| 1  | Revision II                                                                                                                                  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Mathesiusite, $K_5(UO_2)_4(SO_4)_4(VO_5)(H_2O)_4$ , a new uranyl vanadate-sulfate from                                                       |
| 3  | Jáchymov, Czech Republic                                                                                                                     |
| 4  |                                                                                                                                              |
| 5  | Jakub Plášil, <sup>1*</sup> František Veselovský, <sup>2</sup> Jan Hloušek, <sup>3</sup> Radek Škoda, <sup>4</sup> Milan Novák, <sup>4</sup> |
| 6  | Jiří Sejkora, <sup>5</sup> Jiří Čejka, <sup>5</sup> Pavel Škácha, <sup>6</sup> and Anatoly V. Kasatkin <sup>7</sup>                          |
| 7  |                                                                                                                                              |
| 8  | <sup>1</sup> Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ–182 21, Praha 8, Czech Republic,                                           |
| 9  | *email: plasil@fzu.cz                                                                                                                        |
| 10 | <sup>2</sup> Czech Geological Survey, Geologická 6, CZ–152 00, Praha 5, Czech Republic                                                       |
| 11 | <sup>3</sup> U Roháčových kasáren 24, CZ–100 00, Praha 10, Czech Republic                                                                    |
| 12 | <sup>4</sup> Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2,                                         |
| 13 | CZ-611 37, Brno, Czech Republic                                                                                                              |
| 14 | <sup>5</sup> Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ–193 00,                                             |
| 15 | Praha 9, Czech Republic                                                                                                                      |
| 16 | <sup>6</sup> Mining Museum Příbram, nám. Hynka Kličky 293, 261 01, Příbram VI, Czech Republic                                                |
| 17 | <sup>7</sup> V/O "Almazjuvelirexport", Ostozhenka Street, 22, block 1, 119034 Moscow, Russia                                                 |
| 18 |                                                                                                                                              |

### 19 Abstract:

20 Mathesiusite,  $K_5(UO_2)_4(SO_4)_4(VO_5)(H_2O)_4$ , a new uranyl vanadate-sulfate mineral from 21 Jáchymov, Western Bohemia, Czech Republic occurs on fractures of gangue associated with 22 adolfpateraite, schoepite, čejkaite, zippeite, gypsum and a new unnamed K-UO<sub>2</sub>-SO<sub>4</sub> mineral. 23 It is a secondary mineral formed during post-mining processes. Mathesiusite is tetragonal, space group P4/n, with the unit-cell dimensions a = 14.9704(10), c = 6.8170(5) Å, V =24 1527.78(18) Å<sup>3</sup>, and Z = 2. Acicular aggregates of mathesiusite consist of prismatic crystals 25 26 up to  $\sim 200 \,\mu\text{m}$  long and several micrometers thick. It is yellowish green with a greenish white 27 streak and vitreous luster. The Mohs hardness is  $\sim 2$ . Mathesiusite is brittle with an uneven 28 fracture and perfect cleavage on {110} and weaker on {001}. The calculated density based on the empirical formula is  $4.02 \text{ g/cm}^3$ . Mathesiusite is colorless in fragments, uniaxial (-), with 29 30  $\omega = 1.634(3)$  and  $\varepsilon = 1.597(3)$ . Electron microprobe analyses (average of 7) provided: K<sub>2</sub>O 31 12.42, SO<sub>3</sub> 18.04, V<sub>2</sub>O<sub>5</sub> 4.30, UO<sub>3</sub> 61.46, H<sub>2</sub>O 3.90 (structure), total 100.12 (all in wt%). The 32 empirical formula (based on 33 O atoms pfu) is: K<sub>4.87</sub>(U<sub>0.99</sub>O<sub>2</sub>)<sub>4</sub>(S<sub>1.04</sub>O<sub>4</sub>)<sub>4</sub>(V<sub>0.87</sub>O<sub>5</sub>)(H<sub>2</sub>O)<sub>4</sub>. The 33 eight strongest powder X-ray diffraction lines are  $[d_{obs} \text{ in } \text{\AA} (hkl) \text{ I}_{rel}]$ : 10.64 (110) 76, 7.486 34 (200) 9, 6.856 (001) 100, 6.237 (101) 85, 4.742 (310) 37, 3.749 (400) 27, 3.296 (401) 9, and 35 2.9409 (510) 17. The crystal structure of mathesiusite was solved from single-crystal X-ray 36 diffraction data and refined to  $R_1 = 0.0520$  for 795 reflections with  $I > 3\sigma(I)$ . It contains topologically unique heteropolyhedral sheets based on  $[(UO_2)_4(SO_4)_4(VO_5)]^{5-}$  clusters. These 37 38 clusters arise from linkages between corner-sharing quartets of uranyl pentagonal bipyramids, which define a square-shaped void at the center that is occupied by  $V^{5+}$  cations. Each pair of 39 40 uranyl pentagonal bipyramids shares two vertices of SO<sub>4</sub> tetrahedra. Each SO<sub>4</sub> shares a third vertex with another cluster to form the sheets. The K<sup>+</sup> cations are located between the sheets, 41 together with a single  $H_2O$  group. The corrugated sheets are stacked perpendicular to c. These 42

- 43 heteropolyhedral sheets are similar to those in the structures of synthetic uranyl chromates.
- 44 Raman spectral data are presented confirming the presence of  $UO_2^{2+}$ , SO<sub>4</sub> and molecular H<sub>2</sub>O.
- 45
- 46 **Keywords:** Mathesiusite, new mineral, uranyl sulfate, vanadate, crystal structure, Raman
- 47 spectroscopy, oxidation zone, Jáchymov
- 48
- 49 Running title: Mathesiusite, a new uranyl mineral from Jáchymov
- 50

51

#### **INTRODUCTION**

| 52 | In the course of study of the new mineral adolfpateraite, K(UO <sub>2</sub> )(SO <sub>4</sub> )(OH)(H <sub>2</sub> O) (Plášil et al |
|----|-------------------------------------------------------------------------------------------------------------------------------------|
| 53 | 2012), we discovered another new unnamed uranyl mineral that is closely associated with                                             |
| 54 | adolfpateraite. Here we provide a description of this new mineral, mathesiusite, which is                                           |
| 55 | another uranyl sulfate from the Jáchymov deposit. It has the chemical composition,                                                  |
| 56 | $K_5(UO_2)_4(SO_4)_4(VO_5)(H_2O)_4$ , and a unique structure topology among known structures of                                     |
| 57 | uranyl minerals. The topology and chemical composition of the new mineral are discussed                                             |
| 58 | using the bond-valence approach.                                                                                                    |
| 59 | The new mineral honors an evangelical (Lutheran) priest and theologian, Johannes                                                    |
| 60 | Mathesius (1504–1565), a student of theology and philosophy under the supervision of the                                            |
| 61 | famous Martin Luther. From 1532 until his death, Mathesius lived and served in Jáchymov,                                            |
| 62 | first as a teacher at the Latin lyceum, then as a pastor in one of the first evangelic churches in                                  |
| 63 | the world. He provided significant gains to the natural sciences (especially mineralogy), his                                       |
| 64 | most important piece of work being "Sarepta oder Bergpostil," printed in 1562. The new                                              |
| 65 | mineral mathesiusite and the name has been approved by the Commission on New Minerals,                                              |
| 66 | Nomenclature and Classification of the International Mineralogical Association (IMA 2013-                                           |
| 67 | 046). The holotype specimen is deposited in the collections of the Department of Mineralogy                                         |
| 68 | and Petrology of the National Museum in Prague, under the catalogue number P1P 7/2013.                                              |
| 69 |                                                                                                                                     |
| 70 | OCCURRENCE                                                                                                                          |
| 71 | Mathesiusite was found in an old mine adit on the Geschieber vein, at the 5 <sup>th</sup> level of                                  |
| 72 | the Svornost (Einigkeit) mine, Jáchymov ore district, Western Bohemia, Czech Republic                                               |
| 73 | (50°22'21.136"N, 12°54'46.150"E). The Jáchymov ore district presents classic examples of                                            |
| 74 | Ag-As-Bi-Co-Ni-U hydrothermal vein type deposits (Ondruš et al. 2003). More than 420                                                |
| 75 | minerals have been found at the Jáchymov ore district, including the rich assemblage of                                             |

12/11

| supergene minerals (see Ondruš et al. 1997, 2003), that yielded many new mineral species.    |
|----------------------------------------------------------------------------------------------|
| Mathesiusite appears to be an extremely rare mineral, occurring only on a few specimens. The |
| matrix of the specimens consists of gangue or fragments of surrounding rocks without         |
| primary U mineralization. Secondary minerals occur on the surfaces of the specimens.         |
| Gypsum, schoepite, čejkaite and adolfpateraite were found in close association. Neither      |
| primary uranium minerals nor any sulfides were observed in the gangue samples.               |

82 Mathesiusite is a mineral of the supergene origin, connected to the acid-mine drainage (AMD)

83 in the underground of the mine former mine adit.

