Abstract. Minerals of the amphibole group are found in igneous rocks on Earth and other rocky bodies. Since the O(3) site of amphibole can contain OH, O^{2-}, F, and Cl, amphibole composition provides important information about water and halogen contents, oxidation state, and other features of its formation and alteration environments. However, the complexity of amphibole crystal chemistry means this information is difficult to extract. Further, it has been regular practice in the era of the electron microprobe to neglect H and Fe^{3+} analyses for amphibole, critically reducing the amount of information available in amphibole analyses in the literature.

We have assembled models and insights from previous work in order to create a methodology that allows the estimation of magmatic H$_2$O and Cl contents from existing amphibole analyses. Since the methodology requires use of a cation norm, we begin with a deeper investigation of the consequences of different cation normalization schemes for amphibole analyses, and provide grounds for deciding which scheme best fits a given amphibole analysis. We then show how the existing model of Popp and coworkers can be reversed to estimate the OH and [O(3)]O^{2-} contents of amphiboles in synthesis experiments. Using a synthetic
dataset collected from the literature (39 amphibole analyses), we calibrate a partitioning model
for the OH/Cl competition on the O(3) site of igneous amphiboles:

\[
K_{\text{Cl}} = \frac{X_{\text{Cl}}/X_{\text{OH}}}{\text{amphibole}} / \left(\frac{[\text{Cl}]/[\text{OH}]}{\text{melt}}\right)
\]

\[
\ln K_{\text{Cl}} = 6.59 \frac{K}{(\text{Na} + [A])[\text{\]}} - 0.679 \text{ Mg} + 0.487 [6]\text{Fe}
\]

where \(X\) signifies a mole fraction of an anion on the O(3) site; [Cl] and [OH] signify melt mole
fractions of the anion in question on a one-oxygen (Stolper-Zhang) basis; K, Na, [A][\text{]}, Mg, and
\([6] \text{Fe} \) signify the amount of each component in the amphibole in atoms per amphibole formula
unit, with [A][\text{]} denoting vacancies on the amphibole A site.

We then combine the Popp et al. model with our new model to link the occupancy of the
amphibole O(3) site and other crystal chemical parameters to the Cl and H_2O content of melts
crystallizing amphibole. The competition between OH and Cl for this site can be used to
calculate the melt and amphibole OH/H_2O contents, as well as the speciation of Fe in amphibole,
provided that the Cl content of both the amphibole and its coexisting melt is known, without
analyzing either phase for H or Fe^3+/Fe^2+.

While the models in this paper should be recalibrated using future experimental data, this
work shows that considerably more information about the volatile contents of magmas can be
gleaned from amphibole than previously shown, and also provides additional information about
the crystal chemistry of amphibole and how it affects Cl partitioning into minerals of this group.

Keywords: amphibole, mineral/melt partitioning, chlorine, water, igneous petrology

1. **Introduction.** Amphibole, apatite, and mica are common minerals well-suited to estimating
the water and halogen content of melts (Zhang et al., 2012) or fluids (Zhu and Sverjensky, 1991).
The population of the monovalent anion site of these minerals preserves a record of their formation environment. This information is valuable in a wide range of applications from economic geology (Rasmussen and Mortensen, 2013; Smith, 2007) to planetary petrology (Boyce et al., 2010; Filiberto and Treiman, 2009a; Filiberto and Treiman, 2009b; McCanta et al., 2008; Patiño Douce et al., 2011).

Amphiboles have a particularly complex crystal chemistry (Hawthorne and Oberti, 2007a; Hawthorne and Oberti, 2007b; Hawthorne et al., 2012), which makes them valuable as indicators of a wide variety of chemical processes (Chambefort et al., 2013; Chambers and Kohn, 2012; Humphreys et al., 2009; Ridolfi et al., 2010) but also makes it difficult to disambiguate the effects of different processes. The O(3) site of amphiboles can contain OH, F, Cl, and O\(^{2-}\) (Hawthorne and Oberti, 2007a; Hawthorne et al., 2012). The partitioning behavior of the amphibole for these components relative to its genetic melt or fluid is a strong function of its cationic makeup.

Amphibole tends to reject Cl based on its large size relative to OH and F, like most rock-forming minerals (Zhu and Sverjensky, 1991), so high proportions of Cl on the O(3) site only occur in extremely saline hydrothermal or deuteric environments (Enami et al., 1992; Morrison, 1991). Cl incorporation into amphibole is encouraged by substitution of Fe for Mg on the octahedral sites, A site occupancy by K, and substitution of Al for Si on the tetrahedral sites (Enami et al., 1992; Oberti et al., 1993b; Sato et al., 2005); this is due to both a tendency toward Fe-Cl bonds and away from Mg-Cl bonds, and the expansionary effect all these substitutions have on the amphibole lattice. In contrast, amphibole readily accepts F on the O(3) site as a substitute for OH (Zhu and Sverjensky, 1991). Substitution of F can stabilize amphibole to higher T and P conditions that would dehydrate and destabilize OH-bearing amphibole (Garcia et
O2- on the O(3) site, or oxo-component (Hawthorne and Oberti, 2007ab; Hawthorne et al., 2012) is widely known in calcic, titanian amphiboles of igneous rather than metamorphic origin (Martin, 2007; Schumacher, 2007). This substitution increases negative charge and must be counterbalanced by one of the many possible cation substitutions that would also increase charge. The two most important cations substituted in are Ti4+ and Fe3+, with Al3+ also of importance (King et al., 1999, 2000; Popp et al., 2006). Amphiboles are susceptible to the internal reaction

\[
\text{Fe}^{2+} + \text{OH}^- \rightarrow \text{Fe}^{3+} + \text{O}^{2-} + \frac{1}{2} \text{H}_2
\]

whereby iron oxidation is coupled to dehydrogenation (Demeny et al., 2006; Dyar et al., 1993; Dyar et al., 1992; King et al., 1999; Martin, 2007; Popp and Bryndzia, 1992; Popp et al., 1995, 2006). This dehydrogenation reaction can occur at subsolidus conditions, which can interfere with attempts to use amphibole compositions to determine water contents of source magmas (Lamb and Popp, 2009); further, it may occur in the forward or reverse direction as a result of shock (Minitti et al., 2008ab), adding uncertainty to attempts to use amphibole compositions from meteorites to constrain the properties of source magmas on extraterrestrial bodies.

Goals. In this work, we reconsider the methodologies used to calculate amphibole formulae from chemical composition data (Hawthorne and Oberti, 2007a; Leake et al., 1997; Schumacher, 2007) and suggest revised tests to determine which methodology is most appropriate for different amphiboles with differing amounts of available chemical information.
We then consider an existing model of amphibole chemistry (Popp et al., 1995, 2006) and show how it can be used in an inverse sense: instead of estimating H$_2$O activity and fugacity in the source region of the amphibole based on the H content of the amphibole, if the H$_2$O activity of the source melt is known or estimated, the model can be used to calculate the amount of OH and O$^2-$ on the O(3) site.

Next, we use this methodology to recalibrate the model of Sato et al. (2005), using the calculated OH abundance instead of assuming 2 = OH + F + Cl, and incorporating additional synthetic data (Adam and Green, 1994, 2006; Adam et al., 2007; Hauri et al., 2006; McCubbin et al., 2008).

Finally, we show how using both models together generates enough constraining equations to result in a determined system for situations where the P, T, f(O$_2$) of formation, the melt Cl composition, and a typical amphibole composition by electron microprobe (EMP) are available. With this coupled model system of equations, the H$_2$O content of both amphibole and melt, along with the Fe$^{3+}$/Fe$^{2+}$ ratio of the amphibole can be calculated: a powerful method to extend the utility of conventional EMP analyses, and a way of checking, in the case of potentially disturbed systems with H contents determined by, e.g., ion microprobe, whether the amphibole and/or melt have lost H since the Cl equilibrium state was set.

At present, we must assume that the Popp et al. (2006) model is extensible to amphiboles beyond the pargasite and kaersutite compositions they used to calibrate it. We do not have enough experimental data at present to recalibrate this model, and we do not have any means of quantifying the error in so extending it. We provide error estimates for our model parameters, but these calculated errors only describe how well the Cl/OH partitioning model equation predicts the Cl/OH partitioning coefficients in our calibration dataset, as opposed to the unknown
error in the calculated OH and $^{[O(3)]}O^2-$ content of the calibration amphiboles. This paper shows
the methodology and its benefits: in particular, use of the Popp et al. (2006) model to calculate
OH and $^{[O(3)]}O^2-$ allows much better fitting of the data of Sato et al. (2005) than they were able to
achieve without it. The model equations presented here are not, however, to be regarded as
settled.

