Revision 1 1 2 Correianevesite, Fe²⁺Mn²⁺₂(PO₄)₂·3H₂O, a new reddingite-group 3 mineral from the Cigana mine, Conselheiro Pena, Minas Gerais, 4 **Brazil** 5 6 7 8 Nikita V. Chukanov^{1*}, Ricardo Scholz², Natalia V. Zubkova³, Igor V. Pekov³, Dmitriy I. 9 Belakovskiv⁴, Konstantin V. Van⁵, Leonardo Lagoeiro², Leonardo M. Graca², Klaus 10 Krambrock⁶, Luiz C.A. de Oliveira⁷, Luiz A.D. Menezes Filho⁸, Mário L.S.C. Chaves⁸ and 11 **Dmitriv Y. Pushcharovsky³** 12 13 ¹Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 14 15 Moscow Region 142432, Russia 16 ²Universidade Federal de Ouro Preto (UFOP), Escola de Minas, Departamento de Geologia, Campus Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil 17 18 ³Faculty of Geology, Moscow State University, Vorobievy Gory, Moscow, 119991 Russia 19 ⁴Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18-2, 20 Moscow, 119071 Russia 21 ⁵Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Moscow 22 Region 142432, Russia ⁶Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Física, 23 24 Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil 25 ⁷Universidade Federal de Minas Gerais, Instituto de Ciências Exatas, Departamento de Química, 26 Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil 27 ⁸Universidade Federal de Minas Gerais, Instituto de Geociências, Departamento de Geologia, 28 Avenida Antônio Carlos, 6627, 31270-901, Belo Horizonte, MG, Brazil 29 30 *chukanov@icp.ac.ru

32

ABSTRACT

33 Correianevesite, ideally $Fe^{2+}Mn^{2+}_{2}(PO_{4})_{2}\cdot 3H_{2}O_{1}$, is a new reddingite-group mineral approved by the 34 CNMNC (IMA 2013-007). It occurs in a phosphate-rich granite pegmatite outcropped by the 35 Cigana mine, Conselheiro Pena, Rio Doce valley, Minas Gerais, Brazil. Associated minerals are: 36 triphylite, lithiophilite, frondelite, rockbridgeite, eosphorite, vivianite, fairfieldite, leucophosphite, 37 cyrilovite, phosphosiderite, etc. Correianevesite occurs as gravish-brown to reddish-brown 38 transparent bipyramidal crystals up to 4 mm in size. The streak is white, and the luster is vitreous. 39 Mohs' hardness is $3\frac{1}{2}$. Cleavage is poor on (010). Fracture is laminated, uneven across cleavage. The measured density is 3.25(2) g cm⁻³; the calculated density is 3.275 g cm⁻³. The mineral is 40 biaxial (+), $\alpha = 1.661(5)$, $\beta = 1.673(5)$, $\gamma = 1.703(5)$, $2V_{\text{meas}} = 70(10)^{\circ}$, $2V_{\text{calc}} = 65.6^{\circ}$. The IR 41 42 spectrum confirms the presence of H_2O . The Mössbauer spectrum shows the presence of two sites for Fe^{2+} and one site for Fe^{3+} occupied in the ratio $Fe1^{2+}:Fe2^{2+}:Fe^{3+} = 39:55:6$. The chemical 43 44 composition is (electron microprobe, H₂O determined by gas chromatography of ignition products, 45 Fe apportioned between FeO and Fe₂O₃ based on Mössbauer data, wt.%): MnO 29.21, FeO 21.74 Fe₂O₃ 1.54, P₂O₅ 34.59, H₂O 12.6, total 99.68. The empirical formula, based on 11 O apfu, is 46 H_{5 78}Mn_{1 70}Fe²⁺¹ 25Fe³⁺⁰ 08P_{2 015}O₁₁. The strongest lines of the powder X-ray diffraction pattern [d, Å 47 48 (I, %) (hkl) are: 5.08 (43) (020), 4.314 (28) (002, 210), 3.220 (100) (221, 202), 3.125 (25) (122), 49 2.756 (35) (103, 230), 2.686 (25) (222, 113), 2.436 (22) (123) and 2.233 (23) (411, 331). The 50 crystal structure is solved ($R_1 = 0.0176$). Correianevesite is orthorhombic, space group Pbna, a =9.4887(2), b = 10.1149(2), c = 8.7062(2) Å, V = 835.60(3) Å³, Z = 4. The refined crystal-chemical 51 formula is: $(Fe^{2+}_{0.72}Mn^{2+}_{0.20}Fe^{3+}_{0.08})(Mn_{1.48}Fe^{2+}_{0.52})(PO_4)_2(H_2O_5OH)_3$. 52

53

54 Keywords: correianevesite, new mineral, phosphate, reddingite group, Cigana mine, Conselheiro
55 Pena, Rio Doce valley, Minas Gerais, Brazil, crystal structure, Mössbauer spectroscopy.