84

76

77

78

79

80

81

85

#### PHYSICAL AND OPTICAL PROPERTIES

86 Mathesiusite occurs as isolated radiating and fan-shaped aggregates of thin prismatic 87 to acicular crystals, reaching up to 0.2 mm in length (along the  $\mathbf{c}$  axis). The mineral is usually 88 associated on the matrix with adolfpateraite; mathesiusite commonly partially overgrows 89 adolfpateraite aggregates (Figure 1). Mathesiusite is yellowish green; crystals are translucent 90 to transparent with a vitreous luster. It has greenish white streak. Crystals are brittle, with 91 perfect cleavage on  $\{110\}$  and weaker on  $\{001\}$ , and have uneven fracture. Morphological 92 description is very difficult due to the very small size of mathesiusite crystals and their 93 brittleness. The Mohs hardness is  $\sim 2$ . The direct determination of density could not been done 94 because of the extremely small quantity of material for study. A density of  $4.018 \text{ g/cm}^3$  was 95 calculated based on the unit-cell dimensions from single-crystal X-ray data and chemical composition obtained from electron microprobe results. Mathesiusite shows strong yellowish 96 97 green fluorescence both in long- and short-wave UV radiation. The mineral is colorless in 98 fragments under the microscope, uniaxial negative, with  $\omega = 1.634(3)$ ,  $\varepsilon = 1.597(3)$ . 99 Gladstone-Dale compatibility [1 - (Kp/Kc) = 0.070], as calculated from the empirical formula 100 using the density derived from the single-crystal unit cell, is rated as fair. Considering the

12/11

|     | This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)<br>Cite as Authors (Year) Title. American Mineralogist, in press.<br>(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4681 12 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101 | ideal formula and optical properties the Gladstone-Dale compatibility is 0.025, rated as                                                                                                                                                                    |
| 102 | excellent.                                                                                                                                                                                                                                                  |
| 103 |                                                                                                                                                                                                                                                             |
| 104 | CHEMICAL COMPOSITION                                                                                                                                                                                                                                        |
| 105 | Quantitative chemical analyses of mathesiusite were obtained using a Cameca SX100                                                                                                                                                                           |
| 106 | electron microprobe (WDS mode, 15 kV, 4 nA, and 15 $\mu$ m beam diameter) at the Department                                                                                                                                                                 |
| 107 | of Geological Sciences, Masaryk University in Brno, Czech Republic. The following X-ray                                                                                                                                                                     |
| 108 | lines and standards were used: $K_{\alpha}$ lines: S (SrSO <sub>4</sub> ), K (sanidine), V (ScVO <sub>4</sub> ), $M_{\beta}$ lines: U                                                                                                                       |
| 109 | (uranophane). Other elements, such as Na, Ca or Mg were also sought, but were below the                                                                                                                                                                     |
| 110 | detection limits of these elements (~ $0.1$ wt.% with the analytical conditions used). The peak                                                                                                                                                             |
| 111 | counting times (CT) were 10-20 seconds and the counting time for each background point                                                                                                                                                                      |
| 112 | was 50% of the peak CT. X-ray matrix effects were corrected using the PAP correction-                                                                                                                                                                       |
| 113 | routine (Pouchou and Pichoir 1985). Despite the soft analytical conditions used, part of the                                                                                                                                                                |
| 114 | potassium content was volatilized and escaped the specimen under the beam during the                                                                                                                                                                        |
| 115 | analysis (which was followed by the intensity loss of emitted X-rays). Therefore, an                                                                                                                                                                        |
| 116 | extrapolation of the polynomial (quadratic) fit of counts to time $t = 0$ sec was used to obtain                                                                                                                                                            |
| 117 | the content of potassium before the loss (see Discussion).                                                                                                                                                                                                  |
| 118 | Mathesisusite is an uranyl vanadate-sulfate mineral characterized by an $K : U : S$ ratio                                                                                                                                                                   |
| 119 | of 1.25 : 1 : 1. The chemical composition of mathesiusite is quite homogeneous with slight                                                                                                                                                                  |
| 120 | variance in the K content (Table 1). The empirical formula is                                                                                                                                                                                               |
| 121 | $K_{4.87}(U_{0.99}O_2)_4(S_{1.04}O_4)_4(V_{0.87}O_5)(H_2O)_4$ (based on 33 O <i>apfu</i> ) H <sub>2</sub> O content calculated by                                                                                                                           |

- 122 stoichiometry obtained from the structure refinement). The simplified formula is
- 123 K<sub>5</sub>(UO<sub>2</sub>)<sub>4</sub>(SO<sub>4</sub>)<sub>4</sub>(VO<sub>5</sub>)(H<sub>2</sub>O)<sub>4</sub>, which requires 12.64 K<sub>2</sub>O, 4.88 V<sub>2</sub>O<sub>5</sub>, 17.19 SO<sub>3</sub>, 61.42 UO<sub>3</sub>,
- 124 3.87 H<sub>2</sub>O, total 100.00 wt%.
- 125 126
- .

# **RAMAN MICROSPECTROSCOPY**

| 127 | The Raman spectrum of mathesiusite was recorded on a Thermo Scientific DXR                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 128 | Raman Microscope interfaced to an Olympus microscope (objective $50\times$ ) in the 50–3150 cm <sup>-1</sup>                 |
| 129 | spectral region with approximately 5 $cm^{-1}$ spectral resolution. The power of the frequency-                              |
| 130 | stabilized single mode diode laser (780 nm) impinging on the sample ranged from 4 to 8 mW.                                   |
| 131 | This wavelength was selected since a strong fluorescence occurred, while the green laser (532                                |
| 132 | nm) was used. The spectrometer was calibrated by a software-controlled calibration procedure                                 |
| 133 | (within Omnic 8 software) using multiple neon emission lines (wavelength calibration),                                       |
| 134 | multiple polystyrene Raman bands (laser frequency calibration) and standardized white light                                  |
| 135 | sources (intensity calibration). Spectral manipulation such as background correction and                                     |
| 136 | band-component analysis was done with Omnic 8 software.                                                                      |
| 137 | The dominant features in the Raman spectrum of mathesiusite are $\mathrm{SO_4}^{2-}$ and $\mathrm{UO_2}^{2+}$                |
| 138 | stretching vibrations (Figure 2). Features in the high energy region (O-H stretching modes)                                  |
| 139 | could not be measured owing to the restricted capabilities of the spectrometer. Interpretation                               |
| 140 | of the spectrum followed the assignments of Knyazev (2000) and Chernorukov et al. (2000).                                    |
| 141 | The vibration of the highest intensity at 830 cm <sup>-1</sup> with a shoulder at 844 cm <sup>-1</sup> is                    |
| 142 | assigned to the $v_1$ symmetric stretching vibration of $(UO_2)^{2+}$ . The approximate U-O bond                             |
| 143 | lengths of the uranyl ion inferred from these frequencies, according to the empirical relations                              |
| 144 | provided by Bartlett and Cooney (1989), are 1.78 and 1.76 Å, respectively. Antisymmetric                                     |
| 145 | stretching modes $(v_3)$ of uranyl were observed at 888 and 896 cm <sup>-1</sup> . Corresponding inferred                    |
| 146 | U-O bond lengths is 1.79 Å. For comparison, the U-O bond-lengths that were obtained from                                     |
| 147 | the single-crystal X-ray diffraction data are 1.75 and 1.77 Å. Split $v_2$ ( $\delta$ ) UO <sub>2</sub> <sup>2+</sup> doubly |
| 148 | degenerate bending vibrations are at 276 and 248 cm <sup>-1</sup> . The weak Raman bands at 598, 557,                        |
| 149 | 480 and 370 cm <sup>-1</sup> may correspond to v (U- $O_{eq}$ ) modes (Knyazev 2000; Chernorukov et al.                      |
| 150 | 2000), but some of them may also coincide with SO <sub>4</sub> and v (V-O <sub>eq</sub> ) bending modes.                     |