2. Calculation of amphibole formulae. Calculation of amphibole formulae from electron
microprobe or other chemical data is often a vexing process. It is commonly assumed that OH +
F + Cl sum to 2.0 apfu (atoms per formula unit), which allows a normalization to the anhydrous,
halogen free basis of 23 O (Leake et al., 1997) but this assumption is not generally true,
especially for igneous amphiboles (e.g. kaersutites and "basaltic hornblendes"), which are known
to contain considerable O^{2-} on this site (Deer et al., 1997; Dyar et al., 1992, 1993; Hawthorne and
Oberti, 2007a; King et al., 1999; Leake et al., 1997; Martin, 2007; Popp and Bryndzia, 1992;
Popp et al., 1995, 2006). Normalization schemes to 23 O are discussed in detail by Leake et al.
(1997) and Schumacher (2007). These authors propose calculating two normalizations, one
assuming all Fe is Fe$^{2+}$, the other assuming all Fe is Fe$^{3+}$, comparing the results to an extensive
list of "chemical" and "stoichiometric" limits, using these to calculate adjusted minimum and
maximum permissible values for ferrous and ferric iron, and then generally taking the mean
between these values as the determined speciation of iron in the amphibole. This complex
process is by no means always used in the literature, and its results are not particularly
satisfactory, although they are better than the default assumption of all Fe being Fe$^{2+}$ or Fe$^{3+}$
(Hawthorne and Oberti, 2007a).

Instead, many studies use one of a few cation normalization schemes. Amphibole group
minerals contain twenty-four anions and between fifteen and sixteen cations per formula unit. The cations sit on at least seven crystallographically distinct sites, one of which can be vacant, partly, or totally filled. These seven crystallographic sites can be grouped into four distinct size and coordination types: in order of increasing size, two tetrahedral/4-fold coordination sites, three octahedral/6-fold coordination sites, an 8-fold or 6+2 fold or even 4+4 fold (Oberti et al., 1993a) coordinated site, and the large potentially vacant A site (Figure 1). These four site types can be occupied by all the common cations in silicates (Hawthorne and Oberti, 2007a).

Common major element constituents of amphiboles are located as follows:

- The tetrahedral sites are occupied by Si and Al (much less commonly Ti; Leake et al., 1997).
- The octahedral sites are occupied by Al, Ti, Cr, Mg, Mn, Fe²⁺ and Fe³⁺.
- The 8-fold sites are occupied by Mg, Mn, Fe²⁺, Ca, and Na.
- The large A sites are vacant or occupied by Na, K, and very rarely Ca (Leake et al., 1997).

A given cation is commonly found on more than one type of site in a given amphibole. The most common overlap situations involve Al on both tetrahedral and octahedral sites; Mg, Fe²⁺, and Mn on both octahedral and 8-fold sites; and Na on both 8-fold and A sites. Ti occupancy of tetrahedral sites and Ca occupancy of the A site are rare and appear to be limited to peculiar chemical environments (Hawthorne et al., 1996a; Hawthorne et al., 1996b; Leake et al., 1997). The likelihood of vacancies and the amount of overlap that can occur between sites are troublesome for any method of cation normalization; nevertheless, since it obviates the need to determine Fe²⁺/Fe³⁺ and volatile constituents, cation normalization is commonly used.

Probably the two most common cation normalization schemes for amphiboles are, in this
order, the 13-cation scheme, where all cations outside of Ca, Na, and K are assumed to occupy
and fill the tetrahedral and octahedral sites, and the 15-cation scheme, where all cations outside
Na and K are assumed to occupy and fill the non-A cation sites (Hawthorne and Oberti, 2007a).
These schemes are directed specifically at calcic amphiboles (e.g. hornblende, actinolite,
pargasite, edenite), in which Ca dominates the 8-fold site. The 15-cation scheme is also
applicable to ferromagnesian amphiboles in which Fe and Mg dominate the 8-fold site. The 13-
cation scheme is also applicable to sodic amphiboles, in which Na occupies a large fraction of
the 8-fold site.

Igneous amphiboles in mafic to intermediate rocks are generally calcic (Deer et al., 1997;
Hawthorne et al., 2012), although exceptions are known (e.g., Shane et al., 2007). The twofold
defining assumption of the 13-cation scheme implies that significant Fe does not occupy the 8-
fold site and significant Ca does not occupy the octahedral site. If this assumption is not true, the
13-cation scheme will underestimate the number of cations in the overall amphibole formula.
The 15-cation scheme assumes that Ca does not occupy the A site and Na does not occupy the 8-
fold site; if this assumption is invalid, the 15-cation scheme will produce an excess of cations in
the calculated formula.

There are solvus relationships between the calcic amphiboles and the Mg-Fe amphiboles,
as well as between the calcic amphiboles and the sodic amphiboles. In natural systems, these
cause exsolution of high-temperature (and/or high-pressure) binary or ternary amphiboles into
two or three phases of more dominantly calcic, sodic, or ferromagnesian affinity (Smelik and
Veblen, 1992a, 1992b, 1993, 1994). Unexsolved amphiboles generally have >1.5 apfu of the
dominant cation on the 8-fold site (e.g. tremolites on the glaucophane-tremolite solvus
synthesized by Jenkins, 2011 with 1.6-1.65 apfu [83]Ca), making both the 13-cation and 15-cation
schemes at least crudely applicable to any calcic amphibole. Zingg (1996) noted that in the rock
suites he studied, Na appeared to be accommodated in calcic amphiboles dominantly by the
edenite exchange, i.e., a substitution from a low-alkali, A-site vacant base composition via the
exchange vector \(^{A} (Na,K)_{1^{[4]} } Al_{1^{[4]} } Si_{-1} \), with the glaucophane exchange \(^{[8]} Na_{1^{[6]} } Al_{1^{[8]} } Ca_{-1^{[6]} } Mg_{-1} \)
of marginal importance, while the cummingtonite exchange \(^{[8]} Fe_{1^{[8]} } Ca_{-1} \) was more evident;
thus, for the amphiboles in his study, the 15-cation normalization would provide significantly
more accurate results than the 13-cation scheme.

A third cation normalization scheme, the 16-cation normalization, assumes full
occupancy of the cation sites in the amphibole (Hawthorne and Oberti, 2007a). This can be a
relatively accurate assumption for certain amphiboles. It is well-known that Na and K
occupation of the A site is positively correlated with temperature (Holland and Blundy, 1994).
While pressure effects on A site occupancy are seldom discussed in the literature, it seems clear
that the edenite exchange vector above should result in substantial molar volume reduction of the
amphibole+fluid or melt system, with any increase in amphibole unit cell volume more than
offset by the replacement of \((Na,K)\)+Al in the external environment with Si; therefore the edenite
exchange should be expected to progress toward completion at high pressure. Thus both high \(T \)
and high \(P \) conditions, in the presence of adequate alkalis and Al, should produce amphiboles
that tend toward full cation site occupancy.

3. Suggested methods for normalization of igneous amphibole formulae. To use igneous
amphibole compositions to study the volatile contents of their parental magmas, it is highly
desirable to find a normalization scheme that does not constrain the \(O^{2-} \) content of the \(O(3) \) site
to 0 (King et al., 1999; Lamb and Popp, 2009; Popp et al., 2006) or to another value such as
$[O^{3-}]_O^2- = 2 \text{ Ti}$ (Hawthorne et al., 2012; Leake, 1968; Saxena and Ekstrom, 1970). For amphibole analyses where Fe_2O_3/FeO and H$_2$O have not been determined, which are the vast majority of those in the literature, a cation normalization procedure is the only way to accomplish this.

Mazdab (2003) converted the six stoichiometric checks recommended by Leake et al. (1997) and others into cation normalizations, then checked the results of these normalizations for charge balance and cation site type occupancy constraints. This allowed him to choose sensible normalization results for at least one of the normalization types. We propose a procedure with some similarities, using the three cation normalizations described above: 13-cation, 15-cation, and 16-cation, and comparing their results to one another and to a 23 O anion normalization.

After calculating the results of all three normalizations, we bin the cations in a standardized order. All Si is placed on tetrahedral sites, which are then filled with Al. Residual Al is placed on the octahedral sites, followed by Ti, Mg, and Mn; the octahedral sites are then filled with Fe. In reality, Fe, Mn, and Mg will all occupy the 8-fold site if any of them do, but this is the simplest convention. The important distinction is between smaller divalent cations and Ca on the 8-fold sites. Residual Fe is placed on the 8-fold sites, followed by Ca, with Na added to fill the 8-fold sites if needed. Residual Ca, Na, and all K are placed on the A site, which may be partly vacant.

The next step is to calculate the positive charge due to cations, with the temporary assumption that all Fe is present as FeO. For a charge-balanced amphibole with no O^{2-} on the O(3) site, the cations should contribute 46+ to the structure to balance the anions (22 O and 2 OH, F, or Cl). This is equivalent to checking how closely the normalization corresponds to a 23 O normalization with all ferrous iron. The results will in general not equal the ideal total of 46+.

