1 **REVISION 1** 2 3 4 Césarferreiraite, Fe²⁺Fe³⁺₂(AsO₄)₂(OH)₂·8H₂O, from Eduardo mine, Conselheiro Pena, 5 6 Minas Gerais, Brazil: second arsenate in the laueite mineral group 7 8 ¹Ricardo Scholz, ²Nikita V. Chukanov, ³Luiz A.D. Menezes Filho, ⁴Daniel Atencio, 9 ¹Leonardo Lagoeiro, ⁵Fernanda M. Belotti, ³Mário L.S.C. Chaves, ³Antônio W. Romano, 10 ⁶Paulo R. Brandão, ⁷Dmitriy I. Belakovskiy and ⁸Igor Pekov 11 12 13 ¹Universidade Federal de Ouro Preto (UFOP), Escola de Minas, Departamento de Geologia, Campus Morro do Cruzeiro, 35400-000, Ouro Preto, Minas Gerais, Brazil; e-mail: 14 15 r scholz br@yahoo.com ²Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 16 17 Moscow region, 142432 Russia 18 ³Instituto de Geociências, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 19 31270-901, Belo Horizonte, Minas Gerais, Brazil ⁴Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080, São 20 21 Paulo, SP, Brazil ⁵Universidade Federal de Itajubá (UNIFEI), Campus Itabira, Itabira, Minas Gerais, Brazil 22 ⁶Escola de Engenharia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 23 31270-901, Belo Horizonte, Minas Gerais, Brazil 24 ⁷Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 8-25 26 2, 117071 Moscow, Russia ⁸Faculty of Geology, Moscow State University, Vorobievy Gory, 119899 Moscow, Russia 27 28

ABSTRACT

29

30

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Césarferreiraite, Fe²⁺Fe³⁺2(AsO₄)2(OH)2·8H2O, is a new laueite-group mineral (IMA 2012-099) of triclinic symmetry, from Eduardo pegmatite mine, Conselheiro Pena municipality, Minas Gerais, Brazil. Intimately associated minerals are pharmacosiderite, scorodite and earlier arsenopyrite, and probably césarferreiraite replaces the latter. It occurs as fibrous to tabular aggregates up to 2 mm. Single crystals, up to 10 µm long with a thickness of about 1-2 µm, are elongated along [001] and flattened on (100). The fibers have almost rectangular cross-section apparently bound by the {100} and {010} pinacoid forms. Colour 38 and streak are pale to greenish yellow. Luster is vitreous; individual crystals are transparent and masses are translucent. Cleavage is distinct, presumably on {010} and {100}. Calculated density is 2.934 g cm⁻³. The mineral is biaxial (+), n (min) = 1.747(3), n (max) = 1.754(3) (589 nm). IR spectrum of césarferreiraite is unique and can be used for the identification of the mineral. Chemical composition (n = 4, WDS, calculated for the condition Fe^{2+} : $Fe^{3+} = 1:2$, H₂O for the ideal structural formula, wt.%) is: FeO 11.50, Fe₂O₃ 25.56, CaO 15.41, As₂O₅ 33.51, H₂O 26.01, total 100.12. The empirical formula (based on 18 O apfu) is $Fe^{2+}_{0.98}Fe^{3+}_{1.96}[(AsO_4)_{1.79}(PO_4)_{0.31}](OH)_{1.52}\cdot 8.08H_2O$. The strongest eight X-ray powderdiffraction lines [d in Å(I)(hkl)] are: 9.85(95)(010), 6.35(100)(001), 3.671(29)(-121), 3.158(32)(1-30), 2.960(39)(02-2), 2.884(35)(-131), 2.680(29)(-211), and 2.540(23)(-210). Unit-cell parameters refined from powder data indexed by analogy with related laueite-group minerals (space group: $P\bar{1}$) are: a = 5.383(2), b = 10.363(3), c = 6.878(2) Å, $\alpha = 96.42(4)$, $\beta =$ 109.19(3), $\gamma = 102.30(2)^{\circ}$, V = 347.1(2) Å³, and Z = 1. Gladstone-Dale compatibility is -0.020 (excellent). Césarferreiraite is the arsenate analogue of ferrolaueite.