| 151 | The stretching vibrations of the sulfate tetrahedral occur in the Raman spectrum of                                    |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 152 | mathesiusite at around $\sim 1200$ cm <sup>-1</sup> . The vibrations s of medium intensity at 1007 and 1210            |
| 153 | cm <sup>-1</sup> are assigned to the $v_1$ symmetric stretching vibration of SO <sub>4</sub> ; triply degenerate $v_3$ |
| 154 | antisymmetric stretching vibrations occur at 1114 and 1210 cm <sup>-1</sup> . The band at 1329 cm <sup>-1</sup> may    |
| 155 | be attributed to an overtone or a combination band; the triply degenerate $v_4(\delta)$ bending mode                   |
| 156 | were assigned to bands at 598, 619 and 644 cm <sup>-1</sup> and $v_2$ ( $\delta$ ) doubly degenerate bending mode      |
| 157 | to those at 447 (shoulder), 460 and 480 cm <sup>-1</sup> . However, some of these vibration bands may                  |
| 158 | also coincide with v (U-O <sub>eq</sub> ) and v (V-O <sub>eq</sub> ) vibrations, which usually have a relatively low   |
| 159 | intensity (Chernorukov et al. 2000; Knyazev 2000).                                                                     |
| 160 | The symmetric $v_1$ (V-O) stretching mode was assigned to the peak at 982 cm <sup>-1</sup> (Fig.                       |
| 161 | 2). The following weak bands may also correspond to stretching and bending V- $O_{eq}$                                 |
| 162 | vibrations: 742, 619, 557 cm <sup>-1</sup> and some bands in the region of lattice modes; some                         |
| 163 | may coincide with $SO_4^{2-}$ bending and v (U-O <sub>eq</sub> ) vibrations (598, 557, 480, 370 cm <sup>-1</sup> )     |
| 164 | (Chernorukov et al. 2000; Knyazev 2000).                                                                               |
| 165 |                                                                                                                        |
| 166 | X-RAY CRYSTALLOGRPAHY AND DETERMINATION OF THE CRYSTAL STRUCTURE                                                       |

#### 167 *Powder diffraction*

168 The powder diffraction data of mathesiusite (Table 2) were obtained using a 169 PANalytical Empyrean powder diffractometer with a Cu X-ray tube (operated at 45 kV, 40 mA) and PIXcel<sup>3D</sup> solid-state detector equipped with the curved primary Göbel mirror 170 171 providing the focused X-ray beam for the Debye-Scherrer geometry. A small portion of the 172 pulverized mathesiusite crystals were loaded into a glass capillary in order to avoid preferred 173 orientation effects, which were preliminary confirmed using Bragg-Brentano geometry. The 174 preferred orientation is due to the excellent cleavage of mathesiusite crystals. The powder data were collected from 3 to 90° 20 with a step size 0.013° 20 and a counting time of 1 s per 175

| 176 | step. The accumulation of 40 scans was performed to increase the intensity statistics and                       |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 177 | peak-to-background ratio. Prior to the data collection the diffractometer was calibrated against                |
| 178 | a LaB <sub>6</sub> standard. The positions of the diffraction peaks were refined from the powder data           |
| 179 | using a Pseudo-Voigt profile shape function in the High-Score program (PANalytical B.V.).                       |
| 180 | The unit-cell parameters were refined using the Checkell program (LMGP-Suite, 2004) based                       |
| 181 | on the refined positions of the 62 observed fitted diffraction peaks and the hkl indices                        |
| 182 | assigned to those diffraction peaks using the calculated powder pattern (PowderCell software;                   |
| 183 | Kraus and Nolze 1996) from the structure data (see below). Refined unit-cell parameters for                     |
| 184 | the tetragonal space group $P4/n$ are $a = 14.977(3)$ , $c = 6.8352(8)$ Å, and $V = 1533.2(8)$ Å <sup>3</sup> . |
| 185 |                                                                                                                 |
| 186 | Single-crystal X-ray diffraction                                                                                |
| 187 | A crystal of mathesiusite with dimensions $0.07 \times 0.02 \times 0.02$ mm was examined by                     |
| 188 | means of an Oxford Diffraction Gemini single-crystal diffractometer with an Atlas CCD                           |
| 189 | detector using graphite-monochromatized $MoK\alpha$ radiation from a classical sealed X-ray tube.               |
| 190 | The unit cell was refined from 1969 reflections by a least-squares algorithm within the                         |
| 191 | Crysalis software (Agilent Technologies 2012). Rotational scans in $\omega$ (frame width 0.8°,                  |
| 192 | counting time 200 seconds per frame) were adopted to cover the Ewald sphere. From a total                       |
| 193 | of 12825 reflections, 1861 were unique and 795 observed with the criterion $[I > 3\sigma(I)]$ . Data            |
| 194 | were corrected for background, Lorentz and polarization effects, and an analytical correction                   |
| 195 | for absorption was applied (Clark and Reid 1995). The poor internal residual factor, $R_{int} =$                |
| 196 | 0.189, is due to the overlaps from the split (twin) crystal and considerably weak diffraction                   |
| 197 | data. Reduction of the data was performed using the Crysalis package (CrysAlis RED, Agilent                     |
| 198 | Technologies 2012). A summary of data collection, crystallographic data and refinement is                       |
| 199 | given in Table 3.                                                                                               |

| 200        | The crystal structure of mathesiusite was solved by the charge-flipping method                  |
|------------|-------------------------------------------------------------------------------------------------|
| 201        | (Oszlányi and Sütő 2004; Oszlányi and Sütő 2008; Palatinus 2013) implemented in the             |
| 202        | program Superflip (Palatinus and Chapuis 2007). The structure confirms the chosen space         |
| 203        | group $P4/n$ , which was assigned based on the reflection conditions. The structure obtained    |
| 204        | was subsequently refined by the full-matrix least-squares algorithm of the Jana2006 software    |
| 205        | (Petříček et al. 2006) based on $F^2$ . Metal site atoms were refined anisotropically. Hydrogen |
| 206        | atoms were not located in the difference-Fourier maps of the electron density. Final atom       |
| 207        | positions and displacement parameters are listed in Tables 4 and 5. A bond valence analysis     |
| 208        | (following the procedure of Brown 2002), based on refined interatomic distances (Table 6), is   |
| 209        | provided in Table 7.                                                                            |
| 210<br>211 | DESCRIPTION OF THE CRYSTAL STRUCTURE                                                            |
| 212        | Cation coordination                                                                             |
| 213        | There is one U, one S, one V, two K and nine O atoms in the asymmetric unit of the              |
| 214        | mathesiusite structure, which crystallizes in the space-group $P4/n$ . Uranium is strongly      |
| 215        | bonded to two O atoms, forming the nearly linear uranyl ion, with bond-lengths 1.767(13) and    |
| 216        | 1.748(13) Å (Table 6), matching the characteristic range in values (~1.8 Å) of $U^{6+}-O_{Ur}$  |
| 217        | distances in the structures containing hexavalent uranium (Burns et al. 1997, Burns 2005).      |
| 218        | The uranyl ion is further coordinated by five ligands, O atoms, which are arranged in the       |
| 219        | equatorial vertices of pentagonal bipyramids (with an average equatorial U-O bond-length of     |
| 220        | 2.38 Å). Sulfur is coordinated by four O atoms at the distances typical for tetrahedral         |
| 221        | coordination, ~1.45 Å. Vanadium was found in the mathesiusite structure in square pyramidal     |
| 222        | coordination, bonded strongly to one O atom at the distance of 1.62 Å (vanadyl bond) and        |
| 223        | four O atoms at the distances of 1.86 Å. This $(4+1)$ coordination is one of the characteristic |
| 224        | environments for the $V^{5+}$ cation (Schindler et al. 2000). Potassium atoms were found to be  |
| 225        | coordinated in distinct ways in the mathesiusite structure. The K1 atom is [9]-coordinated      |