To correct this, we take one of two steps depending on whether there is a deficit or an excess of
positive charge. In case of a deficit, we calculate the amount of Fe$^{3+}$ substitution for Fe$^{2+}$ that
would be required for charge balance; in case of excess, we calculate the amount of O$^{2-}$
substitution for OH$^{-}$ that would achieve the same. This calculation can be checked by summing
the anions to see if they equal the amphibole total of 24.

This procedure gives a minimum adjustment required for charge balance. It is possible to
add more of both Fe$^{3+}$ and O$^{2-}$ (in equal amounts) to the compositions calculated this way
according to equation 1 above. This does not affect the overall anion to cation ratio, since the
additional anions introduced by Fe$_2$O$_3$ in place of FeO are offset by the H$_2$O lost by O$^{2-}$
substitution. Thus, the maximum adjustment will be the one that either converts all Fe on the
octahedral sites to Fe$^{3+}$ or converts all OH to O$^{2-}$, whichever comes first. The resulting
composition will still be subject to the constraints imposed by the choice of cation normalization.

For ease of discussion, we define the quantity Δ_{oxo}:

$$\Delta_{\text{oxo}} = \text{Cation charge (all ferrous iron)} - 46 = X(O^{(3)}O^{2-}) - X(Fe^{3+})$$

where X is the molar quantity of the component in question in apfu. Δ_{oxo} is positive when the
oxo-component exceeds the amount of ferric iron in the amphibole, negative when the reverse is
true.

We can reinterpret the results of a 23 O normalization with all Fe assumed to be Fe$^{2+}$ as a
normalization requiring $\Delta_{\text{oxo}} = 0$ (equal amounts of Fe$^{3+}$ and oxo-component). We can calculate
the results of a 23 O norm for comparison to the results of the cation norms with this corollary in
mind to assist in choosing the best amphibole formula in a given situation.

We suggest a non-exhaustive list of checks that may allow rejection of one or more norm
calculations, or will at least give more information about the consequences of choosing one
scheme over another. The reader, again, should bear in mind that our focus is on igneous
amphiboles.

- Compare the values of the normalization factors for all schemes, including 23 O. Any scheme whose normalization factor exceeds the 16 cation factor is unrealistic.
- Compare Δ_{oxo} to $^{[6]}\text{Fe}$. If $-\Delta_{\text{oxo}} > ^{[6]}\text{Fe}$, the scheme in question (probably the 13-cation scheme) is unrealistic.
- Conversely, if $\Delta_{\text{oxo}} > 2 - \text{F} - \text{Cl}$, the scheme in question is unrealistic.
- Any 13-cation or 23 O norm that requires K or vacancies ([] on the 8-fold sites is also unrealistic.
- If the 13-cation norm assigns a large amount (>0.3-0.4 apfu) of Na to the 8-fold site, or if the 16-cation norm assigns significant Ca (>0.1 apfu) to the A site, the 15-cation norm is usually preferable.
- Evaluate the Δ_{oxo}/Ti ratio. Popp et al. (1995, 2006) show that this ratio is commonly equal to 1.0 for pargasites and kaersutites. Hawthorne et al. (2012) suggest a maximum of 2 for this ratio based on older work (Leake, 1968; Saxena and Ekstrom, 1970). A very large value for this ratio (>3) suggests that Δ_{oxo} is too high.

Other criteria are described in Mazdab (2003).

To illustrate this methodology, we have included Supplemental Information Table 1, which includes analyses for a variety of igneous amphiboles. The reader is invited to reuse these spreadsheets to check the results of multiple normalization schemes on their own amphibole data. Examining the results, we note several patterns:
A typical igneous calcic amphibole will provide similar formulae when normalized to 15 cations or 23 O. A few tenths of an apfu of $^{[8]}\text{Fe}$ are required in these schemes. The 13 cation scheme will replace this with $^{[8]}\text{Na}$ and will usually require a minimum of ~50% of the Fe to be $^{3+}$. For some of these amphiboles, the 13 cation scheme is untenable due to the assignation of $^{[8]}\text{K}$ or $^{[8]}\text{Ca}$. The 16 cation scheme forces a few to several tenths of an apfu of $^{[1]}\text{Ca}$ and is unrealistic.

The cummingtonite data provided by Shane et al. (2007) illustrate that the 15-cation norm and the 23 O norm are the only ones that provide reasonable results for this class of amphiboles, which have nearly vacant A sites and 8-fold sites dominated by $\text{Fe}+\text{Mg}+\text{Mn}$. The 2007 Bezymianny amphibole compositions (Turner et al., 2013) are unusual in that they have nearly equal 16-cation and 23 O normalization factors. We prefer the 15-cation normalizations for these amphiboles as well, since the 13 cation norms require nearly 100% $^{3+}$, while the other norms demand 0.1-0.25 apfu $^{[1]}\text{Ca}$. These amphiboles have low Si, $^{[6]}\text{Al}$, and Ti relative to other amphiboles in the dataset, which may have discouraged the inclusion of $^{[O(3)]}\text{O}^2-$, even in an oxidizing environment enriched in $^{3+}$ (King et al. 1999; Popp et al. 2006).

Kakanui amphibole has Na+K>1 no matter which scheme is used; the 15-cation scheme is unusable. The 13-cation and 23 O factors are close, and they calculate ~0.4 apfu $^{[8]}\text{Na}$. The 16-cation norm instead calculates ~0.15 apfu $^{[8]}\text{Na}$ and ~0.2 apfu $^{[8]}\text{Fe}$, which seems equally realistic. In any case, this high P mineral is the only amphibole in our dataset required to have a significant glaucophane component.

The amphiboles synthesized by Adam and Green (1994, 2006), Adam et al. (2007), and McCubbin et al. (2008) were grown at high P (>9 kbar) and T (>980 °C). These
amphiboles have very similar 15-cation and 16-cation formulae with Na+K ~ 1. As noted above, these growth conditions are expected to favor full occupancy of the amphibole structure via the edenite exchange, so these results are as expected. The 23 O formulae have 0.0-0.17 apfu $[8]$Na, 0.1-0.25 apfu $[A]$, and are also reasonable. All three schemes yield ~0.45-0.76 apfu $[8]$Fe for the McCubbin et al. (2008) synthetic amphiboles. At these conditions, the cummingtonite-hornblende solvus is likely closed (Smelik and Veblen, 1994; Zingg, 1996) and there is no reason to discredit these results. On the other hand, while the 13-cation scheme yields reasonable cation occupancies for these amphiboles, the minimum amount of Fe$^{3+}$ they require is near or at 100% of the total iron available, which is unrealistic for amphiboles crystallized at mantle-equivalent f(O$_2$) (King et al. 2000).

The cation normalization and follow-up procedure described only fixes minimum and maximum values of Fe$^{3+}$ and the oxo-component of the amphibole. The traditional response to this kind of ambiguity was to take an average between the minimum and maximum possible values of Fe$^{3+}/\Sigma$Fe (Leake et al., 1997); and in the absence of any data about the formation environment of the amphibole, this is probably the best solution (Hawthorne and Oberti, 2007a). The next section describes how we can improve on this estimation technique when information about the formation environment is available.

4. Use of f(O$_2$) and f(H$_2$O) to calculate redox state of amphibole. Popp et al. (1995, 2006) provide a quantitative model to evaluate the relationship between the amphibole Fe/H redox state in equation 1 and the external environment of the amphibole. For a fully characterized
amphibole, the model produces a value of \(f(H_2) \) that can be combined with estimates of \(f(O_2) \) to evaluate the H2O activity or fugacity of the amphibole source region, or the conditions under which it last equilibrated. The model was calibrated using data from two pargasites and one kaersutite over the temperature range 700 - 1000 °C and pressure range 1 - 10 kbar.

In a situation where data is available for \(f(H_2O) \) and \(f(O_2) \), along with an ordinary suite of electron microprobe data for amphibole composition (including halogens), for example in synthesis experiments with a controlled amount of H2O and an \(f(O_2) \) buffer, we can reverse the model and use it to calculate the amount of Fe\(^{3+}\), Fe\(^{2+}\), \([O(3)]O_2^-\), and OH in the amphibole. This is done by starting with the equation (Popp et al., 2006)

\[
K_X = 28.94 f(H_2) \left[X^2(Fe^{3+}) \cdot X_{oxo}^2 \right] / \left[X^2(Fe^{2+}) \cdot X^2(OH) \right]
\]

where \(X \) is the molar quantity of each component in the amphibole, \(X_{oxo} = X([O(3)]O_2^-) \), and \(K_X \) is an effective equilibrium constant (see the original reference for further explanation). Once we have selected an amphibole normalization as discussed above, we can make substitutions like the following based on equation 2:

\[
X(Fe^{3+}) = X_{oxo} - \Delta_{oxo}
\]

\[
X(Fe^{2+}) = X_Fe^2 - X(Fe^{3+})
\]

\[
X(OH) = 2 - X(F) - X(Cl) - X_{oxo}
\]

With these substitutions, equation 3 can be converted into a quartic polynomial equation in \(X_{oxo} \), with all other quantities calculated from the normalized amphibole formula or the known external conditions. This equation can be solved analytically, but it is easier to use numeric methods. One root will be equal to \(2 - X(F) - X(Cl) \) (a trivial root, implying no OH present in the amphibole) while another (the chemically significant root) will be between this value and \(\Delta_{oxo} \).

