3/26

1 Revision 1

2	Beshtauite, (NH ₄) ₂ (UO ₂)(SO ₄) ₂ ·2H ₂ O, a new mineral from Mount Beshtau, Northern
3	Caucasus, Russia
4	
5	Igor V. Pekov ¹ *, Sergey V. Krivovichev ² , Vasiliy O. Yapaskurt ¹ , Nikita V. Chukanov ³ and
6	Dmitriy I. Belakovskiy ⁴
7	
8	¹ Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
9	² Faculty of Geology, St Petersburg State University, University Embankment 7/9, 199034 St
10	Petersburg, Russia
11 ³	Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka,
12	Moscow Oblast, Russia
13	⁴ Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2,
14	119071 Moscow, Russia
15	
16	* Corresponding author. E-mail: igorpekov@mail.ru
17	
18	
19	Running title: Beshtauite, a new mineral
20	
21	
22	Abstract
23	A new mineral beshtauite, $(NH_4)_2(UO_2)(SO_4)_2 \cdot 2H_2O$, was found in the oxidation zone of the
24	Beshtau uranium deposit, Mount Beshtau, Stavropol region, Northern Caucasus, Russia, and
25	named after the locality. It is associated with rozenite, gypsum, lermontovite and older marcasite,
26	pyrite, halloysite and opal. Beshtauite occurs as well-shaped short-prismatic crystals up to 0.1 x

27	$0.15 \ge 0.2$ mm, their clusters and crusts up to 0.5 mm across growing on marcasite. Beshtauite is
28	transparent, light-green. The luster is vitreous. The mineral fluoresces strongly yellow-green
29	under both short- and long-wave UV irradiation. It is brittle. The Mohs hardness is <i>ca</i> . 2.
30	Cleavage was not observed. $D_{calc.}$ is 3.046 g cm ⁻³ . Beshtauite is optically biaxial (+), $\alpha =$
31	1.566(3), $\beta = 1.566(3)$, $\gamma = 1.592(3)$, 2V (meas.) < 10°. The chemical composition (wt%, electron
32	microprobe data, H ₂ O by difference) is: (NH ₄) ₂ O 10.33, UO ₃ 53.21, SO ₃ 29.40, H ₂ O (calc.) 7.06,
33	total 100.00. Content of $(NH_4)_2O$ was calculated from measured nitrogen content: 5.56 wt% N.
34	The empirical formula, calculated on the basis of 12 O $apfu$, is: $(NH_4)_{2.12}U_{0.99}S_{1.96}O_{9.91}(H_2O)_{2.09}$.
35	Beshtauite is monoclinic, $P2_1/c$, $a = 7.7360(8)$, $b = 7.3712(5)$, $c = 20.856(2)$ Å, $\beta = 102.123(8)^\circ$,
36	V = 1162.76(19) Å ³ , $Z = 4$ (from single-crystal X-ray diffraction data). The strongest reflections
37	of the X-ray powder pattern [d,Å-I(hkl)] are: 6.86-100(011, 10-2); 5.997-19(012); 5.558-
38	15(102); 5.307-36(11-1, 110); 5.005-35(013, 11-2); 3.410-38(114, 20-4, 10-6), 3.081-24(016),
39	2.881-20(106, 123). The crystal structure was solved by direct methods and refined on the basis of
40	2677 independent reflections with $I > 4\sigma(I)$ to $R_1 = 0.093$. The structure is based upon
41	$[UO_2(SO_4)_2(H_2O)]^{2-}$ layers consisting of corner-sharing $UO_6(H_2O)$ pentagonal bipyramids and
42	SO_4 tetrahedra. The layers are coplanar to (-102) and are linked via hydrogen bonding that
43	involve interlayer NH_4^+ ions and H_2O molecules. Beshtauite is important indicator mineral: its
44	presence can be considered as an evidence of transportation of U^{6+} in nature in forms of mobile
45	complexes of uranyl cation with ammonia or polyamines.
46	
47	Keywords: beshtauite; new mineral; ammonium uranyl sulfate; crystal structure; oxidation zone;
48	Beshtau; Northern Caucasus.
49	