10

12/11

| 226 | with an average bond-length $\sim$ 3 Å, while the K2 atom is [12]-coordinated and the average K-                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 227 | O bond-length is higher, $\sim$ 3.2 Å (Table 6). Both potassium atoms are linked to the only                                    |
| 228 | symmetrically unique $H_2O$ molecule in the structure (O3 atom, see Table 7).                                                   |
| 229 |                                                                                                                                 |
| 230 | Structure formula                                                                                                               |
| 231 | The results of the bond-valence analysis of the mathesiusite structure (Table 7)                                                |
| 232 | confirmed the valence states expected for the cations based on the characteristic                                               |
| 233 | coordinations. The calculated bond-valence sums are in agreement with the expected values                                       |
| 234 | for $U^{6+}$ , $K^+$ , $S^{6+}$ and $V^{5+}$ . The O atom that belongs to the H <sub>2</sub> O molecule is indicated by the low |
| 235 | sum of the bond-valence incident at the O3 site. The structure formula obtained from the                                        |
| 236 | refinement, including the refined occupancies of the K sites, is                                                                |
| 237 | $K_{4.92}(UO_2)_4(SO_4)_4(VO_5)(H_2O)_4$ , $Z = 2$ (see Discussion for comments).                                               |
| 238 |                                                                                                                                 |
| 239 | Structure connectivity                                                                                                          |
| 240 | The structure of mathesiusite consists of sheets that are built of $[(UO_2)_4(SO_4)_4(VO_5)]^{5-1}$                             |
| 241 | clusters (designated USV) (Figures 3a; 4a). These clusters arise from linkage between corner-                                   |
| 242 | sharing quartets of uranyl pentagonal bipyramids, which define a square-shaped void at the                                      |
| 243 | centre. These voids are occupied by $V^{5+}$ cations (Figure 3a). The square defined by the four                                |
| 244 | equatorial O atoms is the base of the square pyramid, with the fifth O atom pointing up or                                      |
| 245 | down relative to the sheets (Figures 3a, b). Each pair of uranyl pentagonal bipyramids shares                                   |
| 246 | two vertices of $SO_4$ tetrahedra. Each tetrahedron shares a third vertex with another USV to                                   |
| 247 | form sheets. The fourth vertex of the tetrahedron remains free, pointing up or down (Figure                                     |
| 248 | 4a, c). The sequence of tetrahedral units in mathesiusite isududud The structure                                                |
| 249 | possesses corrugated heteropolyhedral sheets that are stacked perpendicular to $c$ (Figure 3b).                                 |
|     |                                                                                                                                 |

250 The round voids defined by four USV are occupied by K2 and O3 atoms. The K1 atom is

251 localized in between the corrugated sheets (Figure 3b). Adjacent structure sheets are linked 252 through the K–O bonds and also by hydrogen bonds. 253 254 DISCUSSION 255 Several issues warrant discussion. The discrepancy between the ideal formula and the 256 chemical composition of mathesiusite, obtained from the electron microprobe analysis and X-257 ray diffraction is of interest. We point out that we had considerable problems with the 258 stoichiometry obtained from the first electron microprobe study we undertook. Even if a low 259 beam current and wide beam-size were used, the stoichiometry of the K content was not 260 satisfactory due to the partial K-loss from the analyzed grains. The stoichiometry from the 261 analyses corresponded to  $\sim 4.1 - 4.3$  K *apfu* only. Therefore, we used extrapolation of the 262 polynomial quadratic fit of the K K $\alpha$  counting statistics into the t = 0 instead of counting an 263 integral signal (Fig. 5). Using that approach we were able to derive a more reasonable 264 stoichiometry of the compound used in the mineral proposal and presented here. During the 265 first 8 second of the analysis the number of K Ka counts decreases to 80 rel. %, indicating the 266 loss of 1/5 of the K content. We conclude that the partial K-loss is connected to the K2 atom 267 in the structure, as it is located in the channel defined by the four USV. The  $U_{eq}$  of K2 is quite 268 large, suggesting atomic displacements along the channel axis. We have based our conclusion 269 about loss of the weakly bonded K2 atom, because it sits on the 2a site in the structure

270 (corresponds to 1 K apfu). The refined occupancies provided similar contents: 4.92 K apfu

271 (X-ray), 4.87 K apfu (EPMA). However, the refined occupancies might also be affected by

272 the poor absorption correction applied to the data.

273

274 Topology of the structure

275 The structure topology found in mathesiusite is unique among uranyl oxysalt minerals 276 (Figure 4b). However, uranyl heteropolyhedral sheets of the same topology have been found

| 277 | in synthetic uranyl chromates prepared by Unruh et al. (2012). The fundamental building                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 278 | block, the tetramer of corner sharing uranyl pentagonal bipyramids, the USqPy cluster (where                             |
| 279 | $SqPy = V^{5+}$ in case of mathesiusite) was found also in other inorganic uranyl compound, such                         |
| 280 | as synthetic $Cs_6[(UO_2)_4(W_5O_{21})(OH)_2(H_2O)_2]$ (Sykora et al. 2004), which anyway is the                         |
| 281 | topological isomer. Unruh et al. (2012) provided the complex crystallographic study of the                               |
| 282 | three novel uranyl chromates, $Li_5[(UO_2)_4(Cr^{5+}O_5)(Cr^{6+}O_4)_4](H_2O)_{17}$ ,                                    |
| 283 | $(Mg(H_2O)_6)_5[(UO_2)_8(Cr^{5+}O_5)_2(Cr^{6+}O_4)_8]$ and $(NH_4)_5[(UO_2)_4(Cr^{5+}O_5)(Cr^{6+}O_4)_2]H_2O_{11}$ . All |
| 284 | three phases are triclinic $(P-1)$ and have similar unit cell volumes. All three phases have                             |
| 285 | sheets of polymerized polyhedra based upon the same topology. However, these sheets differ                               |
| 286 | in the orientation of the tetrahedral elements, a phenomenon that is called graphical                                    |
| 287 | isomerism (Krivovichev 2010). The following two graphical isomers were resolved between                                  |
| 288 | the above mentioned compounds:ududud (Li- and NH <sub>4</sub> -containing compound of Unruh                              |
| 289 | et al. 2012), anduudduu (Mg-containing compound of Unruh et al. 2012; Figure 6a, b).                                     |
| 290 | Mathesiusite belongs to the first group where <i>T</i> elements alternate regularly <i>up</i> and <i>down</i> .          |
| 291 |                                                                                                                          |

### 292 The bond-valence approach to the structure of mathesiusite

293 The bond-valence approach is a simple framework for considering crystal-chemical 294 relations of solids by means of the bond-valence method developed by I. D. Brown (1981, 295 2002, 2009). The so called bond-valence approach was introduced and developed by 296 Hawthorne and Schindler in order to assess, explain and estimate some of the stereochemical 297 behavior of the namely hydrous oxysalt minerals (Hawthorne 1992; Hawthorne and Schindler 298 2008; Schindler and Hawthorne 2008; Hawthorne and Sokolova 2012; Hawthorne 2012). 299 Here we consider the hydrated uranyl oxysalt mineral mathesiusite as a binary structure, consisting of a strongly bonded structural unit (su),  $[(UO_2)_4(SO_4)_4(VO_5)]^{5-}$ , apparently having 300 301 anionic character (*Lewis base*), and a weakly bonded complex occupying the interlayer space,

| 302 | $[^{[12]}K^{[9]}K_4(H_2O)_4]^{5+}$ , having cationic character ( <i>Lewis acid</i> ). According to the <i>principle of</i> |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 303 | correspondence (Schindler and Hawthorne 2008), which is the mean-field equivalent of the                                   |
| 304 | valence-matching principle (Brown 1981, 2002), stable structures will form when the value of                               |
| 305 | Lewis basicity closely matches the value of Lewis acidity, meaning that the interlayer                                     |
| 306 | complex is "compatible" with the structural unit in terms of the type of cation, number of                                 |
| 307 | bonds to the structure unit, number of H-bond acceptors within the structure unit, number of                               |
| 308 | H <sub>2</sub> O in the interlayer and the type according to their role in the bond-valence transfer. We will              |
| 309 | not recall all the details and terminology, as they can be found in the above mentioned papers.                            |
| 310 | The structural unit of mathesiusite can be written in the reduced form as                                                  |
| 311 | $[(UO_2)(SO_4)(VO_5)_{0.25}]^{1.25}$ , which contains 7.25 anions. This unit is characterized by the                       |
| 312 | charge deficiency per anion, <i>CDA</i> , of $(1.25/7.25) = 0.17 vu$ . As was demonstrated elsewhere                       |
| 313 | (Hawthorne and Schindler 2008; Schindler and Hawthorne 2008) the CDA closely correlates                                    |
| 314 | with the mean coordination number of the O atoms within the structural units, respectively                                 |
| 315 | with the number of bonds per anion received from the interstitial complex and adjacent                                     |
| 316 | structural unit., and can thus can be used to predict the minimum and maximum number of                                    |
| 317 | bonds which can be accepted by the structural unit. This range of bonds defines the range in                               |
| 318 | Lewis basicity of the structural as it is defined as the charge of the structural unit divided by                          |
| 319 | the number of accepted bonds (Brown 2002). Using the correlation between the CDA and the                                   |
| 320 | coordination number for O, the calculated range (min-max) in number of bonds required by                                   |
| 321 | the structural unit is 5 and 9. The corresponding range of Lewis basicity is 0.15-0.26 vu. Let                             |
| 322 | us consider next the interstitial complex, ${}^{[12]}K_{0.25}{}^{[9]}K(H_2O)$ ${}^{1.25+}$ . We need to inspect the        |
| 323 | coordination environment around K atoms carefully in order determine its Lewis acidity                                     |
| 324 | which is defined as the charge of the complex divided by the number of emanated bonds                                      |
| 325 | towards the structural unit. The K1 site is [8]-coordinated, however, only 7 bonds link K1                                 |
| 326 | atoms to the structural unit directly (at the distance of 3.25 Å). The eighth ligand is the $H_2O$                         |