56

58

INTRODUCTION

59

60 Correianevesite is a new mineral approved by the IMA Commission on New Minerals, 61 Nomenclature and Classification (IMA no. 2013-007). It was discovered in a granite pegmatite 62 outcropped by the Cigana mine (Lavra da Cigana; formerly known as Jocão mine), Rio Doce 63 valley, Conselheiro Pena county, Minas Gerais, Brazil. The pegmatite belongs to the Conselheiro 64 Pena pegmatite district, Eastern Brazilian pegmatite province known for a wide diversity of 65 phosphate minerals (Pedrosa et al. 2011).

66 The Cigana pegmatite is mined out and in the past was mined for industrial feldspar and with 67 minor importance gemstones and samples for the collectors market. The pegmatite is heterogeneous 68 with well-developed mineralogical and textural zoning. It has symmetric lens shape with the longer 69 axis trending to NW-SE and the body dipping subvertically. The extension is at least 50 m, and the 70 thickness is up to 20 m. The pegmatite is hosted by quartz-mica schist with garnet, staurolite and 71 sillimanite of the São Tomé Formation. Hydrothermal and metasomatic fluids were responsible for 72 the albitization, the development of miarolitic cavities, and the formation of a complex secondary 73 phosphate assemblage described by Chaves et al. (2005).

The primary mineral association is represented by quartz, muscovite, microcline, schorl, almandine-spessartine, spodumene and triphylite. The secondary association is mainly composed by albite, Ta and Nb oxides, hydrothermal beryl, cassiterite, pyrite and numerous phosphates formed as a result of alteration of triphylite (Chaves et al. 2005). The paragenetic assemblage of secondary phosphates is composed by lithiophillite, correianevesite, hureaulite, frondelite, fluorapatite, eosphorite, fairfieldite, gormanite, and vivianite.

80 The new mineral is named in memory of Professor José Marques Correia Neves (1929-2011), 81 professor of the Instituto de Geociências, Universidade Federal de Minas Gerais, who was the most 82 active geoscientist in the study of Brazilian pegmatites, especially in the region of Conselheiro Pena

and Araçuai, as well as in Alto Ligonha in Mozambique, where he discovered hafnon, the Hf
analogue of zircon.

The type specimen of correianevesite (a part of the holotype) is deposited in the mineralogical
collections of the Museu de Ciência e Técnica, Escola de Minas, Universidade Federal de Ouro
Preto, Praça Tiradentes, Centro, 35400-000 – Ouro Preto, MG, Brazil, with the registration number
SAA-081B.

- 89
- 90

GENERAL APPEARANCE AND PHYSICAL PROPERTIES

91

Correianevesite occurs as light grayish-brown to reddish-brown transparent bipyramidal crystals up to 4 mm in size (Figure 1) in cavities of triphylite. The only form observed is {111}. The streak is white, and the luster is vitreous. The mineral is non-fluorescent under ultraviolet light. Mohs' hardness is 3½. Cleavage is poor on (010). Fracture is laminated, uneven across cleavage. The density measured by flotation in heavy liquids is 3.25(2) g cm⁻³. The calculated density is 3.275 g cm⁻³ based on the empirical formula and unit-cell parameters obtained from the single-crystal Xray diffraction data.

99 Thermal data for correianevesite were obtained using a Shimadzu analyzer in a nitrogen 100 atmosphere, at a gas flow rate of 50 cm³ min⁻¹. Differential thermal analysis (DTA) and 101 thermogravimetric (TG) analyses were carried out simultaneously. Crushed samples with 14.88 mg 102 weight were heated in an open platinum crucible at a rate of 10°C min⁻¹ up to a temperature of 103 800°C. The TG curve of correianevesite in nitrogen atmosphere is given in Figure 2.

The lowered weight loss of 10.45 % obtained by TG, as compared with H₂O content of 12.6 wt.% obtained by gas chromatography of products of ignition (see below), is explained by selfoxidation (a phenomenon typical of Fe²⁺- and Mn²⁺-phosphates: see e.g. Frost et al. 2004; Chukanov et al. 2012), in accordance with the following simplified schemes (M = Fe, Mn):