Supplemental Table 2 shows the results of the use of this equation for the synthetic
amphiboles in Supplemental Table 1.1. For the Sato et al. (2005) data, since there are no estimates of phase proportions in their run products, their claim of water saturation in all experiments has to be accepted, and the $a(\text{H}_2\text{O})$ of their systems is assumed to be 1.0. For the other experiments, the authors reported phase proportions, which allowed the H$_2$O content of their experimental melts to be compared to calculated H$_2$O solubility values (Moore et al., 1998); the systems were all found to be H$_2$O-undersaturated. We therefore calculated the $a(\text{H}_2\text{O})$ of these systems using the model of Burnham (1997). (The interested reader may consult Appendix 1 to learn why we chose these models out of the many published models for H$_2$O solubility in silicate melts.) The resulting quartic equation for each analysis was solved for the appropriate root using the nonlinear, continuous GRG Solver routine in Microsoft Excel®. The results of these calculations are intuitively reasonable: most of the X_{oxo} values are only a few tenths of an apfu above the Δ_{oxo} values, and the exceptions are the three high-$f(\text{O}_2)$ runs from Sato et al. (2005). Once X_{oxo} is calculated, the Fe$^{3+}$ content and other properties of the amphibole can be calculated from the crystal chemical constraints in equation 4.

Thus, we see that the Popp et al. (2006) model, and future refinements and extensions to it, can be used to estimate the seldom-measured H$_2$O and Fe$_2$O$_3$ content of amphiboles from an environment whose $f(\text{O}_2)$ and $a(\text{H}_2\text{O})$ is sufficiently well-known or controlled. It is possible to constrain these parameters for igneous amphiboles in a more indirect, but often more readily measured, fashion, using the Cl content of equilibrated melt (preserved as quenched glass) and exploiting the competition between Cl and OH for the amphibole O(3) site. The next section will discuss this competition, while the section after will show how the Cl/OH model and the Fe/H model just described can be used in tandem to calculate the H$_2$O content of melts crystallizing amphibole as well as the Fe$_2$O$_3$ and H$_2$O content of the amphibole itself.
5. Chlorine partitioning between amphibole and melt; a recalibration of the model of Sato et al. (2005). Equilibrium partitioning behavior for many trace and minor elements or chemical components is adequately described by a bulk partition coefficient D:

$$D_X = \frac{C_X(\text{mineral})}{C_X(\text{melt or fluid})}$$

where C is the weight fraction of the element or component X in the phase in question. D may or may not be known as a function of temperature, pressure, or chemistry of either the mineral or the melt/fluid; in many cases it is quoted as a catch-all constant (e.g. Filiberto and Treiman, 2009a; Zhang et al., 2012). Such a formulation is not adequate for H$_2$O, F, and Cl in amphibole at better than an order-of-magnitude level, as can be seen in Figure 2, where D is calculated and plotted against absolute temperature for syntheses in Supplemental Tables 1 and 2. As can be seen, D_{Cl} varies by a factor of ~5 at a given temperature and is less than 1 for all reliable analyses. This is unsurprising, given the complex crystal chemistry of amphibole and the relative misfit between Cl and the other possible occupants of the O(3) site. Further, unlike typical trace or minor constituents, the halogens and OH fulfill a critical role in crystallizing amphibole—except in the extreme case of an oxo-only amphibole, these components are required in order to occupy the O(3) site of the lattice; they are also limited to this site, and cannot occupy other sites in the lattice in any significant quantity. In this situation, the simple D formalism is inadequate to explain the behavior of the amphibole-melt(-fluid) system.

Zhang et al. (2012), in their assessment of currently available models for halogen partitioning between minerals and melts, cite Sato et al. (2005) as the only such model for amphibole. This model calculates a molar partitioning reaction coefficient K_{Cl}:
\[K_{\text{Cl}} = \frac{(X_{\text{Cl}}/X_{\text{OH}})_{\text{amphibole}}}{([\text{Cl}]/[\text{OH}])_{\text{melt}}} \]

where [] indicate mole fraction on a 1O basis (Appendix 1) as a function of the Mg# (= Mg/(Mg + ΣFe)) of the amphibole and temperature \(T \). This model was calibrated for synthetic hornblende crystallized from water-saturated melts of Unzen rocks, or Fe-enriched Unzen rocks, at 800 to 850 °C and 1.85 to 3 kbar. This model is a significant advance compared to previous discussions of amphibole crystal chemistry vis-a-vis chlorine partitioning (Enami et al., 1992; Morrison, 1991; Oberti et al., 1993b) but it is calibrated for a very narrow range of \(P, T \), and chemical space relative to the known stability fields of various amphiboles. It is likely not applicable to petrological problems involving, e.g., basaltic melts.

Another potential drawback to the Sato et al. (2005) model is that it explicitly assumes \(2 = \text{OH} + \text{F} + \text{Cl} \), equivalent to a lack of oxo-component in the amphibole. As seen in Supplemental Table 2, the Popp et al. (2006) model predicts significant oxo-component even under conditions of water saturation \((a(\text{H}_2\text{O}) = 1) \). To use the actual formulation of Sato et al. (2005), one must ignore oxo-component and treat it as equivalent to OH.

In Supplemental Table 3, we show the results of reproducing the calculations in Table 5 of Sato et al. (2005) on an augmented dataset that includes amphibole and glass data from basaltic, ferroan basaltic, alkali basaltic, and andesitic melts (Adam and Green, 1994, 2006; Adam et al., 2007; Browne, 2005; Hauri et al., 2006; McCubbin et al., 2008), all of which were crystallized at higher \(T \) and most of which were crystallized at higher \(P \) than any of the Sato et al. (2005) amphiboles. The reader should note that we were unable to reproduce the Sato et al. (2005) calculations even for their own syntheses, possibly because they did not cite a reference for \(f^o(\text{H}_2\text{O})(P,T) \). In this paper, we employ the Helmholtz energy formulation for \(\text{H}_2\text{O} \) of Pitzer.
and Sterner (1994) and the fugacity equation from Sterner and Pitzer (1994). The resulting fit to Sato et al. (2005)'s original equation (Figure 3) is therefore poorer than the one reported in their paper for their own data. Still poorer is the fit to the added data, especially the very high pressure data. The poor fit to the data of Browne (2005) may be due to problems with his amphibole or glass analyses, since his synthesis conditions were quite similar to those of Sato et al. (2005). As for the rest of the added data, even with the moderate amount of systematic error introduced by changing water fugacity models, it seems clear that the Sato et al. (2005) equation is not applicable to amphiboles in basaltic or andesitic melts at ~10 kbar, ~1000 °C and above.

We recalibrated the Sato et al. (2005) partitioning model using our entire synthetic dataset, except for the Browne (2005) data, and amphibole OH contents calculated according to the methodology of the previous section of this paper, including the use of 15 (or in one case, 16) cation norms for all amphibole compositions. Most of the complexity in this calculation involves finding an appropriate value of [OH]_{melt} in equation 5.

We had to make two important assumptions in order to carry out these calculations, and we considered the results of different options in each case. Our additional data were obtained from systems crystallized inside graphite capsules, rather than systems in precious metal capsules with an external metal and/or ceramic oxygen buffer as Sato et al. (2005) used. Graphite capsule systems are partially buffered by the reaction of graphite with aqueous components even in the absence of a free aqueous fluid phase (Holloway et al., 1992; Médard et al., 2008; Pilet et al., 2010; Ulmer and Luth, 1991). We therefore ran all of our calculations assuming f(O_2) 0.8 log unit lower than the water-saturated GCO (graphite-carbon oxides) buffer (Médard et al., 2008; Ulmer and Luth, 1991) for the syntheses in graphite capsules. We observed little difference in the calculated K_{Cl} for higher (GCO) or lower (GCO-1) f(O_2) conditions.
The other assumption regards the H₂O speciation model employed to determine [OH] in the melt. Sato et al. (2005) used the method of Zhang (1999) for this purpose, which defines two quasi-reaction constants K_1 and K_2 that, roughly speaking, govern H₂O solubility and speciation in silicate melt respectively. While Sato et al. (2005) apparently used the K_1 of Zhang (1999), who supplies a temperature and pressure-calibrated expression for K_1 for rhyolitic melt on the basis of solubility data, they employed K_2 as determined by Nowak and Behrens (2001). Both constants were determined for rhyolitic systems and are probably not ideal fits for the dacites of Sato et al. (2005), let alone the more mafic systems of our auxiliary data. For the dacite dataset, we substituted the K_2 of Liu et al. (2004), which is recommended by Zhang and Ni (2010).