| 327 | site (O3 atom), which will be discussed later. The K2 atom is [8]-coordinated at the distance                       |
|-----|---------------------------------------------------------------------------------------------------------------------|
| 328 | of 3.25 Å and all these bonds link the K2 atom to the shared O atoms between uranyl                                 |
| 329 | pentagonal bipyramids and SO <sub>4</sub> groups (O1 and O5, see Table 6). However, K2 is linked by                 |
| 330 | weak bonds to O3 (H <sub>2</sub> O) at a distance of ~3.3 Å. The O3 atom, which belongs, according to               |
| 331 | the bond-valence analysis, $(0.14 vu)$ to a H <sub>2</sub> O group, is [5]-coordinated, receiving one bond          |
| 332 | from each of the K1 and K2 atoms, donating 2 bonds to corresponding H atoms and receiving                           |
| 333 | bonds from K1, K2 and two hydrogen atoms as well as a hydrogen bond from its                                        |
| 334 | corresponding symmetrical equivalent (theoretical BV sums for O3 with calculated                                    |
| 335 | contributions from H-bonds: $0.09 (K1) + 0.04 (K2) + 2*0.80$ as H-donor + 0.20 as H-acceptor                        |
| 336 | = 1.93 vu). Hence, the O3 atom belongs to an inverse-transformer ( $H_2O$ ) group, which rarely                     |
| 337 | occurs in the structure of minerals (Hawthorne 1992; Schindler and Hawthorne 2008), and is                          |
| 338 | usually bonded to monovalent cations occurring in coordination numbers higher than [7]-                             |
| 339 | (Schindler and Hawthorne 2008). Theoretically, by the action of one inverse-transformer                             |
| 340 | (H <sub>2</sub> O) group one bond is removed from the bonding scheme between the interstitial complex               |
| 341 | and structural unit (Schindler and Hawthorne 2008). Hence, the total number of emanated by                          |
| 342 | the interstitial complex is 40, the corresponding Lewis acidity can be calculated as 0.17 vu,                       |
| 343 | which matches the range in Lewis basicity of the structural unit. Schindler and Hawthorne                           |
| 344 | (2008) presented an empirical relation was presented between the number of anions in                                |
| 345 | structural units of uranyl-sheet minerals and the number of bonds emanating from the                                |
| 346 | interstitial complex, the number of OH groups emanated from the structural unit and the                             |
| 347 | number and the type of interstitial ( $H_2O$ ) groups. Based on these empirical relations, using a                  |
| 348 | so called <i>bond-valence distribution factor</i> ( $D$ ), one can calculate the total number of (H <sub>2</sub> O) |
| 349 | groups per cation and the number of interstitial transformer (H <sub>2</sub> O) groups. We derived a D              |
| 350 | factor for mathesiusite, which is equal to $\sim 0.66$ . Using equation (7) of Schindler and                        |
| 351 | Hawthorne (2008), the number of transformer (H <sub>2</sub> O) groups in the interstitial complex should            |

| 352        | be -1. It means that there should be more non-transformer or inverse-transformer ( $H_2O$ )       |
|------------|---------------------------------------------------------------------------------------------------|
| 353        | groups in mathesiusite than transformer (H <sub>2</sub> O) groups. This is in accordance with the |
| 354        | observed structure.                                                                               |
| 355<br>356 | ACKNOWLEDGEMENTS                                                                                  |
| 357        | The authors are grateful to Ladislav Lapčák (Institute of Chemical Technology, Prague) for        |
| 358        | help with Raman spectroscopic analysis. We thank Peter Burns for drawing our attention to         |
| 359        | the structures of synthetic uranyl chromates. The manuscript benefited from the                   |
| 360        | comprehensive thorough reviews of the three anonymous referees and from the careful               |
| 361        | editorial handling of Fernando Colombo. This research was financially supported by the            |
| 362        | Premium Academie grant of the ASCR, v.v.i., by the post-doctoral grant of the GACR no. 13-        |
| 363        | 31276P to JP, and by the project DKRVO 2013/02 (National Museum, 00023272) of the                 |
| 364        | Ministry of Culture of the Czech Republic for JS and JČ.                                          |

365

### **366 REFERENCES CITED**

- 367 Agilent Technologies (2012) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd,
- 368 Yarnton, Oxfordshire, UK.
- 369 Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths
- 370 in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular
- 371 Structure, 193, 295–300.
- Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure
- and bonding. In Structure and Bonding in Crystals II (M. O'Keeffe & A. Navrotsky,
- eds.). Academic Press, New York, N.Y., 1–30.
- Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model.
- 376 Oxford University Press, UK.
- 377 Brown, I.D. (2009) Recent Developments in the Methods and Applications of the Bond
- 378 Valence Model. Physical Reviews, 109, 6858–6919.
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic
- analysis of the inorganic crystal structure database. Acta Crystallographica, B41,
- 381 244–247, with updated parameters from http://www.ccp14.ac.uk/ccp/web-
- 382 mirrors/i\_d\_brown/.
- 383 Burns, P.C. (2005) U<sup>6+</sup> minerals and inorganic compounds: insights into an expanded
- 384 structural hierarchy of crystal structures. Canadian Mineralogist, 43, 1839–1894.
- 385 Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent
- uranium: polyhedron geometries, bond-valence parameters, and polymerization of
  polyhedra. Canadian Mineralogist, 35, 1551–1570.
- 388 Chernorukov, N.G., Suleymanov, E.V., Knyazev, A.V., Vyshinski, N.N. and Klimov, E.Y.
- 389 (2000) Vibrational spectra of uranyl vanadates of mono- and divalent metals. Zhurnal
  390 Obshchey Khimii, 70, 1418–1424.
  - 17

- 391 Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted
- 392 crystals. Acta Crystallographica, A51, 887–897.
- Hawthorne, F.C. (1992) The role of OH and H<sub>2</sub>O in oxide and oxysalt minerals. Zeitschrift
  für Kristallographie, 201, 183–206.
- Hawthorne, F.C. (2012) A bond-topological approach to theoretical mineralogy: crystal
- 396 structure, chemical composition and chemical reactions. Physics and Chemistry of
- 397 Minerals, 39, 841–874.
- Hawthorne, F.C. and Sokolova, E. (2012) The role of H<sub>2</sub>O in controlling bond topology: I.
- 399 The  ${}^{[6]}Mg(SO_4)(H_2O)_n$  (n = 0-11) structures. Zeitschrift für Kristallographie, 227, 594–
- 400 603.
- Hawthorne, F.C. and Schindler, M. (2008) Understanding the weakly bonded constituents in
  oxysalt minerals. Zeitschrift für Kristallographie, 223, 41–68.
- 403 Knyazev, A.V. (2000) Synthesis, Structure and Properties of Uranyl Vanadates of Mono-, Di-
- 404 and Trivalent Metals. PhD Thesis, N.I. Lobachevsky State University of Nizhny
  405 Novgorod.
- 406 Kraus, W. and Nolze, G. (1996) POWDER CELL a program for the representation and
- 407 manipulation of crystal structures and calculation of the resulting X-ray powder

408 patterns. Journal of Applied Crystallography, 29, 301–303.