Keywords: césarferreiraite, new mineral, granitic pegmatite, Conselheiro Pena, Minas Gerais,

54 Brazil, laueite group, iron arsenate.

INTRODUCTION

In May 2009, during the preparation of the Eastern Brazilian Pegmatite field trip for the 4^{th} International Symposium on Granitic Pegmatites (PEG 2009), two of the authors (R.S. and A.W.R.) found a centimetric cavity covered by pharmacosiderite and an unusual yellowish fibrous aggregate. The latter turned out a new mineral species belonging to the laueite group, with the formula $Fe^{2+}Fe^{3+}_{2}(AsO_{4})_{2}(OH)_{2}\cdot 8H_{2}O$. It was approved by the IMA CNMNC on March 1, 2013 with the name césarferreiraite (IMA 2012-099).

The name is in honour of Professor César Mendonça Ferreira (b. 1942). Graduating as a Geology Engineer in the School of Mines of Ouro Preto in 1970, Professor Ferreira developed a long career as Professor in Mineralogy and Gemology. He engaged in many studies of the mineralogy of ores and in the field of geometallurgy. During the last 15 years he was responsible for establishing the Gemological Laboratory of the Federal University of Ouro Preto. Professor Ferreira has agreed to the naming of the mineral. The holotype has been deposited in the mineralogical collection of the Museu de Ciência e Técnica, Escola de Minas, Universidade Federal de Ouro Preto, Praça Tiradentes, Centro, 35400-000 – Ouro Preto, Minas Gerais, Brazil, registration number SAA-011.

GEOLOGICAL SETTING AND OCCURRENCE

Césarferreiraite occurs in a 1 cm³ miarolitic cavity in albite in the Eduardo pegmatite mine ("Lavra do Eduardo", in Portuguese), near Boa Vista creek, Conselheiro Pena municipality, Minas Gerais, Brazil (19°4'53.09"S 41°30'34.10"W), in association with pharmacosiderite, scorodite and earlier arsenopyrite and probably replaces the latter.

Césarferreiraite is known in only one block of pegmatite rock, and total amount of available substance did not exceed 2 mg.

The Eduardo mine (erroneously quoted as Boa Vista mine, another famous mine, by Bermanec *et al.*, 2011) is located in the Conselheiro Pena pegmatite district (Figure 1), one of the subdivisions of the Eastern Brazilian Pegmatite province that encompasses an area of about 150,000 km², extending from Bahia to Rio de Janeiro states (Pedrosa *et al.* 2011). Around 90% of the province is situated in the eastern part of the State of Minas Gerais. The Conselheiro Pena pegmatite district covers an area of about 5,000 km², in the middle part of the Doce River basin, approximately 360 km at NE of the city of Belo Horizonte

The Conselheiro Pena pegmatite district is inserted in the central domain of the Araçuaí mobile belt (Almeida 1977), formed during the Brasiliano orogeny (630-490 Ma) by accretion to the eastern margin of the São Francisco craton (Pedrosa Soares *et al.* 2011). In this area, several suites of granitoid rocks are distinguished (*e.g.* Urucum and Palmital of Eocambrian to Paleozoic age, and Galileia of Neoproterozoic age), intruding schists of the Neoproterozoic São Tomé formation (Nalini *et al.* 2008).

The Eduardo pegmatite was mined for industrial feldspar and with minor importance gemstones and samples for the collectors market, mainly phosphates (red variscite, phosphosiderite and cyrilovite) and arsenates (scorodite and pharmacosiderite). At present, the Eduardo pegmatite is mined out. The pegmatite is heterogeneous with well-developed mineralogical and textural zoning. It has symmetric lens shape with the longer axis trending NW-SE and steeply dipping. The minimum extension is around 20 m, and the thickness is 12 m. The pegmatite is hosted by quartz-mica schist with garnet, staurolite and sillimanite of the São Tomé Formation. Tourmalinization is observed in the contact between the pegmatite and the host rock. Hydrothermal and metasomatic fluids were responsible for the albitization and

development of miarolitic cavities, and a complex secondary phosphate assemblage was described by Chaves *et al.* (2005).

