1 Revision 1

Quantitative models linking igneous amphibole composition with magma Cl and OH content

4

5 Paul A. Giesting* and Justin Filiberto

6

7 Department of Geology, Southern Illinois University, Carbondale, Illinois 62901, USA

8 * - Corresponding author (giesting@alumni.nd.edu)

9

10 **Abstract.** Minerals of the amphibole group are found in igneous rocks on Earth and other rocky bodies. Since the O(3) site of amphibole can contain OH. O^2 . F. and Cl. amphibole composition 11 12 provides important information about water and halogen contents, oxidation state, and other 13 features of its formation and alteration environments. However, the complexity of amphibole 14 crystal chemistry means this information is difficult to extract. Further, it has been regular practice in the era of the electron microprobe to neglect H and Fe^{3+} analyses for amphibole. 15 16 critically reducing the amount of information available in amphibole analyses in the literature. 17 We have assembled models and insights from previous work in order to create a 18 methodology that allows the estimation of magmatic H₂O and Cl contents from existing 19 amphibole analyses. Since the methodology requires use of a cation norm, we begin with a 20 deeper investigation of the consequences of different cation normalization schemes for 21 amphibole analyses, and provide grounds for deciding which scheme best fits a given amphibole 22 analysis. We then show how the existing model of Popp and coworkers can be reversed to estimate the OH and ${}^{[O(3)]}O^{2}$ - contents of amphiboles in synthesis experiments. Using a synthetic 23

- 26 $K_{\rm Cl} = (X_{\rm Cl}/X_{\rm OH})_{amphibole} / ([\rm Cl]/[\rm OH])_{melt}$
- 27 $\ln K_{\rm Cl} = 6.59 \text{ K} / (\text{Na} + \text{[A]}[]) 0.679 \text{ Mg} + 0.487 \text{ [6]}\text{Fe}$

where *X* signifies a mole fraction of an anion on the O(3) site; [Cl] and [OH] signify melt mole fractions of the anion in question on a one-oxygen (Stolper-Zhang) basis; K, Na, ^[A][], Mg, and ^[6]Fe signify the amount of each component in the amphibole in atoms per amphibole formula unit, with ^[A][] denoting vacancies on the amphibole A site.

32 We then combine the Popp et al. model with our new model to link the occupancy of the

33 amphibole O(3) site and other crystal chemical parameters to the Cl and H₂O content of melts

34 crystallizing amphibole. The competition between OH and Cl for this site can be used to

35 calculate the melt and amphibole OH/H₂O contents, as well as the speciation of Fe in amphibole,

36 provided that the Cl content of both the amphibole and its coexisting melt is known, without

analyzing either phase for H or Fe^{3+}/Fe^{2+} .

While the models in this paper should be recalibrated using future experimental data, this work shows that considerably more information about the volatile contents of magmas can be gleaned from amphibole than previously shown, and also provides additional information about the crystal chemistry of amphibole and how it affects Cl partitioning into minerals of this group.

42

43 Keywords: amphibole, mineral/melt partitioning, chlorine, water, igneous petrology

44

1. Introduction. Amphibole, apatite, and mica are common minerals well-suited to estimating
the water and halogen content of melts (Zhang et al., 2012) or fluids (Zhu and Sverjensky, 1991).

47	The population of the monovalent anion site of these minerals preserves a record of their
48	formation environment. This information is valuable in a wide range of applications from
49	economic geology (Rasmussen and Mortensen, 2013; Smith, 2007) to planetary petrology
50	(Boyce et al., 2010; Filiberto and Treiman, 2009a; Filiberto and Treiman, 2009b; McCanta et al.,
51	2008; Patiño Douce et al., 2011).
52	Amphiboles have a particularly complex crystal chemistry (Hawthorne and Oberti,
53	2007a; Hawthorne and Oberti, 2007b; Hawthorne et al., 2012), which makes them valuable as
54	indicators of a wide variety of chemical processes (Chambefort et al., 2013; Chambers and
55	Kohn, 2012; Humphreys et al., 2009; Ridolfi et al., 2010) but also makes it difficult to
56	disambiguate the effects of different processes. The O(3) site of amphiboles can contain OH, F,
57	Cl, and O ²⁻ (Hawthorne and Oberti, 2007a; Hawthorne et al., 2012). The partitioning behavior of
58	the amphibole for these components relative to its genetic melt or fluid is a strong function of its
59	cationic makeup.

60 Amphibole tends to reject Cl based on its large size relative to OH and F, like most rock-61 forming minerals (Zhu and Sverjensky, 1991), so high proportions of Cl on the O(3) site only 62 occur in extremely saline hydrothermal or deuteric environments (Enami et al., 1992; Morrison, 63 1991). Cl incorporation into amphibole is encouraged by substitution of Fe for Mg on the 64 octahedral sites, A site occupancy by K, and substitution of Al for Si on the tetrahedral sites 65 (Enami et al., 1992; Oberti et al., 1993b; Sato et al., 2005); this is due to both a tendency toward 66 Fe-Cl bonds and away from Mg-Cl bonds, and the expansionary effect all these substitutions 67 have on the amphibole lattice. In contrast, amphibole readily accepts F on the O(3) site as a 68 substitute for OH (Zhu and Sverjensky, 1991). Substitution of F can stabilize amphibole to 69 higher T and P conditions that would dehydrate and destabilize OH-bearing amphibole (Garcia et

70	al., 1980; Holloway and F	ord, 1975; Johnson	and Fegley, 2003).
----	---------------------------	--------------------	--------------------

71	O^{2-} on the O(3) site, or oxo-component (Hawthorne and Oberti, 2007ab; Hawthorne et
72	al., 2012) is widely known in calcic, titanian amphiboles of igneous rather than metamorphic
73	origin (Martin, 2007; Schumacher, 2007). This substitution increases negative charge and must
74	be counterbalanced by one of the many possible cation substitutions that would also increase
75	charge. The two most important cations substituted in are Ti ⁴⁺ and Fe ³⁺ , with Al ³⁺ also of
76	importance (King et al., 1999, 2000; Popp et al., 2006). Amphiboles are susceptible to the
77	internal reaction
78	
79	(1) $Fe^{2+} + OH^{-} \rightarrow Fe^{3+} + O^{2-} + 1/2 H_2$
80	
81	whereby iron oxidation is coupled to dehydrogenation (Demeny et al., 2006; Dyar et al., 1993;
82	Dyar et al., 1992; King et al., 1999; Martin, 2007; Popp and Bryndzia, 1992; Popp et al., 1995,
83	2006) This dehydrogenation reaction can occur at subsolidus conditions, which can interfere

whereby iron oxidation is coupled to dehydrogenation (Demeny et al., 2006; Dyar et al., 1993;
Dyar et al., 1992; King et al., 1999; Martin, 2007; Popp and Bryndzia, 1992; Popp et al., 1995,
2006). This dehydrogenation reaction can occur at subsolidus conditions, which can interfere
with attempts to use amphibole compositions to determine water contents of source magmas
(Lamb and Popp, 2009); further, it may occur in the forward or reverse direction as a result of
shock (Minitti et al., 2008ab), adding uncertainty to attempts to use amphibole compositions
from meteorites to constrain the properties of source magmas on extraterrestrial bodies. *Goals*. In this work, we reconsider the methodologies used to calculate amphibole formulae from

- 90 chemical composition data (Hawthorne and Oberti, 2007a; Leake et al., 1997; Schumacher,
- 91 2007) and suggest revised tests to determine which methodology is most appropriate for different
- 92 amphiboles with differing amounts of available chemical information.

93	We then consider an existing model of amphibole chemistry (Popp et al., 1995, 2006) and
94	show how it can be used in an inverse sense: instead of estimating $\mathrm{H_2O}$ activity and fugacity in
95	the source region of the amphibole based on the H content of the amphibole, if the H ₂ O activity
96	of the source melt is known or estimated, the model can be used to calculated the amount of OH
97	and O^{2-} on the O(3) site.
98	Next, we use this methodology to recalibrate the model of Sato et al. (2005), using the
99	calculated OH abundance instead of assuming $2 = OH + F + Cl$, and incorporating additional
100	synthetic data (Adam and Green, 1994, 2006; Adam et al., 2007; Hauri et al., 2006; McCubbin et
101	al., 2008).
102	Finally, we show how using both models together generates enough constraining
103	equations to result in a determined system for situations where the P, T, $f(O_2)$ of formation, the
104	melt Cl composition, and a typical amphibole composition by electron microprobe (EMP) are
105	available. With this coupled model system of equations, the H ₂ O content of both amphibole and
106	melt, along with the Fe^{3+}/Fe^{2+} ratio of the amphibole can be calculated: a powerful method to
107	extend the utility of conventional EMP analyses, and a way of checking, in the case of
108	potentially disturbed systems with H contents determined by, e.g., ion microprobe, whether the

109 amphibole and/or melt have lost H since the Cl equilibrium state was set.

At present, we must assume that the Popp et al. (2006) model is extensible to amphiboles beyond the pargasite and kaersutite compositions they used to calibrate it. We do not have enough experimental data at present to recalibrate this model, and we do not have any means of quantifying the error in so extending it. We provide error estimates for our model parameters, but these calculated errors only describe how well the Cl/OH partitioning model equation predicts the Cl/OH partitioning coefficients in our calibration dataset, as opposed to the unknown

error in the calculated OH and $^{[O(3)]}O^{2-}$ content of the calibration amphiboles. This paper shows the methodology and its benefits: in particular, use of the Popp et al. (2006) model to calculate OH and $^{[O(3)]}O^{2-}$ allows much better fitting of the data of Sato et al. (2005) than they were able to achieve without it. The model equations presented here are not, however, to be regarded as settled.

121

122 2. Calculation of amphibole formulae. Calculation of amphibole formulae from electron 123 microprobe or other chemical data is often a vexing process. It is commonly assumed that OH + 124 F + Cl sum to 2.0 apfu (atoms per formula unit), which allows a normalization to the anhydrous, 125 halogen free basis of 23 O (Leake et al., 1997) but this assumption is not generally true, 126 especially for igneous amphiboles (e.g. kaersutites and "basaltic hornblendes"), which are known to contain considerable O²⁻ on this site (Deer et al., 1997; Dyar et al., 1992, 1993; Hawthorne and 127 128 Oberti, 2007a; King et al., 1999; Leake et al., 1997; Martin, 2007; Popp and Bryndzia, 1992; 129 Popp et al., 1995, 2006). Normalization schemes to 23 O are discussed in detail by Leake et al. 130 (1997) and Schumacher (2007). These authors propose calculating two normalizations, one assuming all Fe is Fe^{2+} , the other assuming all Fe is Fe^{3+} , comparing the results to an extensive 131 132 list of "chemical" and "stoichiometric" limits, using these to calculate adjusted minimum and 133 maximum permissible values for ferrous and ferric iron, and then generally taking the mean 134 between these values as the determined speciation of iron in the amphibole. This complex 135 process is by no means always used in the literature, and its results are not particularly satisfactory, although they are better than the default assumption of all Fe being Fe^{2+} or Fe^{3+} 136 137 (Hawthorne and Oberti, 2007a).