409 Krivovichev, S.V. (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo) -

- 410 structural diversity, nanoscale chemistry, and cellular automata modelling. European
- 411 Journal of Inorganic Chemistry, 2010, 2594–2603.
- 412 LMPG Suite of Programs for the interpretation of X-ray Experiments, by Jean Laugier and
- 413 Bernard Bochu, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042
- 414 Saint Martin d'Hères, France. WWW: http://www.inpg.fr/LMGP and
- 415 http://www.ccp14.ac.uk/tutorial/lmgp/
  - 18

- 416 Ondruš, P., Veselovský, F., Skála, R., Císařová, I., Hloušek, J., Frýda, J., Vavřín, I., Čejka, J.
- 417 and Gabašová, A. (1997) New naturally occurring phases of secondary origin from
- 418 Jáchymov (Joachimsthal). Journal of the Czech Geological Society, 42, 77–108.
- 419 Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J., Šrein, V., Vavřín, I., Skála R., Sejkora,
- 420 J. and Drábek, M. (2003) Primary minerals of the Jáchymov ore district. Journal of the
- 421 Czech Geological Society, 48, 3-4, 19–147.
- 422 Oszlányi, G. and Süto, A. (2004) Ab-initio structure solution by charge flipping. Acta
- 423 Crystallographica, A60, 134–141.
- 424 Oszlányi, G. and Süto, A. (2008) The charge flipping algorithm. Acta Crystallographica, A64,
  425 123–134.
- 426 Palatinus, L. (2013) The charge-flipping algorithm in crystallography. Acta

427 Crystallographica, B69, 1–16.

428 Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of

429 crystal structures by charge flipping in arbitrary dimensions. Journal of Applied

430 Crystallography, 40, 451–456.

- 431 Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing
  432 system. Institute of Physics, Praha, Czech Republic.
- 433 Plášil, J., Hloušek, J., Veselovský, F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka,

434 J., Sejkora, J. and Ondruš, P. (2012) Adolfpateraite, K(UO<sub>2</sub>)(SO<sub>4</sub>)(OH)(H<sub>2</sub>O), a new

- 435 uranyl sulphate mineral from Jáchymov, Czech Republic. American Mineralogist, 97,
  436 447–454.
- 437 Pouchou, J.L. and Pichoir, F. (1985) "PAP" (φ ρZ) procedure for improved quantitative
- 438 microanalysis. In Microbeam Analysis (J. T. Armstrong, ed.). San Francisco Press, San
- 439 Francisco, 104–106.

# 440 Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of

- 441 interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467–
- 442 501.
- 443 Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) Crystal chemical aspects of
- 444 vanadium: polyhedral geometries, characteristic bond valences, and polymerization of
- 445  $(VO_n)$  polyhedra. Chemistry of Materials, 12, 1248–1259.
- 446 Sykora, R.E., McDaniel, S.M., Albrecht-Schmitt, T.E. (2004) Hydrothermal synthesis and
- 447 structure of  $K_6[(UO_2)_4(CrO_4)_7]$  6H<sub>2</sub>O: A layered uranyl chromate with a new uranyl
- sheet topology. Journal of Solid State Chemistry, 177, 1431–1436.
- 449 Unruh, D.K., Quicksall, A., Pressprich, L., Stoffer, M., Qiu, J., Nuzhdin, K., Wub, W.,
- 450 Vyushkova, M. and Burns, P.C. (2012) Synthesis, characterization, and crystal
- 451 structures of uranyl compounds containing mixed chromium oxidation states. Journal of
- 452 the Solid State Chemistry, 191, 162–166.

# 453 Caption to Figures

FIGURE 1. Greenish-yellow radiating aggregate of mathesiusite composed of fine, needlelike crystals in association with bright-yellow adolfpateraite on reddish gangue. FOV 3.0 mm.
Photo: P. Škácha.

457

458 FIGURE 2. Raman spectrum of mathesiusite measured on {110} face with depolarized laser.459

FIGURE 3. Crystal structure of mathesiusite. A) Heteropolyhedral sheets composed of clusters of uranyl pentagonal bipyramids (blue), SO<sub>4</sub> groups (yellow) and VO<sub>5</sub> pyramids (green)

462 viewed along [001]. The K2 atom located in the channels (pink) together with O3 (H<sub>2</sub>O) atom

463 (red). B) The corrugated sheets of in the structure with  $K^+$  cations and  $H_2O$  (red) in the

- 464 interlayer. Viewing direction along [010].
- 465

FIGURE 4. The topology of the structural sheet of polyhedra in mathesiusite. A) Polyhedral representation of uranyl sulfate sheet. B) Its topology represented by graph, based upon pentagons, squares and triangles. C) The graph of mathesiusite topology with respective orientation (u - up or d - down) of the tetrahedral anions.

470

471 FIGURE 5. Plot shows the loss of potassium during the electron microprobe analysis. The K

472  $K\alpha$  peak counting time (10 s) was divided into 5 two-second intervals. The number of counts

from each interval is plotted (an average of 5 analyses). The theoretical potassium content

474 before beginning of the analysis was calculated by extrapolation of quadratic polynomial fit to

- 475 the time t = 0 seconds. Note the content of K decreases to 80 rel. % after 8 seconds.
- 476

477 FIGURE 6. The topology of the structural sheet of polyhedra in synthetic Mg-dominant uranyl

478 chromate (Unruh et al. 2012). A) Polyhedral representation of uranyl chromate sheet (Cr<sup>5+</sup>O<sub>5</sub>

479 groups omitted). B) The graph representation with respective orientation (u - up or d - down)

- 480 of the tetrahedral anions.
- 481





Raman intensity (a.u.)









|                  | Mean ( <i>n</i> = 7)     | Range       | Std. |
|------------------|--------------------------|-------------|------|
| K <sub>2</sub> O | 12.42                    | 12.09–12.71 | 0.29 |
| SO <sub>3</sub>  | 18.04                    | 17.05–18.56 | 0.58 |
| $V_2O_5$         | 4.30                     | 4.10-4.68   | 0.24 |
| UO3              | 61.46                    | 58.29-63.77 | 2.07 |
| H <sub>2</sub> O | 3.90*                    |             |      |
| total            | 100.12                   |             |      |
| calculated       | d on an 33 O <i>apfu</i> |             |      |
| K                | 4.87                     |             |      |
| S <sup>6+</sup>  | 4.16                     |             |      |
| V <sup>5+</sup>  | 0.87                     |             |      |
| U <sup>6+</sup>  | 3.97                     |             |      |
| $H_2O$           | 4.00                     |             |      |
|                  |                          |             |      |

 Table 1 Results of electron microprobe analyses (in wt.%) of mathesiusite.

