62 

among pairs with the same ordering type. For example, spinel (sensu stricto)-galaxite 63 

MgAl2O4-MnAl2O4 is a binary system consisting of two normal spinels (Hålenius et al. 64 

2011), whereas ulvöspinel-qandilite Fe2TiO4-Mg2TiO4 is a binary system consisting of 65 

two inverse spinels (studied hereafter). 66 

  The ulvöspinel-qandilite series forms part of the Fe2TiO4-Mg2TiO4-FeFe2O4-67 

MgFe2O4 spinel quadrilateral, and spinels within this compositional field has frequently 68 

been utilized as petrogenic indicators of temperature and pressure for geological 69 

processes. Thermodynamic data and computational results related to order-disorder 70 

phenomena in qandilite and titanomagnetite have been reported in the literature (e.g., 71 

O'Neill and Scott 2005; Palin et al. 2008; Lilova et al. 2013; Harrison et al. 2013) as 72 

well as several crystal chemical studies (e.g., Wechsler et al. 1984; Wechsler and Von 73 
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Dreele 1986; O’Neill et al. 2003; Bosi et al. 2009). However, no systematic 74 

investigation of the structural variations all along the entire (Fe2-xMgx)TiO4 series has so 75 

far been published. In this study, we have investigated the crystal structures of synthetic 76 

single crystal spinels belonging to the Fe2TiO4-Mg2TiO4 series. As most of the physical 77 

properties of Ti-rich spinels are very closely related to their cation distribution, the aim 78 

of the study was to quantitatively detail the site-occupancy to explore the interplay 79 

between chemistry and structure. 80 

  81 

 82 

EXPERIMENTAL METHODS 83 

Crystal synthesis  84 

Single-crystal spinel samples of five compositions distributed over the (Fe2-85 

xMgx)TiO4 join with 0.15 < x < 0.94 were synthesized by a flux growth method. The 86 

samples were grown from saturated melts under slow cooling (4°C/h) from 1200 to 900 87 

°C. In order to maintain a low oxygen fugacity during crystal growth, a continuous flow 88 

of CO2 and H2 (ratio 1:2) was passed through the furnace tube. Details of the synthesis 89 

procedure, using a mixture of BaO and B2O3 as flux compound, are described in Bosi et 90 

al. (2008). The synthetic products consisted of spinel crystals dispersed in a borate 91 

glass. In addition, borate crystals and sometimes ilmenite, rutile, haggertyite 92 

(BaTi5Fe6MgO19), metallic iron and BaTiO3 were also present. 93 

In the present flux-growth experiments, the crystals nucleate and grow 94 

somewhere along the main cooling path from 1200 to 900 °C. After 900 °C, the furnace 95 

heating power was switched off and the cooling rate was set considerably faster, 96 

initially a few hundred degrees per hour, to prevent any substantial crystal growth 97 
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during this stage. Consequently, the temperature at which the present samples were last 98 

in equilibrium was estimated to be in the range 1000-900 °C and this corresponds to the 99 

equilibrium temperature calculated for ulvöspinel single crystal synthetized under the 100 

same condition (Bosi et al. 2008). 101 

Several attempts to synthetize single crystal with Mg2TiO4 components larger 102 

than 50% (i.e., x > 1) were unsuccessful. Literature data for the qandilite end-member 103 

was therefore also taken into consideration (see section on “Results and discussion”). 104 

 105 

Single-crystal structural refinement 106 

X-ray diffraction measurements were performed at Earth Sciences Department, 107 

Sapienza University of Rome, with a Bruker KAPPA APEX-II single-crystal 108 

diffractometer, equipped with a CCD area detector (6.2 × 6.2 cm2 active detection area, 109 

512 × 512 pixels) and a graphite crystal monochromator, using MoKα radiation from a 110 

fine-focus sealed X-ray tube. The sample-to-detector distance was 4 cm. A total of 5088 111 

exposures per sample (step = 0.2°, time/step = 10 s) covering the full reciprocal sphere 112 

were collected. The orientation of the crystal lattice was determined from 500 to 1000 113 

strong reflections (I > 100 σI) evenly distributed in the reciprocal space, and used for 114 

subsequent integration of all recorded intensities. Final unit-cell parameters were 115 

refined by using the Bruker AXS SAINT program from about 2000 recorded reflections 116 