Instead, many studies use one of a few cation normalization schemes. Amphibole group

1	0/9
	0/3

139	minerals contain twenty-four anions and between fifteen and sixteen cations per formula unit.		
140	The cations sit on at least seven crystallographically distinct sites, one of which can be vacant,		
141	partly, or totally filled. These seven crystallographic sites can be grouped into four distinct size		
142	and coordination types: in order of increasing size, two tetrahedral/4-fold coordination sites,		
143	three octahedral/6-fold coordination sites, an 8-fold or 6+2 fold or even 4+4 fold (Oberti et al.,		
144	1993a) coordinated site, and the large potentially vacant A site (Figure 1). These four site types		
145	can be occupied by all the common cations in silicates (Hawthorne and Oberti, 2007a).		
146	Common major element constituents of amphiboles are located as follows:		
147	• The tetrahedral sites are occupied by Si and Al (much less commonly Ti; Leake et al.,		
148	1997).		
149	• The octahedral sites are occupied by Al, Ti, Cr, Mg, Mn, Fe^{2+} and Fe^{3+} .		
150	• The 8-fold sites are occupied by Mg, Mn, Fe^{2+} , Ca, and Na.		
151	• The large A sites are vacant or occupied by Na, K, and very rarely Ca (Leake et al.,		
152	1997).		
153	A given cation is commonly found on more than one type of site in a given amphibole.		
154	The most common overlap situations involve Al on both tetrahedral and octahedral sites; Mg,		
155	Fe ²⁺ , and Mn on both octahedral and 8-fold sites; and Na on both 8-fold and A sites. Ti		
156	occupancy of tetrahedral sites and Ca occupancy of the A site are rare and appear to be limited to		
157	peculiar chemical environments (Hawthorne et al., 1996a; Hawthorne et al., 1996b; Leake et al.,		
158	1997). The likelihood of vacancies and the amount of overlap that can occur between sites are		
159	troublesome for any method of cation normalization; nevertheless, since it obviates the need to		
160	determine Fe ²⁺ /Fe ³⁺ and volatile constituents, cation normalization is commonly used.		
161	Probably the two most common cation normalization schemes for amphiboles are, in this		

162 order, the 13-cation scheme, where all cations outside of Ca, Na, and K are assumed to occupy 163 and fill the tetrahedral and octahedral sites, and the 15-cation scheme, where all cations outside 164 Na and K are assumed to occupy and fill the non-A cation sites (Hawthorne and Oberti, 2007a). 165 These schemes are directed specifically at calcic amphiboles (e.g. hornblende, actinolite, 166 pargasite, edenite), in which Ca dominates the 8-fold site. The 15-cation scheme is also 167 applicable to ferromagnesian amphiboles in which Fe and Mg dominate the 8-fold site. The 13-168 cation scheme is also applicable to sodic amphiboles, in which Na occupies a large fraction of 169 the 8-fold site.

170 Igneous amphiboles in mafic to intermediate rocks are generally calcic (Deer et al., 1997; 171 Hawthorne et al., 2012), although exceptions are known (e.g., Shane et al., 2007). The twofold 172 defining assumption of the 13-cation scheme implies that significant Fe does not occupy the 8-173 fold site and significant Ca does not occupy the octahedral site. If this assumption is not true, the 174 13-cation scheme will underestimate the number of cations in the overall amphibole formula. 175 The 15-cation scheme assumes that Ca does not occupy the A site and Na does not occupy the 8-176 fold site; if this assumption is invalid, the 15-cation scheme will produce an excess of cations in the calculated formula. 177

There are solvus relationships between the calcic amphiboles and the Mg-Fe amphiboles, as well as between the calcic amphiboles and the sodic amphiboles. In natural systems, these cause exsolution of high-temperature (and/or high-pressure) binary or ternary amphiboles into two or three phases of more dominantly calcic, sodic, or ferromagnesian affinity (Smelik and Veblen, 1992a, 1992b, 1993, 1994). Unexsolved amphiboles generally have >1.5 apfu of the dominant cation on the 8-fold site (e.g. tremolites on the glaucophane-tremolite solvus synthesized by Jenkins, 2011 with 1.6-1.65 apfu ^[8]Ca), making both the 13-cation and 15-cation

schemes at least crudely applicable to any calcic amphibole. Zingg (1996) noted that in the rock suites he studied, Na appeared to be accommodated in calcic amphiboles dominantly by the edenite exchange, i.e., a substitution from a low-alkali, A-site vacant base composition via the exchange vector ${}^{A}(Na,K)_{1}{}^{[4]}Al_{1}{}^{[4]}Si_{.1}$, with the glaucophane exchange (${}^{[8]}Na_{1}{}^{[6]}Al_{1}{}^{[8]}Ca_{.1}{}^{[6]}Mg_{.1}$) of marginal importance, while the cummingtonite exchange (${}^{[8]}Fe_{1}{}^{[8]}Ca_{.1}$) was more evident; thus, for the amphiboles in his study, the 15-cation normalization would provide significantly more accurate results than the 13-cation scheme.

192 A third cation normalization scheme, the 16-cation normalization, assumes full 193 occupancy of the cation sites in the amphibole (Hawthorne and Oberti, 2007a). This can be a 194 relatively accurate assumption for certain amphiboles. It is well-known that Na and K 195 occupation of the A site is positively correlated with temperature (Holland and Blundy, 1994). 196 While pressure effects on A site occupancy are seldom discussed in the literature, it seems clear 197 that the edenite exchange vector above should result in substantial molar volume reduction of the 198 amphibole+fluid or melt system, with any increase in amphibole unit cell volume more than 199 offset by the replacement of (Na,K)+Al in the external environment with Si; therefore the edenite 200 exchange should be expected to progress toward completion at high pressure. Thus both high T201 and high P conditions, in the presence of adequate alkalis and Al, should produce amphiboles 202 that tend toward full cation site occupancy.

203

3. Suggested methods for normalization of igneous amphibole formulae. To use igneous amphibole compositions to study the volatile contents of their parental magmas, it is highly desirable to find a normalization scheme that does not constrain the O^{2-} content of the O(3) site to 0 (King et al., 1999; Lamb and Popp, 2009; Popp et al., 2006) or to another value such as

208	$^{[O3]}O^{2-} = 2$ Ti (Hawthorne et al., 2012; Leake, 1968; Saxena and Ekstrom, 1970). For amphibole
209	analyses where Fe ₂ O ₃ /FeO and H ₂ O have not been determined, which are the vast majority of
210	those in the literature, a cation normalization procedure is the only way to accomplish this.
211	Mazdab (2003) converted the six stoichiometric checks recommended by Leake et al.
212	(1997) and others into cation normalizations, then checked the results of these normalizations for
213	charge balance and cation site type occupancy constraints. This allowed him to choose sensible
214	normalization results for at least one of the normalization types. We propose a procedure with
215	some similarities, using the three cation normalizations described above: 13-cation, 15-cation,
216	and 16-cation, and comparing their results to one another and to a 23 O anion normalization.
217	After calculating the results of all three normalizations, we bin the cations in a
218	standardized order. All Si is placed on tetrahedral sites, which are then filled with Al. Residual
219	Al is placed on the octahedral sites, followed by Ti, Mg, and Mn; the octahedral sites are then
220	filled with Fe. In reality, Fe, Mn, and Mg will all occupy the 8-fold site if any of them do, but
221	this is the simplest convention. The important distinction is between smaller divalent cations and
222	Ca on the 8-fold sites. Residual Fe is placed on the 8-fold sites, followed by Ca, with Na added
223	to fill the 8-fold sites if needed. Residual Ca, Na, and all K are placed on the A site, which may
224	be partly vacant.
225	The next step is to calculate the positive charge due to cations, with the temporary
226	assumption that all Fe is present as FeO. For a charge-balanced amphibole with no O^{2-} on the

O(3) site, the cations should contribute 46+ to the structure to balance the anions (22 O and 2

228 OH, F, or Cl). This is equivalent to checking how closely the normalization corresponds to a 23

229 O normalization with all ferrous iron. The results will in general not equal the ideal total of 46+.

230 To correct this, we take one of two steps depending on whether there is a deficit or an excess of

positive charge. In case of a deficit, we calculate the amount of Fe^{3+} substitution for Fe^{2+} that 231 would be required for charge balance; in case of excess, we calculate the amount of O^{2-} 232 233 substitution for OH⁻ that would achieve the same. This calculation can be checked by summing 234 the anions to see if they equal the amphibole total of 24. 235 This procedure gives a minimum adjustment required for charge balance. It is possible to add more of both Fe^{3+} and O^{2-} (in equal amounts) to the compositions calculated this way 236 237 according to equation 1 above. This does not affect the overall anion to cation ratio, since the additional anions introduced by Fe_2O_3 in place of FeO are offset by the H₂O lost by O^{2-} 238 239 substitution. Thus, the maximum adjustment will be the one that either converts all Fe on the octahedral sites to Fe^{3+} or converts all OH to O^{2-} , whichever comes first. The resulting 240

241 composition will still be subject to the constraints imposed by the choice of cation normalization.

242 For ease of discussion, we define the quantity Δ_{oxo} :

243 (2) Cation charge (all ferrous iron) - 46 = $\Delta_{\text{oxo}} = X(^{[O(3)]}O^{2-}) - X(Fe^{3+})$

244 where *X* is the molar quantity of the component in question in apfu. Δ_{oxo} is positive when the

oxo-component exceeds the amount of ferric iron in the amphibole, negative when the reverse istrue.

We can reinterpret the results of a 23 O normalization with all Fe assumed to be Fe^{2+} as a normalization requiring $\Delta_{oxo} = 0$ (equal amounts of Fe^{3+} and oxo-component). We can calculate the results of a 23 O norm for comparison to the results of the cation norms with this corollary in mind to assist in choosing the best amphibole formula in a given situation.

We suggest a non-exhaustive list of checks that may allow rejection of one or more norm calculations, or will at least give more information about the consequences of choosing one scheme over another. The reader, again, should bear in mind that our focus is on igneous

amphiboles.

255		
256	•	Compare the values of the normalization factors for all schemes, including 23 O. Any
257		scheme whose normalization factor exceeds the 16 cation factor is unrealistic.
258	•	Compare Δ_{oxo} to ^[6] Fe. If $-\Delta_{oxo} > {}^{[6]}$ Fe, the scheme in question (probably the 13-cation
259		scheme) is unrealistic.
260	٠	Conversely, if $\Delta_{oxo} > 2$ - F - Cl, the scheme in question is unrealistic.
261	•	Any 13-cation or 23 O norm that requires K or vacancies ([]) on the 8-fold sites is also
262		unrealistic.
263	•	If the 13-cation norm assigns a large amount (>0.3-0.4 apfu) of Na to the 8-fold site, or if
264		the 16-cation norm assigns significant Ca (>0.1 apfu) to the A site, the 15-cation norm is
265		usually preferable.
266	•	Evaluate the Δ_{oxo} /Ti ratio. Popp et al. (1995, 2006) show that this ratio is commonly
267		equal to 1.0 for pargasites and kaersutites. Hawthorne et al. (2012) suggest a maximum
268		of 2 for this ratio based on older work (Leake, 1968; Saxena and Ekstrom, 1970). A very
269		large value for this ratio (>3) suggests that Δ_{oxo} is too high.
270		
271		Other criteria are described in Mazdab (2003).
272		To illustrate this methodology, we have included Supplemental Information Table 1,
273	which	includes analyses for a variety of igneous amphiboles. The reader is invited to reuse these
274	spread	sheets to check the results of multiple normalization schemes on their own amphibole
275	data.]	Examining the results, we note several patterns:
276		