| lobs | d <sub>obs</sub> | d <sub>calc</sub> | I <sub>calc</sub> | h | k | 1 | lobs | I <sub>calc</sub> | d <sub>obs</sub> | d <sub>calc</sub> | h  | k  | 1 |
|------|------------------|-------------------|-------------------|---|---|---|------|-------------------|------------------|-------------------|----|----|---|
| 76   | 10.64            | 10.59             | 82                | 1 | 1 | 0 | 4    | <1                | 2.4038           | 2.4043            | 5  | 3  | 1 |
| 9    | 7.486            | 7.488             | 5                 | 2 | 0 | 0 | 4    | 6                 | 2.3713           | 2.3680            | 6  | 2  | 0 |
| 100  | 6.856            | 6.835             | 73                | 0 | 0 | 1 | 3    | <1                | 2.3448           | 2.3447            | 6  | 0  | 1 |
| 85   | 6.237            | 6.218             | 100               | 1 | 0 | 1 | 2    | 2                 | 2.3179           | 2.3164            | 6  | 1  | 1 |
| 7    | 5.727            | 5.743             | 5                 | 1 | 1 | 1 | 1    | 1                 | 2.2212           | 2.2274            | 1  | 1  | 3 |
| 3    | 5.301            | 5.295             | 18                | 2 | 2 | 0 | 4    | 1                 | 2.2054           | 2.2130            | 5  | 4  | 1 |
| 5    | 5.096            | 5.048             | 2                 | 2 | 0 | 1 | 4    | 17                | 2.1541           | 2.1571            | 2  | 5  | 2 |
| 4    | 4.800            | 4.784             | 1                 | 1 | 2 | 1 | 2    | 14                | 2.1211           | 2.1222            | 6  | 3  | 1 |
| 37   | 4.742            | 4.736             | 43                | 3 | 1 | 0 | 1    | 7                 | 2.0793           | 2.0769            | 4  | 6  | 0 |
| 4    | 4.196            | 4.186             | 15                | 2 | 2 | 1 | 1    | 4                 | 2.0434           | 2.0418            | 7  | 0  | 1 |
| 3    | 3.893            | 3.893             | 2                 | 1 | 3 | 1 | 1    | 4                 | 1.9892           | 1.9872            | 4  | 6  | 1 |
| 27   | 3.749            | 3.744             | <1                | 4 | 0 | 0 | 1    | 7                 | 1.9700           | 1.9665            | 7  | 3  | 0 |
| 4    | 3.554            | 3.550             | 34                | 3 | 2 | 1 | 3    | 3                 | 1.9336           | 1.9302            | 4  | 5  | 2 |
| 3    | 3.529            | 3.530             | 4                 | 3 | 3 | 0 | 4    | 6                 | 1.8726           | 1.8721            | 8  | 0  | 0 |
| 5    | 3.354            | 3.349             | 8                 | 4 | 2 | 0 | 1    | 14                | 1.8680           | 1.8691            | 6  | 3  | 2 |
| 2    | 3.334            | 3.332             | 40                | 1 | 0 | 2 | 1    | 5                 | 1.8125           | 1.8135            | 7  | 0  | 2 |
| 9    | 3.296            | 3.284             | <1                | 4 | 0 | 1 | 1    | 7                 | 1.8062           | 1.8056            | 8  | 0  | 1 |
| 2    | 3.212            | 3.208             | 17                | 4 | 1 | 1 | 1    | 2                 | 1.7946           | 1.7926            | 4  | 7  | 1 |
| 7    | 3.138            | 3.136             | 15                | 3 | 3 | 1 | 7    | 10                | 1.6753           | 1.6723            | 5  | 6  | 2 |
| 4    | 3.014            | 3.007             | 18                | 4 | 2 | 1 | 3    | 3                 | 1.6303           | 1.6321            | 4  | 7  | 2 |
| 17   | 2.9409           | 2.9372            | 2                 | 5 | 1 | 0 | 2    | 5                 | 1.6096           | 1.6073            | 3  | 1  | 4 |
| 5    | 2.8219           | 2.8200            | 5                 | 3 | 0 | 2 | 3    | 3                 | 1.5753           | 1.5787            | 3  | 9  | 0 |
| 3    | 2.7768           | 2.7713            | <1                | 1 | 3 | 2 | 1    | 3                 | 1.5383           | 1.5382            | 3  | 9  | 1 |
| 5    | 2.7302           | 2.7435            | 1                 | 4 | 3 | 1 | 1    | 1                 | 1.4951           | 1.4961            | 9  | 0  | 2 |
| 3    | 2.7049           | 2.6986            | 12                | 1 | 5 | 1 | <1   | 2                 | 1.4545           | 1.4560            | 10 | 1  | 1 |
| 4    | 2.6472           | 2.6475            | <1                | 4 | 4 | 0 | 1    | 4                 | 1.4453           | 1.4464            | 8  | 0  | 3 |
| 2    | 2.5745           | 2.5760            | 10                | 2 | 5 | 1 | 1    | 2                 | 1.4214           | 1.4228            | 9  | 5  | 1 |
| 2    | 2.5661           | 2.5685            | 9                 | 5 | 3 | 0 | 1    | 1                 | 1.3294           | 1.3300            | 11 | 1  | 1 |
|      | (                | 2.4961            | 1                 | 6 | 0 | 0 | 2    | <1                | 1.2494           | 1.2481            | 0  | 12 | 0 |
| 2    | 2.4939 {         | 2.4851            | 12                | 4 | 1 | 2 |      |                   |                  |                   |    |    |   |
|      | (                | 2.4851            | 9                 | 1 | 4 | 2 |      |                   |                  |                   |    |    |   |

 Table 2. X-ray powder diffraction data for mathesiusite from Jáchymov.

| Structural formula                                   | K <sub>4.92</sub> (UO <sub>2</sub> ) <sub>4</sub> (SO <sub>4</sub> ) <sub>4</sub> (VO <sub>5</sub> )(H <sub>2</sub> O) <sub>4</sub> |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Unit cell parameters a =                             | = 14.9704(10), <i>c</i> = 6.8170(5) Å                                                                                               |
| V                                                    | 1527.78(18)                                                                                                                         |
| Ζ                                                    | 2                                                                                                                                   |
| Space group                                          | P4/n                                                                                                                                |
| $D_{\text{calc}}$ (g cm <sup>-3</sup> )              | 4.023 (for the formula given above)                                                                                                 |
| Temperature                                          | 300 K                                                                                                                               |
| Radiation (wavelength)                               | Mo <i>K</i> α (0.7107 Å)                                                                                                            |
| Crystal dimensions                                   | 0.07 × 0.02 × 0.02 mm                                                                                                               |
| Collection mode                                      | $\omega$ scans to cover the Ewald sphere                                                                                            |
| Frame width, counting time                           | 0.8°, 200 s                                                                                                                         |
| Limiting θ angles                                    | 3.00–29.30°                                                                                                                         |
| Limiting Miller indices                              | –18< <i>h</i> <19, –19< <i>k</i> <20, –9< <i>l</i> <8                                                                               |
| No. of reflections                                   | 12825                                                                                                                               |
| No. of unique reflections                            | 1861                                                                                                                                |
| No. of observed reflections (criterion)              | 795 [ <i>l</i> > 3σ( <i>l</i> )]                                                                                                    |
| $\mu$ (mm <sup>-1</sup> ), method                    | 22.48, combined (multi-scan and                                                                                                     |
|                                                      | analytical - Clark and Reid 1997)                                                                                                   |
| T <sub>min</sub> /T <sub>max</sub>                   | 0.391/0.662                                                                                                                         |
| Coverage, R <sub>int</sub>                           | 0.9982, 0.189                                                                                                                       |
| $F_{000}$                                            | 1628                                                                                                                                |
| Refinement                                           | Full matrix least-squares by                                                                                                        |
|                                                      | Jana2006 on <i>F</i> <sup>2</sup>                                                                                                   |
| Parameters refined                                   | 69                                                                                                                                  |
| $R_1, wR_2$ (obs)                                    | 0.0519, 0.0887                                                                                                                      |
| $R_1, wR_2$ (all)                                    | 0.1567, 0.1277                                                                                                                      |
| GOF (obs, all)                                       | 1.09, 1.01                                                                                                                          |
| Weighting scheme                                     | $1/(\sigma^2(F) + 0.0001F^2)$                                                                                                       |
| $\Delta \sigma_{\min}, \Delta \sigma_{\max} (e/A^3)$ | –6.07, 7.37 (near U atom)*                                                                                                          |

**Table 3.** Summary of data collection conditions and refinement parameters for mathesiusite.

\* The high difference Fourier maxima probably caused by the contribution of the split domains. Introduction of the twin laws did not lead to a better fit.

| Atom            | Wyckoff site | x/a        | y/b        | z/c         | $U_{\rm eq}/U_{\rm iso}$ (Å <sup>2</sup> ) |
|-----------------|--------------|------------|------------|-------------|--------------------------------------------|
| U               | 8 <i>g</i>   | 0.30867(5) | 0.06729(5) | 0.12671(11) | 0.0204(2)                                  |
| V               | 2c           | 0.5        | 0          | 0.3172(9)   | 0.0221(18)                                 |
| S               | 8 <i>g</i>   | 0.8012(3)  | 0.1424 (3) | 0.1239(8)   | 0.0228(15)                                 |
| K1 <sup>#</sup> | 8 <i>g</i>   | 0.1192(3)  | 0.3016 (4) | 0.3777(8)   | 0.048(2)                                   |
| K2 <sup>#</sup> | 2a           | 0          | 0          | 0           | 0.090(8)                                   |
| 01              | 8 <i>g</i>   | 0.8073(9)  | 0.0449 (9) | 0.157(2)    | 0.031(4)*                                  |
| 02              | 8 <i>g</i>   | 0.3386(8)  | 0.0413 (8) | -0.1174(19) | 0.022(3)*                                  |
| O3              | 8g           | 0.0032(13) | 0.1373(14) | 0.386(4)    | 0.085(7)*                                  |
| O4              | 8 <i>g</i>   | 0.2765(8)  | 0.0956 (8) | 0.3653(19)  | 0.023(3)*                                  |
| O5              | 8g           | 0.8722(10) | 0.1677(10) | -0.0053(17) | 0.026(4)*                                  |
| O6              | 8g           | 0.7172(10) | 0.1604(10) | 0.0207(18)  | 0.030(4)*                                  |
| 07              | 8g           | 0.3910(8)  | -0.0478(9) | 0.2390(19)  | 0.022(3)*                                  |
| O8              | 8g           | 0.8036(9)  | 0.1903(9)  | 0.3066(19)  | 0.031(4)*                                  |
| O9              | 2c           | 0.5        | 0          | 0.555 (4)   | 0.032 (7)*                                 |

**Table 4.** Atomic positions and displacement parameters ( $U_{eq}$ ,  $U_{iso}$ , in Å<sup>2</sup>) for the crystal structure of mathesiusite.

