1	American Mineralogist Manuscript #4837 – Revision 1
2	
3	
4	The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161
5	
6	Axel Wittmann ^{1,*} , Randy L. Korotev ¹ , Bradley L. Jolliff ¹ , Thomas J. Lapen ² , and
7	Anthony J. Irving ³
8	
9	¹ Department of Earth and Planetary Sciences, Washington University St. Louis, Campus
10	Box 1169, 1 Brookings Dr., St. Louis, MO 63130-4899, USA
11	² Department of Earth and Atmospheric Sciences, University of Houston, 4800 Calhoun
12	Road, Houston, Texas 77004.
13	³ Department of Earth and Space Sciences, University of Washington, 4000 15 th Avenue
14	NE, Seattle, Washington 98195.
15	*corresponding author e-mail address: wittmann@levee.wustl.edu
16	

Page 1 of 53

17

ABSTRACT

18 This study explores the petrogenesis of Shişr 161, an immature lunar regolith breccia meteorite with low abundances of incompatible elements, a feldspathic affinity, 19 20 and a significant magnesian component. Our approach was to identify all clasts >0.5 mm 21 in size in a thin section, characterize their mineral and melt components, and reconstruct 22 their bulk major and minor element compositions. Trace element concentrations in 23 representative clasts of different textural and compositional types indicate that the clast 24 inventory of Shişr 161 is dominated by impact melts that include slowly cooled cumulate 25 melt rocks with mafic magnesian mineral assemblages. Minor exotic components are 26 incompatible-element-rich melt spherules and glass fragments, and a gas-associated 27 spheroidal precipitate. Our hypothesis for the petrologic setting of Shisr 161 is that the 28 crystallized melt clasts originate from the upper ~ 1 km of the melt sheet of a 300 to 500 29 km diameter lunar impact basin in the Moon's feldspathic highlands. This hypothesis is 30 based on size requirements for cumulate impact melts and the incorporation of magnesian 31 components that we interpret to be mantle-derived. The glassy melts likely formed during 32 the excavation of the melt sheet assemblage, by an impact that produced a > 15 km 33 diameter crater. The assembly of Shişr 161 occurred in a proximal ejecta deposit of this 34 excavation event. A later impact into this ejecta deposit then launched Shişr 161 from the 35 Moon. Our geochemical modeling of remote sensing data combined with the 36 petrographic and chemical characterization of Shisr 161 reveals a preferred provenance 37 on the Moon's surface that is close to pre-Nectarian Riemann-Fabry basin. 38 **Keywords:** Lunar meteorite, spherule, Feldspathic Highlands Terrane, impact melt, 39 cumulate, Riemann-Fabry basin. 40

Page 2 of 53

41	INTRODUCTION
42	At present, 43 of the 96 distinct lunar meteorites (exclusive of pairings) are
43	feldspathic breccias with bulk rock Al_2O_3 contents ≥ 25 wt%, FeO <8 wt%, and Th <1
44	ppm (< <u>http://meteorites.wustl.edu/lunar/</u> >, last accessed February 3, 2014), implying
45	launch from the lunar highlands at locations with no significant contribution of material
46	from the incompatible element-enriched Procellarum KREEP-Terrane (Jolliff et al.
47	2000). About 70% of these feldspathic breccias have a ferroan character in that bulk rock
48	Mg# [Mg/(Mg/Fe) in mol%] is <70 (e.g., Korotev et al. 2006). The ferroan character of
49	these meteorites is consistent with the idea that the ferroan anorthositic lunar crust had an
50	average Mg# of ~63 (e.g., Warren 1990). The remaining feldspathic breccia meteorites,
51	however, are more magnesian, with Mg# >70 , suggesting the presence of a magnesian
52	mafic component that occurs ubiquitously near the surface of the lunar highlands
53	(Korotev and Jolliff 2001; Treiman et al. 2010). The nature of this magnesian component
54	remains elusive. Mixing with magnesian-suite rocks that are interpreted as intrusions into
55	the crust (Lindstrom and Lindstrom 1986; Warren 1986; Shearer and Papike 2005;
56	Treiman et al. 2010), or the incorporation of mantle rocks into the impact melts of large
57	lunar impact craters (Hess 1994; Vaughan et al. 2013) are possible scenarios.
58	Collected in the Dhofar governorate of Oman in 2008, lunar meteorite Shişr 161
59	(Fig. 1) is a 57.2 g feldspathic, clast-rich regolith breccia (Foreman et al. 2009) with a
60	feldspathic bulk rock chemical composition, a Mg# of 71, and a Th concentration of 0.16
61	ppm (Foreman et al. 2009; Korotev 2012), pointing to an origin in or near the feldspathic
62	lunar highlands. In order to characterize the origin and petrological settings of magnesian
63	lunar highlands rocks, we surveyed the lithologic inventory of Shişr 161.
64	

Page 3 of 53

65

SAMPLES AND METHODS

66	We analyzed one rectangular thin section that captures a sample area of 547 mm^2
67	of Shişr 161 under the petrographic microscope. Using optical microscopy, we identified
68	ca. 90 clasts in the section (Fig. 2), including all clasts >0.5 mm in size. Using back-
69	scattered electron (BSE) images and energy dispersive spectrometry, we verified mineral
70	identification using the JEOL 8200 electron microprobe (EMP) in the Department of
71	Earth and Planetary Sciences, Washington University in St. Louis. We determined the
72	sizes and proportions of major and minor mineral components in BSE images of these
73	clasts using the image analysis software ImageJ (National Institutes of Health, <
74	http://rsbweb.nih.gov/ij/>). We analyzed the chemical composition of each mineral and
75	melt component with the EMP, using an acceleration voltage of 15 kV, an electron beam
76	current of 15 nA, and varied beam diameters ranging from 1 μ m to 20 μ m, depending on
77	the nature and size of components. To avoid volatilization of Na, we used beam
78	diameters between 5 and 20 μm for glassy domains and determined concentrations of the
79	elements Si, Ti, Al, Fe, Ca, Mg, Na, K, Cr, Ni, P, S, and Mn in silicates and oxides with
80	wavelength-dispersive spectroscopy. For the silicate measurements, we set the electron
81	beam to analyze Na, Mg, Al, and Si for 60 seconds (35 seconds on the peaks, and 2×12.5
82	seconds on the respective backgrounds) and for the analyses on K, Ca, Mn, Fe, Ti, Cr, Ni,
83	P, and S to 35 seconds (20 seconds on the peaks, and 2×7.5 seconds on the respective
84	backgrounds). We measured natural and synthetic standard materials for our calibration
85	and data reduction, which yielded typical detection limits of 0.02 wt% for MgO, Al_2O_3 ,
86	K_2O and SO_3, 0.03 wt% for Na_2O, SiO_2, CaO and P_2O_5, 0.04 for TiO_2 and Cr_2O_3, 0.05
87	for MnO and FeO, and 0.06 wt% for NiO. For the analysis of metal and sulfide

Page 4 of 53

3/12

88	components, we used a different analytical set-up that included the elements P, S, Mg, Si,
89	Cr, Fe, Cu, Ni, Ti, Zn, Mn, and Co. For these measurements, we set the electron beam to
90	analyze all elements for 60 seconds (30 seconds on the peaks, and 2×15 seconds on the
91	respective backgrounds). We set our backgrounds appropriately to avoid the interference
92	of the Fe-K _{α} X-ray peak with the Co K _{β} X-ray peak and attained typical detection limits
93	of 0.02 wt% for P, S, Mg, Si and Cr, 0.03 wt% for Fe and Mn, 0.04 wt% for Ti and Co,
94	and 0.05 wt% for Ni. Repeated analyses with the JEOL 8200 on standard reference
95	materials give typical one-sigma relative errors better than 2 % for element
96	concentrations >10 wt%, better than 5% for element concentrations between <10 and
97	~0.5 wt%, and relative errors >10 % for smaller concentrations.
98	To determine bulk rock compositions for clasts, we did modal recombination by
99	calculating the vol% abundances of major and minor elements from the compositions and
100	proportions of the respective mineral components in the clasts. Then, we recalculated the
101	wt% concentrations by using appropriate density corrections following the method of
102	Berlin (2009). Following the reasoning of Treiman et al. (2010) for the evaluation of the
103	level of uncertainty in modal mineral abundances, we estimate typical 2σ of wt%
104	standard errors for our modally recombined bulk clast compositions of \leq 5 % for the
105	major and minor oxide components and ≤ 50 % for trace concentrations of the oxide
106	values.
107	At the University of Houston, we determined the concentrations of 35 trace
108	elements for 24 clasts in Shişr 161 by laser ablation-inductively coupled plasma-mass
109	spectrometry (LA-ICP-MS) with a Varian 810 ICP-MS, using a 193 nm excimer laser
110	(Analyte.193 ultra-short pulse excimer ablation system, Photon Machines Inc.) that we

Page 5 of 53

- focused to diameters of 50 and 90 µm and operated at a repetition rate of 8 Hz. We
- 112 processed the concentration data with the LA-ICP-MS data reduction software Glitter
- 113 (Access Macquarie Ltd.), using Si or Ca abundances determined by EMP for the
- analyzed clasts and minerals as internal, and United States Geological Survey basalt
- 115 glasses BHVO-2 and BIR-1 as external standards. For the reproducibility of multiple
- standard analyses we generally found a 2–13% relative standard deviation to published
- 117 values for BHVO-2 and BIR-1 (GeoReM, Max-Planck Institut fuer Chemie 2006,
- 118 <u>http://georem.mpch-mainz.gwdg.de/sample_query_pref.asp</u>).
- 119

120	RESULTS
121	
122	Petrography
123	Shişr 161 is a $4 \times 3 \times 3$ cm polymict breccia stone with a brown color and no
124	recognizable fusion crust (Fig. 1). Angular clasts <1 cm in size are embedded in a well
125	indurated, clastic groundmass that has an estimated average grainsize of 5 μ m. Some
126	particles have transitional, interfingering contacts with the breccia groundmass,
127	suggesting emplacement while they were still melted. Shock metamorphic features occur
128	in abundance in the lithologic inventory of Shişr 161. They range from brittle to crystal-
129	plastic deformation such as mosaicism in olivine and pyroxene to planar deformation
130	features in plagioclase (Appendix-Fig. A1), diaplectic feldspar glass (maskelynite,
131	Appendix-Fig. A2), bulk rock impact melting, impact melt spherules with accreted clastic
132	debris (Heiken et al. 1974; Delano 1986), and even a possible gas-associated spheroidal
133	precipitate (GASP, Warren 2008).
134	Overall, terrestrial weathering of Shişr 161 is minor. Nonetheless, magnesian
135	olivine is in places replaced by phyllosilicates, veins of Ca carbonate fill fracture spaces,
136	and secondary celestine and barite crystals occur.
137	We characterized all 40 clasts $>0.5 \text{ mm}^2$ in size (which are typically larger than
138	\sim 1 mm in maximum length) petrographically and determined their compositions. In order
139	to attain a more complete estimate of lithological and compositional variability, we
140	complemented this quantitative study of the largest clasts with smaller clasts (the smallest
141	being a 0.002 mm ² spherule), altogether characterizing 94 clasts under the electron
142	microprobe.

Page 7 of 53

143	Matrix and ungrouped, mono- and polymineralic clasts. The groundmass of
144	particles <5 μ m in size accounts for <50 vol% of the rock. Clasts up to 0.5 mm ² in size
145	are mono and polycrystalline rock and glass fragments and glassy to crystallized
146	spherules. While most of these fragments could be derived from the lithologies
147	represented by larger component clasts, some are exotic. These include ferroan pyroxene
148	crystals composed of pigeonite with fine, \sim 5 µm thick lamellae of augite, a few
149	plagioclase fragments that are relatively rich in Na ₂ O, one fragment with forsteritic
150	olivine laths embedded in a feldspathic mesostasis that constitute a texture reminiscent of
151	a barred olivine chondrule (Appendix-Fig. A3), and a grain that contains kamacite with
152	Ni and Co abundances typical for L-chondrites.
153	Spherules. Thirteen spherules are 0.002 to 0.163 mm ² in size, occupying a
154	combined area of 0.316 mm^2 (Table 1). They are represented by three cryptocrystalline
155	specimens, 7 that are vitrophyres with intersertal to hyalophitic textures, and three that
156	are fully crystallized to intergranular textures (Fig. 3). Five of these spherules accreted
157	clastic and melted components, two are inclusions in melt clasts, and 5 show some
158	fracturing and abrasion that suggests reworking.
159	Impact melt clasts. The 40 clasts >0.5 mm ² in size occupy 24 % of the thin
160	section. Size spectra of constituent crystals are given in Fig. 4.
161	The major fraction (9 vol%) is represented by 10 granular melt clasts (Fig. 5)
162	composed of 10 to 500 μ m subhedral plagioclase and olivine crystals that are intergrown
163	with poikilitic pyroxene crystals \pm chrome spinel, ilmenite, troilite and FeNi metal
164	particles. Very rarely, accessory chlorapatite, pentlandite, and ZrO ₂ crystals occur. On the
165	basis of these textures, we interpret the plagioclase and olivine crystals as cumulus