277	•	A typical igneous calcic amphibole will provide similar formulae when normalized to 15
278		cations or 23 O. A few tenths of an apfu of ^[8] Fe are required in these schemes. The 13
279		cation scheme will replace this with $^{[8]}$ Na and will usually require a minimum of ~50% of
280		the Fe to be Fe^{3+} . For some of these amphiboles, the 13 cation scheme is untenable due
281		to the assignation of $^{[8]}$ K or $^{[8]}$ []. The 16 cation scheme forces a few to several tenths of
282		an apfu of ^[A] Ca and is unrealistic.
283	•	The cummingtonite data provided by Shane et al. (2007) illustrate that the 15-cation norm
284		and the 23 O norm are the only ones that provide reasonable results for this class of
285		amphiboles, which have nearly vacant A sites and 8-fold sites dominated by Fe+Mg+Mn.
286	•	The 2007 Bezymianny amphibole compositions (Turner et al., 2013) are unusual in that
287		they have nearly equal 16-cation and 23 O normalization factors. We prefer the 15-cation
288		normalizations for these amphiboles as well, since the 13 cation norms require nearly
289		100% Fe^{3+} , while the other norms demand 0.1-0.25 apfu ^[A] Ca. These amphiboles have
290		low Si, ^[6] Al, and Ti relative to other amphiboles in the dataset, which may have
291		discouraged the inclusion of $^{[O(3)]}O^{2-}$, even in an oxidizing environment enriched in Fe ³⁺
292		(King et al. 1999; Popp et al. 2006).
293	•	Kakanui amphibole has Na+K>1 no matter which scheme is used; the 15-cation scheme
294		is unusable. The 13-cation and 23 O factors are close, and they calculate ~ 0.4 apfu ^[8] Na.
295		The 16-cation norm instead calculates ~ 0.15 apfu ^[8] Na and ~ 0.2 apfu ^[8] Fe, which seems
296		equally realistic. In any case, this high <i>P</i> mineral is the only amphibole in our dataset
297		required to have a significant glaucophane component.
298	•	The amphiboles synthesized by Adam and Green (1994, 2006), Adam et al. (2007), and
299		McCubbin et al. (2008) were grown at high P (>9 kbar) and T (>980 °C). These

10/9

300	amphiboles have very similar 15-cation and 16-cation formulae with Na+K \sim 1. As noted
301	above, these growth conditions are expected to favor full occupancy of the amphibole
302	structure via the edenite exchange, so these results are as expected. The 23 O formulae
303	have 0.0-0.17 apfu $^{[8]}$ Na, 0.1-0.25 apfu $^{[A]}$ [], and are also reasonable. All three schemes
304	yield ~0.45-0.76 apfu ^[8] Fe for the McCubbin et al. (2008) synthetic amphiboles. At these
305	conditions, the cummingtonite-hornblende solvus is likely closed (Smelik and Veblen,
306	1994; Zingg, 1996) and there is no reason to discredit these results. On the other hand,
307	while the 13-cation scheme yields reasonable cation occupancies for these amphiboles,
308	the minimum amount of Fe^{3+} they require is near or at 100% of the total iron available,
309	which is unrealistic for amphiboles crystallized at mantle-equivalent $f(O_2)$ (King et al.
310	2000).
311	
312	The cation normalization and follow-up procedure described only fixes minimum and
313	maximum values of Fe^{3+} and the oxo-component of the amphibole. The traditional response to
314	this kind of ambiguity was to take an average between the minimum and maximum possible
315	values of Fe ³⁺ / Σ Fe (Leake et al., 1997); and in the absence of any data about the formation
316	environment of the amphibole, this is probably the best solution (Hawthorne and Oberti, 2007a).
317	The next section describes how we can improve on this estimation technique when information
318	about the formation environment is available.
319	

4. Use of f(O₂) and f(H₂O) to calculate redox state of amphibole. Popp et al. (1995, 2006)
provide a quantitative model to evaluate the relationship between the amphibole Fe/H redox state
in equation 1 and the external environment of the amphibole. For a fully characterized

323	amphibole, the model produces a value of $f(H_2)$ that can be combined with estimates of $f(O_2)$ to
324	evaluate the H ₂ O activity or fugacity of the amphibole source region, or the conditions under
325	which it last equilibrated. The model was calibrated using data from two pargasites and one
326	kaersutite over the temperature range 700 - 1000 °C and pressure range 1 - 10 kbar.
327	In a situation where data is available for $f(H_2O)$ and $f(O_2)$, along with an ordinary suite of
328	electron microprobe data for amphibole composition (including halogens), for example in
329	synthesis experiments with a controlled amount of H_2O and an $f(O_2)$ buffer, we can reverse the
330	model and use it to calculate the amount of Fe^{3+} , Fe^{2+} , $[O(3)]O^{2-}$, and OH in the amphibole. This is
331	done by starting with the equation (Popp et al., 2006)
332	(3) $K_x = 28.94 f(H_2) [X^2(Fe^{3+}) \cdot X^2_{oxo}] / [X^2(Fe^{2+}) \cdot X^2(OH)]$
333	where <i>X</i> is the molar quantity of each component in the amphibole, $X_{oxo} = X(^{[O(3)]}O^{2})$, and K_x is
334	an effective equilibrium constant (see the original reference for further explanation). Once we
335	have selected an amphibole normalization as discussed above, we can make substitutions like the
336	following based on equation 2:
337	$X(\mathrm{Fe}^{3+}) = X_{oxo} - \Delta_{\mathrm{oxo}}$
338	(4) $X(Fe^{2+}) = X_{\Sigma Fe} - X(Fe^{3+})$
339	$X(OH) = 2 - X(F) - X(Cl) - X_{oxo}$

With these substitutions, equation 3 can be converted into a quartic polynomial equation in X_{oxo} , with all other quantities calculated from the normalized amphibole formula or the known external conditions. This equation can be solved analytically, but it is easier to use numeric methods. One root will be equal to 2-X(F)-X(Cl) (a trivial root, implying no OH present in the amphibole) while another (the chemically significant root) will be between this value and Δ_{oxo} . Supplemental Table 2 shows the results of the use of this equation for the synthetic

346	amphiboles in Supplemental Table 1.1. For the Sato et al. (2005) data, since there are no
347	estimates of phase proportions in their run products, their claim of water saturation in all
348	experiments has to be accepted, and the $a(H_2O)$ of their systems is assumed to be 1.0. For the
349	other experiments, the authors reported phase proportions, which allowed the H ₂ O content of
350	their experimental melts to be compared to calculated H ₂ O solubility values (Moore et al., 1998);
351	the systems were all found to be H_2O -undersaturated. We therefore calculated the $a(H_2O)$ of
352	these systems using the model of Burnham (1997). (The interested reader may consult Appendix
353	1 to learn why we chose these models out of the many published models for H_2O solubility in
354	silicate melts.) The resulting quartic equation for each analysis was solved for the appropriate
355	root using the nonlinear, continuous GRG Solver routine in Microsoft Excel©. The results of
356	these calculations are intuitively reasonable: most of the X_{oxo} values are only a few tenths of an
357	apfu above the Δ_{oxo} values, and the exceptions are the three high- <i>f</i> (O ₂) runs from Sato et al.
358	(2005). Once X_{oxo} is calculated, the Fe ³⁺ content and other properties of the amphibole can be
359	calculated from the crystal chemical constraints in equation 4.
360	Thus, we see that the Popp et al. (2006) model, and future refinements and extensions to
361	it, can be used to estimate the seldom-measured H_2O and Fe_2O_3 content of amphiboles from an
362	environment whose $f(O_2)$ and $a(H_2O)$ is sufficiently well-known or controlled. It is possible to
363	constrain these parameters for igneous amphiboles in a more indirect, but often more readily
364	measured, fashion, using the Cl content of equilibrated melt (preserved as quenched glass) and
365	exploiting the competition between Cl and OH for the amphibole $O(3)$ site. The next section
366	will discuss this competition, while the section after will show how the Cl/OH model and the
367	Fe/H model just described can be used in tandem to calculate the H ₂ O content of melts
368	crystallizing amphibole as well as the Fe ₂ O ₃ and H ₂ O content of the amphibole itself.

369

370	5. Chlorine partitioning between amphibole and melt; a recalibration of the model of Sato					
371	et al. (2005). Equilibrium partitioning behavior for many trace and minor elements or chemical					
372	components is adequately described by a bulk partition coefficient <i>D</i> :					
373	$D_{\rm X} = C_{\rm X}({\rm mineral}) / C_{\rm X}({\rm melt \ or \ fluid})$					
374	where C is the weight fraction of the element or component X in the phase in question. D may					
375	or may not be known as a function of temperature, pressure, or chemistry of either the mineral or					
376	the melt/fluid; in many cases it is quoted as a catch-all constant (e.g. Filiberto and Treiman,					
377	2009a; Zhang et al., 2012). Such a formulation is not adequate for H ₂ O, F, and Cl in amphibole					
378	at better than an order-of-magnitude level, as can be seen in Figure 2, where D is calculated and					
379	plotted against absolute temperature for syntheses in Supplemental Tables 1 and 2. As can be					
380	seen, D_{Cl} varies by a factor of ~5 at a given temperature and is less than 1 for all reliable					
381	analyses. This is unsurprising, given the complex crystal chemistry of amphibole and the					
382	relative misfit between Cl and the other possible occupants of the O(3) site. Further, unlike					
383	typical trace or minor constituents, the halogens and OH fulfill a critical role in crystallizing					
384	amphibole-except in the extreme case of an oxo-only amphibole, these components are					
385	required in order to occupy the O(3) site of the lattice; they are also limited to this site, and					
386	cannot occupy other sites in the lattice in any significant quantity. In this situation, the simple D					
387	formalism is inadequate to explain the behavior of the amphibole-melt(-fluid) system.					
388	Zhang et al. (2012), in their assessment of currently available models for halogen					
389	partitioning between minerals and melts, cite Sato et al. (2005) as the only such model for					
390	amphibole. This model calculates a molar partitioning reaction coefficient K_{Cl} :					
391						

17

10/9

392 (5)
$$K_{Cl} = (X_{Cl}/X_{OH})_{amphibole} / ([Cl]/[OH])_{melt}$$

393

394 where [] indicate mole fraction on a 1O basis (Appendix 1) as a function of the Mg# (= Mg/(Mg $+\Sigma$ Fe)) of the amphibole and temperature T. This model was calibrated for synthetic hornblende 395 396 crystallized from water-saturated melts of Unzen rocks, or Fe-enriched Unzen rocks, at 800 to 397 850 °C and 1.85 to 3 kbar. This model is a significant advance compared to previous discussions 398 of amphibole crystal chemistry vis-a-vis chlorine partitioning (Enami et al., 1992; Morrison, 399 1991; Oberti et al., 1993b) but it is calibrated for a very narrow range of P, T, and chemical space 400 relative to the known stability fields of various amphiboles. It is likely not applicable to 401 petrological problems involving, e.g., basaltic melts. 402 Another potential drawback to the Sato et al. (2005) model is that it explicitly assumes 2 403 = OH + F + Cl, equivalent to a lack of oxo-component in the amphibole. As seen in 404 Supplemental Table 2, the Popp et al. (2006) model predicts significant oxo-component even 405 under conditions of water saturation $(a(H_2O) = 1)$. To use the actual formulation of Sato et al. 406 (2005), one must ignore oxo-component and treat it as equivalent to OH. 407 In Supplemental Table 3, we show the results of reproducing the calculations in Table 5 408 of Sato et al. (2005) on an augmented dataset that includes amphibole and glass data from 409 basaltic, ferroan basaltic, alkali basaltic, and andesitic melts (Adam and Green, 1994, 2006; 410 Adam et al., 2007; Browne, 2005; Hauri et al., 2006; McCubbin et al., 2008), all of which were 411 crystallized at higher T and most of which were crystallized at higher P than any of the Sato et al. 412 (2005) amphiboles. The reader should note that we were unable to reproduce the Sato et al. 413 (2005) calculations even for their own syntheses, possibly because they did not cite a reference 414 for $f^{\circ}(H_2O)(P,T)$. In this paper, we employ the Helmholtz energy formulation for H_2O of Pitzer

415	and Sterner (1994) and the fugacity equation from Sterner and Pitzer (1994). The resulting fit to				
416	Sato et al. (2005)'s original equation (Figure 3) is therefore poorer than the one reported in their				
417	paper for their own data. Still poorer is the fit to the added data, especially the very high				
418	pressure data. The poor fit to the data of Browne (2005) may be due to problems with his				
419	amphibole or glass analyses, since his synthesis conditions were quite similar to those of Sato et				
420	al. (2005). As for the rest of the added data, even with the moderate amount of systematic error				
421	introduced by changing water fugacity models, it seems clear that the Sato et al. (2005) equation				
422	is not applicable to amphiboles in basaltic or and esitic melts at ~10 kbar, ~1000 °C and above.				
423	We recalibrated the Sato et al. (2005) partitioning model using our entire synthetic				
424	dataset, except for the Browne (2005) data, and amphibole OH contents calculated according to				
425	the methodology of the previous section of this paper, including the use of 15 (or in one case, 16)				
426	cation norms for all amphibole compositions. Most of the complexity in this calculation				
427	involves finding an appropriate value of [OH] _{melt} in equation 5.				
428	We had to make two important assumptions in order to carry out these calculations, and				
429	we considered the results of different options in each case. Our additional data were obtained				
430	from systems crystallized inside graphite capsules, rather than systems in precious metal				
431	capsules with an external metal and/or ceramic oxygen buffer as Sato et al. (2005) used.				
432	Graphite capsule systems are partially buffered by the reaction of graphite with aqueous				
433	components even in the absence of a free aqueous fluid phase (Holloway et al., 1992; Médard et				
434	al., 2008; Pilet et al., 2010; Ulmer and Luth, 1991). We therefore ran all of our calculations				
435	assuming $f(O_2)$ 0.8 log unit lower than the water-saturated GCO (graphite-carbon oxides) buffer				
436	(Médard et al., 2008; Ulmer and Luth, 1991) for the syntheses in graphite capsules. We observed				
437	little difference in the calculated K_{Cl} for higher (GCO) or lower (GCO-1) $f(O_2)$ conditions.				