with I > 10 σI in the range 8° < 2θ < 90°. The intensity data were processed and 117 

corrected for Lorentz, polarization and background effects with the APEX2 software 118 

program of Bruker AXS. The data were corrected for absorption using multi-scan 119 

method (SADABS). The absorption correction led to a significant improvement in Rint. 120 
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No violation of mFd 3  symmetry was noted. Sporadic appearance of forbidden space-121 

group reflections was recognized as double reflections. 122 

Structural refinements were carried out with the SHELXL program (Sheldrick 123 

2008). Setting the origin at 3 m, initial atomic positions for oxygen atoms were taken 124 

from the structure of spinel (Bosi et al. 2009). Variable parameters were overall scale 125 

factor, extinction coefficient, atomic coordinates, site scattering values expressed as 126 

mean atomic number (m.a.n.), and atomic displacement factors. In accord with the 127 

recommendations of Della Giusta et al. (1986) and Hawthorne et al. (1995), to obtain 128 

the most accurate results the oxygen site was modeled with partially oxidized scattering 129 

factor, ranging from 50% to 60%, derived from neutral versus fully ionized oxygen 130 

scattering curves. Neutral curves were used for the cation sites: in detail, the T site was 131 

modeled considering the presence of Fe and Mg scattering factors, whereas the M site 132 

was modeled by Ti, Fe and Mg scattering factors. The final refinements were carried out 133 

fixing the occupancy of Ti to the value obtained from the chemical analysis. This 134 

approach led to the best values for all conventional statistical indexes, such as R1 and 135 

wR2. Three full-matrix refinement cycles with isotropic displacement parameters for all 136 

atoms were followed by anisotropic cycles until convergence was attained, that is, when 137 

the shifts for all refined parameters were less than their estimated standard deviation. 138 

Table 1 summarizes structural parameters and refinement details, and the corresponding 139 

CIFs have been deposited. 140 

 141 

Electron microprobe analysis  142 

Electron microprobe analyses, with WDS method, of the same crystals used for 143 

XRD refinements were obtained with a Cameca SX50 instrument at the University of 144 
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Uppsala operating at an accelerating potential of 20 kV and a sample current of 15 nA. 145 

Standard samples were synthetic MnTiO3 (for Ti), Fe2O3 (for Fe) and MgO (for Mg). 146 

Al2O3 was checked, using corundum standard, as a possible contaminant from the 147 

furnace tube. Na and Ba contamination from the flux was not detected. For raw data 148 

reduction, the PAP matrix correction procedure was applied (Pouchou and Pichoir 149 

1991). The atomic proportions and Fe3+/ΣFe ratios were calculated assuming charge 150 

balance and stoichiometry. The assumption of stoichiometric sample compositions is 151 

supported by results from previously studied Ti-rich compositions synthesized under 152 

similar conditions (Bosi et al. 2008).  The results, which are summarized in Table 2, 153 

represent mean values of a minimum of six spot analyses per analyzed crystal and their 154 

standard errors (below 1%) demonstrate the crystal homogeneity. 155 

 156 

Cation distribution 157 

The intracrystalline cation distribution over the T and M sites was obtained by 158 

using a least-squares optimization method applying a minimization function in which 159 

both structural and chemical data (such as atomic proportions, bond lengths and site-160 

scattering in terms of equivalent electrons, i.e., m.a.n.) were taken into account. The 161 

minimization procedure was presented and discussed previously (e.g., Bosi et al. 2009). 162 

In particular, octahedral and tetrahedral bond lengths were calculated as the linear 163 

contribution of each cation multiplied by its specific bond length. The latter were taken 164 

from Lavina et al. (2002): MTi4+-O = 1.962(1) Å, MFe3+-O = 2.015(1) Å, TFe3+-O = 165 

1.875(2) Å, MFe2+-O = 2.150(2) Å,TFe2+-O = 2.006(2) Å, MMg-O = 2.082(2) Å,  TMg-O 166 

= 1.966(1) Å, except for TFe2+-O distance which was measured by Bosi et al. (2009) for 167 