The pegmatite crops out on a steep hillside, and, at the uppermost end, pinches out to less than 1 m in width. Other minerals found in the pegmatite, including secondary species, are albite, garnets of the almandine-spessartine solid-solution series, arenopyrite, beryl, bismuth, bütschliite, cryptomelane, cyrilovite, löllingite, fourmarierite, frondelite-rockbridgeite solid-solution series, heterosite, hureaulite, kaolinite, leucophosphite, manganese oxides, metatorbenite, microcline, muscovite, pharmacosiderite, phosphosiderite, quartz, saleeite, schorl, scorodite, spodumene, strengite, triphylite, ushkovite and variscite (Bermanec *et al.* 2011).

APPEARANCE AND PHYSICAL PROPERTIES

Césarferreiraite occurs as fibrous (random and subparallel) to tabular aggregates up to 2 mm. Single crystals are imperfect, flattened and lath-shaped. Crystals, up to 10 µm long with a thickness of about 1-2 µm, are elongated along [001] and flattened on (100). The fibers have a near-rectangular cross-section apparently bound by the {100} and {010} pinacoid forms (Figures 2 and 3). Twinning was not observed. The color and also the streak of césarferreiraite vary from pale yellow to greenish yellow. The luster is vitreous; the individual crystals are transparent and masses are translucent. The mineral is non-fluorescent under short- and long-wave ultraviolet light. Due to the small sizes of crystals and too little pure material, the Mohs hardness was not measured, but the mineral is easily crushed between two glass slides. The tenacity is brittle and the cleavage is distinct, presumably on {010} and {100}. Parting was not observed and fracture is uneven. Density could not be measured because of small crystal sizes. Calculated density based on the empirical formula is 2.934 g cm⁻³.

Acicular crystals of césarferreiraite consist of very thin fibrous differently oriented blocks. Therefore only minimum and maximum refractive indices were measured. The mineral is biaxial (+), n (min) = 1.747(3), n (max) = 1.754(3) (589 nm). The mean n value is about 1.751.

CHEMICAL COMPOSITION

Chemical analyses (n = 4) were carried out using a Jeol JXA8900R electron microprobe housed in the Physics Department of the Federal University of Minas Gerais, Belo Horizonte (WDS mode, 15 kV, 20 nA, ca 5 μ m beam diameter). CO₂ was not analysed because bands for CO₃²⁻ anions are absent in the IR spectrum. Contents of Mg, Al and Mn are below detection limits. Too little material was available for a direct determination of H₂O, but its presence was confirmed by IR spectroscopy. Analytical data are given in Table 1.

The empirical formula (based on 18 O apfu) is, with rounding errors, $Fe^{2+}_{0.98}Fe^{3+}_{1.96}[(AsO_4)_{1.79}(PO_4)_{0.31}](H_{17.68}O_{9.60})$, or $Fe^{2+}_{0.98}Fe^{3+}_{1.96}[(AsO_4)_{1.79}(PO_4)_{0.31}](OH)_{1.52}$. 8.08H₂O. The simplified formula is $Fe^{2+}Fe^{3+}_{2}(AsO_4)_{2}(OH)_{2}\cdot 8H_{2}O$, which requires FeO 11.52, Fe_2O_3 25.61, As_2O_5 36.86, H_2O 26.01, total 100.00 wt.%.

The IR spectrum of césarferreiraite (Figure 4) is unique and can be used for the identification of the mineral. Absorption bands and their assignments (cm⁻¹; s – strong band, w – weak band, sh – shoulder) are 3456s, 3352s, 3200sh (O-H stretching vibrations of H₂O molecules and OH groups), 1647, 1550w (bending vibrations of H₂O molecules), 1096sh, 1050, 1026 (asymmetric stretching vibrations of PO₄³⁻ anions), 860sh, 830s, 759s (asymmetric stretching vibrations of AsO₄³⁻ anions), 592w (bending vibrations of PO₄³⁻ anions), 470s (lattice mode involving Fe³⁺-O and Fe²⁺-O stretching and possibly low-frequency vibrations of anions and water molecules). The presence of two bands in the range 1500-1700 cm⁻¹ indicates the

presence of non-equivalent H_2O molecules in the mineral. Bands characteristic of CO_3^{2-} anions and B-O bonds are absent in the IR spectrum.