Few workers calculate a K_1 as described by Zhang (1999), and there is little solubility data for dacite in the literature with which to constrain K_1. Ohlhorst et al. (2001), whose primary concern was synthesizing bubble-free glasses for spectroscopic calibrations, provide solubility data that allow a calculation of K_1 for two samples at 1-2 kbar, 1200-1225 °C using the same method Zhang (1999) employed to calibrate K_1 for rhyolite, including the use of K_2 (Liu et al., 2004) to reconstruct high T speciation. These dacite K_1 values are near 9.7×10^{-6}, ~40% lower than the values calculated by Zhang (1999)'s rhyolite K_1 regression ($~1.3 \times 10^{-5}$). Liu et al. (2004) only supply solubility data at 1 bar and ~500 °C, well out of the range in which the K_1 regression is claimed accurate; 1 bar dacite K_1 values are two orders of magnitude higher than those returned by the regression. We have therefore calculated total water solubility in the dacites ($[\text{H}_2\text{O}]_t$) following Moore et al. (1998) instead of determining $[\text{H}_2\text{O}]_m$ and $[\text{H}_2\text{O}]_t$ via a K_1.

For the basaltic data, a value for K_1 was not needed since the melt was undersaturated (no aqueous fluid phase was present), and by assuming an approximate amount of H₂O content of the amphibole (1.1 to 1.4 wt%) one could figure the amount of H₂O in the melt by mass balance,
then check the accuracy of the approximated amphibole H$_2$O content at the end of the whole
calculation. We tried two formulations for speciation in the basaltic melts: the temperature-
independent regular solution model (Dixon et al., 1995; Silver and Stolper, 1989), and K_2
expressions temperature calibrated by means of glass transition theory (Lesne et al., 2011). The
regular solution model yields an equation that must be solved numerically to determine
speciation. The results of the temperature-independent calculation are a higher [H$_2$O]$_m$ and a
lower [OH] compared to the K_2 calculation for the melts in question, and we tried regression
against both sets of results.

We employed standard multiple linear regression techniques (Iman, 1994) in Microsoft
Excel© on a chosen family of 19 crystal chemical and environmental parameters to determine
which were most significantly correlated with our redetermined values of ln K_{Cl}. Our procedure
is discussed in more detail in Appendix 2. The parameters chosen were Mg/(Mg+Fe),
Mg/(Mg+$^{[6]}$Fe), Mg, Mn, $^{[6]}$Fe, $^{[6]}$Al, Ti, (Mg+Mn+$^{[6]}$Fe) / (Ti+$^{[6]}$Al), Si, $^{[4]}$Al/Si, K, $^{[A]}$[], Na,
(K+$^{[A]}$[])/Na, K/$^{[A]}$[]+Na), Ca, Ca/$^{[8]}$Fe, T (K), and ln P (bar). The rationale for this choice of
parameters was 1) to test specific parameters suggested by Sato et al. (2005), i.e. Mg#, $^{[4]}$Al = 8-
Si, and T, 2) to test additional parameters related to the octahedral site occupancy of Mg and Fe,
given the local chemical properties of Fe-Cl affinity and Mg-Cl antipathy (Oberti et al., 1993b;
Zhang et al., 2012), 3) to test other parameters related to the size of the amphibole lattice, which
should correlate positively with the ability of the lattice to house the large Cl anion (Enami et al.,
1992; Morrison, 1991; Oberti et al., 1993b; Zhang et al., 2012), and 4) to avoid parameters
directly related to the oxidation state of iron or the water content of the system, so that the
resulting regression equations could be used in the combined model described in the next
section. It is noteworthy, regarding the last point, that one does observe good correlation
between $\ln K_{\text{Cl}}$ and regressed equations that include parameters depending on the Fe redox state of the amphibole ($Fe^{2+}, Fe^{3+}, Mg_{\text{ferrous}}/(Mg+Fe^{2+}), [6]Mg_{\text{ferrous}}/(Mg+[6]Fe^{2+})$) and the $f(H_2O)$ of the system.

Our regression model equation coefficients and standard errors are given in Table 1, while the entire regression report is given for each model in Supplemental Tables 4.1-4.4. For comparison, we also include the results of our methodology applied to the analytical data of Sato et al. (2005) alone (Table 1 and Supplemental Table 4.5). From a statistical standpoint, the resulting equations are acceptable descriptions of the global dataset. Our R-values range from 0.86 to 0.95 (cf. the 0.82 reported by Sato et al. 2005), R^2 from 0.70 to 0.84, and the F-statistics (33 to 38) indicate very high confidence in the significance of modeled parameters to the variation in $\ln K_{\text{Cl}}$. The Sato-alone model presents a close correlation between observed and predicted K_{Cl} values ($R = 0.97, R^2 = 0.95, F = 95$). We note that Sato et al. (2005) cite as a possible source of error "the assumption of the stoichiometric anionic contents of hornblende" (i.e. the assumption that $2 = OH + F + Cl$), and our results suggest that not only is this in fact a source of error, but that calculating the oxo-component and amphibole OH using the reversed Popp et al. (2006) methodology presented in the previous section provides a significant improvement in our ability to model Cl partitioning in amphibole.

Several points seem worthy of note from the standpoint of crystal chemistry:

- Mg/Fe-related parameters appear in all models, as expected. We regressed models with total Fe, but eventually discarded this term from the list used to generate the final models since total Fe = $[6]Fe + (2 - \text{Ca})$. The total Mg# was left in, but was eventually removed from all models save the Sato-only model in favor of $[6]Mg#$, which makes sense since
the O(3) site is distant from the 8-fold site where some of the Fe resides; however, there
is a small difference in the degree to which changing this parameter affects its overall
correlation with ln K_{Cl} (Figure 4). In the final Lesne model, ln K_{Cl} is positively correlated
with $^{[6]}$Fe and negatively correlated with Mg, as expected. The final Dixon model retains
only Mg.

- Other octahedral site parameters are not well correlated with ln K_{Cl}. The ratio
 $(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al)$ remains in the 8 parameter Lesne model, but the sign of
 its coefficient flips as parameters are eliminated, and it was removed from the final
 model. It appears that the presence of high-valence cations on the octahedral sites does
 not strongly affect the ability of Cl to displace OH on the O(3) site.

- Increased K (potassium) should be positively correlated with ln K_{Cl} since it is the largest
 common occupant of the amphibole A site and should produce an increase in the overall
 size of the amphibole lattice, which makes more room for the large Cl anion (Morrison,
 1991; Oberti et al., 1993b). The correlation we observe is very strong (Figure 4), and K-
 related parameters survive into both the Dixon and Lesne final models. Sato et al. (2005)
 were not able to see this correlation due to the limited range of K content in their
 amphiboles; when we confine our dataset to only their data, K and associated ratios do
 not appear in our final model either. The parameter $^{[A]}[..]$ appears in the final Dixon
 model with a positive coefficient, and other intermediate regression results also suggest
 that vacant A sites increase the partitioning of Cl into amphibole relative to Na-occupied
 A sites. The ratio $(K+^{[A]}[..])/Na$ is positively correlated with ln K_{Cl}, but not nearly as
 strongly as $K/(Na+^{[A]}[..])$.

- Sato et al. (2005) looked for a correlation between ln K_{Cl} and $^{[4]}$Al (Morrison, 1991;
Oberti et al., 1993b) and did not find one. We found some correlation with $[^4]$Al in preliminary models that allowed a constant term, but not in the final models, which are overall better fits to the data.

- An unexpected result is the appearance of Ca in many models, including the last Sato-only model, with a negative coefficient. We expected a positive correlation between ln K_{Cl} and Ca and/or Ca/$[^8]$Fe, since increasing these parameters should increase the lattice dimensions of amphibole.

- T refines out of our global models, although it should be kept in mind that T affects virtually all of the crystal chemical parameters as well. We note that, despite the very limited range of T considered by Sato et al. (2005), we see it included in our final model for their dataset alone with a negative coefficient, just as they found in their own analysis, as well as in many intermediate models for the whole dataset. The parameter ln P was retained in early Dixon models only with a negative coefficient.

We apply the eight-parameter and three-parameter models to natural igneous amphiboles and the Browne (2005) syntheses in Supplemental Table 5. We include a variety of calcic amphiboles, as well as igneous cummingtonites (Shane et al., 2007), to see what results the regressions give when extrapolated to compositions well beyond the hornblende and pargasite compositions over which they were calibrated. The K_{Cl}s calculated by the D8 and L8 models are much higher for the cummingtonites than for the calcic amphiboles and are unrealistic. Meanwhile, the D3 and L3 models give lower results for the cummingtonites than for the calcic amphiboles. As one would expect, our equations are not to be relied upon to produce reasonable results for non-calcic amphiboles. For the calcic amphiboles, the results are mostly similar and
fall between -2<ln $K_{\text{Cl}}>0$ (mostly -1.5<ln $K_{\text{Cl}}<0$). This signifies that Cl is incompatible in amphibole relative to OH, confirming and giving some additional quantitative substance to earlier conclusions from crystal chemical investigations (Morrison, 1991; Enami et al. 1992; Oberti et al. 1993b; Zhang et al. 2012).