- 50
- 51
- 52

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4870

53

INTRODUCTION

54	Uranium sulfates are important secondary minerals formed in the oxidation zones of
55	uranium deposits (Čejka and Urbanec 1990; Finch and Murakami 1999; Krivovichev and Plášil
56	2013). Recent studies led to considerable advances in knowledge and understanding of formation
57	and crystal chemistry of uranium sulfates, both with tetra- and hexavalent uranium ions (Plášil et
58	al. 2010, 2011a, b, c, 2012a, b, c, 2013a, b). As a rule, natural uranium sulfates crystallize from
59	highly acidic solutions resulted from acid-mine drainage due to the oxidation of primary sulfide
60	minerals (Chernikov 1981). In this paper we report on the occurrence, chemistry, structure and
61	properties of a new mineral species, the first natural ammonium uranyl sulfate that was
62	discovered during the studies of secondary uranium mineralization of the deposits in Northern
63	Caucasus. It was found in several samples from the old collections from the Beshtau uranium
64	deposit (also known under names Beshtaugorskoe or Lermontovskoe) at Mount Beshtau
65	(44°05'53"N 43°01'20"E) located between the cities of Pyatigorsk, Lermontov and
66	Zheleznovodsk in the Stavropol region, Russia. The new mineral was named beshtauite (Cyrillic:
67	бештауит) after the type locality. Its holotype specimen was extracted by us from the material
68	collected in 1950s by well-known Russian mineralogist, specialist in the uranium deposits
69	Vyacheslav Gavrilovich Melkov (1911–1991), who provided the samples to the Geological
70	Museum of All-Russian Scientific Research Institute of Mineral Resources (VIMS), Moscow.
71	The new mineral and its name have been approved by the IMA CNMNC, No. 2012–051.
72	The type specimen of beshtauite is deposited in the systematic collection of the Fersman
73	Mineralogical Museum of the Russian Academy of Sciences, Moscow, under the catalogue number
74	93775.
75	
76	OCCURRENCE AND GENERAL APPEARANCE
77	The Beshtau deposit was in operation for uranium underground mining in the period from
78	1950 to 1974. The deposit consists of numerous hydrothermal veins containing uraninite and

3/26

79	coffinite in porphyry granites. The upper part of the deposit is intensively oxidized and contains
80	diverse secondary uranium mineralization. In particular, lermontovite, U ⁴⁺ (PO ₄)·H ₂ O, was first
81	discovered here (Melkov, 1958; Melkov et al. 1983).
82	Beshtauite was found at the Gremuchka ore zone in the eastern part of the Beshtau
83	deposit. The specimens with the mineral were collected from the partially oxidized marcasite
84	vein containing subordinate pyrite, halloysite, opal, and uraninite and cross-cutting porphyry
85	granite in the fault zone. The supergene minerals are lermontovite, beshtauite, rozenite and
86	gypsum.
87	Beshtauite occurs as well-shaped short-prismatic crystals up to 0.1 x 0.15 x 0.2 mm in
88	size (Figure 1a), clusters of crystals (Figure 1b) and crystal crusts up to 0.5 mm thick on the
89	surface of marcasite crusts (Figure 1c). Aggregates (up to 0.5 mm) of anhedral grains of the new
90	mineral on marcasite were also observed. Optical examination shows that beshtauite crystals
91	looking perfectly under the microscope (Figure 1), however, typically have a mosaic character,
92	which significantly hampered their single-crystal X-ray diffraction studies.
93	
94	PHYSICAL PROPERTIES AND OPTICAL DATA
95	Beshtauite is transparent, light-green. Crystals typically look dark green due to the
96	abundant micro-inclusions of marcasite. The streak is white. The luster is vitreous. The mineral
97	fluoresces strongly yellow-green under both short- and long-wave ultraviolet irradiation.
98	Beshtauite is brittle. The Mohs hardness is ca. 2. Cleavage and parting were not observed, the
99	fracture is uneven. Density could not be measured because of the absence of relatively large
100	crystals without marcasite inclusions; the calculated density is 3.046 g cm ⁻³ . The mineral is
101	radioactive.
102	Beshtauite is optically biaxial positive, $\alpha = 1.566(3)$, $\beta = 1.566(3)$, $\gamma = 1.592(3)$ (589 nm).
103	Measured 2V is low, $< 10^{\circ}$; 2V (calc.) = 0° . Dispersion of optical axes is not observed. Under the

104 microscope, the mineral is colorless, nonpleochroic.