Page 8 of 53

166	crystals and the pyroxene oikocrysts as intercumulus material (Irvine 1982). Adcumulus
167	growth likely produced subhedral shapes of plagioclase crystals, and the occasional
168	occurrence of 120°-angles in grain junctions. In three clasts that are the most fine-
169	grained, relict 0.5 mm plagioclase xenocrysts are present. Compositionally and texturally,
170	rocks similar to the Shişr 161 cumulate clasts are the Apollo poikilitic granulites, which
171	are regarded as ancient metamorphosed breccias or melt rocks (Hollister 1973; Ashwal
172	1975; Lindstrom and Lindstrom 1986; Cushing et al. 1999; Norman and Nemchin 2014).
173	Melt origins are confirmed by cathodoluminescence imaging that reveals igneous,
174	concentric zonation in the plagioclase crystals of the Shişr 161 cumulate clasts (Fig. 5c,
175	cf. Norman and Nemchin 2014), where they have not been obscured by shock
176	deformation.
177	More finely crystallized melt clasts occupy 7% of the thin section (Fig. 6). They
178	are composed of plagioclase, olivine, and pyroxene \pm chrome spinel, troilite, FeNi metal,
179	and ilmenite (Table 2). These crystallized clasts exhibit variable textures from poikilitic
180	to sub-ophitic, intergranular and coalescent. Most of them indicate the presence of
181	admixed xenoliths of plagioclase \pm olivine and pyroxene fragments. One xenolith-free
182	clast of this group has a variolitic texture of intergrown, zoned plagioclase and pyroxene
183	crystals that is reminiscent of basalt (Fig. 6f).
184	Vitrophyre clasts are composed of domains of glass and/or mesostasis with
185	crystals of plagioclase, olivine and pyroxene. These clasts occupy 5% of the thin section
186	area (Fig. 7) and have shapes that range from angular, shard-like to ameboid. These
187	morphologies indicate that some of these clasts were emplaced, while they were melted.
188	One of these vitrophyre clasts is a glassy coating on a cumulate clast and contains

Page 9 of 53

fragments of its host (Fig. 5a). Other glassy fragments contain a few μ m size angular
xenoliths that are fused to their outside, indicating these clasts are ropy glasses (Fruland
et al. 1977; Fig. 7d; Table 3).
Two clasts, a 14.1 mm ² polymict breccia (Fig. 8; clast 1 in Fig 2) and a 0.6 mm ²
mosaicized anorthosite (clast 14 in Fig. 2), take up 3 % of the thin section area. The
polymict breccia is a complex, subrounded aggregate of similar components as in Shişr
161 that are also embedded in a fine, particulate groundmass. Its largest sub-clast is a 1.1
mm cataclastic anorthosite with less than 5 vol% anhedral pyroxene and olivine crystals.
Clast compositions
Plagioclase . Ninety per cent of the plagioclase analyses cluster at An_{95-98} [An is
mol% Ca/(Na+Ca+K)], including all 123 analyses associated with the 12 cumulate clasts
(Fig. 9). The ranges of plagioclase compositions in crystallized melt clasts (An_{90-98} ,
number of analyses n=117) and vitrophyre clasts (An $_{89-99}$, n=90) are wider than in
cumulate clasts. The K_2O concentrations in plagioclase crystals of these melt clasts, and a
few maskelynite grains, are up to 0.08 wt% (Appendix-Table A1) but typically near the
detection limit of the EMP of 0.02 wt%. We found exotic plagioclase compositions
enriched in Na and K in two monomineralic clasts (An ₆₇₋₇₅ and Or _{0.2-1.6} , n=5), in 4
spherules (An ₈₁₋₉₉ and Or _{0-2.3} , n=43), and in a barred chondrule-like clast (An ₈₄₋₈₈ and

208 Or_{0.1}, n=3).

Olivine. The 283 analyses cluster around Fo_{55–80} (Fig. 10; Appendix Table A2).

- 210 Cumulate-clast olivine shows the narrowest range of compositions, a magnesian (Fo_{74–79},
- 211 n=62) and ferroan (Fo₄₆₋₅₆, n=22) type. Crystallized melt-clast olivine shows a weaker

Page 10 of 53

212	clustering around Fo ₆₁₋₇₁ (n=67) and Fo ₇₆₋₈₄ (n=24) and a few exotic compositions (Fo ₁₉₋
213	$_{51}$, n=3). The 53 analyses on olivine crystals associated with vitrophyre and ropy glass
214	clasts and the 21 analyses of olivine crystals associated with spherules show a wide range
215	of compositions (Fo $_{6-84}$) due to compositional zoning of phenocrysts and the presence of
216	undigested olivine clasts. This observation is supported by the data for olivine clasts in
217	the groundmass of Shişr 161 and olivine clasts in a polymict breccia clast that show a
218	similarly wide range of compositions (Fo ₆₋₈₁ , n=23). An exotic, barred olivine chondrule-
219	like clast contains zoned olivine with Fo91-94. The molar Fe/Mn for Shişr 161 olivine
220	analyses mostly cluster on the approximate trendline for lunar olivine (Fig. 11; Papike
221	1998), even for the highly magnesian, barred olivine crystals in a chondrule-like clast
222	(Fig. 2). The biggest deviation from the lunar trend occurs for a number of olivine
223	crystals associated with vitrophyre melt clasts, which appear to be relatively depleted in
224	Mn compared with the typical trend of lunar olivine.
225	Pyroxene. Advanced equilibration is evident in all but two cumulate clasts (Fig.
226	12; clast 26, $En_{47-56}Fs_{38-43}Wo_{6-15}$, n=15, and $En_{39-47}Fs_{18-27}Wo_{30-37}$, n=14, and clast 38,
227	En ₇₀₋₇₉ Fs ₁₆₋₁₈ Wo ₄₋₁₄ , n=7). We used the QUILF code (Andersen et al. 1993) to assess the
228	equilibration temperatures recorded by low- and high Ca-pyroxene pairs of the cumulate
229	clasts and found equilibration temperatures between 1100 and 900 °C. Furthermore, the
230	cumulate clasts fall into a magnesian group (8 clasts; $En_{75-80}Fs_{18-21}Wo_{2-5}$, n=55, and
231	En ₄₇₋₅₁ Fs ₇₋₁₀ Wo ₃₈₋₄₅ , n=36) and a ferroan group (2 clasts; En ₅₇₋₇₂ Fs ₂₄₋₃₉ Wo ₅ , n=3, and
232	$En_{41-45}Fs_{17-21}Wo_{34-42}, n=12$).
233	The pyroxene compositions of 19 crystallized melt clasts ($En_{52-81}Fs_{17-44}Wo_{2-5}$,
234	n=26; En ₂₅₋₇₅ Fs ₂₂₋₅₆ Wo ₁₁₋₂₀ , n=69; En ₁₂₋₇₅ Fs ₂₀₋₂₅ Wo ₃₂₋₄₃ , n=37; Appendix Table A3)

Page 11 of 53

235	show trends of equilibration, which is evident by relatively homogeneous compositions in
236	the respective clasts and the presence of high- and low-Ca pyroxene pairs in some of the
237	clasts.
238	The pyroxenes hosted by 12 vitrophyre clasts are unequilibrated phenocrysts or
239	undigested clasts of orthopyroxene (En ₅₆₋₇₉ Fs ₁₇₋₄₀ Wo ₂₋₅ , n=25), pigeonite (En ₄₀₋₆₇ Fs ₂₁₋
240	41Wo ₆₋₁₉ , n=12), and augite (En ₃₃₋₄₉ Fs ₉₋₄₀ Wo ₂₅₋₄₃ , n=6).
241	Associated with 6 spherules are orthopyroxene ($En_{61}Fs_{36-37}Wo_{2-3}$, n=3) clasts, and
242	pigeonite (En ₅₄₋₇₈ Fs ₁₇₋₃₀ Wo ₆₋₁₉ , n=8), and augite (En ₁₂₋₅₈ Fs ₁₇₋₆₄ Wo ₂₂₋₄₄ , n=9) crystals.
243	Our analyses of pyroxene crystals in the groundmass of Shişr 161 and in a
244	polymict breccia clast indicate a wide range of compositions (En ₄₃₋₈₇ Fs ₁₀₋₅₂ Wo ₃₋₅ , n=15;
245	$En_{29-47}Fs_{18-62}Wo_{6-20}$, n=36; $En_{25-46}Fs_{13-45}Wo_{23-44}$, n=38). Among them are three 0.4 to
246	0.5 mm size exsolved pyroxene crystals, a Fe-rich pigeonite with exsolution lamellae of
247	augite, a magnesian pigeonite with thin lamellae of augite, and a variably Fe-rich augite.
248	An exotic 0.2×0.15 mm feldspathic clast that is a component of the large polymict
249	breccia clast (Fig. 8) contains ~20 μm size crystals of magnesian low-Ca pyroxene (En_{85-}
250	₈₇). The molar Fe/Mn of the Shişr 161 pyroxene analyses clusters on and between the
251	approximate trendlines for lunar and terrestrial pyroxene (Papike 1998; Fig. 13).
252	Ilmenite. Ilmenite is a rare, accessory component in Shişr 161. It is only
253	moderately abundant in one ferroan cumulate clast and was identified as single crystals in
254	two other cumulate clasts. These ilmenite crystals contain 2.1 to 4.3 wt% MgO and 0.1 to
255	0.7 wt% Cr_2O_3 (Appendix Table A4). In 5 crystallized melt clasts, ilmenite occurs as ~10
256	μm , euhedral crystals and contains 1 to 6.4 wt% MgO and 0.1 to 0.8 wt% Cr_2O_3 (n=7). In
257	small clasts within the groundmass of Shişr 161, ilmenite is found as subhedral

Page 12 of 53

3/12

258	intergrowths with one pyroxene ($En_{30}Fs_{62}Wo_8$, n=2, and $En_{26}Fs_{38}Wo_{36}$, n=2) and one
259	olivine clast (Fo _{6–7} , n=3); the MgO contents are <1 wt% and Cr ₂ O ₃ concentrations are
260	<0.2 wt% (n=11) in these ilmenite crystals.
261	Spinel. Our 36 analyses of spinel crystals have compositions of $Mg_{0.1-0.5}Fe_{0.5-}$
262	$_{1.6}$ Ti _{0-0.6} Al _{0.2-1.2} Cr _{0.5-1.4} O ₄ (Appendix Table A5, Fig. 14). Five magnesian cumulate clasts
263	contain spinel crystals with similar compositions (Mg_{0.2-0.3}Fe_{0.5-0.6}Ti_{0.05-0.16}Al_{0.2-0.3}Cr_{1.2-0.3}
264	$_{1.3}O_4$; n=20), and one that is notably different in that it is enriched in Al ₂ O ₃
265	$(Mg_{0.5}Fe_{0.5}Ti_{0.03}Al_{1.2}Cr_{0.8}O_4)$. Rare spinel in a ferroan cumulate clast is enriched in FeO
266	and TiO_2 (Mg _{0.1} Fe _{1.6} Ti _{0.59} Al _{0.2} Cr _{0.5} O ₄) compared to the spinel crystals found in the
267	magnesian cumulate clasts. Our analyses of spinel crystals in 6 crystallized melt clasts
268	indicate compositions of $Mg_{0.1-0.5}Fe_{0.5-1.3}Ti_{0.01-0.53}Al_{0.3-1.1}Cr_{0.7-1.3}O_4$ (n=8). The spinel
269	crystals associated with 5 vitrophyre clasts fall in a range of compositions between $Mg_{0.1-}$
270	$_{0.5}Fe_{0.5-1}Ti_{0.01-0.16}Al_{0.4-1.1}Cr_{0.8-1.3}O_4$, (n=6) and one with a composition close to spinel
271	sensu stricto ($Mg_{0.9}Fe_{0.1}Al_2O_4$) of a euhedral crystal in a vitrophyre clast that is part of a
272	polymict breccia clast (Fig. 8).
273	Metal and sulfide particles. Sufficiently large metal particles for EMP analysis
274	(>3 μ m in size) occur in four vitrophyre clasts, three spherules, as three 40 to 120 μ m
275	nuggets in the breccia groundmass (of which only two were analyzed), in 9 crystallized
276	melt clasts (Appendix Table A6), and in 10 cumulate clasts (Fig. 15). Metal particles in
277	most cumulate clasts and in three crystallized melt clasts have Ni concentrations >35
278	wt% (Appendix Table A6). Although their compositions can vary within the same clast,
279	Ni and Co abundances cluster around the chondritic ratio of 20:1, suggesting a meteoritic
280	impactor signature (e.g., Warren 1993), and, thus, an impact-induced petrogenesis of