Fe2TiO4. In addition, as explained in more detail below, the value of TMg-O distance 168 
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varies from 1.966 Å (for Mg-poor ulvöspinel) to 1.990 Å (for qandilite): the former was 169 

used for samples T1, T2 and T3, the latter one for samples T4 and T5. The robustness of 170 

this approach was confirmed by another optimization procedure (Wright et al. 2000), 171 

which led to very similar cation distributions. Results of the final cation distributions 172 

are reported in Table 3. 173 

  174 

 175 

RESULTS AND DISCUSSION 176 

In order to investigate the crystal chemistry of the whole Fe2TiO4-Mg2TiO4 177 

series, earlier reported data for Mg-free ulvöspinel (FeTib1b, Bosi et al. 2009) and data 178 

for Fe-free qandilite (see below) with cubic symmetry were compared with our samples. 179 

For sample FeTib1b, the structural formula is T(Fe2+)M(Fe2+
0.945Fe3+

0.11Ti4+
0.945)O4 and 180 

the bond distances are T-O = 2.006(2) Å and M-O = 2.046(1) Å. The structural 181 

parameters for qandilite (Mg2TiO4) from several studies indicate that the u value is in 182 

the 0.2616-0.2605 range (Wechsler and von Dreele 1989; Sawada 1996; Millard et al. 183 

1995; O’Neill et al. 2003), whereas the a value is in a more limited 8.442-8.444 Å range 184 

(O’Neill et al. 2003; Sawada 1996). Therefore, averaged values of u = 0.2611 and a = 185 

8.443 Å were used herein, which yield M-O = 2.021 Å and T-O = 1.990 Å 186 

representative of the end-member T(Mg2+)M(Mg2+Ti4+)O4. 187 

The investigated synthetic spinels can be represented by the chemical formula 188 

[Fe2+
(2 – x – y/2) Mg2+

(x) Fe3+
(y) Ti4+

(1 – y/2)]Σ3.00 O4 that highlights two types of substitutions: 189 

the main Mg2+ ↔ Fe2+ exchange with x ranging from 0.15 to 0.94, and the minor Fe2+ + 190 

Ti4+ ↔ 2Fe3+ exchange with y ranging from 0.13 to 0.04 (sample T1 and T5, 191 

respectively). The latter substitution decreases with increasing x-value. The cation 192 
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distribution shows that Ti4+ and Fe3+ are ordered at the M site, whereas Mg2+ and Fe2+ 193 

are disordered over the T and M sites: in detail, the amounts of Mg2+ are slightly smaller 194 

for T than for M, whereas the amounts of Fe2+ are larger for M than for T (Table 3). 195 

Structural refinement results showed that m.a.n. for both the T and M sites decreases 196 

with increasing Mg2TiO4 component, reflecting the disordered Mg site allocation: T- 197 

and M-m.a.n. decrease (from 26 to 21 and from 23 to 20, respectively) with increasing 198 

of substitution Mg2+ → Fe2+ as a consequence of the lower atomic number of Mg (Z = 199 

12) in relation to Fe (Z = 26). The unit-cell parameter a decreases from 8.527 Å to 200 

8.495 Å with increasing Mg2TiO4 component (Fig. 1). This is related to significant 201 

variations in M-O which decreases from 2.045 Å to 2.034 Å, for the studied samples, 202 

compared to strongly limited variation in T-O, 2.007-2.002 Å (Fig. 2). The resulting 203 

atomic displacement parameters are relatively high for the studied samples (about 0.01 204 

A2), suggesting the likely presence of a static positional disorder due to the mixing of 205 

Mg2+/Fe2+ and Ti4+ over the M-sites. This conclusion is in line with previous studies on 206 

ulvöspinel and qandilite (e.g., Wechsler et al. 1984; Millard et al. 1995; Sawada 1996; 207 

Bosi et al. 2009). The variations of M-O and T-O as a function of the MMg2+ and TMg2+ 208 

(respectively) show a strong negative correlation (Fig. 3).  209 

As discussed above, the whole ulvöspinel-qandilite series is characterized by the 210 

decrease of a, M-O and T-O with increasing Mg, accompanied by increasing TMg-O 211 

distance from 1.966 Å (ulvöspinel) to 1.990 Å (qandilite). Similar variation was also 212 

detected for normal spinel along the MgCr2O4-MgV2O4 series (Lavina et al. 2003), 213 

where TMg-O ranges from 1.966 Å to 1.974 Å. As argued in Lavina et al. (2003), the 214 

increase of TMg-O may be caused by dragging effects of cations at the M site (V3+ and 215 