108 $2M^{2+} + H_2O \rightarrow 2M^{3+} + O^{2-} + H_2$

109 $2M^{2+} + 2H_2O \rightarrow 2M^{3+} + 2OH^- + H_2.$

110	These processes correspond to exothermic effects in the DTA curve (Figure 3) and may be
111	explained by the partial oxidation of Fe^{2+} to Fe^{3+} .
112	In order to obtain infrared (IR) absorption spectrum, correianevesite powder was mixed with
113	anhydrous KBr, pelletized, and analysed using an ALPHA FTIR spectrometer (Bruker Optics) at
114	the resolution of 4 cm ⁻¹ and number of scans of 16. IR spectrum of analogous pellet of pure
115	KBr was used as a reference.
116	Absorption bands in the IR spectrum of correianevesite (Figure 4) and their assignments are
117	(cm ⁻¹ ; s – strong band, w – weak band, sh – shoulder): 3457, 3200 (O–H stretching vibrations of H_2O
118	molecules and OH ⁻ anions, hydrogen bonds of medium strengths), 2530, 2033w, 1890 (vibrations of
119	the fragments O-H…O-P, very strong hydrogen bonds of acidic OH groups), 2247w (overtone of
120	asymmetric stretching vibrations of PO_4^{3-} anions), 1636w, 1575 (bending vibrations of H_2O
121	molecules), 1054s, 1013s (asymmetric stretching vibrations of PO ₄ ³⁻ anions), 758, 750sh, 661
122	(librational vibrations of H_2O molecules forming strong hydrogen bonds), 598, 570, 555sh (O–P–O
123	bending vibrations of PO_4^{3-} anions), 476w, 417w, 384w (mixed lattice vibrations).
124	Bands of B-, C- and N-bearing groups are absent in the IR spectrum of correianevesite. The
125	nature of anomalously strong hydrogen bonds is discussed below.
126	The IR spectrum of correianevesite is comparable to those of the isostructural minerals
127	phosphoferrite and reddingite.
128	Mössbauer spectra were collected in constant acceleration transmission mode with a 10 mCi
129	⁵⁷ Co/Rh source at 25 and 298 K. The data were stored in a 1024-channel MCS memory unit and
130	were fitted using Lorentzian line shapes with a least-squares fitting procedure using the NORMOS
131	program. Isomer shifts were calculated relatively to α-Fe.
132	According to Mössbauer spectroscopy data (Figure 5, Table 1), correianevesite contains three
133	kinds of iron cations (two bivalent and one trivalent) having 6-fold coordination and present in the
134	atomic proportions $Fe1^{2+}:Fe2^{2+}:Fe^{3+} = 39:55:6.$
135	

136 Correianevesite is optically biaxial (+), $\alpha = 1.661(5)$, $\beta = 1.673(5)$, $\gamma = 1.703(5)$, $2V_{\text{meas}} =$ $70(10)^\circ$, $2V_{\text{calc}} = 65.6^\circ$. Dispersion of optical axes is strong, r > v. The mineral is nonpleochroic, 137 138 colourless under the microscope. 139 140 **CHEMICAL COMPOSITION** 141 142 Seven point analyses were carried out using using VEGA TS 5130MM SEM equipped with 143 EDX analyser (INCA Si(Li) detector), at an operating voltage of an electron microprobe of 20 kV 144 and a beam current of 0.5 nA. The beam was rasterized on an area $16 \times 16 \mu m$ to minimise unstable 145 sample damage. Attempts to use WDS mode, with higher beam current, were unsuccessful because 146 of the instability of the mineral containing water. The contents of F, Na, Mg, Al, Si, S, K, Ca, Ti, 147 Zn and As are below their detection limits. H₂O was analysed by gas chromatography of products 148 of ignition at 1200°C. CO₂ was not analysed because of the absence of absorption bands 149 corresponding to vibrations of C-O bonds in the IR spectrum. Analytical data are given in Table 2. 150 The empirical formula based on 11 O atoms is $H_{5,78}Mn_{1,70}Fe^{2+1}25Fe^{3+0.08}P_{2,015}O_{11}$. The simplified formula is Fe²⁺Mn²⁺₂(PO₄)₂·3H₂O, which requires MnO 34.63, FeO 17.54, P₂O₅ 34.64, 151 152 H₂O 13.19, total 100.00 wt%. 153 The Gladstone-Dale compatibility between chemical data, refractive indices and density is (1-154 $K_{\rm P}/K_{\rm c}$) = 0.013 (superior). 155 **X-RAY DIFFRACTION DATA AND CRYSTAL STRUCTURE** 156 157 158 The X-ray powder-diffraction data (Table 3) were collected with a STOE IPDS II single-159 crystal diffractometer equipped with an Image Plate detector using the Gandolfi method by employing the MoKa radiation and a sample-detector distance of 200 mm. Orthorhombic unit-cell 160

161 parameters refined from the powder data are as follows: a = 9.491(7), b = 10.121(7), c = 8.721(9)

162 Å, V = 838(2) Å³. Measured interplanar spacings and intensities of observed reflections are in a 163 good agreement with corresponding values calculated from the crystal structure.

Single-crystal X-ray diffraction measurements were made with a single-crystal Xcalibur S diffractometer equipped with a CCD detector. Absorption correction was applied according to the shape of the crystal. The structure was solved by direct methods and refined anisotropically using SHELXS-97 and SHELXL-97 (Sheldrick, 2008), respectively, to R = 0.0176 for 1662 unique reflections with $I > 2\sigma(I)$ in space group *Pbna*. All hydrogen atoms of two water molecules were found and refined.

170 The structure model is in a good agreement with those of the other reddingite-group minerals. 171 A small amount of Mn was added to the Fe-dominant M(1) site, and a small amount of Fe was added 172 to the Mn-dominant M(2) site according to the results of the refinement of electronic composition of 173 the site, chemical and Mössbauer data. The occupancy coefficients of the cations in M(1) and M(2)174 sites were fixed in the final stages of the refinement. The crystallographic characteristics of the 175 mineral, the details of the X-ray diffraction study and the structure-refinement parameters are given 176 in Table 4, atom coordinates and equivalent thermal displacement parameters – in Table 5, 177 anisotropic displacement parameters – in Table 6 and selected interatomic distances – in Table 7.