Page 13 of 53

281	these clasts. The metal particles associated with vitrophyre clasts fall in the field for
282	Apollo 17 mare basalts, and the field for most Apollo polymict rocks (Ryder et al. 1980),
283	as do the analyses of 4 metal particles in spherules. A 60 μ m metal nugget in the
284	groundmass of Shişr 161 is an intergrowth of kamacite with tetrataenite that matches the
285	Ni and Co compositions of such particles in L-chondrites (Clarke and Scott 1980;
286	Affiattalab and Wasson 1980).
287	FeNi metal particles are typically associated with sulfide crystals (Appendix
288	Table A7). The elevated Ni contents in some of the troilite analyses hint at possible
289	mixture measurements of troilite and minute FeNi metal domains. A magnesian and a
290	ferroan cumulate clast contain crystals of pentlandite, which is a rare lunar mineral
291	(Ramdohr 1972; Carter et al. 1975; Nazarov et al. 1980; Kuehner et al. 2005).
292	Vitric matrixes and glass compositions. Table 4 shows the compositions of
292 293	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that
292 293 294	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 µm continuous domains of melt mesostasis required modal
292 293 294 295	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 µm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one
292 293 294 295 296	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 µm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/Al [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano
292 293 294 295 296 297	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 µm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/Al [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano 1986). The lone exception is the glass component of spherule 9 (Fig. 3a), which apart
292 293 294 295 296 297 298	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 μm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/Al [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano 1986). The lone exception is the glass component of spherule 9 (Fig. 3a), which apart from a relative enrichment in Na ₂ O matches the compositional characteristics of GASP,
292 293 294 295 296 297 298 299	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 µm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/Al [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano 1986). The lone exception is the glass component of spherule 9 (Fig. 3a), which apart from a relative enrichment in Na ₂ O matches the compositional characteristics of GASP, which Warren (2008) identifies as impact vapor condensates. The mesostases are melt
292 293 294 295 296 297 298 299 300	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 μm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/Al [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano 1986). The lone exception is the glass component of spherule 9 (Fig. 3a), which apart from a relative enrichment in Na ₂ O matches the compositional characteristics of GASP, which Warren (2008) identifies as impact vapor condensates. The mesostases are melt residues, so their Mg/Al is not indicative of volcanic or impact origins; however, their
 292 293 294 295 296 297 298 299 300 301 	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 μm continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/Al [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano 1986). The lone exception is the glass component of spherule 9 (Fig. 3a), which apart from a relative enrichment in Na ₂ O matches the compositional characteristics of GASP, which Warren (2008) identifies as impact vapor condensates. The mesostases are melt residues, so their Mg/Al is not indicative of volcanic or impact origins; however, their petrographic contexts, such as accreted debris, (Figs. 3d–e; 7c–e) point to impact origins.
 292 293 294 295 296 297 298 299 300 301 302 	Vitric matrixes and glass compositions. Table 4 shows the compositions of glass and mesostasis domains in vitrophyres and spherules. The vitrophyre clasts that only retain up to 5 μ m continuous domains of melt mesostasis required modal recombination of the phenocrysts and the mesostasis melt. All glass particles except one have Mg/A1 [wt%] <1.5, which suggests they are of impact origin, not volcanic (Delano 1986). The lone exception is the glass component of spherule 9 (Fig. 3a), which apart from a relative enrichment in Na ₂ O matches the compositional characteristics of GASP, which Warren (2008) identifies as impact vapor condensates. The mesostases are melt residues, so their Mg/Al is not indicative of volcanic or impact origins; however, their petrographic contexts, such as accreted debris, (Figs. 3d–e; 7c–e) point to impact origins.

303 Clast bulk compositions

Page 14 of 53

304	We determined the modal mineralogy of clasts in Shişr 161 by calculating the
305	CIPW-norm from the recombined bulk compositions and the glass analyses for the
306	vitrophyre clasts, and from the image analysis results for the crystallized melt clasts and
307	the cumulate clasts (Table 5, Fig. 16). The vast majority of modal mineralogies plot
308	between 60 and 90 vol% plagioclase in the vicinity of the estimated average composition
309	of the lunar crust based on numerous feldspathic lunar meteorites (Korotev et al. 2003).
310	Only 4 clasts indicate plagioclase abundances >90 vol% and only one, a 0.6 mm ²
311	cumulate clast with >95 vol% plagioclase classifies as "pure anorthosite" (Hawke et al.
312	2003).
313	
314	Recombined compositions and bulk compositions of clasts
315	Most of the clasts have major-element compositions similar to the majority of
316	feldspathic lunar meteorites (Fig. 17), that is, the clasts are compositionally typical of the
317	feldspathic highlands. Of those clasts that do not, a few are more feldspathic; however,
318	most are more mafic, which may account for the relatively low Al ₂ O ₃ concentration of
319	Shişr 161 compared to other feldspathic lunar meteorites. The weighted mean averages
320	(WMA) of all clasts indicate Mg#s of 69.1 and 23.7 wt% Al_2O_3 , which is not close to the
321	bulk rock composition of Shişr 161. However, if variolitic noritic gabbro clast #23 (Table
322	3, Figure 6F) is excluded, the WMA for the combined clasts constitutes a Mg# of 71.3
323	and an Al_2O_3 concentration of 25.3 wt%, which is in good agreement with the bulk rock
324	composition of Shisr 161. This suggests that clast #23 was likely not represented in the
325	bulk rock analysis of Shişr 161. The majority of the mafic clasts, largely vitrophyres and
326	spherules, have compositions intermediate to feldspathic lunar meteorites and mare

Page 15 of 53

327	basalts. A subset falls in the compositional range of magnesian-suite norites and
328	gabbronorites (Fig. 17). The WMA of all 52 vitrophyre and spherule clasts yields a Mg#
329	of 65.3 and 22.3 wt% Al_2O_3 . Several mafic clasts, including some of the crystallized and
330	cumulates, are more magnesian and plot in the field of magnesian-suite norites and
331	gabbronorites. The WMA of all 18 crystallized melt clasts (excluding clast #23) gives a
332	Mg# of 69.1 and 25.8 wt% Al_2O_3 . In contrast, the WMA for the 12 cumulate clasts is
333	considerably more magnesian in character as indicated by the Mg# of 75.6 and 26.8 wt%
334	Al ₂ O ₃ and, thus, identifies the cumulate clasts as the main carriers for the magnesian
335	component in Shişr 161.
336	Three spherules have a strong affinity to the composition of Apollo 15 KREEP
337	basalt (Fig. 18), suggesting that they derive from impacts into the Procellarum KREEP
338	terrane (Lucey et al. 2006). Two spherules, one that crystallized fayalitic olivine and one
339	that appears to be a GASP plot at low Th and high FeO concentrations, suggesting they
340	do not represent simple mixtures between typical lunar crustal lithologies. Most melt
341	clasts cluster around the compositional range for troctolites and troctolitic anorthosites.
342	The chondrite-normalized Rare Earth Element (REE) patterns of 18 Shişr 161
343	impact melt clasts are mostly flat-trending and overlap between ~ 1 and $11 \times CI$ (Fig. 19).
344	Two small gabbroic clasts with poikilitic textures of clinopyroxene oikocrysts that
345	contain plagioclase chadacrysts are anomalous in that they are the only ones that exhibit
346	negative Eu anomalies. Spherules also reveal distinct characteristics. The accreted portion
347	on a mafic spherule (Fig. 3d) and a possible spherule that is an inclusion in a vitrophyre
348	melt clast have REE abundances that fall in the typical range for the impact melt clasts in
349	Shişr 161. In contrast, the main portion of the mafic spherule (Fig. 3d) and a GASP

Page 16 of 53

350	particle (Fig. 3a) have REE concentrations that are $1-2 \times CI$ except for a small positive Eu
351	anomaly. Four other spherules (Fig. 3 b, c, e) show strong enrichments in incompatible
352	elements and display REE patterns 100-400×CI, which suggests an affinity to KREEP
353	(e.g., Papike et al. 1998 and references therein). The bulk-rock CI normalized REE
354	patterns for two medium grained magnesian cumulate clasts are flat-trending (La/Yb 1.2-
355	1.6; 2 to $4 \times$ enriched relative to CI; Fig. 19), with positive Eu-anomalies (Eu/Eu* 3.8 and
356	4.6) that are modest compared to those of some ferroan anorthosites [e.g., Eu/Eu* 34.1
357	for 60015,64 (Taylor et al. 1973)]. A fine-grained magnesian cumulate clast and an
358	unequilibrated ferroan cumulate clast exhibit moderately evolved REE patterns with
359	relative enrichments of the heavy REE of 5–8×CI (La/Yb \sim 0.2–0.3) and minor Eu
360	anomalies (Eu/Eu* 1.7 and 2.4).

361

362	DISCUSSION
363	
364	The composition of Shişr 161
365	We determined the clast inventory of Shişr 161 and characterized it chemically
366	(Tables 1–6, Appendix Tables A1–A7). Our petrographic and chemical data, especially
367	the Fe/Mn of mafic silicates (Figs. 11, 13), together with bulk rock trace element
368	characteristics (Korotev 2012) confirm a lunar origin for Shişr 161. Here, we explore
369	possible petrogenetic relationships among the clast components in Shişr 161 and
370	implications for their provenance through comparison of their compositions to the
371	composition of the lunar crust.
372	We calculated the normative mineralogy of 38 clasts >0.5 mm ² in size and
373	determined their modal mineralogies based on normative plagioclase abundances. Figure
374	20 shows the resulting normative lithological abundances of clast components in Shişr
375	161 and the Al ₂ O ₃ content calculated from the recombined compositions and normative
376	abundances of these clasts compared to those in the model lunar crust of Wieczorek et al.
377	(2006) and the bulk rock composition of Shişr 161 (Korotev 2012). As discussed in the
378	context of recombined clast compositions, variolitic, crystallized melt rock clast #23 (Fig.
379	6f, Table 2) was excluded from these calculations because it was not represented in the
380	bulk chemical analysis of Shişr 161 (Korotev 2012). The results (Fig. 20) show that the
381	clast assemblage in Shişr 161 over-represents modal lithologies with intermediate (70±10
382	vol%) plagioclase contents compared to abundances of such lithologies in the model
383	upper or lower lunar crust. This suggests that the clast assemblage in Shişr 161 did not
384	form due to a simple mixing of upper and lower crust. Nonetheless, an affinity towards a

Page 18 of 53

3/12

385 lower crustal composition is indicated by the Al₂O₃ contents in the clasts in Shisr 161 386 (Fig. 20) that closely correspond to the independently determined whole rock data of 387 Shisr 161 (Korotev 2012). Major and minor element compositions (Figs. 17–18) do not 388 support the possibility that admixed mare components are mainly responsible for this 389 character. If a petrogenetic link among most clasts is assumed, then possible derivation 390 from an impact melt volume that was produced from a melt zone in the lower crust needs 391 to be explored.

392 The petrogenetic settings for widely recognized lunar impact melts are small to 393 modest melt volumes. For example, the subophitic Apollo 16 impact melt rocks likely 394 crystallized from ~10 m thick melt volumes (Deutsch and Stöffler 1987), and Apollo 17 395 poikilitic impact melt breccias have textural equivalents in impact melt rocks from an 80 396 m thick outcrop at Lake Mistastin crater in Labrador, whose anorthositic target rock 397 sequence is regarded as a good analogue to the lunar highlands (Grieve 1975). In 398 contrast, terrestrial impact craters that approach 1 km thick melt volumes produced 399 fractionally differentiated cumulates that are reminiscent of plutonic rocks (Therriault et al. 2002). The ancient 45 multiring impact basins \geq 300 km in diameter on the surface of 400 401 the Moon are stratigraphic markers (Wilhelms et al. 1987) and formed enormous volumes 402 of impact melt (Cintala and Grieve 1998a, b). Rocks that resulted from crystallization of 403 these voluminous melts are expected to be cumulates (Morrison 1998; Vaughan et al. 404 2013). Recently, Norman and Nemchin (2014) suggested that Apollo melt rock 67955, 405 which displays a similar texture than the Shişr 161 cumulate clasts, originated from the 406 melt sheet of a lunar impact basin. These authors suggest that the on average 100 µm 407 wide plagioclase crystals in 67955 record a crystallization interval that lasted for 10 to

Page 19 of 53

408 100 days. The size range of plagioclase crystals in 67955 falls within the range observed 409 in the Shisr 161 cumulate clasts of 10 to 500 μ m (Fig. 4), while the average sizes of 410 plagioclase crystals in Shişr 161 cumulate clasts is more variable (Fig. 5).

411

412 The petrogenesis of Shişr 161 cumulate clasts

We identified the cumulate clasts in Shişr 161 as impact melts based on the presence of FeNi metal particles that cluster around the chondritic ratio of Ni:Co, grain sizes that are smaller than what is expected for pristine plutonic lunar rocks (Warren 1993), relict igneous zoning (Fig. 5c; cf. Norman and Nemchin 2014) that distinguishes them from possible metamorphic lunar rocks, and the occasional presence of xenoliths. Fractional crystallization is implicated for the formation of cumulate rocks (Irvine 1982), and this process is expected to characteristically affect the trace element inventory of

420 such rocks, especially the abundances of incompatible trace elements.