105

106	INFRARED SPECTROSCOPY
107	Beshtauite powder was mixed with anhydrous KBr, pelletized, and analyzed (16 scans) using an
108	ALPHA FTIR spectrometer (Bruker Optics) at the resolution of 4 cm ⁻¹ . IR spectrum of an
109	analogous pellet of pure KBr was used as a reference.
110	The IR spectrum of beshtauite (Figure 2) is unique for minerals but very close to that of
111	synthetic (NH ₄) ₂ (UO ₂)(SO ₄) ₂ ·2H ₂ O reported by Niinisto et al. (1978).
112	Absorption bands in the IR spectrum of beshtauite and their assignments [cm ⁻¹ ; s – strong
113	band, w - weak band; for the assignment of the bands of uranyl ions see Čejka (1999)] are: 3550
114	(O–H-stretching vibrations of H_2O molecules), 3233s (N–H-stretching vibrations of NH_4^+ groups
115	probably overlapped with O-H-stretching vibrations of H2O molecules), 3105 (N-H-stretching
116	vibrations of NH_4^+ cations), 1603 (H–O–H bending vibrations of H_2O molecules), 1438 (H–N–H
117	bending vibrations of NH_4^+ cations), 1175, 1143, 1117s, 1071 (asymmetric S–O stretching
118	vibrations of SO_4^{2-} anions), 1033s, 1003s (symmetric S–O stretching vibrations of SO_4^{2-} anions),
119	928 (antisymmetric U–O stretching vibrations of UO_2^{2+} cations), 840w, 806w (symmetric U–O
120	stretching vibrations of UO_2^{2+} cations), 642, 617, 598, 591 (O–S–O bending vibrations), 421 (lattice
121	mode possibly involving librational vibrations of $UO_2^{2^+}$, $SO_4^{2^-}$ and H_2O). The splitting of the non-
122	degenerate band of symmetric S–O stretching vibrations of SO_4^{2-} anions indicates the presence of
123	two non-equivalent SO ₄ tetrahedra. High intensities of these bands, as well as strong splitting of
124	the bands of degenerate asymmetric S–O stretching vibrations of SO_4^{2-} anions reflect a rather
125	strong distortion of SO ₄ tetrahedra (see below).
126	
127	CHEMICAL DATA
100	

128 Chemical data for beshtauite were obtained using a Jeol JSM-6480LV scanning electron

129 microscope equipped with an INCA-Wave 500 wavelength-dispersive spectrometer, with an

130 acceleration voltage of 15 kV and a beam current of 20 nA. The electron beam was rastered to

131	the area of 10 x 10 μ m ² to minimize the damage of unstable sample. The following standards
132	were used: $(NH_4)_2SO_4$ (N), UO ₃ (U) and BaSO ₄ (S). Content of H belonging to NH_4^+ cations and
133	H ₂ O molecules was not measured because of scarcity of pure material, but the presence of these
134	constituents was clearly confirmed by IR spectroscopy.
135	The average (7 analyses) chemical composition of beshtauite (wt%, ranges are in
136	parentheses) is: (NH ₄) ₂ O 10.33 (8.9–11.4), UO ₃ 53.21 (52.4–54.1), SO ₃ 29.40 (28.8–30.2), H ₂ O
137	(calc.) 7.06, total 100.00. Content of $(NH_4)_2O$ was calculated from measured nitrogen content:
138	mean 5.56, range $4.8 - 6.1$ wt% N. Content of H ₂ O was calculated by analytical total difference.
139	Contents of other elements with atomic numbers higher than 6 are below detection limits.
140	The empirical formula of beshtauite, calculated on the basis of 12 O apfu, is
141	$(NH_4)_{2.12}U_{0.99}S_{1.96}O_{9.91}(H_2O)_{2.09}$. The idealized formula is $(NH_4)_2(UO_2)(SO_4)_2 \cdot 2H_2O$, which
142	requires (NH ₄) ₂ O 9.75, UO ₃ 53.53, SO ₃ 29.97, H ₂ O 6.75, total 100.00 wt%.
143	Beshtauite slowly dissolves in H ₂ O at room temperature.
144	
145	X-RAY CRYSTALLOGRAPHY
146	X-ray powder diffraction data of beshtauite were collected using a STOE IPDS II
147	diffractometer equipped with Image Plate area detector, using the Gandolfi method (MoK α -
148	radiation; detector-to-sample distance: 200 mm). Data are given in Table 1. Monoclinic unit cell
149	parameters refined using least-squares technique from the powder data are: $a = 7.74(1)$, $b =$
150	7.379(7), $c = 20.85(3)$ Å, $\beta = 102.0(1)^{\circ}$, $V = 1164(4)$ Å ³ .
151	Single-crystal X-ray studies of beshtauite were carried out using the same diffractometer.
152	Unit-cell data and the experimental details are given in Table 2.
153	
154	CRYSTAL STRUCTURE: DETERMINATION, DESCRIPTION AND DISCUSSION
155	Experimental

156	The selected crystal of beshtauite was mounted on a STOE IPDS II X-ray diffractometer
157	equipped with Image Plate area detector and operated at 50 kV and 40 mA. More than a
158	hemisphere of three-dimensional data was collected using monochromatic MoK_{α} X-radiation,
159	with frame widths of 2° in ω , and with a 5 min count for each frame. The unit-cell parameters
160	(Table 2) were refined using least-squares techniques. The intensity data were integrated and
161	corrected for Lorentz, polarization, and background effects using the STOE X-Red program. An
162	analytical absorption correction was made on the basis of experimentally determined crystal
163	shape by means of the X-Shape 2.07 program (Stoe 2005).
164	The SHELX program package (Sheldrick 2008) was used for the refinement of the crystal
165	structure. The coordinates published by Niinisto et al. (1978) for synthetic
166	$(NH_4)_2(UO_2)(SO_4)_2$ ·2H ₂ O were used. The structure was refined in the monoclinic space group
167	$P2_1/c$ by direct methods to an R_1 value of 0.093, calculated for the 2677 unique observed ($ F_0 \ge$
168	$4\sigma_F$) reflections. The poor quality of the beshtauite crystals was the reason for rather value of
169	high crystallographic agreement index and did not allow determination of positions of H atoms.
170	It was also the reason for the appearance of rather high residual electron density peaks in the
171	difference Fourier maps, located close to the positions of the U atoms. The final refinement
172	included anisotropic displacement parameters for all non-H atoms and a refinable weighting
173	scheme. Final atom coordinates and displacement parameters of the atoms are given in Table 3,
174	selected interatomic distances are in Table 4.