We also carried out the calculations of the next section given all four calculated K_{Cl}s for all the calcic amphiboles. The L3 regression seems to be of the widest utility. The water activities calculated with it are usually not as low as those calculated with D3 K_{Cl}, which seem unrealistic; and we consider that the 8 parameter models are underconstrained by the data. We use the L3 equation in the remainder of this paper:

(L3) \[\ln K_{\text{Cl}} = 6.59 \frac{K}{(Na + [A])} - 0.679 Mg + 0.487 [6]Fe \]

Residual error in our L3 regressed values of ln K_{Cl} is shown in Figure 5, where it can be seen that a great deal of the residual error is due to two outliers in the high-pressure data.

6. Combined solution for Cl and H$_2$O partitioning into amphibole. An exciting possibility is provided by combining the amphibole redox model (Section 4) and our recalibrated Cl partitioning model (Section 5), along with appropriate H$_2$O speciation and solubility models, for systems where 1) ordinary suites of electron microprobe data (including Cl content) are available for amphibole/glass pairs where textural evidence suggests the glass was a melt equilibrated with the amphibole and 2) thermobarometric estimates, including $f(O_2)$, can be made for the system. In this scenario, even without Fe speciation or H$_2$O content determined for either phase, these values will be constrained by the models.

H$_2$O-saturated model calculations. If one assumes water saturation in the magma, the problem is over-determined, and this can be used to check for self-consistency. The OH and $^{[O(3)]=O^2-}$...
contents of the amphibole can be calculated using the methodology of Section 4, above.

Meanwhile, by assuming water saturation and choosing an appropriate speciation model, [OH] in the melt can be calculated and equation 5 can be used to determine OH and \([O(3)]O_2^-\) in the amphibole independently. If these estimates are not close, the problem may reside in the models themselves, in the assumption of water saturation, or in the representativeness of the Cl analytical data.

Supplemental Table 6 shows the results of these calculations from the same selection of amphibole/glass pairs as Supplemental Table 5, making the assumption of water saturation. Full details of the calculations are in spreadsheet form as Supplemental Table 7. For most of these systems, the calculated oxo-component is negative from the Cl partitioning model, which is equivalent to amphibole \(\text{OH} > 2 - F - \text{Cl}\), which is of course impossible. From equation 5, there are four possibilities to explain this: 1) \(K_{Cl}\) is too small; 2) Cl determined from the amphibole is too large; 3) [Cl] determined from the glass is too small; or 4) [OH] is too large. We have selected the L3 regression to minimize the chance of possibility 1 (see previous section). We consider possibility 2 unlikely in most circumstances. Possibility 3 suggests that Cl has been lost from the glass either in its natural environment by degassing, or during sample preparation, or under the microprobe beam, all of which are important possible sources of non-representativeness. The best samples for the methodology we describe would be amphiboles within glassy melt inclusions or within the interior of large masses of glass. Glasses exposed directly to air as hot ejecta are likely to have degassed Cl, and unfortunately all the glasses in this table were so exposed. Possibility 4 suggests error in the assumption of water saturation, or potentially in the melt H\(_2\)O speciation model. In the circumstances, we believe degassing of Cl from the ejecta glass and magma undersaturation in H\(_2\)O during amphibole crystallization are the
two most important factors in explaining the negative values of $^{[O^{(3)}]}$O$_2^-$ in our model results for these volcanic amphibole/glass pairs.

H$_2$O-undersaturated model calculation. If the magma was not water-saturated, one can arrive at a single determination of OH and $^{[O^{(3)}]}$O$_2^-$ in the amphibole and H$_2$O content of the melt by combining the constraints of the amphibole redox model, the Cl partitioning model, speciation equations (Zhang and Ni, 2010), and an undersaturated water activity/fugacity model (Burnham, 1997). We manipulate the amphibole redox equation (3) as follows:

\[
\begin{align*}
(3a) \quad f(H_2) &= K_x X^2(Fe^{2+}) X^2(OH) / [28.94 X^2(Fe^{3+}) X^2_{x_{oo}}] \\
(3b) \quad f(H_2O) &= K_f(H_2O) f^{1/2}(O_2) K_x X^2(Fe^{2+}) X^2(OH) / [28.94 X^2(Fe^{3+}) X^2_{x_{oo}}] \\
(3c) \quad a(H_2O) &= K_f(H_2O) f^{1/2}(O_2) f^{1/2}(O_2) K_x X^2(Fe^{2+}) X^2(OH) / [28.94 f'(H_2O) X^2(Fe^{3+}) X^2_{x_{oo}}]
\end{align*}
\]

where $K_f(H_2O)$ is the equilibrium constant for the formation of H$_2$O, and $f'(H_2O)$ is the fugacity of pure H$_2$O vapor at the P and T being considered.

We recast the Cl partitioning coefficient equation (5) in the following form:

\[
(5a) \quad K_{Cl} \cdot ([Cl] / X_{Cl}) \cdot X_{OH} = [OH]
\]

The H$_2$O speciation equations are (Zhang and Ni, 2010; Zhang, 1999):

\[
K_2 = [OH]^2 / ([H_2O]_m [O])
\]

\[
[H_2O]_t = [H_2O]_m + [OH]/2
\]

\[
[O] = 1 - [H_2O]_m - [OH]
\]
The Burnham relation takes one of two forms depending on whether \(\chi(\text{H}_2\text{O}) < 0.5 \) (Burnham, 1997; Burnham and Nekvasil, 1986):

\[
(7a) \quad a(\text{H}_2\text{O}) = k_w \chi^2(\text{H}_2\text{O}), \quad \chi(\text{H}_2\text{O}) < 0.5;
\]

\[
(7b) \quad a(\text{H}_2\text{O}) = 0.25 k_w e^{(6.52 - 2667/T)(\chi(\text{H}_2\text{O}) - 0.5)}, \quad \chi(\text{H}_2\text{O}) > 0.5.
\]

where \(k_w \) also has \(P \) and \(T \) dependence. Note that the Burnham mole fraction of \(\text{H}_2\text{O} \) in melt, \(\chi(\text{H}_2\text{O}) \), can be calculated from the Stolper/Zhang mole fraction \([\text{H}_2\text{O}] \) and vice-versa given the anhydrous glass composition (Appendix 1).

Together with the amphibole stoichiometry relations (equation 4), these equations can be substituted into one another to form a single equation in a single unknown: a twelfth-order polynomial equation in \(X_{\text{oxo}} \) for the case of low \(\chi(\text{H}_2\text{O}) \), or a complicated exponential equation if the high \(\chi(\text{H}_2\text{O}) \) formula is appropriate. Fortunately, the mole fraction constraint is high enough that the solubility bound is often exceeded before the high \(\text{H}_2\text{O} \) version of the equation need be used. These equations can be solved by numeric methods, although their sensitivity to input parameters is high and care must be taken to avoid false roots and local minima when using a numeric solver routine. More than one root for \(X_{\text{oxo}} \) can often be found, and although starting with a low trial value for oxo-component (e.g., 0.1 apfu) is usually a good way to find the root of interest (which we take to be the lowest positive root), sometimes the Excel solver will overshoot a root and settle into a higher one. It will also sometimes try and fail to find a lower root until the trial value is raised sufficiently. A detailed mathematical treatment of these equations is beyond the scope of this paper, but looking at several example forms suggests that, for the low-
water version, the appropriate root for X_{oxy} is a degenerate root, and when evaluating the function using real numbers and real software, rounding errors often cause the function to "stop" slightly above 0, as can be seen when graphing the function in a computer algebra system such as Maxima.