421 **Progenitor lithologies.** To test the fractional crystallization hypothesis, we 422 analyzed the concentrations of selected trace elements that are commonly used as 423 petrogenetic indicators in lunar plutonic rocks. In the Mg# versus Ti/Sm and Mg# versus 424 Sc/Sm diagrams (Fig. 21a-b) that were used as fractionation indexes for pyroxene and 425 ilmenite in lunar rocks (Norman and Ryder 1980), the Shisr 161 cumulate clast data 426 indicates affinities with the "primitive" lunar plagioclase and olivine cumulates as 427 represented by ferroan anorthosites (Papike et al. 1998 and references therein), Apollo 17 428 dunite 72415/7 (Dymek et al. 1975; Laul and Schmitt 1975), and some gabbronorites 429 (James and Flohr 1983). Moreover, except for the four KREEPy spherules, all other melt 430 clasts share this affinity in that they also plot apart from the fields of Apollo norites,

Page 20 of 53

troctolites and KREEP basalts. Thus, although slightly enriched in incompatible elements
compared to typical ferroan anorthosites and dunite 72415/7 (Figs. 18–19), the Shişr 161
cumulate clasts are unlikely to have been sourced from typical Apollo magnesian-suite
rocks such as norites, troctolites and KREEP basalts that indicate crystallization from
magmas that had previously fractionated pyroxene and ilmenite (Norman and Ryder
1980).

437 **Dimension of the cratering event.** What size constraints can be inferred from 438 cumulate melt rocks for the impacts that formed them? On Earth, minimum impact melt 439 volume thicknesses of ~1 km are required to crystallize cumulate melt rocks (Therriault 440 et al. 2002). Using scaling relationships of (Cintala and Grieve 1998a, b) and an average 441 crustal thickness of 50 km for the feldspathic highlands (Wieczorek et al. 2013), we can 442 constrain the size of the source crater for the magnesian cumulate impact melt clasts in 443 Shisr 161. An impact melt zone with a maximum depth of 50 km that reaches the bottom 444 of the feldspathic highlands crust requires a transient cavity diameter of 200 km, which 445 corresponds to a final crater diameter on the order of 300 to 500 km (Petro and Pieters 2008). This impact event would form a melt volume on the order of 10^5 km³, 40 % of 446 447 which was ejected (Cintala and Grieve 1998a). Neglecting crater floor topography, the 448 melt volume retained in the transient crater region could form a layer with an average 449 thickness of 1.9 km. Geometric relationships of the spherical melt zone suggest that on 450 the order of 3 % of this melt volume would have been derived from the upper mantle 451 below the on average 50 km thick lunar crust. This example for the smallest basin-size 452 impacts is a minimum case. Smaller craters are unlikely for two reasons. First, such 453 craters would not form melt zones that reach the lower crust or upper mantle. Next, their

Page 21 of 53

454	melt sheets are unlikely to be thick enough to form the medium to coarse, granular
455	textures that have to relate to km-thick melt volumes (Warren et al. 1996). Lunar craters
456	between 100–200 km in diameter form from transient crater diameters on the order of 60
457	to 100 km with melt zones <25 km deep, and retain about 5×10^3 km ³ of impact melt that
458	could amount to a 0.7 km thick layer across the area of the transient crater. It seems
459	implausible that these scenarios can account for the chemical and textural characteristics
460	of the magnesian cumulate clasts in Shişr 161. On the other hand, lunar impact basins
461	with diameters >500 km would have formed from transient craters >330 km in diameter
462	with melt zones down to at least 110 km and associated melt volumes of $\sim 10^6$ km ³
463	(Cintala and Grieve 1998a, b; Petro and Pieters 2008). On the order of 60 to 70 % of
464	these impact-melt volumes would have been generated from the upper lunar mantle and
465	could form 7 km thick melt sheets in the region of the transient crater. If vaporization and
466	ejection of the upper target section is taken into account (Cintala and Grieve 1998) and
467	assimilation of crustal material that slumps back into the crater is disregarded (a process
468	that is poorly constrained, cf. Melosh et al. 2013; Potter et al. 2013), almost all impact
469	melt retained in the region of the transient crater could have formed from upper mantle
470	material in these scenarios. Compared to Shişr 161, we would expect to find much higher
471	MgO and FeO contents in melt clasts and possibly clasts of ultramafic rocks in a breccia
472	that was generated from the upper few km of such a >500 km diameter lunar impact basin
473	(Hess 1994; Vaughan et al. 2013).

474 Petrologic modeling. In order to test the petrogenesis of the Shişr 161 cumulate
475 clasts from the melt zone of a 300–500 km diameter lunar impact basin in the feldspathic
476 highlands, we modeled their compositions as mineral assemblages that would result from

Page 22 of 53

477	the crystallization of impact melts using the MELTS code (Ghiorso and Sack 1995). As
478	input compositions, we used various proportions of feldspathic crust mixed with
479	magnesium-rich rocks that indicate similar primitive trace element characteristics as the
480	Shişr 161 cumulate clasts (Fig. 21). We chose the approximate composition of the typical
481	feldspathic crust (FC) that is based on feldspathic lunar meteorites (Korotev et al. 2003),
482	and dunite (DU) 74215/7 (Gast et al. 1973) and gabbronorite (GN) 61224 (Marvin and
483	Warren 1980) as admixed, MgO-rich upper-mantle components (modeled compositions:
484	FC + 5, 10, and 15 % DU; FC + 5, 10, and 15 % GN; 100 % FC; and 34 % FC, 33 % DU,
485	and 33 % GN). Petrologic models were done at 50 bar pressure that corresponds to a
486	depth of 1 km on the Moon, fO_2 of iron-wüstite, and the starting temperature of 1700 °C
487	that is estimated as the temperature of the Sudbury basin's impact melt sheet after initial
488	equilibration with entrained clasts (Zieg and Marsh 2005).
489	Our simulated equilibrium crystallization over the temperature range of 1700-
490	~1100 °C for the model composition of FC + 10 % DU yields an assemblage that most
491	closely resembles the mineralogy of magnesian cumulate clasts in Shişr 161 (Table 7).
492	This simulation reproduces proportions and compositions of olivine and plagioclase
493	within their observed ranges. Pyroxene compositions are poor matches, likely because
494	crystallization temperatures were above the subsolidus equilibration temperatures of the
495	orthopyroxene-augite assemblages of the Shişr 161 magnesian cumulate clasts.
496	Nonetheless, pyroxene Mg/Fe molar ratios are reasonably close to the observed range
497	(Table 7). Spinel abundances are noticeably larger, and their compositions do not
498	resemble those in Shişr 161 magnesian cumulate clasts. Model runs of pure FC and
499	mixtures of FC with gabbronorite fail to produce Mg/Fe molar ratios for pyroxenes or

Page 23 of 53

500 olivine compositions and abundances close to the ranges observed for the Shişr 161

501 magnesian and ferroan cumulate clasts (Table 7).

502 Our simulations of the fractional crystallization of an impact melt volume 503 dominated by FC over the temperature interval of 1700–1000 °C using MELTS produced 504 crystallization sequences that mainly reproduce the petrographically observed 505 assemblages in the magnesian and ferroan cumulate clasts in Shisr 161 (Fig. 22). These 506 crystallization sequences are characterized by initial fractions of <1 wt% spinel that is 507 more dense than its parent melt but crystallizes with ~neutral buoyant plagioclase (Table 508 8). Next, olivine co-crystallizes with plagioclase. This olivine typically has a higher 509 density than its parent melt and is, thus, likely to fractionate. However, plagioclase has a density contrast less than 0.04 g/cm³, which suggests it is unlikely to fractionate from the 510 511 melt. Moreover, all FC-dominated melt compositions crystallize 70 to 55 wt% 512 plagioclase before the onset of pyroxene crystallization. This means that only early 513 crystallizing spinel and olivine could fractionate from the melt and form cumulate layers. 514 However, because olivine co-precipitates with plagioclase, the neutral buoyant 515 plagioclase first impedes the settling of olivine and ultimately freezes the melt body when 516 it reaches ~50 % crystallinity (Marsh 1981). Thus, fractional crystallization of FC + 5 to 517 15 % DU or GN is arrested before pyroxene replaces olivine on the liquidus, suggesting 518 pyroxene crystallizes from interstitial melt in a troctolitic cumulate. This prediction is in 519 good agreement with the petrographic evidence from the Shisr 161 magnesian cumulate 520 clasts. The three ferroan cumulate clasts in Shişr 161, on the other hand, may be products 521 of poorly homogenized portions of a melt sheet that was mainly composed of feldspathic 522 crust. The sequence of crystallization and compositions of crystallized major mineral

Page 24 of 53

523 phases is similar to the mineralogy of the three ferroan cumulate clasts. However, the 524 diversity of modal and crystal-chemical compositions among these ferroan clasts 525 precludes conclusive statements about their origins.

526

527

Petrogenesis of the clast assemblage in Shişr 161

528 Although a random nature of the clast assemblage in Shisr 161 can not be ruled 529 out completely, we want to explore possible petrogenetic links between the major clast 530 types, which could provide evidence for a shared petrogenesis. This is supported by 531 grossly similar chemical characteristics of these impact melt clasts (Figs. 9, 18, 19, 21). 532 **Comparison with terrestrial impactite assemblages.** On Earth, only the 1.85 533 Ga old, ~200 km final rim diameter Sudbury impact structure in Canada (e.g., Grieve et 534 al. 1991; Deutsch 1994; Therriault et al. 2002; Grieve 2006) has the full range of 535 impactites exposed from its sub-crater floor to post-impact sedimentary regolith (Grieve 536 2006; Fig. 23) and scales to the size of a ~300 km diameter lunar impact basin (Simonds et al. 1976). Under lunar conditions, the $\sim 10^5$ km³ impact melt volume expected to form 537 538 in such an event (Cintala and Grieve 1998a) would spread out over a much larger region 539 due to more extensive crater modification in the low gravity environment (e. g., Warren 540 et al. 1996). Nonetheless, scaling relationships of Cintala and Grieve (1998a, b) infer that 541 sufficient melt would be retained in such a crater to form a continuous melt sheet that is 542 >1 km thick, which is deemed necessary to induce fractional crystallization (Therriault et 543 al. 2002). Comparison with the stratigraphic succession that is to be expected for an 544 impactite deposit in such a 300-500 km diameter lunar impact basin reveals that the 545 fractionally differentiated cumulate rocks are overlain by a decameter-thick succession of

Page 25 of 53

546 crystallized and partly assimilated melt rocks that represent a guenched layer. Fallback 547 breccia on this layer was likely much thinner than at Sudbury (Settle 1980), where the 548 equivalent Onaping breccia is interpreted as excessively thick due to impact melt 549 interacting with water (Kieffer and Simonds 1980; Grieve et al. 2010). Nonetheless, a 550 breccia deposit of quenched fallback debris, possibly on the order of ~ 100 m thick, 551 appears probable. This breccia would form a chilled, insulating lid on top of the massive 552 melt sheet that would begin to fractionally crystallize. The chilled layer may be texturally 553 variable and contain abundant fragments of undigested target rock clasts and intrusions 554 from the underlying melt sheet (Ames et al. 2002). Moreover, extensive heating from the 555 cooling impact melt sheet below would lead to partial assimilation, the formation of 556 intrusive melt pods, and possibly some contact-metamorphism. The uppermost portion of 557 this fallback breccia would contain late fallback materials such as glassy spherules (Fig. 558 3) that could become devitrified due to heating from below. Examples for such deposits 559 are known from the 10.5 km diameter Bosumtwi crater in Ghana (Koeberl et al. 2007) 560 and the 18 km diameter El'gygytgyn crater in Siberia (Goderis et al. 2013; Wittmann et 561 al. 2013), where glassy impact melt spherules form fallback layers within the craters. 562 These spherules indicate formation as melt droplets sourced from the uppermost target 563 rocks and impactor material and occasionally contain accreted lithic debris. Most of these 564 spherules do not indicate formation as impact vapor condensates such as the lunar HASP 565 and GASP (Warren 2008; Fig. 3a) because they do not display relative enrichments or 566 depletions in refractory components, which characterize HASP and GASP. 567 Implications for the excavation of Shişr 161 cumulates. Constraints for the 568 approximate volumes of impact melt associated with melt rock textures outlined above

Page 26 of 53

569	(Grieve 1975; Deutsch and Stöffler 1987) suggest that the crystallized melt rocks that
570	were cooled too rapidly to fractionally differentiate were sourced from melt volumes
571	between ~0.01 and 1 km thick (Fig. 23). In order to excavate cumulate melt rocks from a
572	depth of \sim 1 km on the Moon, scaling relationships of Melosh (1989) suggest an impact
573	event is required that produces a transient crater ~ 10 km in diameter, which scales to a
574	final crater on the order of 15 km in diameter (Simonds et al. 1976). However, in order to
575	attain a high proportion of cumulate rocks from a depth of ~ 1 km, much larger events are
576	favorable, and deposition within \sim 1 radius around the crater rim appears to be required in
577	order to avoid excessive dilution of primary ejecta (Morrison and Oberbeck 1978; Hörz
578	et al. 1983). This excavation event furthermore could account for the production of
579	rapidly quenched glassy melts, ropy glasses, and maskelynite (Fig. 7). Ejecta from such
580	an impact would be mixed with surficial debris according to the theory of ballistic
581	sedimentation (Oberbeck 1975; Oberbeck et al. 1975). The presence of impact melt
582	spherules, GASP, and ropy glass, the scarcity / absence of agglutinates, and the relatively
583	low concentrations of siderophile elements in Shişr 161 support this interpretation and are
584	characteristic of immature regolith breccias (McKay and Basu 1983; McKay et al. 1986;
585	Foreman et al. 2009; Korotev 2012) that could have been deposited in proximal ejecta
586	deposits of mid-size impact craters (Fruland et al. 1977; Warren 2008). A third impact
587	would then be required to launch Shişr 161 from the Moon.
588	