175

176 **Results and Discussion**

177 Beshtauite is a natural analogue of synthetic $(NH_4)_2(UO_2)(SO_4)_2 \cdot 2H_2O$ reported by

178 Niinisto et al. (1978). Its crystal structure contains one symmetrically independent U site, which

179 is linked to two O atoms to form a linear uranyl cation, $(UO_2)^{2+}$, with the U=O bond lengths of

- 180 1.776-1.791 Å. The uranyl cation is equatorially coordinated by four O atoms and one H₂O
- 181 molecule to form the UO₆(H₂O) pentagonal bipyramid. The uranium-oxygen bond lengths are in

182 good agreement with the average values reported by Burns et al. (1997). The bond-valence sum 183 incident upon the U site is 5.93 valence units (v.u.) as calculated using bond-valence parameters 184 provided by Burns et al. (1997). There are two tetrahedrally coordinated S^{6+} cations in the structure that form $(SO_4)^{2-}$ 185 186 tetrahedra with the average <S-O> bond lengths of 1.468 and 1.465 Å, respectively. These 187 values are in general agreement with the average \langle S-O> distance in sulfates (1.475 Å; 188 Hawthorne et al. 2000) and in uranyl sulfates in particular (1.473(2) Å; Krivovichev 2013). The 189 bond-valence sums for the S1 and S2 sites calculated using bond-valence parameters taken from 190 Brese and O'Keeffe (1991) are equal to 6.10 and 6.18 v.u., respectively. The structure contains two symmetrically independent NH_4^+ cations that are involved in 191 four NH4"O hydrogen bonds (N-O distances in the range of 2.90-3.11 Å) each with the adjacent 192 193 O atoms. The crystal structure is based upon the $[UO_2(SO_4)_2(H_2O)]^{2-}$ layers consisting of corner-194 195 sharing $UO_6(H_2O)$ pentagonal bipyramids and SO_4 tetrahedra (Figure 3). Each SO_4 tetrahedron 196 shares two of its O atoms with adjacent uranium polyhedra. As a consequence, the S-O_{br} bond lengths for the bridging O_{br} atoms are slightly longer (1.478-1.502 Å) than the S-O_t bonds to the 197 terminal O_t atoms (1.419-1.465 Å). These values are in agreement with the average $\langle S-O_{br} \rangle$ and 198 <S-O_t> bond lengths of 1.483(1) and 1.455(1) Å found for the structures of uranyl sulfates 199 200 (Krivovichev 2013). The U-O_{br}-S bond angles in beshtauite are 141.7(7), 136.5(6), 140.4(8), and 201 $143.4(8)^{\circ}$ for the O3, O4, O7, and O8 atoms, respectively, in excellent agreement with the 202 average value of 142.3(6)° (Krivovichev 2013 ; Krivovichev and Plášil 2013). The $[UO_2(SO_4)_2(H_2O)]^{2-}$ layers are coplanar to (-102) and are linked via hydrogen 203 204 bonding that involve interlayer NH_4^+ ions and H_2O molecules. The topology of the 205 interpolyhedral linkage of the layers is of the goldichite type, which is common in many 206 inorganic oxysalts and, in particular, in uranyl oxysalts (Graeber and Rosenzweig 1971; 207 Krivovichev 2008a, b). The topology is related to that observed for the $[UO_2(SO_4)_2(H_2O)]^{2-1}$