Cr3+ in Lavina et al. 2003; Mg, Fe and Ti in our case), responsible for variation in TMg-216 
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O, which maintains the structural distortion and provides the shielding between M-217 

cations. In this regard, Bosi et al. (2010) showed that the structural distortion of spinel is 218 

strictly related to the mean quadratic elongation <λ> (Robinson et al. 1971) of the MO6 219 

polyhedron. Calculated values of <λ> for our samples and those of Lavina et al. (2003) 220 

show extremely limited variation (1.008-1.009) which supports the analogy between 221 

normal and inverse spinel in which increased TMg-O values are required by the 222 

structure to reduce the cation-cation repulsion between the M sites. A significant 223 

shortening of the TMg-O distance from 1.983 Å (for Mg2TiO4) to 1.967 Å (for 224 

MgCr2O4) was also noted by Sawada (1996), who related this variation to the different 225 

degree of ionicity of the TMg-O bond in Mg2TiO4 and MgCr2O4. 226 

 227 

 228 

IMPLICATIONS 229 

The ulvöspinel-qandilite series is closely related to the magnetite-230 

magnesioferrite series, as well as to titanomagnetite (e.g., Harrison et al. 2013), which 231 

are the dominant carriers of magnetic remanence in nature and plays a key role to rock 232 

magnetic studies. Our finding that Mg2+ behaves analogously to Fe2+ in these important 233 

magnetic minerals, provides new understanding of the nature of cation ordering in the 234 

system Fe2TiO4-Mg2TiO4-FeFe2O4-MgFe2O4 and serves as a guide for future 235 

petrological and computational studies. 236 

From a crystallographic viewpoint, the present study gives additional insights 237 

into the long-range variations in T-O bond distance of divalent cations in the oxide 238 

spinel structure: e.g., TZn2+-O about 1.95-1.98 Å (Bosi et al. 2011);  TCo2+-O about 239 

1.92-1.99 Å (O’Neill 2003; Bosi et al. 2012); TMg2+-O about 1.97-1.99 Å (this study). 240 
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TABLE 1.  Selected X-ray diffraction data for the synthetic spinels (Mg,Fe)2TiO4 
Sample T1 T2 T3 T4 T5 

Crystal size (mm) 0.12 × 0.10 × 0.08 0.20 × 0.18 × 0.10 0.10 × 0.09 × 0.08 0.10 × 0.10 × 0.09 0.15 × 0.14 × 0.10 
a (Å) 8.5271(3) 8.5184(3) 8.5104(3) 8.5021(3) 8.4946(3) 
u 0.26064(6) 0.26099(7) 0.26086(5) 0.26097(7) 0.26108(9) 
T-O (Å) 2.0034(9) 2.0065(11) 2.0027(8) 2.0023(10) 2.0022(13) 
M-O (Å) 2.0451(5) 2.0403(6) 2.0393(4) 2.0365(5) 2.0339(7) 
T-m.a.n. 25.5(2) 25.0(3) 23.7(2) 22.1(2) 21.1(2) 
M-m.a.n. 23.4(2) 22.6(3) 21.5(1) 20.5(1) 20.1(2) 
T-U 11 (Å2) 0.01089(10) 0.01118(13) 0.01090(10) 0.01091(12) 0.01081(18) 
M-U 11 (Å2) 0.00848(7) 0.00859(9) 0.00851(7) 0.00835(9) 0.00853(12) 
M-U 12 (Å2) –0.00060(3) –0.00077(4) –0.00072(4) –0.00079(4) –0.00086(5) 
O-U 11 (Å2) 0.0146(2) 0.0143(3) 0.01399(18) 0.0136(2) 0.0132(3) 
O-U 12 (Å2) –0.00316(14) –0.00313(16) –0.00285(13) –0.00284(15) –0.00269(18) 

Reciprocal space range hkl 
 
 