Powder X-ray diffraction data were obtained with a D8 Advance DaVinci

CRYSTALLOGRAPHY

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

diffractometer using CuKα radiation (Table 2). Unit-cell parameters refined (CellCalc program, Miura 2003) from powder data indexed by analogy with related laueite-group minerals (triclinic, space group: $P\bar{1}$) are as follows: a = 5.383(2), b = 10.363(3), c = 6.878(2)Å, $\alpha = 96.42(4)$, $\beta = 109.19(3)$, $\gamma = 102.30(2)^{\circ}$, V = 347.1(2) Å³, and Z = 1. The a:b:c ratio calculated from the unit cell parameters is 0.783:1:1.507. Gladstone-Dale compatibility 1 – $(K_p/K_c) = -0.020$ (excellent) using the empirical formula and the average refractive index. Due to the tiny size of single crystals forming friable aggregates, single-crystal diffraction data were not obtained. However, the analogy with laueite-group minerals in stoichiometry and Xray powder diffraction data, as well as the excellent compatibility confirms the correctness of the data obtained. The laueite group (Krivovichev 2004) includes seven phosphates (ferrolaueite, gordonite, laueite, mangangordonite, paravauxite, sigloite, ushkovite) and only two arsenates: maghrebite, recently described by Meisser et al. (2012), and césarferreiraite, here described. Stewartite and pseudolaueite are polymorphs of laueite. Kastningite is isostructural with stewartite and dimorph with mangangordonite. Maghrebite is the arsenate analogue of gordonite, and césarferreiraite is the arsenate analogue of ferrolaueite, recently published (Segeler et al. 2012; Ferraiolo 2012). Arsenate members of the laueite group substantially differ from its phosphate members in the values of unit-cell parameters α and γ . The properties of césarferreiraite are compared with those of maghrebite and ferrolaueite in Table 3.

IMPLICATIONS

176

177

178

179

180

181

182

183

184

185

186

187

188

195

196

The general formula of laueite-group minerals is $M1M2_2(TO_4)_2(OH)_{2\cdot3}\cdot8$ -7H2O where M1 is typically a bivalent cation, $M2 = Fe^{3+}$ or Al, T = P or As. Minerals with $M1 = Fe^{2+}$ can oxidize and transform to their Fe^{3+} -analogues. This phenomenon is typical for ferrous phosphates; in particular, sigloite forms pseudomorphs after paravauxite (compare with the transformations vivianite \rightarrow metavivianite, ferrostrunzite \rightarrow ferristrunzite). Bivalent state of iron in M1 of césarferreiraite is confirmed by excellent Gladstone-Dale compatibility. Césarferreiraite is the second arsenate belonging to the laueite group. The discovery of this additional arsenate suggests that there are several other (at least six) new arsenates to be discovered, taking into account only the cations that have been found in the phosphates described till now (see Table 4).

ACKNOWLEDGMENTS

- We acknowledge the Brazilian agencies FAPESP (process 2011/22407-0), CNPq (grants No.
- 190 402852/2012-5 and No. 306287/2012-9) and FAPEMIG (grant No. CRA APQ-03998-10),
- as well as Russian Foundation for Basic Researches (grant No. 11-05-00407-a) for financial
- support, and all members of the IMA Commission on New Minerals, Nomenclature and
- 193 Classification for their helpful suggestions and comments. The authors are also grateful to Dr.
- 194 Alexander U. Falster, Dr. Beda Hofmann and Dr. Keith Putirka for their contribution.

REFERENCES

- 197 Almeida, F.F.M. (1977) O Craton do São Francisco. Revista Brasileira de Geociências, 7,
- 198 349–364.
- Bermanec, V., Scholz, R., Markovic, F., Zigovecki-Gobac, Z., and Chaves M.L.S.C. (2011)
- Mineralogy of the Boa Vista pegmatite, Galileia, Minas Gerais, Brazil. Contributions to