442 who supplies a temperature and pressure-calibrated expression for K_1 for rhyolitic melt on the

438

439

440

441

443 basis of solubility data, they employed K_2 as determined by Nowak and Behrens (2001). Both

444 constants were determined for rhyolitic systems and are probably not ideal fits for the dacites of

445 Sato et al. (2005), let alone the more mafic systems of our auxiliary data. For the dacite dataset,

446 we substituted the K_2 of Liu et al. (2004), which is recommended by Zhang and Ni (2010).

447 Few workers calculate a K_1 as described by Zhang (1999), and there is little solubility

448 data for dacite in the literature with which to constrain K_1 . Ohlhorst et al. (2001), whose primary

449 concern was synthesizing bubble-free glasses for spectroscopic calibrations, provide solubility

450 data that allow a calculation of K_1 for two samples at 1-2 kbar, 1200-1225 °C using the same

451 method Zhang (1999) employed to calibrate K_1 for rhyolite, including the use of K_2 (Liu et al.,

2004) to reconstruct high T speciation. These dacite K_1 values are near 9.7x10⁻⁶, ~40% lower 452

than the values calculated by Zhang (1999)'s rhyolite K_1 regression (~1.3x10⁻⁵). Liu et al. (2004) 453

454 only supply solubility data at 1 bar and ~500 °C, well out of the range in which the K_1 regression

455 is claimed accurate; 1 bar dacite K_1 values are two orders of magnitude higher than those

456 returned by the regression. We have therefore calculated total water solubility in the dacites

457 $([H_2O]_t)$ following Moore et al. (1998) instead of determining $[H_2O]_m$ and $[H_2O]_t$ via a K_1 .

458 For the basaltic data, a value for K_1 was not needed since the melt was undersaturated (no 459 aqueous fluid phase was present), and by assuming an approximate amount of H₂O content of the 460 amphibole (1.1 to 1.4 wt%) one could figure the amount of H₂O in the melt by mass balance,

10/9

461	then check the accuracy of the approximated amphibole H_2O content at the end of the whole
462	calculation. We tried two formulations for speciation in the basaltic melts: the temperature-
463	independent regular solution model (Dixon et al., 1995; Silver and Stolper, 1989), and K_2
464	expressions temperature calibrated by means of glass transition theory (Lesne et al., 2011). The
465	regular solution model yields an equation that must be solved numerically to determine
466	speciation. The results of the temperature-independent calculation are a higher $[H_2O]_m$ and a
467	lower [OH] compared to the K_2 calculation for the melts in question, and we tried regression
468	against both sets of results.
469	We employed standard multiple linear regression techniques (Iman, 1994) in Microsoft
470	Excel© on a chosen family of 19 crystal chemical and environmental parameters to determine
471	which were most significantly correlated with our redetermined values of $\ln K_{Cl}$. Our procedure
472	is discussed in more detail in Appendix 2. The parameters chosen were Mg/(Mg+Fe),
473	$Mg/(Mg+^{[6]}Fe), Mg, Mn, {}^{[6]}Fe, {}^{[6]}Al, Ti, (Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al), Si, {}^{[4]}Al/Si, K, {}^{[A]}[], Na, Mg/(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al), Si, {}^{[4]}Al/Si, K, {}^{[A]}[], Ng/(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al), Si, {}^{[4]}Al/Si, K, {}^{[4]}[], Ng/(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al), Si, {}^{[4]}Al/Si, K, {}^{[4]}[], Ng/(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al), Si, {}^{[6]}Al/Si, K, {}^{[6]}[], Ng/(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al), Si, {}^{[6]}Al/Si, K, {}^{[6]}Al/Si, K, {}^{[6]}Al/$
474	$(K+^{[A]}[])/Na, K/(^{[A]}[]+Na), Ca, Ca/^{[8]}Fe, T(K), and ln P (bar).$ The rationale for this choice of
475	parameters was 1) to test specific parameters suggested by Sato et al. (2005), <i>i.e.</i> Mg#, $^{[4]}Al = 8$ -
476	Si, and T , 2) to test additional parameters related to the octahedral site occupancy of Mg and Fe,
477	given the local chemical properties of Fe-Cl affinity and Mg-Cl antipathy (Oberti et al., 1993b;
478	Zhang et al., 2012), 3) to test other parameters related to the size of the amphibole lattice, which
479	should correlate positively with the ability of the lattice to house the large Cl anion (Enami et al.,
480	1992; Morrison, 1991; Oberti et al., 1993b; Zhang et al., 2012), and 4) to avoid parameters
481	directly related to the oxidation state of iron or the water content of the system, so that the
482	resulting regression equations could be used in the combined model described in the next
483	section. It is noteworthy, regarding the last point, that one does observe good correlation

487

505

488 Our regression model equation coefficients and standard errors are given in Table 1. 489 while the entire regression report is given for each model in Supplemental Tables 4.1-4.4. For 490 comparison, we also include the results of our methodology applied to the analytical data of Sato 491 et al. (2005) alone (Table 1 and Supplemental Table 4.5). From a statistical standpoint, the 492 resulting equations are acceptable descriptions of the global dataset. Our R-values range from 0.86 to 0.95 (cf. the 0.82 reported by Sato et al. 2005), R^2 from 0.70 to 0.84, and the F-statistics 493 494 (33 to 38) indicate very high confidence in the significance of modeled parameters to the 495 variation in $\ln K_{\rm Cl}$. The Sato-alone model presents a close correlation between observed and predicted K_{CI} values (R = 0.97, R² = 0.95, F = 95). We note that Sato et al. (2005) cite as a 496 possible source of error "the assumption of the stoichiometric anionic contents of hornblende" 497 498 (i.e. the assumption that 2 = OH + F + Cl), and our results suggest that not only is this in fact a source of error, but that calculating the oxo-component and amphibole OH using the reversed 499 500 Popp et al. (2006) methodology presented in the previous section provides a significant 501 improvement in our ability to model Cl partitioning in amphibole. 502 Several points seem worthy of note from the standpoint of crystal chemistry: 503 Mg/Fe-related parameters appear in all models, as expected. We regressed models with • 504 total Fe, but eventually discarded this term from the list used to generate the final models since total $Fe = {}^{[6]}Fe + (2 - Ca)$. The total Mg# was left in, but was eventually removed

from all models save the Sato-only model in favor of ^[6]Mg#, which makes sense since 506

507		the $O(3)$ site is distant from the 8-fold site where some of the Fe resides; however, there
508		is a small difference in the degree to which changing this parameter affects its overall
509		correlation with $\ln K_{Cl}$ (Figure 4). In the final Lesne model, $\ln K_{Cl}$ is positively correlated
510		with ^[6] Fe and negatively correlated with Mg, as expected. The final Dixon model retains
511		only Mg.
512	•	Other octahedral site parameters are not well correlated with $\ln K_{Cl}$. The ratio
513		$(Mg+Mn+^{[6]}Fe) / (Ti+Cr+^{[6]}Al)$ remains in the 8 parameter Lesne model, but the sign of
514		its coefficient flips as parameters are eliminated, and it was removed from the final
515		model. It appears that the presence of high-valence cations on the octahedral sites does
516		not strongly affect the ability of Cl to displace OH on the O(3) site.
517	•	Increased K (potassium) should be positively correlated with $\ln K_{Cl}$ since it is the largest
518		common occupant of the amphibole A site and should produce an increase in the overall
519		size of the amphibole lattice, which makes more room for the large Cl anion (Morrison,
520		1991; Oberti et al., 1993b). The correlation we observe is very strong (Figure 4), and K-
521		related parameters survive into both the Dixon and Lesne final models. Sato et al. (2005)
522		were not able to see this correlation due to the limited range of K content in their
523		amphiboles; when we confine our dataset to only their data, K and associated ratios do
524		not appear in our final model either. The parameter ^[A] [] appears in the final Dixon
525		model with a positive coefficient, and other intermediate regression results also suggest
526		that vacant A sites increase the partitioning of Cl into amphibole relative to Na-occupied
527		A sites. The ratio (K+ ^[A] [])/Na is positively correlated with $\ln K_{Cl}$, but not nearly as
528		strongly as K/(Na+ ^[A] []).
529	•	Sato et al. (2005) looked for a correlation between $\ln K_{Cl}$ and ^[4] Al (Morrison, 1991;

530	Oberti et al., 1993b) and did not find one. We found some correlation with ^[4] Al in
531	preliminary models that allowed a constant term, but not in the final models, which are
532	overall better fits to the data.
533	• An unexpected result is the appearance of Ca in many models, including the last Sato-
534	only model, with a negative coefficient. We expected a positive correlation between ln
535	$K_{\rm Cl}$ and Ca and/or Ca/ ^[8] Fe, since increasing these parameters should increase the lattice
536	dimensions of amphibole.
537	• <i>T</i> refines out of our global models, although it should be kept in mind that <i>T</i> affects
538	virtually all of the crystal chemical parameters as well. We note that, despite the very
539	limited range of T considered by Sato et al. (2005), we see it included in our final model
540	for their dataset alone with a negative coefficient, just as they found in their own analysis,
541	as well as in many intermediate models for the whole dataset. The parameter $\ln P$ was
542	retained in early Dixon models only with a negative coefficient.
543	
544	We apply the eight-parameter and three-parameter models to natural igneous amphiboles
545	and the Browne (2005) syntheses in Supplemental Table 5. We include a variety of calcic
546	amphiboles, as well as igneous cummingtonites (Shane et al., 2007), to see what results the
547	regressions give when extrapolated to compositions well beyond the hornblende and pargasite
548	compositions over which they were calibrated. The K_{Cl} s calculated by the D8 and L8 models are
549	much higher for the cummingtonites than for the calcic amphiboles and are unrealistic.
550	Meanwhile, the D3 and L3 models give lower results for the cummingtonites than for the calcic
551	amphiboles. As one would expect, our equations are not to be relied upon to produce reasonable
552	results for non-calcic amphiboles. For the calcic amphiboles, the results are mostly similar and

553	fall between -2 <ln <math="">K_{Cl}<0 (mostly -1.5<ln <math="">K_{Cl}<0). This signifies that Cl is incompatible in</ln></ln>				
554	amphibole relative to OH, confirming and giving some additional quantitative substance to				
555	earlier conclusions from crystal chemical investigations (Morrison, 1991; Enami et al. 1992;				
556	Oberti et al. 1993b; Zhang et al. 2012).				
557	We also carried out the calculations of the next section given all four calculated K_{Cl} s for				
558	all the calcic amphiboles. The L3 regression seems to be of the widest utility. The water				
559	activities calculated with it are usually not as low as those calculated with D3 K_{Cl} s, which seem				
560	unrealistic; and we consider that the 8 parameter models are underconstrained by the data. We				
561	use the L3 equation in the remainder of this paper:				
562	(L3) $\ln K_{\rm Cl} = 6.59 \text{ K} / (\text{Na} + ^{[A]}[]) - 0.679 \text{ Mg} + 0.487 ^{[6]}\text{Fe}$				
563	Residual error in our L3 regressed values of $\ln K_{Cl}$ is shown in Figure 5, where it can be				
564	seen that a great deal of the residual error is due to two outliers in the high-pressure data.				
565					
566	6. Combined solution for Cl and H ₂ O partitioning into amphibole. An exciting possibility is				
567	provided by combining the amphibole redox model (Section 4) and our recalibrated Cl				
568	partitioning model (Section 5), along with appropriate H ₂ O speciation and solubility models, for				
569	systems where 1) ordinary suites of electron microprobe data (including Cl content) are available				
570	for amphibole/glass pairs where textural evidence suggests the glass was a melt equilibrated with				
571	the amphibole and 2) thermobarometric estimates, including $f(O_2)$, can be made for the system.				
572	In this scenario, even without Fe speciation or H ₂ O content determined for either phase, these				
573	values will be constrained by the models.				
574	H_2O -saturated model calculations. If one assumes water saturation in the magma, the problem is				
575	over-determined, and this can be used to check for self-consistency. The OH and $^{[O(3)]}O^{2-}$				

576 contents of the amphibole can be calculated using the methodology of Section 4, above.