Like other representatives of the phosphoferrite structure type, correianevesite contains (100) octahedral layers (Figure 6) formed by the parallel to the *c* axis chains of edge-sharing dimers of $M(2)O_4(H_2O)_2$ polyhedra connected *via* common edges with isolated from each other $M(1)O_4(H_2O)_2$ octahedra. Adjacent chains are connected with each other by the corners of M(2)octahedra. The neighbouring octahedral layers are connected by PO₄ tetrahedra (Figure 7).

- 183
- 184

DISCUSSION AND IMPLICATIONS

185

186 The comparative crystal chemistry of different minerals with the phosphoferrite structure type 187 has been discussed by Moore et al. (1980). All these minerals are orthorhombic phosphates with the

188	general formula $M(1)M(2)_2(PO_4)_2(OH,H_2O)_3$ where octahedral sites $M(1)$ and $M(2)$ can contain
189	Mn^{2+} , Fe^{2+} , Mg and Fe^{3+} (Table 8) with minor admixtures of Ca and Al and some other (trace)
190	components. Mn^{2+} preferably occupies the larger octahedron $M(2)$, but in reddingite both $M(1)$ and
191	$M(2)$ sites are dominantly occupied by Mn^{2+} .
192	Based on interatomic distances and observed trends in site populations, Moore et al. (1980)
193	assumed the existence of a hypothetical reddingite-group mineral with the end-member formula
194	$\text{Fe}^{2+}\text{Mn}^{2+}_{2}(\text{PO}_{4})_{2}\cdot 3\text{H}_{2}\text{O}$, in which Fe^{2+} occupies the $M(1)$ site and Mn^{2+} occupies the $M(2)$ site. The
195	discovery of correianevesite confirmed this assumption.
196	Taking into account Mössbauer spectroscopy data (Table 1), the results of the crystal structure
197	refinement (Tables 5, 6), compositional data (Table 2) and general trends in the cation distribution
198	between the sites $M(1)$ and $M(2)$ (Moore et al. 1980), the crystal-chemical formula of
199	correianevesite can be written as $(Fe^{2+}_{0.72}Mn^{2+}_{0.20}Fe^{3+}_{0.08})(Mn_{1.48}Fe^{2+}_{0.52})(PO_4)_2 (H_2O,OH)_3$. This
200	formula was derived assuming that the major part of Fe^{2+} (corresponding to $Fe1^{2+}$, by Mössbauer
201	data) occupies the smaller octahedron $M(1)$. Note that, according to the assumption that Fe1 ²⁺
202	corresponds to bivalent iron in the $M(2)$ site, the crystal chemical formula would be
203	$(Fe^{2+}_{0.52}Mn^{2+}_{0.41}Fe^{3+}_{0.08})(Mn^{2+}_{1.29}Fe^{2+}_{0.73})(PO_4)_2(H_2O,OH)_3$ and also would correspond to a mineral
204	with the end-member formula $Fe^{2+}Mn^{2+}_{2}(PO_4)_2 \cdot 3H_2O$. However, the latter variant of cation
205	distribution is hardly probable taking into account cation-anion distances.
206	Comparative data for correianevesite and related minerals are given in Table 9. It is important
207	to note that landesite and correianevesite cannot be distinguished by electron microprobe analysis,
208	but landesite is characterized by much higher values of refractive indexes as a result of high Fe^{3+}
209	content. Correianevesite and Fe-bearing reddingite can be distinguished only by means of
210	Mössbauer spectroscopy.
211	The presence of acidic OH groups detected by IR spectroscopy data is due to the asymmetric
212	polarization of H_2O molecules that form strong hydrogen bond $Ow(2) - H(2) \cdots O(1)$ (with the distance
213	Ow(2)···O(1) of 2.539 Å) and act as proton donors. This phenomenon is very typical for nominally

214	neutral sulphates, phosphates and arsenates and results in the dynamic acid-base equilibrium AO_4^{3-} +
215	$H_2O \leftrightarrow HAO_4^{2-} + OH^-$ (A = P, As or S) that is usually shifted towards left side (see <i>e. g.</i> Chukanov
216	et al. 2010, 2012; Nestola et al. 2012). Note that the presence of acid phosphate groups in
217	correianevesite (considered as reddingite before Mössbauer data have been obtained) was detected also
218	by means of Raman spectroscopy (Frost et al. 2012). In particular, a strong band at 1007 cm ⁻¹ was
219	assigned to symmetric stretching vibrations of $HOPO_3^{2^2}$.
220	
221	ACKNOWLEDGEMENTS
222	
223	We acknowledge Russian Foundation for Basic Researches (grant no. 11-05-00407-a) for
224	financial support, and all members of the IMA Commission on New Minerals, Nomenclature and
225	Classification for their helpful suggestions and comments. Special thanks also to the Brazilian
226	agencies Fapemig and CNPq (CORGEMA II and grant No. 306287/2012-9). We also thank Beda
227	Hofmann, Frederic Hatert and Fabrizio Nestola for useful comments.
228	