589 **Provenance of Shişr 161**

In order to constrain the provenance of Shişr 161 on the surface of the Moon, wedid least squares modeling of its bulk rock composition (Korotev 2012) with the Lunar

Page 27 of 53

592	Prospector's 5° gamma-ray spectrometer data (Fig. 24; Prettyman et al. 2006). This
593	technique has previously been used to constrain the provenances of regolith breccias on
594	the Moon's surface (e.g., Jolliff et al. 2009; Joy et al. 2010, 2011; Zeigler et al. 2013).
595	Further constraints for the provenance of Shişr 161 can be deduced from its
596	petrography. First, basalt is not a significant component. This inference derives from the
597	bulk rock chemistry (Korotev 2012) and the lack of any basaltic clasts $>\sim 0.5$ mm in size.
598	Therefore, impact basins that contain substantial mare-infill are unlikely source craters
599	for Shişr 161, of course given the caveat that the impact that excavated the cumulate melt
600	sheet and crystallized melt rocks in Shişr 161 may have happened before its parent basin
601	was flooded with mare lava. Then, because ballistic sedimentation excessively dilutes the
602	more distal portions of the continuous ejecta blankets of complex impact craters
603	(Oberbeck 1975; Oberbeck et al. 1975; Morrison and Oberbeck 1978; Hörz et al. 1983),
604	the cumulate clast assemblage in Shişr 161 likely indicates deposition in the proximal
605	ejecta blanket of a >>15 km crater that formed on the impact melt sheet of a 300–500 km
606	impact basin in the feldspathic highlands. Therefore, the provenance of Shişr 161 – if this
607	breccia represents a petrogenetically linked mixture of impact melt rocks sourced from a
608	300 to 500 km lunar impact basin – would likely be in or very near to that basin.
609	Currently, 28 impact basins with rim diameters between 300 and 500 km are
610	known on the Moon (Wilhelms et al. 1987; Cook et al. 2002; Wood 2004). Of these, only
611	Riemann-Fabry basin lies close to a 5°-region on the lunar surface that compositionally
612	matches Shişr 161.
613	Centered at 41N, 99E (Cook et al. 2002) on the Moon's western farside, pre-

614 Nectarian Riemann-Fabry basin is heavily degraded (Fig. 24a–b). About 50% of its area

Page 28 of 53

615	is occupied by 184 km Ø Fabry crater (centered at 43N, 101E; Bussey and Spudis 2004)
616	in the NE quadrant of Riemann-Fabry basin and 237 km \emptyset Harkhebi crater (centered at
617	38N 98E; Bussey and Spudis 2004) near the center. The 163 km Ø Riemann crater
618	(centered at 40N 87E; Bussey and Spudis 2004) lies to the SW. Fabry crater likely
619	excavated large portions of the (cumulate?) melt sheet of Riemann-Fabry basin and could
620	have deposited ejecta at the compositionally matching surface unit to Shişr 161 on the
621	Moon's western farside. However, Riemann-Fabry basin has so far only been proposed as
622	a possible degraded basin based on a Clementine stereo digital terrain model (Cook et al.
623	2002); its existence could not be confirmed by analysis of the digital terrain model
624	derived from the wide-angle camera of the Lunar Reconnaissance Orbiter (Oberst et al.
625	2011). Also, it is unclear, if 237 km diameter Harkhebi crater that partly underlies Fabry
626	crater is a separate feature or corresponds to the central part of Riemann-Fabry basin as
627	defined by Cook et al. (2002). A comparison with the gravity model that is based on
628	GRAIL mission data (Zuber et al. 2013; Fig. 24c) is also inconclusive, although the
629	projected 237 km diameter of Harkhebi crater appears too small for the gravity deficiency
630	associated with this structure. Yamamoto et al. (2012) report spectroscopic identification
631	of "purest anorthosite" on the rim of Harkhebi crater / Riemann-Fabry basin at 36.3N,
632	102.4E (Fig. 24b), close to Giordano Bruno crater and the compositionally matching
633	surface unit with Shişr 161. However, we found that none of the clasts $>0.5 \text{ mm}^2$ in Shişr
634	161 are "purest anorthosite" composed of >98 % plagioclase and none of these clasts
635	could conceivably represent pristine lunar plutonic rocks according to the definitions
636	summarized by Warren (1993).
637	

Page 29 of 53

638 Implications

639 Our quantitative characterization of clast components in a lunar regolith breccia meteorite 640 allows the formulation of a hypothesis of its petrogenesis. We suggest that the magnesian 641 cumulate clasts in Shisr 161 and similar lithologies in meteorites and Apollo samples are 642 recorders of the lunar basin-forming eon that concluded with the formation of Orientale 643 basin ca. 3.8 Ga ago (Wilhelms et al. 1987). The textural, compositional and petrologic 644 evidence that characterizes these clasts in Shisr 161 may also apply to some lunar 645 poikilitic granulite rocks (Lindstrom and Lindstrom 1986; Cushing et al. 1999; Norman 646 and Nemchin 2014). Consequently, some of the anomalously magnesium-rich rocks of 647 the lunar highlands that are currently regarded as metamorphic rocks (Korotev and Jolliff 648 2001; Treiman et al. 2010) could instead be impact melt rocks that contain mantle 649 components. 650 Our hypothesis for the impact melt clast assemblage in Shisr 161 suggests it could 651 represent ejecta from one of the \sim 45 lunar impact basins >300 km in diameter. We found 652 that the region around possible Riemann-Fabry basin best matches petrological, and 653 chemical constraints from the composition of Shisr 161, its clast components, and the 654 comparison with the composition of the lunar surface. However, Riemann-Fabry basin 655 needs to be confirmed as a basin, and not a mere superposition of Fabry crater on larger 656 Harkhebi crater. Further tests for the petrogenesis of Shişr 161 require radioisotopic age 657 dating of cumulate clasts that would test the hypothesis of an origin in a pre-Nectarian 658 lunar impact basin in the Moon's feldspathic highlands. Ultimately, the identification of 659 such impact basin rock samples can unravel the inner solar system's collisional history 660 until ~ 3.8 Ga ago.

661

Page 30 of 53

662	ACKNOWLEDGMENTS
663	Andrew Foreman and Ryan Zeigler (Washington University in St. Louis and NASA
664	Johnson Space Center, Houston) for preliminary data, David Kring (Lunar and Planetary
665	Institute), and Timothy Swindle (Lunar and Planetary Laboratory) for related work on
666	Shişr 161, Barry Shaulis (University of Houston) for assistance with the LA-ICP-MS
667	work, Paul Carpenter for assistance with the EMPA work, Joshua Snape (Open
668	University, Milton Keynes) and Vera Fernandes (Museum für Naturkunde, Berlin) for
669	their helpful reviews, and associate editor Rachel Klima for handling the manuscript. We
670	gratefully acknowledge funding by the NASA Cosmochemistry and LASER programs
671	for this study.
672	
673	References Cited
674	
675	Afiattalab, F., and Wasson, J.T. (1980) Composition of the metal phases in ordinary
676	chondrites: implications regarding classification and metamorphism. Geochimica
677	et Cosmochimica Acta, 44, 431–446.
678	Ames, D.E., Golightly, J.P., Lightfoot, P.C., and Gibson, H.L. (2002) Vitric compositions
679	in the Onaping formation and their relationship to the Sudbury igneous complex,
680	Sudbury structure. Economic Geology, 97, 1541–1562.
681	Anders, E., and Grevesse, N. (1989) Abundance of the elements: Meteoritic and solar.
682	Geochimica et Cosmochimica Acta, 53, 197–214.
683	Andersen, D.J., Lindsley, D.H., and Davidson, P.M. (1993) QUILF: A Pascal program to
684	assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz.

Page 31 of 53

685 Computers and Geosciences, 19, 1333–1350. 686 Ashwal, L.D. (1975) Petrologic evidence for a plutonic igneous origin of anorthositic 687 norite clasts in 67955 and 77017. Proceedings of the Lunar Science Conference, 688 6, p. 221–230. Pergamon Press, Inc., New York, Houston, TX. 689 Axon, H.J., and Goldstein, J.I. (1973) Metallic particles of high cobalt content in Apollo 690 15 soil samples. Earth and Planetary Science Letters, 18, 173–180. 691 Berlin, J. (2009) Mineralogy and bulk chemistry of chondrules and matrix in petrologic 692 Type 3 chondrites: Implications for early solar system processes. Earth and 693 Planetary Sciences, p. 217. University of New Mexico, Albuquerque. (PhD 694 Thesis). 695 Bussey, B., and Spudis, P.D. (2004) The Clementine Atlas of the Moon. 380 p. 696 Cambridge University Press, Cambridge. 697 Carter, J.L., Clanton, U.S., Fuhrman, R., Laughon, R.B., McKay, D.S., and Usselman, 698 T.M. (1975) Morphology and composition of chalcopyrite, chromite, Cu, Ni-Fe, 699 pentlandite, and troilite in vugs of 76015 and 76215. Proceedings of the Lunar 700 Science Conference, 6, p. 719–728. Pergamon Press, Inc., New York. 701 Cintala, M.J., and Grieve, R.A.F. (1998a) Scaling impact melting and crater dimensions: 702 Implications for the lunar cratering record. Meteoritics and Planetary Science, 33, 703 889-912. 704 Cintala, M.J., and Grieve, R.A.F. (1998b) Scaling impact melting and crater dimensions: 705 Implications for the lunar cratering record - Errata. Meteoritics and Planetary 706 Science, 33, 1343. 707 Clarke, R.S.J., and Scott, E.R.D. (1980) Tetrataenite-ordered FeNi, a new mineral in

Page 32 of 53

708	meteorites. American Mineralogist, 65, 624–630.
709	Cook, A.C., Spudis, P.D., Robinson, M.S., and Watters, T.R. (2002) Lunar Topography
710	and Basins Mapped Using a Clementine Stereo Digital Elevation Model. Lunar
711	and Planetary Science Conference, 33, abstract #1281. Lunar and Planetary
712	Institute, Houston, TX.
713	Cushing, J.A., Taylor, G.J., Norman, M.D., and Keil, K. (1999) The granulitic impactite
714	suite: Impact melts and metamorphic breccias of the early lunar crust. Meteoritics
715	and Planetary Science, 34(2), 185–195.
716	Delano, J.W. (1986) Lunar volcanic glasses and their constraints on mare petrogenesis.
717	Proceedings of the Lunar and Planetary Science Conference, 16, D201-D213.
718	Deutsch, A., and Stöffler, D. (1987) Rb-Sr-analyses of Apollo 16 melt rocks and a new
719	age estimate for the Imbrium basin: Lunar basin chronology and the early heavy
720	bombardment of the moon. Geochimica et Cosmochimica Acta, 51, 1951–1964.
721	Deutsch, A. (1994) Isotope systematics support the impact origin of the Sudbury structure
722	(Ontario, Canada). In B.O. Dressler, R.A.F. Grieve, and V.L. Sharpton, Eds.
723	Large Meteorite Impact and Planetary Evolution, 293, p. 289-302. Geological
724	Society of America, Boulder, Colorado.
725	Dymek, R.F., Albee, A.L., and Chodos, A.A. (1975) Comparative petrology of lunar
726	cumulate rocks of possible primary origin - Dunite 72415, troctolite 76535, norite
727	78235, and anorthosite 62237. Proceedings of the Lunar Science Conference, 6, p.
728	301–341. Pergamon Press, Inc., New York.
729	Foreman, A.B., Korotev, R.L., Zeigler, R.A., Wittmann, A., Kring, D.A., Irving, A.J.,
730	and Kuehner, S.M. (2009) Petrographic and geochemical analysis of feldspathic

Page 33 of 53

lunar meteorite Shişr 161. Lunar and Planetary Science Conference, 40, abstract
#2304. Lunar and Planetary Institute, Houston, TX.
Fruland, R.M., Morris, R.V., McKay, D.S., and Clanton, U.S. (1977) Apollo 17 ropy
glasses. Proceedings of the Lunar Science Conference, 8, p. 3095-3111.
Pergamon Press, Inc.
Gast, P.W., Phinney, W.C., Duke, M.B. and 51 co-authors (1973) Apollo 17 lunar
samples: Chemical and petrographic description. Science, 182, 659-672.
Ghiorso, M.S., and Sack, R.O. (1995) Chemical mass transfer in magmatic processes. IV.
A revised and internally consistent thermodynamic model for the interpolation
and extrapolation of liquid-solid equilibria in magmatic systems at elevated
temperatures and pressures. Contributions to Mineralogy and Petrology, 119,
197–212.
Goderis, S., Wittmann, A., Zaiss, J., Elburg, M., Ravizza, G., Vanhaecke, F., Deutsch, A.,
and Claeys, P. (2013) Testing the ureilite projectile hypothesis for the
El'gygytgyn impact: Determination of siderophile element abundances and Os
isotope ratios in ICDP drill core samples and melt rocks. Meteoritics and
Planetary Science, 48, 1296–1324.
Goldstein, J.I., and Yakowitz, H. (1971) Metallic inclusions and metal particles in the
Apollo 12 lunar soil. Proceedings of the Lunar Science Conference, 1, p. 177-
191. M.I.T. Press, Cambridge.
Grieve, R.A.F. (1975) Petrology and chemistry of the impact melt at Mistastin Lake
crater, Labrador. Geological Society of America Bulletin, 86, 1617-1629.
Grieve, R.A.F., Stöffler, D., and Deutsch, A. (1991) The Sudbury structure: Controversial