577 Meanwhile, by assuming water saturation and choosing an appropriate speciation model, [OH] in 578 the melt can be calculated and equation 5 can be used to determine OH and $^{[O(3)]}O^{2-}$ in the 579 amphibole independently. If these estimates are not close, the problem may reside in the models 580 themselves, in the assumption of water saturation, or in the representativeness of the Cl 581 analytical data.

582 Supplemental Table 6 shows the results of these calculations from the same selection of 583 amphibole/glass pairs as Supplemental Table 5, making the assumption of water saturation. Full 584 details of the calculations are in spreadsheet form as Supplemental Table 7. For most of these 585 systems, the calculated oxo-component is negative from the Cl partitioning model, which is 586 equivalent to amphibole OH > 2 - F - Cl, which is of course impossible. From equation 5, there 587 are four possibilities to explain this: 1) K_{Cl} is too small; 2) Cl determined from the amphibole is 588 too large; 3) [Cl] determined from the glass is too small; or 4) [OH] is too large. We have 589 selected the L3 regression to minimize the chance of possibility 1 (see previous section). We 590 consider possibility 2 unlikely in most circumstances. Possibility 3 suggests that Cl has been lost 591 from the glass either in its natural environment by degassing, or during sample preparation, or 592 under the microprobe beam, all of which are important possible sources of non-593 representativeness. The best samples for the methodology we describe would be amphiboles 594 within glassy melt inclusions or within the interior of large masses of glass. Glasses exposed 595 directly to air as hot ejecta are likely to have degassed Cl, and unfortunately all the glasses in this 596 table were so exposed. Possibility 4 suggests error in the assumption of water saturation, or 597 potentially in the melt H₂O speciation model. In the circumstances, we believe degassing of Cl 598 from the ejecta glass and magma undersaturation in H₂O during amphibole crystallization are the

599 two most important factors in explaining the negative values of $^{[O(3)]}O^{2-}$ in our model results for

- 600 these volcanic amphibole/glass pairs.
- H_2O -undersaturated model calculation. If the magma was not water-saturated, one can arrive at
- a single determination of OH and ${}^{[O(3)]}O^{2-}$ in the amphibole and H₂O content of the melt by
- 603 combining the constraints of the amphibole redox model, the Cl partitioning model, speciation
- equations (Zhang and Ni, 2010), and an undersaturated water activity/fugacity model (Burnham,
- 605 1997). We manipulate the amphibole redox equation (3) as follows:
- 606

607 (3a)
$$f(H_2) = K_x X^2(Fe^{2+}) X^2(OH) / [28.94 X^2(Fe^{3+}) X^2_{oxo}]$$

608 (3b)
$$f(H_2O) = K_f(H_2O) f^{1/2}(O_2) K_x X^2(Fe^{2+}) X^2(OH) / [28.94 X^2(Fe^{3+}) X^2_{oxo}]$$

609 (3c)
$$a(H_2O) = K_f(H_2O) f^{1/2}(O_2) K_x X^2(Fe^{2+}) X^2(OH) / [28.94 f^{\circ}(H_2O) X^2(Fe^{3+}) X^2_{oxo}]$$

610

611 where $K_f(H_2O)$ is the equilibrium constant for the formation of H₂O, and $f^{\circ}(H_2O)$ is the fugacity

612 of pure
$$H_2O$$
 vapor at the *P* and *T* being considered.

- 613 We recast the Cl partitioning coefficient equation (5) in the following form:
- 614

615 (5a)
$$K_{\text{Cl}} \cdot ([\text{Cl}] / X_{\text{Cl}}) \cdot X_{\text{OH}} = [\text{OH}]$$

616

618

619 $K_2 = [OH]^2 / ([H_2O]_m[O])$

620 (6)
$$[H_2O]_t = [H_2O]_m + [OH]/2$$

621 $[O] = 1 - [H_2O]_m - [OH]$

623 The Burnham relation takes one of two forms depending on whether $\chi(H_2O) < 0.5$ 624 (Burnham, 1997; Burnham and Nekvasil, 1986):

625

622

626 (7a) $a(H_2O) = k_w \chi^2(H_2O), \chi(H_2O) < 0.5;$

627 (7b)
$$a(H_2O) = 0.25 k_w e^{(6.52-2667/T)(\chi(H_2O)-0.5)}, \chi(H_2O) > 0.5.$$

628

629 where k_w also has *P* and *T* dependence. Note that the Burnham mole fraction of H₂O in melt, χ 630 (H₂O), can be calculated from the Stolper/Zhang mole fraction [H₂O]_{*t*} and vice-versa given the 631 anhydrous glass composition (Appendix 1).

632 Together with the amphibole stoichiometry relations (equation 4), these equations can be 633 substituted into one another to form a single equation in a single unknown: a twelfth-order 634 polynomial equation in X_{oxo} for the case of low χ (H₂O), or a complicated exponential equation if 635 the high γ (H₂O) formula is appropriate. Fortunately, the mole fraction constraint is high enough 636 that the solubility bound is often exceeded before the high H₂O version of the equation need be 637 used. These equations can be solved by numeric methods, although their sensitivity to input 638 parameters is high and care must be taken to avoid false roots and local minima when using a 639 numeric solver routine. More than one root for X_{oxo} can often be found, and although starting 640 with a low trial value for oxo-component (e.g., 0.1 apfu) is usually a good way to find the root of 641 interest (which we take to be the lowest positive root), sometimes the Excel solver will overshoot 642 a root and settle into a higher one. It will also sometimes try and fail to find a lower root until 643 the trial value is raised sufficiently. A detailed mathematical treatment of these equations is 644 beyond the scope of this paper, but looking at several example forms suggests that, for the lowwater version, the appropriate root for X_{oxo} is a degenerate root, and when evaluating the function using real numbers and real software, rounding errors often cause the function to "stop" slightly above 0, as can be seen when graphing the function in a computer algebra system such as Maxima.

649 Returning to the calcic amphibole/glass pairs we have assembled, Supplemental Tables 8 650 gives full details of these calculations and Supplemental Table 9 show the results. The low-water 651 equation has a viable solution for X_{oxo} for all samples, although the solution for the synthetic 652 amphibole RDT-A-2 is above 0.50 γ (H₂O), and the high-H₂O equation *cannot* be solved for a 653 meaningful root. Nearly all amphibole-glass pairs have calculated water activities well below 654 0.5, indicating that they probably crystallized from H₂O-undersaturated melts. However, the 655 composite equation compensates for any postcrystallization loss of Cl from the melt (whether 656 from degassing or sample handling) by depressing melt [OH], and therefore water activity and 657 hydrogen fugacity as well, resulting in higher X_{oxo} and lower $a(H_2O)$. Amphibole requires a 658 significant supply of H_2O (or, in other circumstances, F) in order to form. Thus, the very low 659 H₂O activities in Supplemental Table 9 seem unlikely to record actual amphibole formation 660 conditions. We can instead interpret these as evidence of Cl degassing from the associated glass. 661 The high water activities in Supplemental Table 9, or equivalently, the good matches on 662 Supplemental Table 6 between the two determinations of amphibole oxo-component suggest that 663 not only was the melt/glass nearly water saturated when the amphibole crystallized, but also that 664 these glasses have not degassed much Cl since that time. For example, both amphibole analyses 665 from sample 92MHR9-1 from Redoubt volcano, an andesite, give calculated results that suggest 666 that the glasses in this sample retain a Cl signature from conditions at or near the crystallization 667 conditions for the amphibole. The other Redoubt samples are dacites that likely had been in the

668 magma chamber for some time, and whose glasses record a more degassed magma state than the 669 amphiboles (Wolf and Eichelberger, 1997).

670

671 **7. Applicability of the models.**

672 The reader will appreciate that the actual model equations presented in Table 1 are to be 673 regarded as estimates. The Popp amphibole redox equation, which we use both directly and 674 indirectly to recalibrate the Sato chlorine partitioning equation, has been calibrated over a bare 675 handful of amphibole compositions. There is an unquantifiable amount of error involved in thus 676 extrapolating Popp et al. (2006)'s expression to hornblendes and edenites, which may 677 overshadow the errors calculated in our linear regression results in Supplemental Tables 4.1 to 678 4.5. The fact that we get sensible results by using this equation suggests that Popp et al. (2006)'s 679 K_x does not vary hugely over the range of calcic amphibole compositions considered in this 680 paper, but it remains to show the actual size of this variance by conducting further experiments and recalibrating the expression for K_x . Likewise, the chlorine partitioning constant K_{Cl} is in 681 need of recalibration using measured Fe^{3+}/Fe^{2+} and $OH/^{[O(3)]}O^{2-}$ values, rather than resorting to 682 683 modeling to estimate them; and it would be of great interest to calibrate a fluorine analog to the 684 Sato equation at the same time (Zhang et al., 2012).

We hope that this paper shows the value of conducting such work. With adequate characterization of amphibole (Hawthorne and Oberti, 2007a), an enormous amount of geochemical information can be gleaned about its formation environment, whether igneous, hydrothermal, metasomatic, or metamorphic; after all, four anions and the vast majority of cations, from Li to Pb, can be housed easily in the structure of natural amphiboles (Adam and Green, 1994, 2006; Leake et al., 1997). While H₂O is the volatile of greatest interest in 691 magmatic systems on nearly any rocky body including Mars, the Moon, and even chondrite 692 meteorite parent bodies (McCanta et al., 2008), H is impossible to analyze via the ordinary 693 workhorse of chemical analysis, the electron microprobe. The use of alternative analytical 694 techniques such as SIMS to find H contents of geological materials is uncommon, although it is 695 expected to increase in the future (Hawthorne and Oberti, 2007a). Likewise, Fe is the main 696 redox-active metal in igneous systems, but its oxidation state is regularly left undetermined. 697 Mossbauer spectroscopy is the chief alternative for exploring the oxidation state of Fe (Gunter et 698 al., 2003), but Mossbauer spectrometers may never be widely disseminated analytical 699 instruments. Synchrotron techniques can be used to determine the Fe redox of mineral samples, 700 and are essential for studying certain kinds of difficult (e.g., small) samples (Gunter et al., 2011), 701 but synchrotron analyses involve applications for beamtime and significant investment of time 702 by facility personnel. The potential to evaluate Fe redox state with electron microprobe data 703 continues to be explored (Enders et al., 2000; Lamb et al., 2012), but such analyses have yet to 704 become reliable and routine. 705 Therefore, using the Cl contents of amphibole and glass as an indirect means to 706 determine the oxidation state of Fe in amphibole and the H₂O content of both amphibole and 707 melt is a potentially valuable way of extending the reach of conventional analytical techniques. 708 As we have seen, the results we get from pyroclastic glass may not be representative due to Cl

degassing, but low water activities calculated from such glass/amphibole pairs can signal relative
amounts of Cl degassing, as for the Redoubt rocks discussed above. This is in itself interesting
information.