208	layers in leydetite, $Fe(UO_2)(SO_4)_2(H_2O)_{11}$ (Plášil et al. 2013b). The $[UO_2(SO_4)_2(H_2O)]^2$ layers in
209	both beshtauite and leydetite are based upon corner-sharing UO ₆ (H ₂ O) pentagonal bipyramids
210	and SO ₄ tetrahedra. However, the layers should be considered as different topological isomers
211	with the layer in beshtauite having the goldichite topology and the layer in leydetite possessing
212	rhomboclase topology (Krivovichev 2008a, b).
213	
214	IMPLICATIONS
215	The discovery of beshtauite further extends our knowledge about the mineralogy and
216	crystal chemistry of uranium in oxidation zones of uranium mineral deposits. It is very likely that
217	beshtauite, because of its solubility in water, is an ephemeral species that was formed from
218	highly acidic aqueous solutions responsible for the transportation of uranium from primary ores
219	to the areas of secondary crystallization. The presence of beshtauite can be considered as an
220	evidence of transportation of U^{6+} in nature in forms of mobile complexes of uranyl cation with
221	ammonia or polyamines that is studied in synthetic systems (Zanello et al. 1978). Therefore
222	beshtauite is important mineral that detects structure and energetics of uranium complexes that
223	form at the initial stages of uranium dissolution in acidic waters generated by oxidation of sulfide
224	minerals.
225	
226	ACKNOWLEDGEMENTS
227	We thank Nina V. Skorobogatova and Nadezhda E. Korosteleva for the providing of
228	samples for studies, referee Jakub Plášil for valuable comments and Beda Hofmann for editorial
229	work. This study was supported by the Russian Foundation for Basic Research, grant no. 11-05-
230	00397-a and St.Petersburg State University (internal grant 3.38.136.2014). Technical support by
231	the SPbSU X-Ray Diffraction Resource Center is gratefully acknowledged.
232	
233	

3/26

234	References
235	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
236	Crystallographica, B47 , 192-197.
237	Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent
238	uranium: polyhedron geometries, bond-valence parameters, and polymerization of
239	polyhedra. Canadian Mineralogist, 35 , 1551-1570.
240	Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Reviews in
241	Mineralogy and Geochemistry, 38, 521-622.
242	Čejka, J. and Urbanec, Z. (1990) Secondary Uranium Minerals. Academia, Czechoslovak
243	Academy of Sciences, Prague, Czech Republic.
244	Chernikov, A.A. (1981) Behaviour of Uranium in the Hypergene Zone. Nedra, Moscow (in
245	Russian).
246	Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. In:
247	Burns, P.C. and Finch, R., Eds. Uranium: Mineralogy, Geochemistry and the Environment.
248	Reviews in Mineralogy and Geochemistry, 38, 91-180.
249	Graeber, E.J. and Rosenzweig, A. (1971) The crystal structures of yavapaiite, KFe(SO ₄) ₂ , and
250	goldichite, KFe(SO ₄) ₂ (H ₂ O) ₄ . American Mineralogist, 56 , 1917-1933.
251	Krivovichev, S.V. (2008a) Crystal chemistry of selenates with mineral-like structures: V. crystal
252	structures of $(H_3O)_2[(UO_2)(SeO_4)_2(H_2O)](H_2O)_2$ and $(H_3O)_2[(UO_2)(SeO_4)_2(H_2O)](H_2O)$,
253	new compounds with rhomboclase and goldichite topology. Geology of Ore Deposits, 50,
254	789-794 (translated from: Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2008,
255	134(1) , 54-61, in Russian).
256	Krivovichev, S.V. (2008b) Structural Crystallography of Inorganic Oxysalts. Oxford University
257	Press, Oxford.

258	Krivovichev, S.V. (2013) Crystal chemistry of uranium oxides and minerals. In: Reedijk, J. and
259	Poeppelmeier, K., Eds. Comprehensive Inorganic Chemistry II, Vol 2, 611-640. Elsevier,
260	Oxford.
261	Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and crystallography of uranium. In: Burns
262	PC, Sigmon GE (eds) Uranium: Cradle to Grave. Mineralogical Association of Canada
263	Short Course Series, 43, 15-120.
264	Melkov, V.G. (1958) Additional explanations on discovery of new uranium minerals in the
265	USSR. Proceedings of United Nations International Conference on the Peaceful Uses of
266	Atomic Energy (8-20 August 1955), 6, 966. Gosgeoltekhizdat, Moscow (in Russian).
267	Melkov, V.G., Belova, L.N., Gorshkov, A.I., Ivanova, O.A., Sivtsov, A.I. and Boronikhin, V.A.
268	(1983) New data on lermontovite. Mineralogicheskiy Zhurnal, 5(1), 82-87 (in Russian).
269	Niinisto, L., Toivonen, J. and Valkonen, J. (1978). Uranyl(VI) compounds. I. The crystal
270	structure of ammonium uranyl sulfate dihydrate, (NH ₄) ₂ UO ₂ (SO ₄) ₂ ·2H ₂ O. Acta Chemica
271	Scandinavica, A32, 647-651.
272	Plášil, J., Buixaderas, E., Čejka, J., Sejkora, J., Jehlička, J. and Novák, M. (2010) Raman
273	spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U-O
274	stretching regions. Analitical and Bioanalitical Chemistry, 397, 2703–2715.
275	Plášil, J., Mills, S.J., Fejfarová, K., Dušek, M., Novák, M., Škoda, R., Čejka, J. and Sejkora, J.
276	(2011a) The crystal structure of natural zippeite $K_{1.85}H^+_{0.15}[(UO_2)_4O_2(SO_4)_2(OH)_2](H_2O)_4$,
277	from Jáchymov, Czech Republic. Canadian Mineralogist, 49, 1089-1103.
278	Plášil, J., Dušek, M., Novák, M., Čejka, J., Císařová, I., and Škoda, R. (2011b) Sejkoraite-(Y), a
279	new member of the zippeite group containing trivalent cations from Jáchymov (St.
280	Joachimsthal), Czech Republic: description and crystal structure refinement. American
281	Mineralogist, 96 , 983-991.
282	Plášil, J., Fejfarová, K., Novák, M., Dušek, M., Škoda, R., Hloušek, J., Čejka, M., Majzlan, J.,
283	Sejkora, J., Machovič, V. and Talla, D. (2011c) Běhounekite, U(SO ₄) ₂ (H ₂ O) ₄ , from