Page 34 of 53

754	or misunderstood? Journal of Geophysical Research, 96(E5), 22753-22764.
755	Grieve, R.A.F. (2006) Impact structures in Canada. 210 p. Geological Association of
756	Canada, St. John.
757	Grieve, R.A.F., Ames, D.E., Morgan, J.V., and Artemieva, N.A. (2010) The evolution of
758	the Onaping formation at the Sudbury impact structure. Meteoritics and Planetary
759	Science, 45(5), 759–782.
760	Hawke, B.R., Peterson, C.A., Blewett, D.T., Bussey, D.B.J., Lucey, P.G., Taylor, G.J.,
761	and Spudis, P.D. (2003) Distribution and modes of occurrence of lunar
762	anorthosite. Journal of Geophysical Research Planets, 108(E6).
763	Heiken, G.H., McKay, D.S., and Brown, R.W. (1974) Lunar deposits of possible
764	pyroclastic origin. Geochimica et Cosmochimica Acta, 38, 1703-1718.
765	Hess, P.C. (1994) Petrogenesis of lunar troctolites. Journal of Geophysical Research,
766	99(E9), 19083–19093.
767	Hollister, L.S. (1973) Sample 67955: A description and a problem. Proceedings of the
768	Lunar Science Conference, 4, p. 633–641.
769	Hörz, F., Ostertag, R., and Rainey, D.A. (1983) Bunte breccia of the Ries: continuous
770	deposits of large impact craters. Reviews in Geophysics and Space Physics, 21,
771	1667–1725.
772	Irvine, T.N. (1982) Terminology for layered intrusions. Journal of Petrology, 23, 127-
773	162.
774	James, O.B., and Flohr, M.K. (1983) Subdivision of the Mg-suite noritic rocks into Mg-
775	gabbronorites and Mg-norites. Proceedings of the Thirteenth Lunar and Planetary
776	Science Conference, Supplement, Journal of Geophysical Research, 88, A603-

Page 35 of 53

777 A614.

- Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., and Wieczorek, M.A. (2000) Major
 lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of
 Geophysical Research, 105(E2), 4197–4216.
- Jolliff, B.L., Korotev, R.L., Zeigler, R.A., and Prettyman, T.H. (2009) Connecting lunar
- 782 meteorite Dhofar 961 to the South Pole-Aitken Basin through Lunar Prospector
- gamma-ray data. Lunar and Planetary Science Conference, 40, abstract #2555.
- 784Lunar and Planetary Institute, Houston, TX.
- Joy, K.H., Crawford, I.A., Russell, S.S., and Kearsley, A.T. (2010) Lunar meteorite
- 786 regolith breccias: An in situ study of impact melt composition using LA-ICP-MS
- 787 with implications for the composition of the lunar crust. Meteoritics and Planetary
- 788 Science, 45, 917–946.
- Joy, K.H., Burgess, R., Hinton, R., Fernandes, V.A., Crawford, I.A., Kearsley, A.T.,
- 790 Irving, A.J., and EIMF. (2011) Petrogenesis and chronology of lunar meteorite
- Northwest Africa 4472: A KREEPy regolith breccia from the Moon. Geochimica
 et Cosmochimica Acta, 75, 2420–2452.
- 793 Kieffer, S.W., and Simonds, C.H. (1980) The role of volatiles and lithology in the impact
- cratering process. Review of Geophysics and Space Physics, 18, 143–181.
- Koeberl, C., Brandstätter, F., Glass, B.P., Hecht, L., Mader, D., and Reimold, W.U.
- 796 (2007) Uppermost impact fallback layer in the Bosumtwi crater (Ghana):
- Mineralogy, geochemistry, and comparison with Ivory Coast tektites. Meteoritics
 and Planetary Science, 42, 709–729.
- 799 Korotev, R.L. (2012) Lunar meteorites from Oman. Meteoritics and Planetary Science,

Page 36 of 53
800	47(8), 1365–1402.
801	Korotev, R.L., and Jolliff, B.L. (2001) The curious case of the lunar magnesian granulitic
802	breccias. Lunar and Planetary Science Conference, 32, abstract #1455. Lunar and
803	Planetary Institute, Houston, TX.
804	Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Gillis, J.J., and Haskin, L.A. (2003)
805	Feldspathic lunar meteorites and their implications for compositional remote
806	sensing of the lunar surface and the composition of the lunar crust. Geochimica et
807	Cosmochimica Acta, 67(24), 4895–4923.
808	Korotev, R. L., Zeigler, R. A., and Jolliff, B. L. (2006) Feldspathic lunar meteorites
809	Pecora Escarpment 02007 and Dhofar 489: Contamination of the surface of the
810	lunar highlands by post-basin impacts. Geochimica et Cosmochimica Acta, 70,
811	5935–5956.
812	Kuehner, S.M., Irving, A.J., Rumble, D., III, Hupé, A.C., and Hupé, G.M. (2005)
813	Mineralogy and petrology of lunar meteorite NWA 3136: A glass-welded mare
814	regolith breccia of mixed heritage. Lunar and Planetary Science Conference, 36,
815	p. abstract #1228. Lunar and Planetary Institute, Houston, TX.
816	Laul, J.C., and Schmitt, R.A. (1975) Dunite 72417: A chemical study and interpretation.
817	Proceedings of the Lunar and Planetary Science Conference, 6, 1231–1254.
818	Lindstrom, M.M., and Lindstrom, D.J. (1986) Lunar granulites and their precursor
819	anorthositic norites of the early lunar crust. Journal of Geophysical Research,
820	91(B4), D263–D276.
821	Lucey, P., Korotev, R.L., Gillis, J.J., Taylor, L.A., Lawrence, D., Campbell, B.A., Elphic,
822	R., Feldman, B., Hood, L.L., Hunten, D., Mendillo, M., Noble, S., Papike, J.J.,

Page 37 of 53

823	Reedy, R.C., Lawson, S., Prettyman, T., Gasnault, O., and Maurice, S. (2006)
824	Understanding the lunar surface and space-Moon interactions. In B.L. Jolliff,
825	M.A. Wieczorek, C.K. Shearer, and C.R. Neal, Eds. New Views of the Moon,
826	Reviews in Mineralogy and Geochemistry 60, p. 83-219. Mineralogical Society
827	of America, Washington, DC.
828	Marsh, B.D. (1981) On the crystallinity, probability of occurrence, and rheology of lava
829	and magma. Contributions to Mineralogy and Petrology, 78, 85-98.
830	Marvin, U.B., and Warren, P.H. (1980) A pristine eucritic gabbro from Descartes and its
831	exotic kindred. Proceedings of the Lunar and Planetary Science Conference, 11,
832	507–521.
833	McKay, D.S., and Basu, A. (1983) The production curve for agglutinates in planetary
834	regoliths. Proceedings of the Fourteenth Lunar and Planetary Science Conference,
835	Supplement, Journal of Geophysical Research, 88, B193-B199.
836	McKay, D.S., Bogard, D.D., Morris, R.V., Korotev, R.L., Johnson, P., and Wentworth,
837	S.J. (1986) Apollo 16 regolith breccias: Characterization and evidence for early
838	formation in the mega-regolith. Proceedings of the Sixteenth Lunar and Planetary
839	Science Conference, part 2, Journal of Geophysical Research, 91(B4), D277-
840	D303.
841	Melosh, H.J. (1989) Impact Cratering: A geological process. 245 p. Oxford University
842	Press, New York.
843	Melosh, H.J., Freed, A.M., Johnson, B.C., Blair, D.M., Andrews-Hanna, J.C., Neumann,
844	G.A., Phillips, R.J., Smith, D.E., Solomon, S.C., Wieczorek, M.A., and Zuber,
845	M.T. (2013) The Origin of Lunar Mascon Basins. Science, 340, 1552-1555.

Page 38 of 53

- 847 impact crater and basin deposits. Lunar and Planetary Science Conference, 9,
- 848 3763–3785. Pergamon Press, Inc., New York.
- 849 Morrison, D.A. (1998) Did a thick South Pole-Aitken Basin melt sheet differentiate to
- form cumulates? Lunar and Planetary Science Conference, 29, abstract #1657.
- 851 Lunar and Planetary Institute, Houston, TX.
- 852 Nazarov, M.A., Tarasov, L.S., and Shevaleevsky, I.D. (1980) The occurrence of
- pentlandite and the geochemistry of Ni in Luna 24 basalts. Lunar and Planetary
- Science Conference, 9, p. 800–802, abstract. Lunar and Planetary Institute,
- 855 Houston, TX.
- 856 Norman, M.D., and Ryder, G. (1980) Geochemical constraints on the igneous evolution
- 857 of the lunar crust. Proceedings of the Lunar and Planetary Science Conference,
- 858 11, 317–331.
- Norman, M.D., and Nemchin, A.A. (2014) A 4.2 billion year old impact basin on the
- Moon: U-Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth and
 Planetary Science Letters, 388, 387-398.
- 862 Oberbeck, V.R. (1975) The role of ballistic erosion and sedimentation in lunar
- stratigraphy. Reviews in Geophysics and Space Physics, 13, 337–362.
- Oberbeck, V.R., Morrison, R.H., and Hörz, F. (1975) Transport and emplacement of
 crater and basin deposits. The Moon, 13, 9–26.
- 866 Oberst, J., Unbekannt, H., Scholten, F., Haase, I., Hiesinger, H., and Robinson, M. (2011)
- 867 A search for degraded lunar basins using the LROC-WAC digital terrain model
- 868 (GLD100). Lunar and Planetary Science Conference, 42, abstract #1992. Lunar

Page 39 of 53

869	and Planetary Institute, Houston, TX.
870	Papike, J.J., Ryder, G., and Shearer, C.K. (1998) Lunar Samples. In J.J. Papike, Ed.
871	Planetary Materials, 36, p. 234. Mineralogical Society of America, Washington,
872	DC.
873	Papike, J.J. (1998) Comparative planetary mineralogy: Chemistry of melt-derived
874	pyroxene, feldspar, and olivine. In J.J. Papike, Ed. Planetary Materials, 36, p. 11
875	(chapter 7). Mineralogical Society of America, Washington, DC.
876	Petro, N.E., and Pieters, C.M. (2008) The lunar-wide effects of basin ejecta distribution
877	on the early megaregolith. Meteoritics and Planetary Science, 43, 1517–1529.
878	Potter, R.W.K., Kring, D.A., Collins, G.S., Kiefer, W.S., and McGovern, P.J. (2013)
879	Numerical modeling of the formation and structure of the Orientale impact basin.
880	Journal of Geophysical Research, 118, 963-979.
881	Prettyman, T.H., Hagerty, J.J., Elphic, R.C., Feldman, W.C., Lawrence, D.J., McKinney,
882	G.W., and Vaniman, D.T. (2006) Elemental composition of the lunar surface:
883	Analysis of gamma ray spectroscopy data from Lunar Prospector. Journal of
884	Geophysical Research, 111, E12007.
885	Ramdohr, P. (1972) Lunar pentlandite and sulfidization reactions in microbreccia
886	14315,9. Earth and Planetary Science Letters, 5, 113–115.
887	Robinson, M.S., Brylow, S.M., Tschimmel, M., Humm, D., Lawrence, S.J., Thomas,
888	P.C., Denevi, B.W., Bowman-Cisneros, E., Zerr, J., Ravine, M.A., Caplinger,
889	M.A., Ghaemi, F.T., Schaffner, J.A., Malin, M.C., Mahanti, P., Bartels, A.,
890	Anderson, J., Tran, T.N., Eliason, E.M., McEwen, A.S., Turtle, E., Jolliff, B.L.,
891	and Hiesinger, H. (2010) Lunar Reconnaissance Orbiter Camera (LROC)

Page 40 of 53

892	Instrument Overview, Space Science Reviews, 150, 81-124.
893	Reid, A.M., Meyer Jr., C., Harmon, R.S., and Brett, R. (1970) Metal grains in Apollo 12
894	rocks. Earth and Planetary Science Letters, 9, 1-5.
895	Ryder, G., Norman, M.D., and Score, R.A. (1980) The distinction of pristine from
896	meteorite-contaminated highlands rocks using metal compositions. Proceedings of
897	the Lunar and Planetary Science Conference, 11, 471-479.
898	Settle, M. (1980) The role of fallback ejecta in the modification of impact craters. Icarus,
899	42, 1-19.
900	Shearer, C.K., and Papike, J.J. (2005) Early crustal building processes on the Moon:
901	Models for the petrogenesis of the magnesian suite. Geochimica et Cosmochimica
902	Acta, 69, 3445–3461.
903	Simonds, C.H., Warner, J.L., and Phinney, W.C. (1976) Thermal regimes in cratered
904	terrain with emphasis on the role of impact melt. American Mineralogist, 61,
905	569–577.
906	Stöffler, D., Knöll, HD., Marvin, U.B., Simonds, C.H., and Warren, P.H. (1980)
907	Recommended classification and nomenclature of lunar highland rocks - a
908	committee report. In J.J. Papike, and R.B. Merrill, Eds. Conference on the Lunar
909	Highlands Crust, p. 51–70. New York and Oxford, Pergamon Press, Houston.
910	Taylor, S.R., Gorton, M.P., Muir, P., Nance, W.B., Rudowski, R., and Ware, N. (1973)
911	Composition of the Descartes region, lunar highlands. Geochimica et
912	Cosmochimica Acta, 37, 2665–2683.
913	Therriault, A.M., Fowler, A.D., and Grieve, R.A.F. (2002) The Sudbury Igneous
914	Complex: A differentiated impact melt sheet. Economic Geology, 97, 1521–1540.