711 information.

Chambefort et al. (2013) explore the volatile budgets of a magmatic system using an
extensive collection of amphibole analyses. We applaud this work and consider it a good

10/9

714 example of a study that uses amphibole chemistry to provide important clues with which to 715 interpret magma chamber processes. However, their use of amphibole properties to constrain 716 magma volatile behaviors is hampered due to their use of Fe redox conditions calculated from 717 the Leake et al. (1997) methodology. Thus, they see no or very weak correlations between Fe 718 species, H₂O contents, and H isotopic ratios; however, given the negligible correlation between 719 reliably determined and traditional norm-calculated Fe₂O₃ contents (Hawthorne and Oberti 720 2007a, Figure 2) this is unsurprising. Thus their interpretation of amphibole dehydration by 721 means of opening *vacancies* on the O(3) site (Demeny et al., 2006), rather than dehydrogenation 722 according to equation 1, is open to dispute. Use of the Popp equation, narrowly calibrated as it 723 may be, is an advance over calculating Fe speciation by a largely arbitrary choice of cation norm, 724 as we have argued above. Further, consideration of glass compositions and Cl partitioning could 725 have assisted Chambefort et al. (2013) in interpreting the Cl content of different amphibole 726 grains and their relationship to the style of magmatism, as well as the H₂O content of the 727 amphiboles. 728 Having a better constrained crystal chemical model for amphibole-melt Cl partitioning

729 could enhance understanding of the amphibole and plagioclase thermobarometers (Blundy and 730 Holland, 1990; Holland and Blundy, 1994), which Chambefort et al. (2013) use extensively. 731 Humphreys et al. (2009) also use these in conjunction with the Sato model to examine the 732 variation in Cl content of different magmas crystallizing hornblende in the Soufriere Hills 733 volcanic system, while using A site occupancy to gauge temperature. Since the contents of the A 734 site appear to play an important role in governing Cl partitioning, there is unacknowledged 735 complexity in the chemical equilibrium calculations that Humphreys et al. (2009) use to interpret 736 their data.

10/9

738	Acknowledgments. We gratefully acknowledge support from NASA MFR grant #					
739	NNX13AG35. We thank Hiroaki Sato, Gordon Moore, and an anonymous reviewer, as well as					
740	our associate editor Rosario Esposito, for their helpful and timely comments. We thank Filippo					
741	Ridolfi, Philipp Ruprecht, Pavel Izebekov, and Stephen Turner for generous sharing of data					
742	which appear in Supplemental Table 1. We would also like to thank Bob Popp and Wally Lamb					
743	for sharing data, clarifying a few details in their papers, and discussing many of the					
744	thermodynamic issues related to amphibole dehydrogenation. Lastly, we also thank Tony					
745	Withers for his implementation of a routine to calculate H ₂ O fugacities from the data and					
746	equations of Pitzer and Sterner (1994) and Sterner and Pitzer (1994).					

747 Appendix 1: H₂O solubility, speciation, and activity models

748 The solubility of H₂O in silicate melts is a subject of great interest to petrologists and has 749 received a correspondingly large amount of attention in the literature. Any model that is not 750 completely empirical will depend on some understanding of the speciation of H₂O in the melt. Until the publication of Stolper (1982), the consensus in the literature was that H₂O completely 751 752 dissociated to OH groups in the melt up to a certain large concentration of H₂O. The final 753 version of the most successful model incorporating this hypothesis is found in Burnham (1997); 754 Burnham and Nekvasil (1986). Although the work of Stolper and others confirmed that this 755 theory is flawed because intact H₂O molecules are found in hydrated silicate melts of all 756 concentrations (Ohlhorst et al., 2001), and later solubility models provide improved predictions 757 in a variety of melts under a variety of T, P conditions (Papale, 1997), the Burnham model is still 758 quantitatively adequate for many purposes (Baker and Alletti, 2012). 759 We employ the Burnham model in this paper because it is the only model to attempt to 760 describe the thermodynamic properties of H₂O in melts *not* in equilibrium with a vapor phase. 761 This is displayed graphically in Burnham and Davis (1974), Figures 8 to 12. We produce a 762 similar figure for illustration here (Figure A.1) along with the solubility curve of Moore et al. 763 (1998) for the Sato et al. (2005) sample 298. The curved line in the figure is the solubility 764 relation, while the straight lines show the subsaturation fugacity-mole fraction relationship 765 calculated from Burnham (1997) at overall pressures of 1, 2, 3...8 kbar, including the adjustment 766 for Al content of the melt, which we have simplified as follows: 767

768 (A.1)
$$\ln k_w^{feldspar} = \ln k_w^{melt} + 0.47 [1 - 4 \text{ Al/(Al+Si)}]$$

769

770	where Al and Si are molar quantities of each cation in the melt. The correction term equals 0 for					
771	any melt with the same Al/(Al+Si) content as feldspar, is negative for relatively Al-enriched					
772	melts (like nepheline melt) and is positive for relatively Al-depleted melts.					
773	For solubility relationships, we employ the model of Moore et al. (1998). There are more					
774	complex, accurate, and up-to-date models in the literature (Dixon, 1997; Iacono-Marziano et al.,					
775	2012; Newman and Lowenstern, 2002; Papale et al., 2006; Witham et al., 2012), but the model of					
776	Moore et al. (1998) is flexible, with compositional terms refined over a creditable variety of melt					
777	chemistries, and is much simpler to implement than the other models. For the purposes of this					
778	paper, which is meant as an illustration of methodology as much as it is meant to provide					
779	quantitative modeling information, the Moore et al. (1998) model serves well.					
780	It seems appropriate to remind the reader here that there are at least three different					
781	methods of calculating the mole fraction of H_2O and other components in melts: the Burnham					
782	80 basis (Burnham, 1997), the Stolper/Zhang 10 basis (Stolper, 1982; Zhang, 1999), and the					
783	more intuitive sum-of-oxides basis employed by Moore et al. (1998). The variety of bases					
784	reflects the differences in theoretical underpinnings, or lack thereof, of the various models, as					
785	well as the fundamental ambiguity in defining a molar quantity of melt. Since Moore et al.					
786	(1998) do not describe their methodology, and it differs greatly from the others but is					
787	nevertheless simple to explain (Moore, personal communication, 2013), we do so here for the					
788	benefit of the reader. Their mole fractions are calculated by adding up the number of moles of					
789	each oxide component (SiO ₂ , Al ₂ O ₃ , etc.) to serve as the denominator of the mole fraction. Thus					
790	χ (H ₂ O) = n (H ₂ O)/(n (SiO ₂) + n (Al ₂ O ₃) + + n (H ₂ O)). This will generally result in a number					
791	not quite twice the size of a 1O mole fraction.					
792						

793 Appendix 2: Statistical Procedure

794 We calculated a multiple linear regression model for the entire family of parameters for 795 each separate determination of $\ln K_{Cl}$ (*i.e.*, both the Lesne and Dixon determinations). The basic 796 methodology was that the parameter with the highest p value was rejected, and the model 797 recalculated with the remaining parameters, the process being repeated until all parameters had p 798 values below 0.09-0.10. We tried this on many, many collections of parameters; the following 799 discussion is greatly condensed. Based on the results of several dozen regressions, we found that 800 eliminating the constant term systematically gave better results, and so the final models have no 801 constant term. Since Excel will only calculate regressions on up to 16 variables, we collected the 802 element parameters and the ratio parameters separately, regressed each collection along with T 803 and ln P, rejected a total of 3 parameters, then gathered the remainder back into a single set and 804 proceeded as above. This process resulted in two models with 8 variable terms (Dixon 8 or D8 805 and Lesne 8 or L8), the other 11 parameters being rejected. These models had mixtures of ratios 806 and element contents and therefore had some coefficients with counterintuitive signs. In 807 addition, since the dataset has only 39 entries, the data:parameter ratio was only ~5:1. For both 808 these reasons, we continued rejecting parameters employing 1) p values, 2) the desire to 809 eliminate either ratio parameters or their constituent element parameters rather than leaving both 810 a ratio and its constituents in the final models, and 3) our best judgment based on the literature of 811 amphibole crystal chemistry. In the end, the final model equations had 3 terms (Dixon 3 or D3) 812 and Lesne 3 or L3).

813

814

815 **References**

816	Adam, J. and Green, T.H. (1994) The effects of pressure and temperature on the partitioning of
817	Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chemical
818	Geology, 117, 219-233.
819	Adam, J. and Green, T. (2006) Trace element partitioning between mica- and amphibole-bearing
820	garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation
821	of controls on partitioning behaviour. Contributions to Mineralogy and Petrology, 152, 1-
822	17.
823	Adam, J., Oberti, R., Camara, F., and Green, T.H. (2007) An electron microprobe, LAM-ICP-MS
824	and single-crystal X-ray structure refinement study of the effects of pressure, melt-H ₂ O
825	concentration and $f(O_2)$ on experimentally produced basaltic amphiboles. European
826	Journal of Mineralogy, 19, 641-655.
827	Baker, D.R. and Alletti, M. (2012) Fluid saturation and volatile partitioning between melts and
828	hydrous fluids in crustal magmatic systems: The contribution of experimental
829	measurements and solubility models. Earth-Science Reviews, 114, 298-324.
830	Blundy, J.D. and Holland, T.J.B. (1990) Calcic amphibole equilibria and a new amphibole-
831	plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104, 208-224.
832	Boyce, J.W., Liu, Y., Rossman, G.R., Guan, Y., Eiler, J.M., Stolper, E.M., and Taylor, L.A. (2010)
833	Lunar apatite with terrestrial volatile abundances. Nature, 466, 466-469.
834	Browne, B.L. (2005) Petrologic and experimental constraints on magma mingling and ascent:
835	examples from Japan and Alaska. Geology and Geophysics, Ph.D. University of Alaska,
836	Fairbanks.
837	Burnham, C.W. (1997) Magmas and hydrothermal fluids. In H.L. Barnes, Ed. Geochemistry of

838	hydrothermal ore deposits, p. 972. John Wiley & Sons, New York.

- 839 Burnham, C.W. and Davis, F.A. (1974) The role of H₂O in silicate melts II: Thermodynamic and
- phase relations in the system NaAlSi₃O₈-H₂O to 10 kilobars, 700 ° to 1000 °C. American
 Journal of Science, 274, 902-940.
- 842 Burnham, C.W. and Nekvasil, H. (1986) Equilibrium properties of granite pegmatite magmas.
- 843 American Mineralogist, 71, 239-263.
- 844 Chambefort, I., Dilles, J.H., and Longo, A.A. (2013) Amphibole geochemistry of the Yanacocha
- 845 Volcanics, Peru: Evidence for diverse sources of magmatic volatiles related to gold ores.
- 846 Journal of Petrology, 54, 1017-1048.
- 847 Chambers, J.A. and Kohn, M.J. (2012) Titanium in muscovite, biotite, and hornblende:
- 848 Modeling, thermometry, and rutile activities of metapelites and amphibolites. American
 849 Mineralogist, 97, 543-555.
- Beer, W.A., Howie, R.A., and Zussman, J. (1997) Double-chain silicates. 764 p. Geological
 Society, London.
- 852 Demeny, A., Vennemann, T.W., Harangi, S., Homonnay, Z., and Forizs, I. (2006) H₂O-δD-Fe(III)
- relations of dehydrogenation and dehydration processes in magmatic amphiboles. Rapid
 Communications in Mass Spectrometry, 20, 919-925.
- Dixon, J.E. (1997) Degassing of alkalic basalts. American Mineralogist, 82, 368-378.
- Dixon, J.E., Stolper, E.M., and Holloway, J.R. (1995) An experimental study of water and carbon
- dioxide solubilities in mid ocean ridge basaltic liquids. 1. Calibration and solubility
 models. Journal of Petrology, 36, 1607-1631.
- 859 Dyar, M.D., McGuire, A.V., and Mackwell, S.J. (1992) Fe³⁺/H⁺ and D/H in kaersutites:
- 860 Misleading indicators of mantle source fugacities. Geology, 20, 565-568.