201 the 5th. International Symposium on Granitic Pegmatites, Mendoza, Argentina, Galliski 202 et al. (eds). Asociación Geológica Argentina, Serie D: Publicación Especial, 14, 33-35. 203 Chaves, M.L.S.C., Scholz, R., Atencio, D., and Karfunkel, J. (2005) Assembléias e 204 paragêneses minerais singulares nos pegmatitos da região de Galiléia (Minas Gerais). 205 Geociências (UNESP), 24, 143–161. Ferraiolo, J.A. (2012) Ferrolaueite - new occurrences. Australian Journal of Mineralogy 206 207 16(2), 77-78. 208 Krivovichev, S.V. (2004) Topological and geometrical isomerism in minerals and inorganic 209 compounds with laueite-type heteropolyhedral sheets. Neues Jahrbuch für Mineralogie -210 Monatshefte, 209-220. Meisser, N., Brugger, J., Krivovichev, S., Armbruster, T., and Eorgesfavreau, G. (2012) 211 212 Description and crystal structure of maghrebite, MgAl₂(AsO₄)₂(OH)₂8H₂O, from 213 Aghbar, Anti-Atlas, Morocco: first arsenate in the laueite mineral group. European 214 Journal of Mineralogy, 24, 717-726. 215 Nalini Jr., H.A., Machado, R., Endo, I., and Bilal, E. (2008). A importância da tectônica 216 transcorrente no alojamento de granitos pré a sincolisionais na região do vale do médio 217 Rio Doce: o exemplo das suítes Galiléia e Urucum. Revista Brasileira de Geociências, 218 38, 748-759. 219 Netto, C., Araujo, M.C., Pinto, C.P. and Drumond, J.B.V. (1998). Projeto Leste – Província 220 Pegmatítica Oriental. Belo Horizonte, CPRM, 223 pp. (in portuguese). 221 Pedrosa-Soares, A.C., Campos, C.M., Noce, C.M., Silva, L.C., Novo, T.A., Roncato, J., 222 Medeiros, S.M., Castañeda, C., Queiroga, G.N., Dantas, E., Dussin, I.A., and Alkmim, 223 F. (2011) Late Neoproterozoic-Cambrian granitic magmatism in Araçuaí orogen 224 (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. 225 Geological Society Special Publication, 350, 25-51.

226	Segeler, C.G., Moore, P.B., Dyar, M.D., Leans, F., and Ferraiolo J.A. (2012) Ferrolaueite, a
227	new mineral from Monmouth County, New Jersey, USA, Australian Journal of
228	Mineralogy, 16(2), 69-76.
229	

Table 1. Analytical data for césarferreiraite.

Constituent	wt%	Range	Standard Deviation	Probe standard
FeO*	11.50	11.29-11.70	0.10	Magnetite
Fe ₂ O ₃ *	25.56	22.58-23.39	0.37	Magnetite
As ₂ O ₅	33.51	30.80-36.96	2.57	FeAs ₂
P ₂ O ₅	3.54	2.36-4.98	0.88	Astimex apatite
H ₂ O**	26.01			
Total	100.12			

^{*}Calculated from the condition Fe^{2+} : $Fe^{3+} = 1:2$, taking into account that for laueite-group minerals M^{2+} : $M^{3+} = 1:2$. **Calculated by stoichiometry for the ideal structural formula.

Table 2. X-ray powder diffraction data for césarferreiraite.

$I_{ m rel}$	$d_{ m obs}$, Å	$d_{ m calc},$ Å	h	k	l
95	9.85	9.927	0	1	0
100	6.35	6.369	0	0	1
21	4.963	4.963	0	2	0
17	4.534	4.542	-1	1	1
13	3.997	3.993	1	1	0
29	3.671	3.671	-1	2	1
32	3.158	3.160	1	-3	0
39	2.960	2.958	0	2	-2
35	2.884	2.884	-1	3	1
29	2.680	2.680	-2	1	1
23	2.540	2.541	-2	1	0
8	2.475	2.474	2	-2	0
8	1.9968	1.9970	0	1	3
8	1.9968	1.9964	2	2	0
5	1.9129	1.9132	-1	5	1
7	1.8798	1.8800	2	3	-1
7	1.6252	1.6249	-2	5	2
7	1.6153	1.6153	-3	1	3