12/4

229	REFERENCES CITED
230	
231	Chaves, M.L.S.C., Scholz, R., Atencio, D. and Karfunkel, J. (2005) Assembléias e paragêneses
232	minerais singulares nos pegmatitos da região de Galiléia (Minas Gerais). Geociências, 24, 143
233	– 161 (in Portuguese).
234	Chukanov, N.V., Mukhanova, A.A., Möckel, S., Belakovskiy, D.I., and Levitskaya, L.A. (2010)
235	Nickeltalmessite, Ca ₂ Ni(AsO ₄) ₂ ·2H ₂ O, a new mineral species of the fairfieldite group, Bou
236	Azzer, Morocco. Geology of Ore Deposits, 52, 606-611.
237	Chukanov, N.V., Scholz, R., Aksenov, S.M., Rastsvetaeva, R.K., Pekov, I.V., Belakovskiy, D.I.,
238	Krambrock, K., Paniago, R.M., Righi, A., Martins, R.F., Belotti, F.M., and Bermanec, V.
239	(2012) Metavivianite, $Fe^{2+}Fe^{3+}_{2}(PO_{4})_{2}(OH)_{2}\cdot 6H_{2}O$: new data and formula revision.
240	Mineralogical Magazine 76, 725-741.
241	Feklichev, V.G. (1989) Diagnostic Constants of Minerals, 480 p. Nedra, Moscow (in Russian).
242	Frost, R.L., Weier, M.L., and Lyon, W. (2004) Metavivianite, an intermediate mineral phase
243	between vivianite, and ferro/ferristrunzite – a Raman spectroscopic study. Neues Jahrbuch für
244	Mineralogie, Monatshefte, 5, 228-240.
245	Frost, L.R., Xi Y., Scholz, R., Belotti, F.M., and Lagoeiro, L.E. (2012) Chemistry, Raman and
246	infrared spectroscopic characterization of the phosphate mineral reddingite:
247	(Mn,Fe) ₃ (PO ₄) ₂ (H ₂ O,OH) ₃ , a mineral found in lithium-bearing pegmatite. Physics and
248	Chemistry of Minerals, 39, 803-810.
249	Kleber, W., and Donnay, J.D.H. (1961) The heteromorphism of phosphoferrite-reddingite.
250	Zeitschrift für Kristallografie, 115, 161-168.
251	Moore, P.B. (1964) Investigations of landesite. American Mineralogist, 49, 1122-1125.
252	Moore, P.B. (1971) The $Fe^{2+}(H_2O)_n(PO_4)_2$ homologous series: crystal-chemical relationships and
253	oxidized equivalents. American Mineralogist, 56, 1-17.

- 254 Moore, P.B., and Araki, T. (1976) A mixed-valence solid-solution series: crystal structures of
- 255 phosphoferrite, Fe^{II}₃(H₂O)₃[PO₄]₂, and kryzhanovskite, Fe^{III}₃(OH)₃[PO₄]₂. Inorganic Chemistry,
- 15, 316-321.
- 257 Moore, P.B., Araki, T., and Kampf, A.R. (1980) Nomenclature of the phosphoferrite structure type:
- refinements of landsite and kryzhanovskite. Mineralogical Magazine, 43, 789-795.
- 259 Nestola, F., Cámara, F., Chukanov, N.V., Atencio, D., Coutinho, J.M.V., Contreira, R.R. Filho &
- 260 Färber, G. (2012) Witzkeite: a new rare nitrate-sulphate mineral from a guano deposit at Punta
- de Lobos, Chile. American Mineralogist, 97, 1783-1787.
- 262 Pedrosa-Soares, A.C., Campos, C.M. De, Noce, C.M., Silva, L.C. Da, Novo, T.A., Roncato, J.,
- 263 Medeiros, S.M., Castañeda, C., Queiroga, G.N., Dantas, E., Dussin, I.A. & Alkmim, F. (2011)
- 264 Late Neoproterozoic-Cambrian granitic magmatism in Araçuaí orogen (Brazil), the Eastern
- 265 Brazilian Pegmatite Province and related mineral resources. Geological Society Special
- 266 Publication, 350, 25-51.
- 267 Sheldrick, G.M. (2008) A short history of SHELX. Acta Cryst. A, 64, 112-122.
- 268 Tennyson, C. (1954) Phosphoferrit und Reddingit von Hagendorf. Neues Jahrbuch für Mineralogie,
- 269 Abhandlungen, 87, 185-217.
- 270

271	FIGURE CAPTIONS
272	Figure 1. Bipyramidal crystals of correianevesite on hureaulite. Field of view: 6 mm. Photo:
273	Carlos Menezes.
274	Figure 2. TG curve of correianevesite obtained in nitrogen atmosphere at a heating rate of
275	10°C min ⁻¹ .
276	Figure 3. DTA curve of correianevesite obtained in nitrogen atmosphere at a heating rate of
277	10°C min ⁻¹ .
278	Figure 4. IR spectrum of powdered correianevesite in KBr pellet.
279	Figure 5. Mössbauer spectrum of correianevesite.
280	Figure 6. Octahedral layer in the structure of correianevesite. $M1O_6$ octahedra are dark, $M2O_6$
281	octahedra are light, H atoms are shown with small circles. Unit cell is outlined.
282	Figure 7. The crystal structure of correianevesite: <i>ab</i> projection. Unit cell is outlined.
283	