10/9

- 861 Dyar, M.D., Mackwell, S.J., McGurnn, A.N.V., Cnoss, L.R., and RonenrsoN, J.D. (1993) Crystal
- 862 chemistry of Fe^{3+} and H^+ in mantle kaersutite: Implications for mantle metasomatism.
- American Mineralogist, 78, 968-979.
- Enami, M., Liou, J.G., and Bird, D.K. (1992) Cl-bearing amphibole in the Salton Sea geothermal
- system, California. Canadian Mineralogist, 30, 1077-1092.
- 866 Enders, M., Speer, D., Maresch, W.V., and McCammon, C.A. (2000) Ferric/ferrous iron ratios in
- sodic amphiboles: Mossbauer analysis, stoichiometry-based model calculations and the
- 868 high-resolution microanalytical flank method. Contributions to Mineralogy and
- 869 Petrology, 140, 135-147.
- Filiberto, J. and Treiman, A.H. (2009a) Martian magmas contained abundant chlorine, but little
 water. Geology, 37, 1087-1090.
- Filiberto, J. and Treiman, A. (2009b) The effect of chlorine on the liquidus of basalt: First results
 and implications for basalt genesis on Mars and Earth. Chemical Geology, 263, 60-68.
- Garcia, M.O., Muenow, D.W., and Liu, N.W.K. (1980) Volatiles in Ti-rich amphibole

875 megacrysts, southwest USA. American Mineralogist, 65, 306-312.

- 876 Gunter, M.E., Dyar, M.D., Twamley, B., Foit, F.F., and Cornelius, S. (2003) Composition,
- 877 $Fe^{3+}/\Sigma Fe$, and crystal structure of non-asbestiform and asbestiform amphiboles from

Libby, Montana, USA. American Mineralogist, 88, 1970-1978.

- 879 Gunter, M.E., Dyar, M.D., Lanzirotti, A., Tucker, J.M., and Speicher, E.A. (2011) Differences in
- Fe-redox for asbestiform and nonasbestiform amphiboles from the former vermiculite
 mine, near Libby, Montana, USA. American Mineralogist, 96, 1414-1417.
- Hauri, E.H., Gaetani, G.A., and Green, T.H. (2006) Partitioning of water during melting of the
- 883 Earth's upper mantle at H₂O-undersaturated conditions. Earth and Planetary Science

- Letters, 248, 715-734.
- Hawthorne, F.C. and Oberti, R. (2007a) Amphiboles: Crystal chemistry. Reviews in Mineralogy
 and Geochemistry, 67, 1-54.
- -. (2007b) Classification of the amphiboles. Reviews in Mineralogy and Geochemistry, 67, 55888
 88.
- 889 Hawthorne, F.C., Oberti, R., and Sardone, N. (1996a) Sodium at the a site in clinoamphiboles:
- 890 The effects of composition on patterns of order. Canadian Mineralogist, 34, 577-593.
- 891 Hawthorne, F.C., Oberti, R., Ungaretti, L., and Grice, J.D. (1996b) A new hyper-calcic
- amphibole with Ca at the A site: Fluor-cannilloite from Pargas, Finland. American
 Mineralogist, 81, 995-1002.
- Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and
- Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist,
 97, 2031-2048.
- Holland, T. and Blundy, J. (1994) Nonideal interactions in calcic amphiboles and their bearing on
 amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116,
 433-447.
- Holloway, J.R. and Ford, C.E. (1975) Fluid-absent melting of fluoro-hydroxy amphibole
 pargasite to 35 kilobars. Earth and Planetary Science Letters, 25, 44-48.
- 902 Holloway, J.R., Pan, V., and Gudmundsson, G. (1992) High-pressure fluid-absent melting
- experiments in the presence of graphite: Oxygen fugacity, ferric-ferrous ratio and
 dissolved CO₂. European Journal of Mineralogy, 4, 105-114.
- Humphreys, M.C.S., Edmonds, M., Christopher, T., and Hards, V. (2009) Chlorine variations in
 the magma of Soufrière Hills Volcano, Montserrat: Insights from Cl in hornblende and

907	melt inclusions. Geochimica et Cosmochimica Acta, 73, 5693-5708.				
908	Iacono-Marziano, G., Morizet, Y., Le Trong, E., and Gaillard, F. (2012) New experimental data				
909	and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochimica				
910	Et Cosmochimica Acta, 97, 1-23.				
911	Iman, R.L. (1994) Chapter 13: Multiple Linear Regression. A Data-Based Approach To Statistics.				
912	Duxbury Press, Belmont, CA.				
913	Jenkins, D.M. (2011) The transition from blueschist to greenschist facies modeled by the reaction				
914	glaucophane+2 diopside+2 quartz = tremolite+2 albite. Contributions to Mineralogy and				
915	Petrology, 162, 725-738.				
916	Johnson, N.M. and Fegley, B. (2003) Tremolite decomposition on Venus II. Products, kinetics,				
917	and mechanism. Icarus, 164, 317-333.				
918	King, P.L., Hervig, R.L., Holloway, J.R., Vennemann, T.W., and Righter, K. (1999) Oxy-				
919	substitution and dehydrogenation in mantle-derived amphibole megacrysts. Geochimica				
920	et Cosmochimica Acta, 63, 3635-3651.				
921	King, P.L., Hervig, R.L., Holloway, J.R., Delaney, J.S., and Dyar, M.D. (2000) Partitioning of				
922	$\mathrm{Fe}^{3+}/\mathrm{Fe}_{\mathrm{total}}$ between amphibole and basanitic melt as a function of oxygen fugacity. Earth				
923	and Planetary Science Letters, 178, 97-112.				
924	Lamb, W.M. and Popp, R.K. (2009) Amphibole equilibria in mantle rocks: Determining values				
925	of mantle $a(H_2O)$ and implications for mantle H2O contents. American Mineralogist, 94,				
926	41-52.				
927	Lamb, W.M., Guillemette, R., Popp, R.K., Fritz, S.J., and Chmiel, G.J. (2012) Determination of				
928	Fe ³⁺ /Fe using the electron microprobe: A calibration for amphiboles. American				
929	Mineralogist, 97, 951-961.				

- 930 Leake, B.E. (1968) A catalog of analyzed calciferous and subcalciferous amphiboles together
- 931 with their nomenclature and associated minerals. Special papers (Geological Society of
- America), 210 p., Washington, D.C.
- 933 Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne,
- 934 F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A.,
- 935 Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson,
- 936 N.C.N., Ungaretti, L., Whittaker, E.J.W., and Guo, Y.Z. (1997) Nomenclature of
- amphiboles: Report of the subcommittee on amphiboles of the International
- Mineralogical Association, Commission on New Minerals and Mineral Names. American
 Mineralogist, 82, 1019-1037.
- Lesne, P., Scaillet, B., Pichavant, M., Iacono-Marziano, G., and Beny, J.-M. (2011) The H₂O
- 941 solubility of alkali basaltic melts: an experimental study. Contributions to Mineralogy and
 942 Petrology, 162, 133-151.
- Liu, Y., Behrens, H., and Zhang, Y.X. (2004) The speciation of dissolved H2O in dacitic melt.
- 944 American Mineralogist, 89, 277-284.
- Luhr, J.F. (2002) Petrology and geochemistry of the 1991 and 1998-1999 lava flows from Volcan
- 946 de Colima, Mexico: implications for the end of the current eruptive cycle. Journal of
- 947 Volcanology and Geothermal Research, 117, 169-194.
- 948 Martin, R.F. (2007) Amphiboles in the Igneous Environment. Reviews in Mineralogy and
- 949 Geochemistry, 67, pp. 323-358. Mineralogical Society of America, Washington, DC.
- 950 Mazdab, F.K. (2003) The diversity and occurrence of potassium-dominant amphiboles. Canadian
- 951 Mineralogist, 41, 1329-1344.
- 952 McCanta, M.C., Treiman, A.H., Dyar, M.D., Alexander, C.M.O.D., Rumble, D., III, and Essene,

- E.J. (2008) The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin
 of an amphibole- and biotite-bearing R chondrite. Geochimica et Cosmochimica Acta, 72,
 5757-5780.
- 956 McCubbin, F.M., Nekvasil, H., Harrington, A.D., Elardo, S.M., and Lindsley, D.H. (2008)
- 957 Compositional diversity and stratification of the Martian crust: Inferences from
- 958 crystallization experiments on the picrobasalt Humphrey from Gusev Crater, Mars.
- Journal of Geophysical Research-Planets, 113(E11).
- 960 Médard, E., McCammon, C.A., Barr, J.A., and Grove, T.L. (2008) Oxygen fugacity, temperature
- 961 reproducibility, and H₂O contents of nominally anhydrous piston-cylinder experiments
 962 using graphite capsules. American Mineralogist, 93, 1838-1844.
- 963 Miller, T.P., Chertkoff, D.G., Eichelberger, J.C., and Coombs, M.L. (1999) Mount Dutton
- 964 volcano, Alaska: Aleutian arc analog to Unzen volcano, Japan. Journal of Volcanology965 and Geothermal Research, 89, 275-301.
- 966 Minitti, M.E., Rutherford, M.J., Taylor, B.E., Dyar, M.D., and Schultz, P.H. (2008a) Assessment
- 967 of shock effects on amphibole water contents and hydrogen isotope compositions: 1.
- 968 Amphibolite experiments. Earth and Planetary Science Letters, 266, 46-60.
- 969 Minitti, M.E., Leshin, L.A., Dyar, M.D., Ahrens, T.J., Guan, Y., and Luo, S.-N. (2008b)
- 970 Assessment of shock effects on amphibole water contents and hydrogen isotope
- 971 compositions: 2. Kaersutitic amphibole experiments. Earth and Planetary Science Letters,
 972 266, 288-302.
- 973 Moore, G., Vennemann, T., and Carmichael, I.S.E. (1998) An empirical model for the solubility
- 974 of H_2O in magmas to 3 kilobars. American Mineralogist, 83, 36-42.
- 975 Morrison, J. (1991) Compositional constraints on the incorporation of Cl into amphiboles.

- 976 American Mineralogist, 76, 1920-1930.
- 977 Newman, S. and Lowenstern, J.B. (2002) VOLATILECALC: a silicate melt-H₂O-CO₂ solution
- 978 model written in Visual Basic for excel. Computers & Geosciences, 28, 597-604.
- 979 Nowak, M. and Behrens, H. (2001) Water in rhyolitic magmas: getting a grip on a slippery
- 980 problem. Earth and Planetary Science Letters, 184, 515-522.
- 981 Oberti, R., Hawthorne, F.C., Ungaretti, L., and Cannillo, E. (1993a) The behavior of Mn in
- 982 amphiboles Mn in richterite. European Journal of Mineralogy, 5, 43-51.
- Oberti, R., Ungaretti, L., Cannillo, E., and Hawthorne, F.C. (1993b) The mechanism of Cl
 incorporation in amphibole. American Mineralogist, 78, 746-752.
- 985 Ohlhorst, S., Behrens, H., and Holtz, F. (2001) Compositional dependence of molar
- 986 absorptivities of near-infrared OH- and H₂O bands in rhyolitic to basaltic glasses.
- 987 Chemical Geology, 174, 5-20.
- Papale, P. (1997) Modeling of the solubility of a one-component H₂O or CO₂ fluid in silicate
 liquids. Contributions to Mineralogy and Petrology, 126, 237-251.
- Papale, P., Moretti, R., and Barbato, D. (2006) The compositional dependence of the saturation
 surface of H₂O+CO₂ fluids in silicate melts. Chemical Geology, 229, 78-95.
- 992 Patiño Douce, A.E., Roden, M.F., Chaumba, J., Fleisher, C., and Yogodzinski, G. (2011)
- 993 Compositional variability of terrestrial mantle apatites, thermodynamic modeling of
- apatite volatile contents, and the halogen and water budgets of planetary mantles.
- 995 Chemical Geology, 288, 14-31.
- 996 Pilet, S., Ulmer, P., and Villiger, S. (2010) Liquid line of descent of a basanitic liquid at 1.5 Gpa:
- 997 constraints on the formation of metasomatic veins. Contributions to Mineralogy and
- 998 Petrology, 159, 621-643.