Page 41 of 53

- 915 Treiman, A.H., Maloy, A.K., Shearer, C.K., and Gross, J. (2010) Magnesian anorthositic
- granulites in lunar meteorites Allan Hills A81005 and Dhofar 309: Geochemistry
- 917 and global significance. Meteoritics and Planetary Science, 45, 163–180.
- Vaughan, W.M., Head, J.W., Wilson, L., and Hess, P.C. (2013) Geology and petrology of
- enormous volumes of impact melt on the Moon: A case study of the Orientale
- basin impact melt sea. Icarus, 223, 749–765.
- Warren, P.H., and Wasson, J.T. (1979) The compositional-petrographic search for
- 922 pristine nonmare rocks: Third foray. Proceedings of the Lunar and Planetary
- 923 Science Conference, 10, 583–610.
- Warren, P.H. (1985) The magma ocean concept and lunar evolution. Annual Review of
- Earth and Planetary Sciences, 13, 201–240.
- 926 Warren, P.H. (1986) Anorthosite assimilation and the origin of the Mg/Fe-related
- 927 bimodality of pristine Moon rocks: Support for the magmasphere hypothesis.
- 928 Proceedings of the Lunar and Planetary Science Conference, 16, D331–D343.
- 929 Warren, P.H. (1990) Lunar anorthosites and the magma-ocean plagioclase-flotation
- 930 hypothesis: Importance of FeO enrichment in the parent magma. American
- 931 Mineralogist, 75, 46–58.
- Warren, P.H. (1993) A concise compilation of petrologic information on possibly pristine
 nonmare Moon rocks. American Mineralogist, 78, 360–376.
- Warren, P.H., Claeys, P., and Cedillo-Pardo, E. (1996) Mega-impact melt petrology
- 935 (Chicxulub, Sudbury, and the Moon): Effects of scale and other factors on
- 936 potential for fractional crystallization and development of cumulates. In G. Ryder,
- 937 and D. Fastovsky, Eds. The Cretaceous-Tertiary Event and other Catastrophes in

Page 42 of 53

938	Earth History, 307, p. 105-124. Geological Society of America, Boulder,
939	Colorado.
940	Warren, P.H. (2008) Lunar rock-rain: Diverse silicate impact-vapor condensates in an
941	Apollo-14 regolith breccia. Geochimica et Cosmochimica Acta, 72, 3562–3585.
942	Wood, C.A. (2004) Impact basin database:
943	http://www.lpod.org/cwm/DataStuff/Lunar%20Basins.htm last accessed Dec. 6,
944	2013.
945	Wieczorek, M.A., Jolliff, B.L., Khan, A., Pritchard, M.E., Weiss, B.P., Williams, J.G.,
946	Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K., McCallum, I.S., Tompkins, S.,
947	Hawke, B.R., Peterson, C., Gillis, J.J., and Bussey, B. (2006) The constitution and
948	structure of the lunar interior. In B.L. Jolliff, M.A. Wieczorek, C.K. Shearer, and
949	C.R. Neal, Eds. New Views of the Moon, 60, p. 221–364. Mineralogical Society
950	of America, Washington, DC.
951	Wieczorek, M.A., Neumann, G.A., Nimmo, F., Kiefer, W.S., Taylor, G.J., Melosh, H.J.,
952	Phillips, R.J., Solomon, S.C., Andrews-Hanna, J.C., Asmar, S.W., Konopliv,
953	A.S., Lemoine, F.G., Smith, D.E., Watkins, M.W., Williams, J.G., and Zuber,
954	M.T. (2013) The Crust of the Moon as Seen by GRAIL. Science, 339, 671–675.
955	Wilhelms, D.E., McCauley, J.F., and Trask, N.J. (1987) The Geologic History of the
956	Moon. USGS Professional Paper, 1348, 302.
957	Wittmann, A., Goderis, S., Claeys, P., Vanhaecke, F., Deutsch, A., and Adolph, L. (2013)
958	Petrology of impactites from El'gygytgyn crater: Breccias in ICDP-drill core 1C,
959	glassy impact melt rocks and spherules. Meteoritics and Planetary Science, 48,
960	1199–1235

Page 43 of 53

961	Yamamoto, S., Nakamura, R., Matsunaga, T., Ogawa, Y., Ishihara, Y., Morota, T.,
962	Hirata, N., Ohtake, M., Hiroi, T., Yokota, Y., and Haruyama, J. (2012) Massive
963	layer of pure anorthosite on the Moon. Geophysical Research Letters, 39, L13201.
964	Zeigler, R.A., Jolliff, B.L., and Korotev, R.L. (2013) Lunar Meteorites Sayh al Uhaymir
965	449 and Dhofar 925, 960, and 961: Windows into South Pole Aitken Basin?
966	Lunar and Planetary Science Conference, 44, p. abstract #2437. Lunar and
967	Planetary Institute, Houston, TX.
968	Zieg, M.J., and Marsh, B.D. (2005) The Sudbury Igneous Complex: Viscous emulsion
969	differentiation of a superheated impact melt sheet. Geological Society of America
970	Bulletin, 117, 1427–1450.
971	Zuber, M.T., Smith, D.E., Watkins, M.W., Asmar, S.W., Konopliv, A.S., Lemoine, F.G.,
972	Melosh, H.J., Neumann, G.A., Phillips, R.J., Solomon, S.C., Wieczorek, M.A.,
973	Williams, J.G., Goossens, S.J., Kruizinga, G., Mazarico, E., Park, R.S., and Yuan,
974	DN. (2013) Gravity field of the Moon from the Gravity Recovery and Interior
975	Laboratory (GRAIL) mission. Science, 339, 668-671.
. . <i>.</i>	

976

977	LIST OF FIGURE CAPTIONS
978	Figure 1 (a) – (b). Shişr 161 specimen photographs.
979	(Courtesy of P. Mani and G. Hupé).
980	Cube with 1 cm long sides for scale.
981	
982	Figure 2. Shişr 161 thin section.
983	Back-scattered electron (BSE) image with white outlines of 91 clasts characterized in this
984	study; the prefix g indicates holohyaline glass clasts, the prefix s indicates spherules.
985	
986	Figure 3. Spherules in Shişr 161.
987	BSE images. (a) Spherule 9, a cryptocrystalline spherule with a composition similar to
988	gas-associated spheroidal precipitates (Warren 2008); (b) vitrophyre spherule 1, note
989	troilite and FeNi metal particles concentrated near the rim; (c) crystallized spherule 3,
990	note diffuse troilite and FeNi metal particles near the rim; (d) vitrophyre spherule 2 with
991	ferroan olivine crystals in a hyalophitic groundmass and accreted feldspathic vitrophyre
992	debris (arrow); (e) hyalophitic spherule 7 with assimilated xenolith crystals and
993	mesostasis domains enriched in incompatible elements; (f) anorthositic troctolite clast
994	that has a spherule inclusion with an ophitic texture (white dotted outline indicates
995	spherule).
996	
997	Figure 4. Typical crystal size variations of major mineral components in Shişr 161
998	clast lithologies (excluding clasts that did not undergo impact-induced melting or
999	recrystallization). Crosses mark estimated average grain sizes.

Page 45 of 53

1000

1001 Figure 5. Cumulate clasts.

1002	(a) plane polarized light (ppl) micrograph of glass coated magnesian cumulate clast 54
1003	with cumulus plagioclase (white) and olivine (orange), and grey intercumulus pyroxene;
1004	(b) BSE image of subhedral cumulate plagioclase (pl) and olivine (ol) and intercumulus
1005	oikocrysts of augite (cpx) and orthopyroxene (opx) in magnesian cumulate clast 5;
1006	(c) cathodoluminescence false-color image of magnesian cumulate clast 34 showing
1007	concentric igneous zoning in cumulate plagioclase (arrows); note that mafic silicates are
1008	non-luminescent.
1009	
1010	Figure 6. BSE images of crystallized melt clasts.
1011	(a) Subophitic texture of tabular plagioclase (pl) with interstitial pyroxene (px) and
1012	olivine (ol) and minor troilite, ilmenite, and chromite (brightest phases) in clast 18.
1013	(b) Poikilitic texture of pyroxene and olivine oikocrysts that incorporate chadacrysts of
1014	plagioclase, troilite and FeNi metal (brightest phases) in clast 8;
1015	(c) Intergranular texture of subhedral plagioclase, olivine and pyroxene of clast 43;
1016	(d) Granular texture of anhedral plagioclase and euhedral pyroxene and olivine in clast
1017	118; note large plagioclase xenocryst in lower left corner.
1018	(e) Coalescent texture of anhedral maskelynite, pyroxene and olivine in clast 63.
1019	(f) Variolitic texture of plagioclase intergrown with zoned, skeletal pyroxene in clast 23;
1020	note domains of tiny FeS and fayalitic olivine crystals (arrow).
1021	
1022	Figure 7. Vitrophyres.

Page 46 of 53

- 1023 (a) Angular, hyalophitic clast 11, ppl image;
- 1024 (b) BSE image of clast 11 shows tabular plagioclase with interstitial mesostasis that
- 1025 contains quenched crystals of chain-link pyroxene and skeletal olivine.
- 1026 (c) Clast 33 has a hyalophitic texture of flow-aligned plagioclase crystals in a melt
- 1027 mesostasis that engulfs coarse grained (possible) basalt clasts (B), BSE image;
- 1028 (d) BSE image of ropy glass clast 37 that has an ameboid shape and accreted fine debris.
- 1029 (e) BSE image of ameboid, inhomogeneous, clast-rich glass clast 13 that contains
- abundant FeS-FeNi inclusions (brightest phases).
- 1031 (f) BSE image of hyalophitic shard glass 1.
- 1032
- 1033 Figure 8. Polymict breccia clast 1.
- 1034 Dotted white line approximates limits of the clast in this ppl image; A indicates
- 1035 cataclastic anorthosite sub-clast.
- 1036
- 1037 Figure 9. Shişr 161 plagioclase per electron microprobe analysis.
- 1038 Histogram of anorthite numbers of plagioclase crystals. Note that three data points at An
- 1039 67 and 75 are not shown. For details of lithological contexts, see text.
- 1040
- 1041 Figure 10. Shişr 161 olivine per electron microprobe analysis.
- 1042 Histogram of mol% Mg/(Mg+Fe) of olivine crystals.
- 1043
- 1044 Figure 11. Molar Fe versus Mn for olivine in planetary melt rocks.

Page 47 of 53

1045 Electron microprobe analyses of Shişr 161 olivine with approximate trendlines redrawn

1046 after Papike (1998).

1047

- 1048 Figure 12. Shişr 161 pyroxene per electron microprobe analysis.
- 1049 Quadrilateral of enstatite, ferrosilite and wollastonite components of pyroxene. Average
- 1050 values for our repeat analyses on pyroxene crystals in mono- and polymineralic clasts are
- 1051 displayed.

1052

- 1053 Figure 13. Molar Fe versus Mn for pyroxene in planetary melt rocks.
- 1054 Electron microprobe analyses of Shişr 161 pyroxene with approximate trendlines redrawn

1055 after Papike (1998).

1056

1057 Figure 14. Compositions of spinel in Shişr 161.

1058 (a) Iron number versus chromium number, data for cumulate clast spinel, same symbols

1059 as in (b);

1060 (b) Iron number versus titanium number.

1061

1062 Figure 15. Compositions of FeNi metal particles in Shişr 161.

1063 Field for metal particles in pristine dunite 72415/17 after Dymek et al. (1975) and Ryder

- 1064 et al. (1980); field for "probably pristine" troctolite clast 73235,136 after Warren and
- 1065 Wasson (1979); field for "high cobalt α and γ structures in Apollo 15 soils" after Axon
- and Goldstein (1973); fields for Apollo 17 basalts and Apollo polymict rocks ("range of
- 1067 metal compositions in most polymict rocks") after Ryder et al. (1980); "meteoritic" field

Page 48 of 53

after Goldstein and Yakowitz (1971), range of Apollo 12 olivine basalts after Reid et al.

1069 (1970).

1070

1071 Figure 16. Normative mineralogies of Shişr 161 clasts.

1072 Rock designations after the classification scheme for lunar highlands rocks of

1073 Stöffler et al. (1980); average composition of the lunar crust from Korotev et al. (2003);

1074 bulk composition of Shişr 161 from Korotev (2012); symbol sizes reflect the sizes of the

1075 clasts they represent: The smallest symbols represent clasts <0.5 mm², medium symbols

1076 clasts $0.5-1 \text{ mm}^2$, and large symbols clasts $>1 \text{ mm}^2$.