285 Table 1. Mössbauer data for correianevesite.

Cation	Isomer shift,	Quadrupole splitting,	Line width,	Area, %
	$mm s^{-1}$	mm s ⁻¹	mm s ⁻¹	
Fe1 ²⁺	1.23(4)	1.63(1)	0.27(2)	39(1)
$\mathrm{Fe2}^{2+}$	1.23(4)	2.40(9)	0.29(1)	55(3)
Fe ³⁺	0.35(1)	1.20(3)	0.49(5)	6.0(3)

287

286

288

289	Table 2.	Chemical	composition	of c	orreianeves	ite.
	10010	C	• • • • • • • • • • • • • • • • • • • •	· · ·		

290

Constituent	Content, wt%	Range	Standard deviation	Prob291 standard
MnO	29.21	27.87-30.14	0.78	$MnTiO_3$
FeO ^a	21.74	22 00 24 45 ^b	0.77 ^b	295 Ea (2 04
Fe ₂ O ₃ ^a	1.54	22.09-24.45	0.77	re ₂ Q394
P_2O_5	34.59	34.19-35.02	0.27	LaPO ₄
H ₂ O	12.6±0.1			290
Total	99.68			297
	•		*	298

299 ^aTotal iron content analysed using a microprobe and initially calculated as FeO was 23.13 wt%; it

300 was apportioned between FeO and Fe₂O₃ (as well as between two sites) based on Mössbauer data

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

301 (see Authors' Remarks).

^bFor total iron calculated as FeO. 302

303

304 305

12/4

Table 3. X-ray powder diffraction data for correianevesite.

306

$I_{\rm obs},\%$	$d_{\rm obs}$, Å	$I_{\text{calc}}, \%^*$	$d_{\text{calc}}, \text{Å}^{**}$	h k l
3	6.45	2	6.415	101
19	5.44	20	5.417	111
43	5.08	45	5.057	020
21	4.761	23	4.744	200
28	4.314	4, 27	4.353, 4.295	002, 210
8	3.985	8	3.972	121
4	3.886	2	3.852	211
13	3.471	17	3.460	220
100	3.220	100, 38	3.216, 3.208	221, 202
25	3.125	28	3.116	122
10	2.985	5, 8	2.985, 2.973	131, 301
35	2.756	15, 38	2.775, 2.748	103, 230
25	2.686	12, 29	2.709, 2.676	222, 113
5	2.567	5, 1	2.566, 2.563	132, 321
15	2.484	10, 20	2.517, 2.481	023, 312
22	2.436	29	2.433	123
8	2.355	13	2.353	141
23	2.233	16, 19	2.232, 2.230	411, 331
12	2.184	12, 4	2.187, 2.177	042,004
13	2.136	3, 16	2.138, 2.131	303, 142
3	2.087	2, 1	2.092, 2.085	313, 421
6	2.040	1,9	2.040, 2.038	412, 332
14	1.973	2, 18	1.978, 1.970	204, 323
17	1.933	1, 11	1.929, 1.926	151, 341
4	1.855	7	1.854	501
5	1.809	5	1.806	333
2	1.767	4	1.766	314
3	1.740	6	1.741	521
8	1.712	6, 4	1.714, 1.713	512, 105
9	1.649	7, 6, 5	1.650, 1.646, 1.645	044, 025, 522
15	1.630	14	1.630	161
9	1.588	2, 2, 13	1.589, 1.588, 1.587	260, 503, 352
13	1.561	3, 2, 15	1.563, 1.562, 1.558	261, 610, 244
10	1.520	3, 16	1.525, 1.516	305, 451
2	1.491	2	1.495	541
1	1.483	3	1.487	621
2	1.467	1,4	1.471, 1.466	612, 361
4	1.452	3,7	1.451, 1.448	006, 434
4	1.423	1,6	1.426, 1.420	622, 116
4	1.419	1,1	1.418, 1.416	145, 514
6	1.381	4, 4	1.382, 1.380	270, 126
5	1.340	1, 1, 7	1.342, 1.341, 1.339	354, 640, 701
2	1.320	1, 2	1.319, 1.317	552, 272
2	1.311	2	1.310	462
1	1.299	2	1.295	721
3	1.283	3, 2	1.283, 1.282	264, 173
2	1.273	2, 1	1.279, 1.271	604, 255

1	1.262	1	1.264	080
2	1.242	3	1.240	624
2	1.232	1	1.228	364
3	1.210	1, 2	1.211, 1.210	562, 281
3	1.206	4	1.204	182
2	1.177	2	1.176	282
3	1.170	3	1.170	156
3	1.155	2, 2	1.153, 1.153	660, 455
4	1.147	2, 2	1.151, 1.145	183, 653
1	1.118	1	1.116	822
2	1.107	1, 4	1.108, 1.105	147, 743
1 1 1		1	1 (1	. 10/

*For the calculated X-ray powder pattern only reflections with $I_{calc} \ge 1\%$ are given. **Calculated for unit cell parameters obtained from single-crystal data. 308