236 Table 3. Comparative data for césarferreiraite and related minerals.

Mineral	Césarferreiraite	Maghrebite	Ferrolaueite
Simplified	$Fe^{2+}Fe^{3+}_{2}(AsO_{4})_{2}$	MgAl ₂ (AsO ₄) ₂	$Fe^{2+}Fe^{3+}_{2}(PO_4)_2$
formula	$(OH)_2 \cdot 8H_2O$	$(OH)_2 \cdot 8H_2O$	$(OH)_2 \cdot 8H_2O$
Symmetry	Triclinic, P1	Triclinic, P1	Triclinic, P1
a, Å	5.383(2)	5.436(2)	5.34(8)
b, Å	10.363(3)	10.500(3)	10.63(8)
c, Å	6.878(2)	7.075(2)	7.21(8)
α, °	96.42(4)	97.701(7)	107.35(8)
β, °	109.19(3)	110.295(5)	111.26(8)
γ, °	102.30(2)	102.021(6)	71.27(8)
Z	1	1	1
Strong lines	9.851 (95)	9.9 (100)	9.87 (90)
of the X-ray	6.346 (100)	6.4 (90)	6.56 (100)
powder-	3.671 (29)	4.90 (80)	4.90 (80)
diffraction	3.158 (32)	3.198 (60)	3.97 (60)
pattern:	2.960 (39)	2.885 (60)	3.92 (50)
d , Å (I_{rel})	2.884 (35)	2.622 (60)	3.28 (100)
	2.680 (29)	4.08 (50)	3.10 (50)
Optical data:	$n_{\min} = 1.747(3)$	$\alpha = 1.562(2)$	$\alpha = 1.610(3)$
	$n_{\text{max}} = 1.754(3)$	$\beta = 1.574(2)$	$\beta = 1.665(3)$

		$\gamma = 1.586(2)$	$\gamma = 1.692(3)$
Optical sign,	+	- 87	- 68(2)
2 <i>V</i> , °			
Density, g cm ⁻³	2.934 (calc.)	2.60 (meas.)	2.23 (meas.)
		2.46 (calc.)	2.22 (calc.)
References	This work	Meisser et al.	Segeler et al.
		(2012)	(2012)

Table 4. Members of the laueite group

<i>M</i> 1	<i>M</i> 2	Phosphates	Arsenates
Mg	Fe ³⁺	ushkovite	
Mn	Fe ³⁺	laueite	
Fe ²⁺	Fe ³⁺	ferrolaueite	césarferreiraite
Fe ³⁺	Fe ³⁺		
Mg	Al	gordonite	maghrebite
Mn	Al	mangangordonite	
Fe ²⁺	Al	paravauxite	
Fe ³⁺	Al	sigloite	

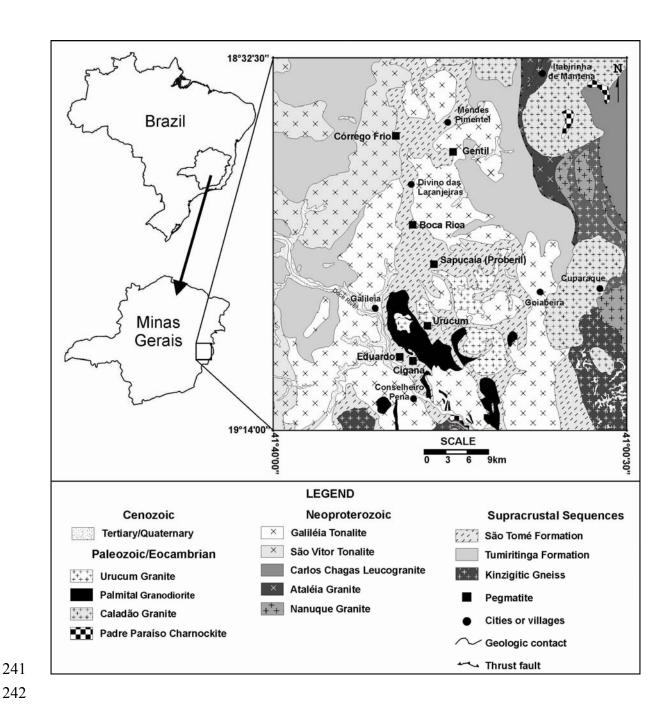


Figure 1 – Geological map of Conselheiro Pena Pegmatite Province and the location of the most important phosphate rich pegmatites (After Netto et al., 1998).