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4870

Jáchymov (St. Joachimsthal), Czech Republic: the first natural U⁴⁺ sulphate. Mineralogical 284 Magazine, **75**, 2739-2753. 285

286	Plášil, J., Hloušek, J., Veselovský, F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka, J.,
287	Sejkora, J. and Ondruš, P. (2012a) Adolfpateraite, K(UO ₂)(SO ₄)(OH)(H ₂ O), a new uranyl
288	sulphate mineral from Jáchymov, Czech Republic. American Mineralogist, 97, 447-454.
289	Plášil, J., Fejfarová, K., Wallwork, K.S., Dušek, M., Škoda, R., Sejkora, J., Čejka, J.,
290	Veselovský, F., Hloušek, J., Meisser, N. and Brugger, J. (2012b) Crystal structure of
291	pseudojohannite, with a revised formula, Cu ₃ (OH) ₂ [(UO ₂) ₄ O ₄ (SO ₄) ₂](H ₂ O) ₁₂ . American
292	Mineralogist, 97, 1796-1803.
293	Plášil, J., Hauser, J., Petříček, V., Meisser, N., Mills, S.J., Škoda, R., Fejfarová, K., Čejka, J.,
294	Sejkora, J., Hloušek, J., Johannet, J.M., Machovič, V. and Lapčák, L. (2012c) Crystal
295	structure and formula revision of deliensite, Fe[(UO ₂) ₂ (SO ₄) ₂ (OH) ₂](H ₂ O) ₇ . Mineralogical
296	Magazine, 76 , 2837–2860.
297	Plášil, J., Fejfarová, K., Škoda, R., Dušek, M., Čejka, J. and Marty, J. (2013a) The crystal
298	structure of magnesiozippeite, Mg[(UO ₂) ₂ O ₂ (SO ₄)](H ₂ O) _{3.5} , from East Saddle Mine, San
299	Juan County, Utah (U.S.A.). Mineralogy and Petrology, 107, 211-219.
300	Plášil, J., Kasatkin, A.V., Škoda, R., Novak, M., Kallistova, A., Dušek, M., Skála, R., Fejfarová,
301	K., Čejka, J., Meisser, N., Goethals, H., Machovič, V. and Lapčák, L. (2013b) Leydetite,
302	Fe(UO ₂)(SO ₄) ₂ (H ₂ O) ₁₁ , a new uranyl sulfate mineral from Mas d'Alary, Lodève, France.
303	Mineralogical Magazine, 77, 429-441.
304	Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
305	Stoe, GmbH (2005) X-Shape, Version 2.07.
306	Zanello, P., Cinquantini, A., Seeber, R. and Pieri, G. (1978) Polarographic investigations on

- uranyl(VI) complexes in dimethylsulfoxide. IV. Ammonia and polyamines. Inorganica 307 Chimica Acta, 29, 171-176.
- 308
- 309