309

310

311

312 Table 4. Crystal parameters, data collection information and single-crystal structure refinement

313 details for correianevesite

Formula	$(Fe^{2+}_{0.72}Mn^{2+}_{0.20}Fe^{3+}_{0.08})(Mn_{1.48}Fe^{2+}_{0.52})(PO_4)_2[(H_2O)_{2.92}(OH)_{0.08}]$
Formula weight	410.01
Crystal system, space group	Orthorhombic, <i>Pbna</i> (no. 60)
Ζ	4
<i>a</i> , <i>b</i> , <i>c</i> (Å)	9.48871(16), 10.11494(17), 8.70624(16)
$V(\text{\AA}^3)$	835.61(3)
<i>F</i> (000)	801
Density ρ_{calc} (g·cm ⁻³)	3.259(8)
Absorption coefficient μ (mm ⁻¹)	5.199
Crystal dimensions (mm)	$0.19 \times 0.32 \times 0.38$
Diffractometer	Xcalibur S CCD
λ (Mo- $K\alpha$) (Å), T (K)	0.71073, 293
Collection mode	(full) sphere
θ range for data collection(°)	3.18 - 34.94
h, k, l ranges	$-15 \le h \le 15, -16 \le k \le 16, -13 \le l \le 13$
Reflections collected	20430
Unique reflections	1781 ($R_{\rm int} = 0.0341$)
Reflections with $I > 2\sigma(I)$	1662

Structure solution	direct methods
Refinement method	full-matrix least-squares on F^2
Weighting parameters a, b	0.0174, 0.3503
Extinction coefficient	0.0047(4)
No. of refined parameters	90
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0176, w $R2 = 0.0417$
R indices (all data)	R1 = 0.0204, w $R2 = 0.0430$
GoF	1.134
$\Delta \rho_{\min}, \ \Delta \rho_{\max} \ (e/Å^3)$	-0.31, 0.42

Table 5. Site coordinates and thermal displacement parameters $(Å^2)$ of atoms for correianevesite. 317

318

Atom	\mathbf{x}/\mathbf{a}	v/h	z/c	Um
$M(1) = \text{Fe}_{0.80}\text{Mn}_{0.20}^{a}$	0.0	0.0	0.0	0.00978(6)
$M(2) = Mn_{0.74}Fe_{0.26}^{a}$	0.065331(19)	0.097199(18)	0.63633(2)	0.01010(5)
Р	0.20457(3)	0.10607(3)	0.29198(3)	0.00713(6)
O(1)	0.21646(9)	0.25363(8)	0.33350(11)	0.01207(15)
O(2)	0.10430(9)	0.03779(9)	0.40585(10)	0.01146(15)
O(3)	0.35133(9)	0.04233(9)	0.30005(10)	0.01229(16)
O(4)	0.14828(10)	0.09733(9)	0.12677(10)	0.01383(17)
Ow(1)	-0.09290(17)	0.25	0.5	0.0198(3)
Н	-0.139(3)	0.191(3)	0.454(3)	$0.055(8)^{b}$
Ow(2)	-0.02810(10)	0.32654(9)	0.14686(10)	0.01156(15)
H(1)	0.018(3)	0.252(3)	0.134(3)	$0.052(8)^{b}$
H(2)	-0.113(3)	0.287(3)	0.159(3)	$0.054(7)^{b}$

^a Fixed during the refinement 319 ^b U_{iso}

320

322 Table 6. Anisotropic displacement parameters (in Å²) for correianevesite

-						
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
M(1)	0.01124(11)	0.00880(11)	0.00930(10)	-0.00005(8)	-0.00259(8)	-0.00117(8)
<i>M</i> (2)	0.01149(9)	0.00988(9)	0.00894(8)	-0.00086(5)	0.00013(6)	-0.00265(6)
Р	0.00643(12)	0.00743(12)	0.00752(12)	-0.00028(9)	0.00035(9)	-0.00037(9)
O(1)	0.0116(4)	0.0077(3)	0.0169(4)	-0.0014(3)	0.0000(3)	0.0000(3)
O(2)	0.0109(3)	0.0133(4)	0.0103(3)	0.0003(3)	0.0024(3)	-0.0036(3)
O(3)	0.0088(3)	0.0125(4)	0.0155(4)	-0.0015(3)	0.0004(3)	0.0027(3)
O(4)	0.0150(4)	0.0183(4)	0.0082(3)	-0.0002(3)	-0.0019(3)	-0.0040(3)
Ow(1)	0.0208(7)	0.0171(6)	0.0216(7)	-0.0045(5)	0.000	0.000
Ow(2)	0.0114(4)	0.0093(4)	0.0140(4)	-0.0003(3)	-0.0001(3)	-0.0012(3)