\*Refined isotropically. # refined occupancies are 0.994(16) and 0.94(5) for K1 and K2, respectively.

| Atom | <i>U</i> <sub>11</sub> | U <sub>22</sub> | <i>U</i> <sub>33</sub> | <i>U</i> <sub>12</sub> | <i>U</i> <sub>13</sub> | U <sub>23</sub> |
|------|------------------------|-----------------|------------------------|------------------------|------------------------|-----------------|
| U    | 0.0185(4)              | 0.0183(4)       | 0.0244(4)              | -0.0004(3)             | 0.0002(4)              | 0.0000(4)       |
| V    | 0.020(2)               | 0.020(2)        | 0.026(4)               | 0                      | 0                      | 0               |
| S    | 0.021(3)               | 0.016(2)        | 0.031(3)               | -0.0004(19)            | 0.000(3)               | 0.001(3)        |
| K1   | 0.044(4)               | 0.067(4)        | 0.032(3)               | -0.016(3)              | -0.002(3)              | 0.006(3)        |
| K2   | 0.063(9)               | 0.063(9)        | 0.144(19)              | 0                      | 0                      | 0               |

**Table 5.** Anisotropic displacement parameters  $(Å^2)$  for mathesiusite.

| ·                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} U = 01^{i} \\ U = 02 \\ U = 04 \\ U = 05^{ii} \\ U = 06^{iii} \\ U = 07 \\ U = 07^{iv} \end{array} $                                                                                                                                                  | 2.425(13)<br>1.767(13)<br>1.748(13)<br>2.442(14)<br>2.402(15)<br>2.252(13)<br>2.365(13)                                                                                                                       | V-07<br>V-07 <sup>ii</sup><br>V-07 <sup>iii</sup><br>V-09<br>< <i>V</i> -0>                                                                                                                                                                                                 | 1.859(13)<br>1.859(13)<br>1.859(13)<br>1.859(13)<br>1.859(13)<br>1.62(3)<br>1.81                                                                                                                                            |
| <u–o<sub>Ur&gt;<br/><u–o<sub>eq&gt;</u–o<sub></u–o<sub>                                                                                                                                                                                                                  | 1.758<br>2.377                                                                                                                                                                                                | S-01<br>S-05<br>S-06<br>S-08<br><s-0></s-0>                                                                                                                                                                                                                                 | 1.479(14)<br>1.432(14)<br>1.465(15)<br>1.439(14)<br>1.45                                                                                                                                                                    |
| $K1-O2^{vi}$<br>$K1-O2^{vii}$<br>K1-O3<br>$K1-O4^{viii}$<br>$K1-O6^{ii}$<br>$K1-O7^{ix}$<br>$K1-O8^{iii}$<br>$K1-O8^{x}$<br>$K1-O9^{viii}$<br>$K1-O9^{viii}$                                                                                                             | 3.013(14)<br>3.038(14)<br>3.01(2)<br>2.805(14)<br>2.801(14)<br>3.124(14)<br>2.893(15)<br>2.870(14)<br>3.495(7)<br>3.00                                                                                        | K2-01 <sup>xi</sup><br>K2-01 <sup>ii</sup><br>K2-01 <sup>xii</sup><br>K2-03<br>K2-03 <sup>xiii</sup><br>K2-03 <sup>xiv</sup><br>K2-03 <sup>vii</sup><br>K2-05 <sup>xi</sup><br>K2-05 <sup>i</sup><br>K2-05 <sup>ii</sup>                                                    | $\begin{array}{c} 3.149(13)\\ 3.149(13)\\ 3.149(13)\\ 3.149(13)\\ 3.34(2)\\ 3.34(2)\\ 3.34(2)\\ 3.34(2)\\ 3.34(2)\\ 3.155(14)\\ 3.155(14)\\ 3.155(14)\\ 3.155(14)\\ \end{array}$                                            |
| $\begin{array}{c} 01-02^{i}\\ 01-03^{xv}\\ 01-04^{i}\\ 01-05\\ 01-05^{xvi}\\ 01-06\\ 01-07^{i}\\ 01-08\\ 02-05^{ii}\\ 02-06^{ii}\\ 02-06^{ii}\\ 02-06^{iii}\\ 02-07^{iv}\\ 02-07^{iv}\\ 02-08^{ii}\\ 02-09^{xvii}\\ 03-03^{xviii}\\ 03-03^{ix}\\ 03-04^{ix} \end{array}$ | 3.152(18)<br>3.29(3)<br>2.833(18)<br>2.353(19)<br>2.81(2)<br>2.38(2)<br>3.022(18)<br>2.404(19)<br>2.989(18)<br>3.270(19)<br>2.797(19)<br>2.880(18)<br>3.133(18)<br>3.463(18)<br>3.35(2)<br>3.30(3)<br>3.07(3) | $K2-05^{ii}$<br>$K2-05^{ii}$<br>$K2-05^{ii}$<br>$04-05^{ii}$<br>$04-07^{iv}$<br>$04-07^{iv}$<br>$04-08^{iii}$<br>$04-08^{iii}$<br>$04-08^{ii}$<br>$04-08^{ii}$<br>$05-06^{ii}$<br>$05-06^{v}$<br>$05-08^{v}$<br>$06-08^{v}$<br>$06-08^{v}$<br>$07-07^{iii}$<br>$07-07^{iv}$ | 3.155(14)<br>3.155(14)<br>3.22<br>2.985(18)<br>3.118(19)<br>2.879(18)<br>2.775(18)<br>3.178(18)<br>2.990(18)<br>2.33(2)<br>2.90(2)<br>2.386(18)<br>2.87(2)<br>2.771(19)<br>2.382(19)<br>3.176(19)<br>2.518(18)<br>2.518(18) |
| 03–05 <sup>xi</sup><br>03–08 <sup>xi</sup>                                                                                                                                                                                                                               | 3.34(3)<br>3.14(2)                                                                                                                                                                                            | 07–09                                                                                                                                                                                                                                                                       | 2.79(2)                                                                                                                                                                                                                     |

 Table 6. Selected interatomic distances (in Å) for mathesiusite.

Symmetry codes: (i) -x+1, -y, z; (ii) y, -x+1, -z; (iii) -y+1/2, x-1/2, z; (iv) y+1/2, -x+1/2, z; (v) --x+3/2, -y+1/2, -z; (vi) -x+1/2, -y+1/2, -z; (vi) -x+1/2, -z+1; (ix) -y, x, -z+1; (x) y, -x+1, -z+1; (x) -y, x, -z+1; (x) -y, x, -z+1; (x) -y, x, -z+1; (x) -y+1, x, -z+1; (x) -y+1, x-1, -z; (x) -y+1, x, -z+1; (x) -z; (x)

|     | U          | V       | S    | K1         | K2      | ∑BV  |
|-----|------------|---------|------|------------|---------|------|
| 01  | 0.47       |         | 1.48 |            | 0.06×4↓ | 2.02 |
| O2  | 1.72       |         |      | 0.09×2↓    |         | 1.90 |
| O3  |            |         |      | 0.09       | 0.04×4↓ | 0.14 |
| O4  | 1.79       |         |      | 0.16       |         | 1.95 |
| O5  | 0.46       |         | 1.68 |            | 0.06×4↓ | 2.20 |
| O6  | 0.50       |         | 1.54 | 0.16       |         | 2.20 |
| 07  | 0.67, 0.53 | 0.86×4↓ |      | 0.07       |         | 2.13 |
| 08  |            |         | 1.65 | 0.13, 0.14 |         | 1.91 |
| O9  |            | 1.64    |      | 0.03       |         | 1.66 |
| ΣBΛ | 6.14       | 5.08    | 6.35 | 0.96       | 0.67    |      |

**Table 7.** The bond-valence analysis for mathesiusite (*vu*).

Values are expressed in valence units (*vu*).  $\Sigma BV$ , bond-valence sum.  $U^{6+}$ –O bond strengths ( $r_0 = 2.045$ , b = 0.51) from Burns et al. (1997); K<sup>+</sup>–O, S<sup>6+</sup>–O, V<sup>5+</sup>–O bond strengths from Brown and Altermatt (1985).