999 Pitzer, K.S. and Sterner, S.M. (1994) Equations of state valid continuously from zero to extreme

1000 pressures for H_2O and CO_2 . Journal of Chemical Physics, 101, 3111-3116.

- 1001 Popp, R.K., and Bryndzia, L.T. (1992) Statistical analyses of Fe^{3+} , Ti, and OH in kaersutite from
- alkalic igneous rocks and mafic mantle xenoliths. American Mineralogist 77, 1250-1257.
- 1003 Popp, R.K., Virgo, D., Yoder, H.S.Y.J., Hoering, T.C., and Phillips, M.W. (1995) An experimental
- 1004 study of phase equilbria and Fe oxy-component in kaersutitic amphibole: Implications for

1005 the $f(H_2)$ and $a(H_2O)$ in the upper mantle. American Mineralogist, 80, 534-548.

- 1006 Popp, R.K., Hibbert, H.A., and Lamb, W.M. (2006) Oxy-amphibole equilibria in Ti-bearing
- 1007 calcic amphiboles: Experimental investigation and petrologic implications for mantle-

derived amphiboles. American Mineralogist, 91, 54-66.

- 1009 Rasmussen, K.L. and Mortensen, J.K. (2013) Magmatic petrogenesis and the evolution of
- 1010 (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using
- 1011 apatite and biotite compositions: Case studies from the northern Canadian Cordillera. Ore
- 1012 Geology Reviews, 50, 118-142.
- 1013 Ridolfi, F., Puerini, M., Renzulli, A., Menna, M., and Toulkeridis, T. (2008) The magmatic
- 1014 feeding system of El Reventador volcano (Sub-Andean zone, Ecuador) constrained by
- 1015 texture, mineralogy and thermobarometry of the 2002 erupted products. Journal of
- 1016 Volcanology and Geothermal Research, 176, 94-106.

1017 Ridolfi, F., Renzulli, A., and Puerini, M. (2010) Stability and chemical equilibrium of amphibole

- 1018 in calc-alkaline magmas: an overview, new thermobarometric formulations and
- 1019 application to subduction-related volcanoes. Contributions to Mineralogy and Petrology,
- 1020 160, 45-66.
- 1021 Sato, H., Holtz, F., Behrens, H., Botcharnikov, R., and Nakada, S. (2005) Experimental petrology

- 1022 of the 1991-1995 Unzen dacite, Japan. Part II: Cl/OH partitioning between hornblende
- and melt and its implications for the origin of oscillatory zoning of hornblende
- 1024 phenocrysts. Journal of Petrology, 46, 339-354.
- 1025 Saxena, S.K. and Ekstrom, T.K. (1970) Statistical chemistry of calcic amphiboles. Contributions
- to Mineralogy and Petrology, 26, 276.
- 1027 Schumacher, J.C. (2007) Metamorphic amphiboles: Composition and coexistence. Reviews in

1028 Mineralogy and Geochemistry, 67, 359-416.

- 1029 Shane, P., Martin, S.B., Smith, V.C., Beggs, K.F., Darragh, M.B., Cole, J.W., and Nairn, I.A.
- 1030 (2007) Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu
- 1031 eruption episode from Tarawera volcanic complex, New Zealand. Journal of Volcanology
- and Geothermal Research, 164, 1-26.
- 1033 Silver, L. and Stolper, E. (1989) Water in albitic glasses. Journal of Petrology, 30, 667-709.
- 1034 Smelik, E.A. and Veblen, D.R. (1992a) Exsolution of ca-amphibole from glaucophane and the
- 1035 miscibility gap between sodic and calcic amphiboles. Contributions to Mineralogy and
- 1036 Petrology, 112, 178-195.
- 1037 -. (1992b) Exsolution of hornblende and the solubility limits of calcium in orthoamphibole.
- 1038 Science, 257, 1669-1672.
- 1039 -. (1993) A transmission and analytical electron-microscope study of exsolution microstructures
- and mechanisms in the orthoamphiboles anthophyllite and gedrite. American
- 1041 Mineralogist, 78, 511-532.
- 1042 -. (1994) Complex exsolution in glaucophane from Tillotson Peak, north-central Vermont.
- 1043 Canadian Mineralogist, 32, 233-255.
- 1044 Smith, M.P. (2007) Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit, Inner

1045 Mongolia, China: Contrasting chemistry and evolution of fenitising and mineralising

- 1046 fluids. Lithos, 93, 126-148.
- Sterner, S.M. and Pitzer, K.S. (1994) An equation of state for carbon dioxide valid from zero to
 extreme pressures. Contributions to Mineralogy and Petrology, 117, 362-374.
- 1049 Stolper, E. (1982) The speciation of water in silicate melts. Geochimica et Cosmochimica Acta,
- 1050 46, 2609-2620.
- 1051 Turner, S.J., Izbekov, P., and Langmuir, C. (2013) The magma plumbing system of Bezymianny
- 1052 Volcano: Insights from a 54 year time series of trace element whole-rock geochemistry
- and amphibole compositions. Journal of Volcanology and Geothermal Research,
- 1054 http://dx.doi.org/10.1016/j.jvolgeores.2012.12.014.
- 1055 Ulmer, P. and Luth, R.W. (1991) The graphite-COH fluid equilibrium in P, T, f(O₂) space an
- 1056 experimental-determination to 30 kbar and 1600-degrees-C. Contributions to Mineralogy1057 and Petrology, 106, 265-272.
- 1058 Witham, F., Blundy, J., Kohn, S.C., Lesne, P., Dixon, J., Churakov, S.V., and Botcharnikov, R.
- 1059 (2012) SolEx: A model for mixed COHSCI-volatile solubilities and exsolved gas
 1060 compositions in basalt. Computers & Geosciences, 45, 87-97.
- 1061 Wolf, K.J. and Eichelberger, J.C. (1997) Syneruptive mixing, degassing, and crystallization at
- 1062 Redoubt Volcano, eruption of December, 1989 to May 1990. Journal of Volcanology and1063 Geothermal Research, 75, 19-37.
- 1064 Zhang, C., Holtz, F., Ma, C., Wolff, P., and Li, X. (2012) Tracing the evolution and distribution
- 1065 of F and Cl in plutonic systems from volatile-bearing minerals: a case study from the
- 1066 Liujiawa pluton (Dabie orogen, China). Contributions to Mineralogy and Petrology, 164,1067 859-879.

- 1068 Zhang, Y.X. (1999) H₂O in rhyolitic glasses and melts: Measurement, speciation, solubility, and
- 1069 diffusion. Reviews of Geophysics, 37, 493-516.
- 1070 Zhang, Y. and Ni, H. (2010) Diffusion of H, C, and O Components in Silicate Melts. In
- 1071 Y.X.C.D.J. Zhang, Ed. Diffusion in Minerals and Melts, Reviews in Mineralogy and
- 1072 Geochemistry 72, pp. 171-225.
- 1073 Zhu, C. and Sverjensky, D.A. (1991) Partitioning of F-Cl-OH between minerals and
- 1074 hydrothermal fluids. Geochimica et Cosmochimica Acta, 55, 1837-1858.
- 1075 Zingg, A.J. (1996) Immiscibility in Ca-amphiboles. Journal of Petrology, 37, 471-496.

Table 1. Coefficients for regression equations for ln *K*_{Cl}.

Models	Dixon 8	Dixon 3	Lesne 8	Lesne 3	Sato Only	
R, R^2	0.95, 0.90	0.87, 0.77	0.95, 0.89	0.86, 0.75	0.97, 0.95	
Parameters	Coefficients	Coefficients	Coefficients	Coefficients	Coefficients	
K (apfu)	-20.0±8.5	9.2±1.9	-14.6±7.2			
K/(Na+ ^[A] [])	29.7±7.3		30.9±6.3	6.6±0.9		
Na (apfu)	10.8±2.3		20.6±4.2			
^[A] [] (vpfu)	12.9±2.1	3.2±0.5	20.5±4.0			
Ca (apfu)	-1.7±0.7				-5.2±0.7	
Mg (apfu)	-3.4±0.7	-1.0±0.1	-4.7±1.0	-0.7±0.1	-5.2±0.4	
Mg/(Mg+Fe)					39.1±5.1	
$^{[6]}Mg/(^{[6]}Mg+^{[6]}Fe)$	9.6±3.1					
^[6] Fe (apfu)			-3.6±1.0	0.5±0.1	3.9±0.7	
(Mg+Mn+ ^[6] Fe) / (Ti+Cr+ ^[6] Al)			0.2±0.1			
$T(\mathbf{K})$			$-3.4\pm1.8\cdot10^{-3}$		$-5.9 \pm 1.9 \cdot 10^{-3}$	
ln P (bar)	-0.8±0.2					

1078

10/9

1080

1081 Figure 1. Structure of a typical amphibole (space group C2/*m*), from Hawthorne and

- 1082 Oberti (2007a). Cation sites are labeled T (4-fold sites), M (1-3: 6-fold sites; 4: 8-fold site),
- 1083 and A. The O(3) site contains OH, F, Cl, or O^{2-} ; all other O sites contain O^{2-} .
- 1084

10/9

1087 (solid symbols, at or near water saturation) and natural systems (open symbols,

1088 undersaturated conditions, calculated values for H₂O from Supplemental Table 9). See

1089 Supplemental Tables 1.1, 1.2, and 1.3 (Adam and Green, 2006; Adam and Green, 1994;

1090 Adam et al., 2007; Browne, 2005; Hauri et al., 2006; Luhr, 2002; McCubbin et al., 2008;

1091 Miller et al., 1999; Ridolfi et al., 2008; Sato et al., 2005; Shane et al., 2007; Wolf and

1092 **Eichelberger, 1997**) for amphibole compositions.

1093

10/9

1095

Figure 3. Plot of ln K_{Cl} experimental vs. calculated (Sato et al., 2005) from Supplemental
Table 3. Diamonds: Sato et al. (2005). Triangles: high-pressure data (Adam and Green,
2006; Adam and Green, 1994; Adam et al., 2007; Hauri et al., 2006). Crosses: McCubbin
et al. (2008). Squares: Browne (2005). Line is ideal fit (experimental = calculated). Axis
ticks are marked every 0.1 log unit.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4623

1103 Figure 4. Left: ln *K*_{Cl} calculated using *T*-dependent melt H₂O speciation for all data (Lesne

1104 et al., 2011; Liu et al., 2004) versus Mg#. Right: ln *K*_{Cl} versus K (apfu).

10/9

1107 Figure 5. Experimental and L3 regressed values of $\ln K_{Cl}$ for our calibration data.

1108 Symbols as in Figure 3.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4623

1110

Figure A.1. Moore et al. (1998) solubility curve (dashed line), Burnham (1997) solubility
curve (thick solid line), and Burnham undersaturated melt H₂O mole fraction-fugacity
lines at 1 to 8 kbar total pressure, 800 °C for the melt composition of synthesis 298 (Sato et al., 2005).