Returning to the calcic amphibole/glass pairs we have assembled, Supplemental Tables 8 gives full details of these calculations and Supplemental Table 9 show the results. The low-water equation has a viable solution for X_{oxy} for all samples, although the solution for the synthetic amphibole RDT-A-2 is above 0.50 χ (H$_2$O), and the high-H$_2$O equation cannot be solved for a meaningful root. Nearly all amphibole-glass pairs have calculated water activities well below 0.5, indicating that they probably crystallized from H$_2$O-undersaturated melts. However, the composite equation compensates for any postcrystallization loss of Cl from the melt (whether from degassing or sample handling) by depressing melt [OH], and therefore water activity and hydrogen fugacity as well, resulting in higher X_{oxy} and lower a(H$_2$O). Amphibole requires a significant supply of H$_2$O (or, in other circumstances, F) in order to form. Thus, the very low H$_2$O activities in Supplemental Table 9 seem unlikely to record actual amphibole formation conditions. We can instead interpret these as evidence of Cl degassing from the associated glass. The high water activities in Supplemental Table 9, or equivalently, the good matches on Supplemental Table 6 between the two determinations of amphibole oxo-component suggest that not only was the melt/glass nearly water saturated when the amphibole crystallized, but also that these glasses have not degassed much Cl since that time. For example, both amphibole analyses from sample 92MHR9-1 from Redoubt volcano, an andesite, give calculated results that suggest that the glasses in this sample retain a Cl signature from conditions at or near the crystallization conditions for the amphibole. The other Redoubt samples are dacites that likely had been in the
magma chamber for some time, and whose glasses record a more degassed magma state than the amphiboles (Wolf and Eichelberger, 1997).

7. Applicability of the models.

The reader will appreciate that the actual model equations presented in Table 1 are to be regarded as estimates. The Popp amphibole redox equation, which we use both directly and indirectly to recalibrate the Sato chlorine partitioning equation, has been calibrated over a bare handful of amphibole compositions. There is an unquantifiable amount of error involved in thus extrapolating Popp et al. (2006)'s expression to hornblendes and edenites, which may overshadow the errors calculated in our linear regression results in Supplemental Tables 4.1 to 4.5. The fact that we get sensible results by using this equation suggests that Popp et al. (2006)'s K_x does not vary hugely over the range of calcic amphibole compositions considered in this paper, but it remains to show the actual size of this variance by conducting further experiments and recalibrating the expression for K_x. Likewise, the chlorine partitioning constant K_{Cl} is in need of recalibration using measured Fe^{3+}/Fe^{2+} and OH/Fe^{2+} values, rather than resorting to modeling to estimate them; and it would be of great interest to calibrate a fluorine analog to the Sato equation at the same time (Zhang et al., 2012).

We hope that this paper shows the value of conducting such work. With adequate characterization of amphibole (Hawthorne and Oberti, 2007a), an enormous amount of geochemical information can be gleaned about its formation environment, whether igneous, hydrothermal, metasomatic, or metamorphic; after all, four anions and the vast majority of cations, from Li to Pb, can be housed easily in the structure of natural amphiboles (Adam and Green, 1994, 2006; Leake et al., 1997). While H_2O is the volatile of greatest interest in...
magmatic systems on nearly any rocky body including Mars, the Moon, and even chondrite meteorite parent bodies (McCanta et al., 2008), H is impossible to analyze via the ordinary workhorse of chemical analysis, the electron microprobe. The use of alternative analytical techniques such as SIMS to find H contents of geological materials is uncommon, although it is expected to increase in the future (Hawthorne and Oberti, 2007a). Likewise, Fe is the main redox-active metal in igneous systems, but its oxidation state is regularly left undetermined. Mossbauer spectroscopy is the chief alternative for exploring the oxidation state of Fe (Gunter et al., 2003), but Mossbauer spectrometers may never be widely disseminated analytical instruments. Synchrotron techniques can be used to determine the Fe redox of mineral samples, and are essential for studying certain kinds of difficult (e.g., small) samples (Gunter et al., 2011), but synchrotron analyses involve applications for beamtime and significant investment of time by facility personnel. The potential to evaluate Fe redox state with electron microprobe data continues to be explored (Enders et al., 2000; Lamb et al., 2012), but such analyses have yet to become reliable and routine.

Therefore, using the Cl contents of amphibole and glass as an indirect means to determine the oxidation state of Fe in amphibole and the H₂O content of both amphibole and melt is a potentially valuable way of extending the reach of conventional analytical techniques. As we have seen, the results we get from pyroclastic glass may not be representative due to Cl degassing, but low water activities calculated from such glass/amphibole pairs can signal relative amounts of Cl degassing, as for the Redoubt rocks discussed above. This is in itself interesting information.

Chambefort et al. (2013) explore the volatile budgets of a magmatic system using an extensive collection of amphibole analyses. We applaud this work and consider it a good
example of a study that uses amphibole chemistry to provide important clues with which to interpret magma chamber processes. However, their use of amphibole properties to constrain magma volatile behaviors is hampered due to their use of Fe redox conditions calculated from the Leake et al. (1997) methodology. Thus, they see no or very weak correlations between Fe species, H$_2$O contents, and H isotopic ratios; however, given the negligible correlation between reliably determined and traditional norm-calculated Fe$_2$O$_3$ contents (Hawthorne and Oberti 2007a, Figure 2) this is unsurprising. Thus their interpretation of amphibole dehydration by means of opening vacancies on the O(3) site (Demeny et al., 2006), rather than dehydrogenation according to equation 1, is open to dispute. Use of the Popp equation, narrowly calibrated as it may be, is an advance over calculating Fe speciation by a largely arbitrary choice of cation norm, as we have argued above. Further, consideration of glass compositions and Cl partitioning could have assisted Chambefort et al. (2013) in interpreting the Cl content of different amphibole grains and their relationship to the style of magmatism, as well as the H$_2$O content of the amphiboles.

Having a better constrained crystal chemical model for amphibole-melt Cl partitioning could enhance understanding of the amphibole and plagioclase thermobarometers (Blundy and Holland, 1990; Holland and Blundy, 1994), which Chambefort et al. (2013) use extensively. Humphreys et al. (2009) also use these in conjunction with the Sato model to examine the variation in Cl content of different magmas crystallizing hornblende in the Soufriere Hills volcanic system, while using A site occupancy to gauge temperature. Since the contents of the A site appear to play an important role in governing Cl partitioning, there is unacknowledged complexity in the chemical equilibrium calculations that Humphreys et al. (2009) use to interpret their data.
Acknowledgments. We gratefully acknowledge support from NASA MFR grant # NNX13AG35. We thank Hiroaki Sato, Gordon Moore, and an anonymous reviewer, as well as our associate editor Rosario Esposito, for their helpful and timely comments. We thank Filippo Ridolfi, Philipp Ruprecht, Pavel Izebekov, and Stephen Turner for generous sharing of data which appear in Supplemental Table 1. We would also like to thank Bob Popp and Wally Lamb for sharing data, clarifying a few details in their papers, and discussing many of the thermodynamic issues related to amphibole dehydrogenation. Lastly, we also thank Tony Withers for his implementation of a routine to calculate H$_2$O fugacities from the data and equations of Pitzer and Sterner (1994) and Sterner and Pitzer (1994).
Appendix 1: H₂O solubility, speciation, and activity models

The solubility of H₂O in silicate melts is a subject of great interest to petrologists and has received a correspondingly large amount of attention in the literature. Any model that is not completely empirical will depend on some understanding of the speciation of H₂O in the melt. Until the publication of Stolper (1982), the consensus in the literature was that H₂O completely dissociated to OH groups in the melt up to a certain large concentration of H₂O. The final version of the most successful model incorporating this hypothesis is found in Burnham (1997); Burnham and Nekvasil (1986). Although the work of Stolper and others confirmed that this theory is flawed because intact H₂O molecules are found in hydrated silicate melts of all concentrations (Ohlhorst et al., 2001), and later solubility models provide improved predictions in a variety of melts under a variety of T, P conditions (Papale, 1997), the Burnham model is still quantitatively adequate for many purposes (Baker and Alletti, 2012).

We employ the Burnham model in this paper because it is the only model to attempt to describe the thermodynamic properties of H₂O in melts not in equilibrium with a vapor phase. This is displayed graphically in Burnham and Davis (1974), Figures 8 to 12. We produce a similar figure for illustration here (Figure A.1) along with the solubility curve of Moore et al. (1998) for the Sato et al. (2005) sample 298. The curved line in the figure is the solubility relation, while the straight lines show the subsaturation fugacity-mole fraction relationship calculated from Burnham (1997) at overall pressures of 1, 2, 3...8 kbar, including the adjustment for Al content of the melt, which we have simplified as follows:

\[
\ln k_w^{\text{feldspar}} = \ln k_w^{\text{melt}} + 0.47 [1 - 4 \text{ Al/(Al+Si)}]
\]
where Al and Si are molar quantities of each cation in the melt. The correction term equals 0 for any melt with the same Al/(Al+Si) content as feldspar, is negative for relatively Al-enriched melts (like nepheline melt) and is positive for relatively Al-depleted melts.

For solubility relationships, we employ the model of Moore et al. (1998). There are more complex, accurate, and up-to-date models in the literature (Dixon, 1997; Iacono-Marziano et al., 2012; Newman and Lowenstern, 2002; Papale et al., 2006; Witham et al., 2012), but the model of Moore et al. (1998) is flexible, with compositional terms refined over a creditable variety of melt chemistries, and is much simpler to implement than the other models. For the purposes of this paper, which is meant as an illustration of methodology as much as it is meant to provide quantitative modeling information, the Moore et al. (1998) model serves well.