324

325

326 Table 7. Selected interatomic distances (Å) in correianevesite.

327

M(1) - O(4) = 2.041	$13(9) \times 2$	M(2) - O(1)	2.0981(9)		
- Ow(2) 2.187	- O(2)	2.1270(9)			
$-O(3)^{2.28}$	$12(9) \times 2$	-O(2)	2.1424(9)		
< M(1) - O > 2.170		-O(3) 2.1562(9)			
		-Ow(2)) 2.2235(9)		
P = O(3) + 5362(9)		- Ow(1) 2.4600(10)		
-O(4) = 15362(9)		< <i>M</i> (2) – O>	2.201		
-O(2) + 5379(9)					
-O(1) 1.5399(9)					
<p-o> 1.5377</p-o>					
Hydrogen bonds ^a					
Ow(1) – H	0.84(2)	Ow(1) – H…C	D(4)	3.104(4)	
Ow(2) - H(1)	0.88(3)	Ow(2) - H(1))···O(4)	2.865(5)	
$Ow(2) - H(2)^{b}$	0.90(3)	Ow(2) - H(2))····O(1)	2.539(5)	

328 ^a O-H distances were refined without restraints.

^b Possibly bifurcated H-bond H(2)···O(3) with Ow(2)···O(3) distance of 3.128 Å.

330

331 332

Table 8. Dominant components in cationic sites of reddingite-group minerals.

Mineral	M(1)	M(2)
Reddingite	Mn ²⁺	Mn ²⁺
Phosphoferrite	Fe ²⁺	Fe ²⁺
Landesite	Fe ³⁺	Mn ²⁺
Kryzhanovskite	Fe ³⁺	Fe ³⁺
Garyanselite	Mg	Fe ³⁺
Correianevesite	Fe ²⁺	Mn ²⁺

333

5 Table 9. Comparative data for correianevesite and related reddingite-group minerals.

	Correianevesite	Reddingite	Phosphoferrite	Landesite
Formula	$Fe^{2+}Mn^{2+}_{2}(PO_{4})_{2}$	$Mn^{2+}Mn^{2+}_{2}(PO_{4})_{2}$	$Fe^{2+}Fe^{2+}_{2}(PO_{4})_{2}$	$Fe^{3+}Mn^{2+}_{2}(PO_{4})_{2}$
	·3H ₂ O	$\cdot 3H_2O$	$\cdot 3H_2O$	$(OH) \cdot 2H_2O$
Space group	Pbna	Pbna	Pbna	Pbna
<i>a</i> , Å	9.4887	9.489-9.49	9.460	9.458
b, Å	10.1149	10.08-10.126	10.024	10.185
<i>c</i> , Å	8.7062	8.70-8.710	8.670	8.543
Z	4	4	4	4
Strong lines	5.08 (43)	4.28 (70)	4.25 (70)	5.096 (54)
of the X-ray	4.761 (21)	3.20 (100)	3.18 (100)	4.284 (27)
powder-	4.314 (28)	2.737 (80)	2.724 (80)	3.207 (100)
diffraction	3.220 (100)	2.657 (70)	2.639 (70)	3.163 (35)
pattern:	3.125 (25)	2.422 (70)	2.408 (70)	3.090 (23)
d, Å (I, %)	2.756 (35)	2.234 (70)	2.222 (70)	2.758 (29)
	2.686 (25)	1.625 (70)	1.615 (70)	2.630 (24)
	2.436 (22)		· · ·	
	2.233 (23)			
Optical data:				
α	1.661(5)	1.643 - 1.658	1.663 - 1.672	1.720
β	1.673(5)	1.648 - 1.664	1.674 - 1.680	1.728
γ	1.703(5)	1.674 - 1.685	1.699 - 1.700	1.735
Optical sign.				
2V, °	(+) 70(10)	(+) 41 - 80	(+) 66 – 70	(-) large
Density,	3.25 (meas)	3.10 - 3.24	3.10 - 3.29	3.026 - 3.03
g cm ⁻³	3.275 (calc)	(meas)	(meas)	(meas)
		3.26 (calc)	3.32 (calc)	3.210 (calc)
Mohs	31/2	3-31/2	3-41/2	3-31/2
hardness				
References	This work	Tennyson (1954);	Tennyson (1954);	Moore (1964);
		Kleber and	Kleber and	Moore et al.
		Donnay (1961);	Donnay (1961);	(1980); Feklichev
		Feklichev (1989);	Moore and Araki	(1989)
		Frost et al. (2012)	(1976); Moore	
			(1971); Moore et	
			al. (1980);	
			Feklichev (1989)	

339 340

341 Figure 1. Bipyramidal crystals of correianevesite on hureaulite. Field of view: 6 mm. Photo:

342 Carlos Menezes.

343 344

Figure 2. TG curve of correianevesite obtained in nitrogen atmosphere at a heating rate of
10°C min⁻¹.

347

12/4

Figure 3. DTA curve of correianevesite obtained in nitrogen atmosphere at a heating rate of 10° C min⁻¹.

Figure 4. IR spectrum of powdered correianevesite in KBr pellet.

12/4

355356 Figure 5. Mössbauer spectrum of correianevesite.

357

Figure 6. Octahedral layer in the structure of correianevesite. $M1O_6$ octahedra are dark, $M2O_6$ octahedra are light, H atoms are shown with small circles. Unit cell is outlined.

362 Figure 7. The crystal structure of correianevesite: *ab* projection. Unit cell is outlined.