Iobs	$d_{ m obs},$ Å	<i>I</i> _{calc}	d_{calc} , Å*	h k l
100	6.86	21, 100	6.932, 6.796	011, 10-2
19	5.997	12	5.974	012
15	5.558	13	5.543	102
36	5.307	9,9	5.303, 5.279	11-1, 110
35	5.005	6, 5	4.997, 4.996	013, 11-2
14	4.507	8	4.501	11-3
11	3.960	6	3.969	11-4
10	3.797	11	3.782	200
8	3.617	4	3.627	021
38	3.410	9, 4, 3, 8, 3, 10	3.425, 3.424, 3.399, 3.398, 3.389, 3.376	114, 21-1, 006, 20-4, 21-2, 10-6
17	3.243	4. 1. 5	3.240, 3.225, 3.224	023, 211, 121
24	3.081	1, 5, 3, 2	3.092, 3.086, 3.086, 3.069	12-3, 016, 21-4, 122
10	3.033	5.3	3.031, 3.020	212, 115
6	2.999	2	2.987	024
20	2.881	11, 5, 2	2.882, 2.876, 2.872	106, 123, 21-5
6	2.786	1,6	2.814, 2.772	213, 204
9	2.730	3.1	2.734, 2.725	025. 11-7
2	2.655	1	2.652	21-6
6	2.577	4.2	2.577. 2.570	30-2, 221
6	2.459	3	2.463	125
10	2.395	1, 1, 3, 1	2,406, 2,405, 2,389, 2,386	117, 31-3, 032, 215
11	2.345	3, 1, 1, 1, 2,	3.355, 2.347, 2.347, 2.339, 2.337,	20-8, 223, 31-4, 13-1, 130,
		2	2.336	302
7	2.284	2	2.285	027
6	2.267	3	2.265	30-6
4	2.202	1	2.195	216
7	2.176	2, 1	2.179, 2.174	13-4, 118
3	2.117	2	2.116	22-7
14	2.077	2, 2, 3, 1	2.082, 2.081, 2.074, 2.074	1.010, 225, 134, 23-1
4	1.996	1, 2	1.999, 1.992	32-5, 036
5	1.985	1	1.980	119
4	1.936	3, 1	1.934, 1.933	208, 40-2
4	1.904	2, 1	1.908, 1.901	40-4, 315
4	1.853	1, 1, 2	1.859, 1.858, 1.848	23-6, 41-1, 306
5	1.780	1, 1, 1	1.781, 1.779, 1.779	13-8, 14-2, 3.010
5	1.745	1, 1, 1	1.749, 1.744, 1.742	142, 33-4, 412
4	1.685	1, 1	1.685, 1.679	32-9, 236
4	1.660	1, 1	1.663, 1.657	404, 240
3	1.633	1	1.634	2.211
3	1.621	1	1.618	14-6
4	1.593	1, 1, 1	1.593, 1.591, 1.591	334, 42-7, 318
2	1.538	1	1.540	2.310
2	1.506	1	1.504	50-6
3	1.443	1, 1	1.444, 1.441	3.0.10, 2.0.12
2	1.413	1	1.415	52-1

*Calculated for unit cell parameters obtained from single-crystal data.

Table 2. Crystallographic data and refinement parameters for beshtauite

Crystal data Temperature 293 K Mo*K*_α, 0.71073 Å Radiation, wavelength Crystal system monoclinic Space group $P2_{1}/c$ Unit-cell dimensions a, b, c (Å), β (°) 7.7360(8), 7.3712(5), 20.856(2), 102.123(8) a:b:c1.050 : 1 : 2.829 Unit-cell volume $(Å^3)$ 1162.75(19) Ζ 4 Calculated density (g/cm^3) 3.052 Absorption coefficient (mm⁻¹) 14.380 Crystal size (mm^3) 0.02×0.01×0.01 Data collection θ range $2.00 - 29.28^{\circ}$ $-10 \rightarrow 10, -10 \rightarrow 9, -28 \rightarrow 28$ h, k, l ranges Total reflections collected 10125 Unique reflections (R_{int}) 3106 (0.198)

2677

Structure refinement	
Refinement method	Full-matrix least-squares on F^2
Weighting coefficients a, b	0.1519, 11.3786
Data/restraints/parameters	3106/0/155
$R_1 [F > 4\sigma(F)], wR_2 [F > 4\sigma(F)],$	0.093, 0.222
R_1 all, wR_2 all	0.102, 0.237
Goodness-of-fit on F^2	1.020
Largest diff. peak and hole, e Å ⁻³	6.057, -6.022

316 317 Unique reflections $F > 4\sigma(F)$

Table 3. Final atom coordinates and displacement parameters (\AA^2) of atoms in the structure of beshtauite