It seems appropriate to remind the reader here that there are at least three different methods of calculating the mole fraction of H₂O and other components in melts: the Burnham 8O basis (Burnham, 1997), the Stolper/Zhang 1O basis (Stolper, 1982; Zhang, 1999), and the more intuitive sum-of-oxides basis employed by Moore et al. (1998). The variety of bases reflects the differences in theoretical underpinnings, or lack thereof, of the various models, as well as the fundamental ambiguity in defining a molar quantity of melt. Since Moore et al. (1998) do not describe their methodology, and it differs greatly from the others but is nevertheless simple to explain (Moore, personal communication, 2013), we do so here for the benefit of the reader. Their mole fractions are calculated by adding up the number of moles of each oxide component (SiO₂, Al₂O₃, etc.) to serve as the denominator of the mole fraction. Thus \[\chi(\text{H}_2\text{O}) = \frac{n(\text{H}_2\text{O})}{n(\text{SiO}_2) + n(\text{Al}_2\text{O}_3) + ... + n(\text{H}_2\text{O})}. \] This will generally result in a number not quite twice the size of a 1O mole fraction.
Appendix 2: Statistical Procedure

We calculated a multiple linear regression model for the entire family of parameters for each separate determination of \(\ln K_{CI} \) (i.e., both the Lesne and Dixon determinations). The basic methodology was that the parameter with the highest \(p \) value was rejected, and the model recalculated with the remaining parameters, the process being repeated until all parameters had \(p \) values below 0.09-0.10. We tried this on many, many collections of parameters; the following discussion is greatly condensed. Based on the results of several dozen regressions, we found that eliminating the constant term systematically gave better results, and so the final models have no constant term. Since Excel will only calculate regressions on up to 16 variables, we collected the element parameters and the ratio parameters separately, regressed each collection along with \(T \) and \(\ln P \), rejected a total of 3 parameters, then gathered the remainder back into a single set and proceeded as above. This process resulted in two models with 8 variable terms (Dixon 8 or D8 and Lesne 8 or L8), the other 11 parameters being rejected. These models had mixtures of ratios and element contents and therefore had some coefficients with counterintuitive signs. In addition, since the dataset has only 39 entries, the data:parameter ratio was only ~5:1. For both these reasons, we continued rejecting parameters employing 1) \(p \) values, 2) the desire to eliminate either ratio parameters or their constituent element parameters rather than leaving both a ratio and its constituents in the final models, and 3) our best judgment based on the literature of amphibole crystal chemistry. In the end, the final model equations had 3 terms (Dixon 3 or D3 and Lesne 3 or L3).
References

Letters, 248, 715-734.

-. (2007b) Classification of the amphiboles. Reviews in Mineralogy and Geochemistry, 67, 55-88.

Humphreys, M.C.S., Edmonds, M., Christopher, T., and Hards, V. (2009) Chlorine variations in the magma of Soufrière Hills Volcano, Montserrat: Insights from Cl in hornblende and
melt inclusions. Geochimica et Cosmochimica Acta, 73, 5693-5708.

Leake, B.E. (1968) A catalog of analyzed calciferous and subcalciferous amphiboles together with their nomenclature and associated minerals. Special papers (Geological Society of America), 210 p., Washington, D.C.

McCanta, M.C., Treiman, A.H., Dyar, M.D., Alexander, C.M.O.D., Rumble, D., III, and Essene,

of the 1991-1995 Unzen dacite, Japan. Part II: CI/OH partitioning between hornblende
and melt and its implications for the origin of oscillatory zoning of hornblende

to Mineralogy and Petrology, 26, 276.

Mineralogy and Geochemistry, 67, 359-416.

(2007) Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu
eruption episode from Tarawera volcanic complex, New Zealand. Journal of Volcanology

Smelik, E.A. and Veblen, D.R. (1992a) Exsolution of ca-amphibole from glaucophane and the
miscibility gap between sodic and calcic amphiboles. Contributions to Mineralogy and

Science, 257, 1669-1672.

-. (1993) A transmission and analytical electron-microscope study of exsolution microstructures
and mechanisms in the orthoamphiboles anthophyllite and gedrite. American
Mineralogist, 78, 511-532.

Canadian Mineralogist, 32, 233-255.

Mongolia, China: Contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos, 93, 126-148.

Table 1. Coefficients for regression equations for In K_{Cr}.

<table>
<thead>
<tr>
<th>Models</th>
<th>Dixon 8</th>
<th>Dixon 3</th>
<th>Lesne 8</th>
<th>Lesne 3</th>
<th>Sato Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, R^2</td>
<td>0.95, 0.90</td>
<td>0.87, 0.77</td>
<td>0.95, 0.89</td>
<td>0.86, 0.75</td>
<td>0.97, 0.95</td>
</tr>
<tr>
<td>Parameters</td>
<td>Coefficients</td>
<td>Coefficients</td>
<td>Coefficients</td>
<td>Coefficients</td>
<td>Coefficients</td>
</tr>
<tr>
<td>K (apfu)</td>
<td>-20.0±8.5</td>
<td>9.2±1.9</td>
<td>-14.6±7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K/(Na+^{[A]}[])</td>
<td>29.7±7.3</td>
<td>30.9±6.3</td>
<td>6.6±0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na (apfu)</td>
<td>10.8±2.3</td>
<td></td>
<td>20.6±4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^{[A]}[]$ (vfu)</td>
<td>12.9±2.1</td>
<td>3.2±0.5</td>
<td>20.5±4.0</td>
<td></td>
<td>-5.2±0.7</td>
</tr>
<tr>
<td>Ca (apfu)</td>
<td>-1.7±0.7</td>
<td></td>
<td>-5.2±0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg (apfu)</td>
<td>-3.4±0.7</td>
<td>-1.0±0.1</td>
<td>-4.7±1.0</td>
<td>-0.7±0.1</td>
<td>-5.2±0.4</td>
</tr>
<tr>
<td>Mg/(Mg+Fe)</td>
<td></td>
<td></td>
<td>39.1±5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^{[6]}Mg/(^{[6]}Mg+^{[6]}Fe)$</td>
<td>9.6±3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$^{[6]}Fe$ (apfu)</td>
<td></td>
<td>-3.6±1.0</td>
<td>0.5±0.1</td>
<td>3.9±0.7</td>
<td></td>
</tr>
<tr>
<td>$(Mg+Mn+^{[6]}Fe)/ (Ti+Cr+^{[6]}Al)$</td>
<td>0.2±0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T (K)</td>
<td></td>
<td></td>
<td>-3.4±1.8·10^{-3}</td>
<td></td>
<td>-5.9±1.9·10^{-3}</td>
</tr>
<tr>
<td>In P (bar)</td>
<td>-0.8±0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Structure of a typical amphibole (space group C2/m), from Hawthorne and Oberti (2007a). Cation sites are labeled T (4-fold sites), M (1-3: 6-fold sites; 4: 8-fold site), and A. The O(3) site contains OH, F, Cl, or O$^{2-}$; all other O sites contain O$^{2-}$.
Figure 2. Bulk partition coefficients D for amphibole-melt (glass) pairs from synthetic (solid symbols, at or near water saturation) and natural systems (open symbols, undersaturated conditions, calculated values for H_2O from Supplemental Table 9). See Supplemental Tables 1.1, 1.2, and 1.3 (Adam and Green, 2006; Adam and Green, 1994; Adam et al., 2007; Browne, 2005; Hauri et al., 2006; Luhr, 2002; McCubbin et al., 2008; Miller et al., 1999; Ridolfi et al., 2008; Sato et al., 2005; Shane et al., 2007; Wolf and Eichelberger, 1997) for amphibole compositions.
Figure 3. Plot of $\ln K_{Cl}$ experimental vs. calculated (Sato et al., 2005) from Supplemental Table 3. Diamonds: Sato et al. (2005). Triangles: high-pressure data (Adam and Green, 2006; Adam and Green, 1994; Adam et al., 2007; Hauri et al., 2006). Crosses: McCubbin et al. (2008). Squares: Browne (2005). Line is ideal fit (experimental = calculated). Axis ticks are marked every 0.1 log unit.
Figure 4. Left: $\ln K_{Cl}$ calculated using T-dependent melt H$_2$O speciation for all data (Lesne et al., 2011; Liu et al., 2004) versus Mg#. Right: $\ln K_{Cl}$ versus K (apfu).
Figure 5. Experimental and L3 regressed values of $\ln K_{C1}$ for our calibration data.

Symbols as in Figure 3.
Figure A.1. Moore et al. (1998) solubility curve (dashed line), Burnham (1997) solubility curve (thick solid line), and Burnham undersaturated melt H$_2$O mole fraction-fugacity lines at 1 to 8 kbar total pressure, 800 °C for the melt composition of synthesis 298 (Sato et al., 2005).