–13 ≤ h ≤ 16 
–13 ≤ k ≤ 16 
–16 ≤ l ≤ 12 

–14 ≤ h ≤ 16 
–13 ≤ k ≤ 16 
–12 ≤ l ≤ 16 

–12 ≤ h ≤ 16 
–13 ≤ k ≤ 16 
–16 ≤ l ≤ 12 

–13 ≤ h ≤ 16 
–14 ≤ k ≤ 16 
–12 ≤ l ≤ 16 

–16 ≤ h ≤ 11 
–14 ≤ k ≤ 15 
–16 ≤ l ≤ 14 

EXTI 0.0074(4) 0.0170(9) 0.0206(7) 0.0057(5) 0.0089(9) 
Read reflections 2838 2845 2845 2919 2850 
Unique reflections 151 151 151 148 148 
R int. (%) 1.68 2.02 2.09 1.64 3.74 
R1 all (%)  1.18 1.33 1.10 1.36 1.62 
wR2 (%) 2.66 3.23 2.33 3.14 4.36 
GooF 1.178 1.228 1.219 1.348 1.400 
Diff. Peaks (e/Å3) –0.38; 0.68 –0.44; 1.16 –0.25; 0.23 –0.34; 0.64 –0.25; 1.15 

Notes: a = unit-cell parameter; u = oxygen fractional coordinate; T-O and M-O = tetrahedral and octahedral bond lengths, respectively; T- and M-m.a.n.. = T- and M-mean 
atomic number; U 11 = atomic displacement parameter; U 11

 = U 22
 = U 33 and U 12

  = U 13
 = U 23 (= 0 for T-site due to symmetry reasons); EXTI = extinction parameter; Rint. = 

merging residual value; R1 = discrepancy index, calculated from F-data; wR2 = weighted discrepancy index, calculated from F2-data; GooF = goodness of fit; Diff. Peaks = 
maximum and minimum residual electron density. Radiation, Mo-Kα = 0.71073 Å. Data collection temperature = 293 K. Range for data collection 8° < 2θ < 90°. Total 
number of frames = 5088. Origin fixed at m3 . Space group mFd 3 . Z = 8 formula units. Spinel structure has cations at Wyckoff positions 8a ≡ T (1/8, 1/8, 1/8) and 16d ≡ M 
(1/2, 1/2, 1/2), and oxygen anions at 32e (u, u, u). 



TABLE 2. Chemical composition of the synthetic spinels (Fe,Mg)2TiO4 

Sample T1 T2 T3 T4 T5 

TiO2 (wt%)  33.98(10) 35.37(10) 36.97(11) 39.54(29) 40.18(11) 

MgO 2.78(14) 6.37(5) 10.13(8) 16.31(15) 19.49(28) 

FeOtotal 62.46(42) 58.17(24) 52.74(18) 43.98(31) 40.06(24) 

Total 99.22 99.91 99.84 99.84 99.73 
      
FeO* 58.27 54.24 49.88 42.69 38.38 

Fe2O3* 4.66        4.37 3.184 1.43 1.87 

 
Ti4+ (apfu) 0.936(5) 0.942(3) 0.959(3) 0.982(6) 0.977(5) 

Mg2+ 0.152(8)   0.336(2) 0.521(4) 0.803(6) 0.939(9) 

Fe2+ 1.784(7) 1.606(4) 1.438(4) 1.179(7) 1.038(6) 

Fe3+ 0.128(10) 0.116(5) 0.083(5) 0.036(10) 0.045(10) 

Total 3.000 3.000 3.000 3.000 3.000 

Notes :  Cations on the basis of 4 oxygen atoms per formula unit (apfu). Digits in brackets are 
standard uncertainties (1σ): for reported oxide concentrations, they represent standard 
deviations of several analyses on individual crystals, while, for cations, they were calculated 
according to error propagation theory. 
* Determined from stoichiometry. 



 
 
 
 
TABLE 3. Structural formulae for the synthetic spinels (Fe,Mg)2TiO4 

Sample Formula 

T1 T(Mg0.03Fe2+
0.97) M(Mg0.13Fe2+

0.80Fe3+
0.13Ti4+

0.94)O4 

T2 T(Mg0.07Fe2+
0.93) M(Mg0.26Fe2+

0.68Fe3+
0.12Ti4+

0.94)O4
 

T3 T(Mg0.16Fe2+
0.84) M(Mg0.36Fe2+

0.59Fe3+
0.09Ti4+

0.96)O4
 

T4 T(Mg0.28Fe2+
0.72) M(Mg0.52Fe2+

0.46Fe3+
0.04Ti4+

0.98)O4
 

T5 T(Mg0.35Fe2+
0.65) M(Mg0.59Fe2+

0.39Fe3+
0.04Ti4+

0.98)O4 

Notes: T = tetrahedrally coordinated site; M = octahedrally coordinated site 
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FIGURE 3b 
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