319 320 321

323

Atom	х	c/a	y/b	z/c	$U_{ m iso}$		
U	0.23061	(5)).38928(6)	0.37715(2)	0.0293	0.0293(3)	
S 1	0.5491(4)).7163(4)	0.45439(14)	0.0304	4(6)	
S2	0.1430	5) ().7270(5)	0.24760(16)	0.0350	6(7)	
01	0.4130	(13)).3669(14)	0.3372(6)	0.036	(2)	
O2	0.0467	(13) ().4114(15)	0.4152(7)	0.040	(2)	
O3	0.4013	14) ().2569(16)	0.4739(5)	0.039	(2)	
O4	0.3716	14) ().6324(14)	0.4410(6)	0.038	(2)	
05	0.5366	(17) (0.8922(14)	0.4224(6)	0.044	(3)	
06	0.6765	16) ().5995(15)	0.4312(6)	0.043	(3)	
O7	0.1371	16) (0.6472(17)	0.3134(6)	0.043	(2)	
08	0.0441	16) ().2741(18)	0.2819(6)	0.049	(3)	
O9	0.212(2	() ().6014(18)	0.2078(8)	0.061	(4)	
O10	0.249(2	.) (0.8903(17)	0.2601(7)	0.056	(3)	
O _w 11	0.2199((12) (0.0527(17)	0.3763(5)	0.041	(3)	
O _w 12	0.7591	(18) ().1976(17)	0.4334(7)	0.055	(3)	
N1	0.6569(18) ().7268(17)	0.2981(6)	0.040	(3)	
N2	0.982(2	() ().843(3)	0.4449(9)	0.060	(4)	
Atom	U_{11}	U ₂₂	U33	<i>U</i> ₂₃	<i>U</i> ₁₃	U_{12}	
U	0.0249(3)	0.0355(4)	0.0241(3)	0.0000(1)	-0.0027(2)	-0.0008(1)	
S 1	0.0296(14)	0.034(2)	0.024(1)	0.001(1)	-0.0029(11)	-0.002(1)	
S2	0.0349(16)	0.038(2)	0.029(1)	0.004(1)	-0.0042(12)	0.003(1)	
01	0.018(4)	0.053(6)	0.033(5)	-0.002(4)	-0.001(4)	0.013(3)	
O2	0.015(4)	0.054(6)	0.048(6)	0.002(5)	-0.003(4)	0.006(4)	
O3	0.039(5)	0.044(6)	0.026(4)	-0.009(4)	-0.007(4)	0.002(4)	
O4	0.031(5)	0.041(6)	0.040(5)	-0.012(4)	0.006(4)	-0.014(4)	
O5	0.038(6)	0.049(7)	0.041(6)	0.012(4)	-0.001(5)	-0.002(4)	
06	0.035(5)	0.051(7)	0.040(6)	-0.008(4)	0.002(5)	0.008(4)	
O7	0.041(6)	0.053(6)	0.030(5)	0.012(4)	-0.002(4)	0.000(5)	
08	0.040(6)	0.061(7)	0.041(5)	-0.004(5)	-0.003(5)	-0.010(5)	
09	0.078(10)	0.059(8)	0.051(7)	0.007(5)	0.025(8)	0.026(6)	
O10	0.058(8)	0.059(8)	0.045(7)	0.002(5)	0.000(6)	-0.021(5)	
O _w 11	0.035(5)	0.031(5)	0.045(6)	0.002(4)	-0.021(5)	0.007(4)	
O _w 12	0.057(7)	0.053(8)	0.059(7)	0.001(6)	0.021(6)	-0.005(6)	
N1	0.051(7)	0.034(6)	0.038(6)	0.007(4)	0.018(5)	0.006(5)	
N2	0.031(6)	0.094(12)	0.051(8)	0.005(8)	0.001(6)	-0.005(7)	

Table 4. Selected interatomic distances (Å) in the crystal structure of beshtauite 327 328

1.776(11) 1.791(10) 2.346(11)	N1 O6 N1 O1	2.905(17) 2.945(16)
1.791(10) 2.346(11)	N1 O1	2.945(16)
2.346(11)	11 010	
	N1 O10	2.921(17)
2.355(11)	N1 O9	2.954(18)
2.358(10)	N2 O6	2.93(2)
2.376(10)	N2 O _w 12	2.90(2)
2.482(13)	N2 O _w 11	2.99(2)
	N2 O _w 12	3.11(2)
1.452(11)	S2-O9	1.419(13)
1.465(11)	S2-O10	1.447(12)
1.478(9)	S2-O8	1.490(12)
1.478(10)	S2-O7	1.502(11)
1.468	<s2-o></s2-o>	1.465
_	2.355(11) 2.358(10) 2.376(10) 2.482(13) 1.452(11) 1.465(11) 1.478(9) 1.478(10) 1.468	$\begin{array}{cccc} 2.355(11) & N1^{}O9 \\ 2.358(10) & N2^{}O6 \\ 2.376(10) & N2^{}O_w12 \\ 2.482(13) & N2^{}O_w11 \\ & N2^{}O_w12 \\ \end{array}$ $\begin{array}{c} 1.452(11) & S2-O9 \\ 1.465(11) & S2-O10 \\ 1.478(9) & S2-O8 \\ 1.478(10) & S2-O7 \\ 1.468 & \\ \end{array}$

Figure 1. Beshtauite: typical crystal (a), crystal cluster (b) and crystal crust (c) with powdery rozenite on marcasite. SEM (SE) images.

346 347 348 Figure 2. The IR spectrum of beshtauite.

- 358
- 359

360 Figure 3. The crystal structure of beshtauite projected along the *b* axis (*a*; unit cell is outlined)

and projection of the uranyl sulphate layer upon the (-102) plane (\boldsymbol{b}). UO₆(H₂O) and SO₄ groups are shown as polyhedra; O atoms of the H₂O molecules and N atoms of the ammonium cations

are shown as polyhedra; O atoms ofare marked.