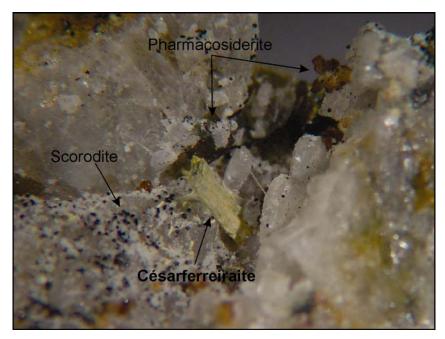


Figure 2. 2 mm césarferreiraite crystal aggregate in association with pharmacosiderite and scorodite. Field of view: 1.0 cm.

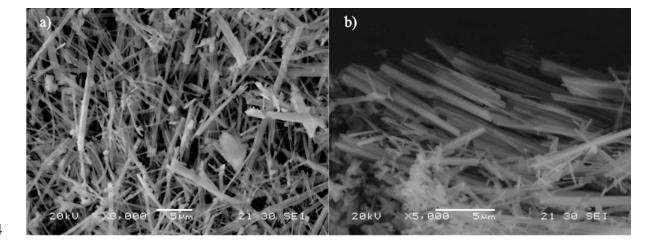
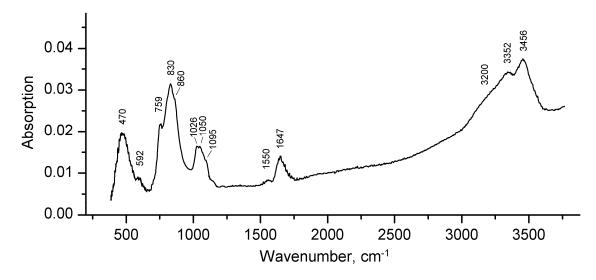
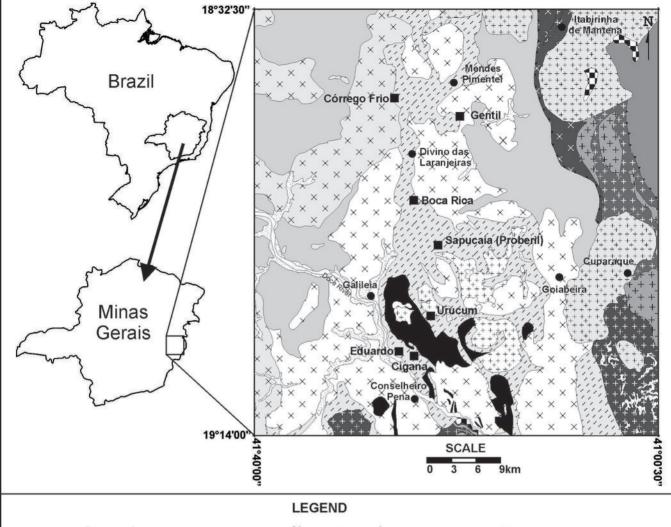
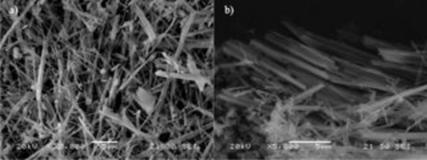
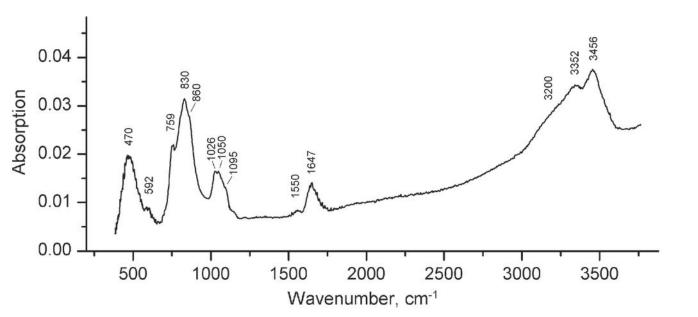


Figure 3. BSE-SEM images of césarferreiraite.


Figure 4. The IR spectrum of césarferreiraite.

Cenozoic Neoproterozoic **Supracrustal Sequences** Tertiary/Quaternary X Galiléia Tonalite São Tomé Formation São Vítor Tonalite Paleozoic/Eocambrian **Tumiritinga Formation** Carlos Chagas Leucogranite **Kinzigitic Gneiss Urucum Granite** Ataléia Granite Palmital Granodiorite **Pegmatite** Nanuque Granite Caladão Granite Cities or villages Padre Paraíso Charnockite Geologic contact Thrust fault