1077

1078 Figure 17. Al₂O₃ vs. magnesium number of Shişr 161 clasts.

1079 Reconstructed bulk compositions of clasts in Al₂O₃ versus Mg/(Mg+Fe) space. Clast

1080 sizes correspond to the relative sizes of clasts. Smallest symbols represent clasts <0.5

1081 mm^2 , medium symbols clasts 0.5–1 mm^2 , and large symbols clasts >1 mm^2 . Diagram

1082 modified after Korotev et al. (2003), fields for pristine troctolites, norites, dunite, KREEP

1083 basalts and gabbronorites after Warren (1985), bulk composition of Shişr 161 from

1084 Korotev (2012), feldspathic upper crust after Korotev et al. (2003). The field for

1085 feldspathic meteorites has been updated with the currently available data for feldspathic

1086 meteorites.

1087

1088 Figure 18. Diagram modified after Figure 2.5 of Lucey et al. (2006).

1089 Feldspathic upper crust after Korotev et al. (2003); bulk Shişr 161 composition after

1090 Korotev (2012); average CI-chondrite composition after Anders and Grevesse (1989).

Page 49 of 53

1091

1092 Figure 19. Rare Earth Element patterns.

	-
1093	CI normalized (Anders and Grevesse 1989) Rare Earth Element (REE) patterns for bulk
1094	clasts in Shişr 161 compared to literature values for Apollo magnesian suite rocks and
1095	ferroan anorthosites (Papike et al. 1998 and references therein), dunite 72417 (Laul and
1096	Schmitt 1975) and the feldspathic upper crust (FC; Korotev et al. 2003).
1097	
1098	Figure 20. Normative plagioclase and Al ₂ O ₃ content in Shişr 161 clast
1099	components compared to the model mineralogy of the lunar crust after Wieczorek et al.
1100	(2006) and the bulk rock composition of Shişr 161 (Korotev (2012); ^a all 38 clasts >0.5
1101	mm, excluding a polymict breccia and a variolitic melt clast; ^b normative plagioclase
1102	content from bulk rock composition (Korotev 2012).
1103	
1104	Figure 21. Shişr 161 impact melts in the fractionation index diagrams after
1105	Norman and Ryder (1980).
1106	a) Ti/Sm is sensitive to the fractionation of ilmenite, and b) Sc/Sm indicates pyroxene
1107	fractionation in pristine lunar rocks. These diagrams distinguish pristine Mg-suite rocks
1108	from primary products of magma ocean fractionation. CI-chondrite after Anders and
1109	Grevesse (1989), Mg gabbronorites 67667, 73255,27,45, 61224 after James and Flohr
1110	(1983); dunite 74215/7 after Laul and Schmitt (1975) and Dymek et al. (1975).
1111	Feldspathic upper crust (FC) after Korotev et al. (2003); same legend for both diagrams.
1112	

Page 50 of 53

1113	Figure 22. Results of MELTS modeling of the fractional crystallization of an
1114	impact melt composed of 90 $\%$ felds pathic upper crust (Korotev et al. 2003) and 10 $\%$
1115	dunite 72415 (Papike et al. 1998) at an oxygen fugacity buffer of iron-wüstite and a
1116	pressure of 50 bar (~1 km depth on the Moon).
1117	The crystallization sequence of mineral phases is characterized by four stages that are
1118	labeled with the rock type that would be constituted by the crystallized mineral phases.
1119	Note that at 1240 °C, >50 g neutrally buoyant plagioclase has crystallized, which
1120	suggests fractional crystallization ceases.
1121	
1122	Figure 23. Impact basin impactite stratigraphy.
1123	Schematic comparison of impactite lithologies between observed conditions at the
1124	Sudbury basin, modified after Grieve (2006), with petrologic constraints for lunar
1125	impactites (see text).
1126	
1127	Figure 24. Provenance of Shişr 161 on the Moon.
1128	Lunar Reconnaissance Orbiter wide-angle camera image mosaic (NASA/GSFC/ASU-
1129	ACT-REACT QuickMap; Robinson et al. 2010) showing the global morphology of the
1130	lunar surface. White outlines show the approximate traces of the outer rims of 26 impact
1131	basins between 300 and 500 km in diameter (Wilhelms et al. 1987; Cook et al. 2002;
1132	Bussey and Spudis 2004). White squares indicate matches of the bulk composition of
1133	Shişr 161 with Lunar Prospector gamma-ray spectrometer data, no matches occur in polar
1134	regions $>75^{\circ}N$ or $>75^{\circ}S$.

Page 51 of 53

1135	b) Lunar Reconnaissance Orbiter wide-angle camera image (Robinson et al. 2010) of the
1136	Riemann-Fabry basin region that is indicated as a black rectangle in a); dotted lines trace
1137	the approximate positions of craters: $RF - 320 \text{ km} \emptyset$ Riemann-Fabry basin; $F - 174 \text{ km}$
1138	Ø Fabry crater; H – 237 km Ø Harkhebi crater; R – 163 km Ø Riemann crater, GB – 22
1139	km Ø Giordano Bruno crater; black rectangle indicates approximate position of 5° Lunar
1140	Prospector gamma ray spectrometer region that matches the bulk composition of Shişr
1141	161; PAN - spectroscopically pure anorthosite outcrop after Yamamoto et al. (2012).
1142	c) Grail gravity map of the Riemann-Fabry basin region (NASA/JPL-
1143	Caltech/GSFC/MIT; Zuber et al. 2013).
1144	
1145	
1146	APPENDIX
1147	
1148	Appendix Figure Captions
1149	Figure A1. Planar deformation features in Shişr 161 plagioclase.
1150	a) and b) planar deformation features (PDF) in plagioclase crystals of clast 54;
1151	black arrows show traces of PDF orientations; plane polarized light images.
1152	
1153	Figure A2. Maskelynite in Shişr 161.
1154	a) Maskelynite (m), fractured pyroxene (px), and olivine (ol) assemblage, plane
1155	polarized light image;
1156	b) cross polarized light image of the same clast as in (a) shows isotropic property
1157	

Page 52 of 53

- 1158 c) rotated BSE image of the same grain, note characteristic smooth surface of the
- 1159 glass.
- 1160
- 1161 Figure A3. Barred chondrule-like clast.
- a) Reflected light micrograph, ol-olivine, pl-plagioclase;
- b) slightly rotated BSE image with approximate outline of clast as a white, dotted
- 1164 line.
- 1165
- 1166

Page 53 of 53

3/12

Table 1. Modal mineralogy of spherules in Shişr 161.

Clast number	plagioclase	mesostasis	pyroxene	olivine	opaques	void space	CIPW modal mineralogy	size
	[vol%]	[vol%]	[vol%]	[vol%]	[vol%]	[vol%]		[mm ²]
Sph1	33.2	24.9	41.5	n.d.	0.4	1.5	norite	0.013
Sph2 ^a	24.7	n.d.	n.d.	74.0	1.3	3.4	troctolite	0.029
Sph2 ^b	79.9	20.0	n.d.	n.d.	0.1	2.6	troctolitic anorthosite	0.005
Sph3	56.5	n.d.	41.6	n.d.	1.9	1.2	norite	0.163
Sph4	61.8	n.d.	30.9	7.2	0.1	4.0	anorthositic norite	0.010
Sph5	54.9	n.d.	n.d.	44.0	1.1	3.3	troctolite	0.019
Sph6	15.0	81.8	3.2	n.d.	n.d.	1.2	noritic anorthosite	0.004
Sph7	53.8	26.9	8.9	8.9	1.5	7.5	anorthositic norite	0.013
Sph8	30.5	68.9	n.d.	n.d.	0.6	0.8	anorthositic norite	0.002
Sph9 ^c	n.d.	100.0	n.d.	n.d.	n.d.	n.d.	pyroxenite	0.004
Sph10	78.0	22.0	n.d.	n.d.	n.d.	2.9	anorthosite	0.035
Sph13	82.7	17.3	n.d.	n.d.	n.d.	2.4	troctolitic anorthosite	0.004
Sph15	75.3	23.9	n.d.	0.7	0.1	6.4	noritic anorthosite	0.004
Sph17	69.4	n.d.	29.7	0.9	n.d.	6.3	gabbroic norite	0.011

n.d.-none detected; ^amain part of a composite spherule; ^bminor/accreted part of a composite particle; ^cgas-associated spheroidal particle.

texture

hyalophitic hyalophitic-accretionary hyalophitic-accretionary subophitic subophitic cryptocrystalline hyalophitic-accretionary cryptocrystalline cryptocrystalline dryptocrystalline-accretionary hyalophitic hyalophitic hyalophitic subophitic

clast	plagiocl ase [vol%]	low-Ca pyroxene [vol%]	high-Ca pyroxene [vol%]	olivine [vol%]	ilmenite [vol%]	chromite [vol%]	FeS + FeNi [vol%]	void space [vol%]	modal lithology ^a	size	texture
3	78.2	n.d.	17.1	4.4	0.3	n.d.	n.d.	n.d.	noritic anorthosite	1.91	poikilitic
4	79.7	n.d.	16	3.9	0.2	0.2	n.d.	n.d.	noritic anorthosite	1.237	intergranular
8	77.1	n.d.	17.1	5.6	n.d.	0.2	n.d.	n.d.	troctolite	2.517	poikilitic
18	70.8	7.4	11.1	10.3	0.1	0.2	0.1	n.d.	norite	1.192	subophitic
23	42.8	25.8	30.6	0.5	n.d.	0.2	0.1	1.2	noritic gabbro	18.263	variolitic
27	72.6	12.2	n.d.	15.1	n.d.	0.1	n.d.	6.3	anorthositic troctolite	0.892	intergranular
36	64.9	n.d.	2.4	32.6	n.d.	0.1	n.d.	11	anorthositic troctolite	1.039	coalescent
43	66	17.2	n.d.	16	0.3	0.4	0.1	13.1	anorthositic norite	2.295	intergranular
46	79.2	n.d.	14.4	6.1	n.d.	n.d.	0.3	7.4	noritic anorthosite	0.988	poikilitic
50	83.9	n.d.	13.5	2.4	n.d.	0.2	n.d.	9.5	anorthosite	2.914	intergranular
63	60.1	13	25.4	n.d.	0.5	0.5	0.5	4.9	gabbro	1.031	coalescent
74	51.6	23.1	24.9	n.d.	n.d.	0.2	0.2	5.2	noritic gabbro	0.174	poikilitic
115	63.4	27.8	3.8	4.5	0.2	n.d.	0.3	6.1	northositic	0.426	poikilitic
118	75.8	n.d.	20.2	3.4	0.3	0.3	n.d.	10.7	anorthositic norite	0.73	intergranular
126	68.9	n.d.	26	4.6	n.d.	0.5	n.d.	15.4	anorthositic norite	0.409	intergranular
135	82.7	11	2.3	3.7	n.d.	0.2	0.1	7	noritic anorthosite	0.374	intergranular
148	81.3	n.d.	14.4	4	n.d.	n.d.	0.3	11.4	noritic anorthosite	0.587	poikilitic
156	72	n.d.	27.9	n.d.		0.1 ^b		9.3	anorthositic gabbro	0.075	poikilitic
159	64.7	n.d.	0.6	34.7	n.d.	n.d.	n.d.	10	anorthositic troctolite	0.05	poikilitic
5	72.9	15.6	6.5	4.9	n.d.	0.1	n.d.	8.6	anorthositic	6.645	cumulate
16	81.9	1.5	8.5	8.1	n.d.	n.d.	n.d.	12.1	noritic anorthosite ^c	0.832	cataclastic cumulate
17	80.8	6.1	n.d.	13	n.d.	n.d.	0.1	4.9	troctolitic anorthosite	0.704	cumulate
25	76.5	4.8	6.9	11.1	n.d.	0.6	0.1	13.8	anorthositic norite	1.834	cumulate
26	69.2	11.9 ^d	17.1	0.6	0.7	0.4	0.1	7.4	anorthositic norite	6.468	cumulate
54	80.3	11.2	3.2	5.1	n.d.	0.1	0.1	5.3	noritic anorthosite ^e	24.847	cumulate
107	70.5	19.3	n.d.	10.2	n.d.	n.d.	n.d.	11.3	anorthositic norite	0.275	cumulate
10	78.1	14.2	3.1	4.4	0.05	0.1	0.05	3.0	noritic anorthosite	3.333	clast-bearing cumulate
34	71.4	12.1	0.2	16	n.d.	0.2	0.1	10.0	anorthositic troctolite	5.83	clast-bearing cumulate
38	78	7.9	n.d.	13.6	n.d.	0.5	n.d.	8.9	troctolitic anorthosite	0.696	clast-bearing cumulate

Table 2. Modal mineralogy of crystallized melt clasts in Shişr 161.

88	72.3	11.4	n.d.	15.9	n.d.	0.2	0.2	17.7	anorthositic troctolite	0.413	cumulate
116	94.9	1.2	2.8	1	0.1	n.d.	0	12.1	anorthosite	0.567	cataclastic cumulate
^a litholog	ic designat	ions after S	töffler et a	ıl. (1980); ^b	undiscrim	inated opaq	ues; ^c clas	t is transe	ected by glassy	shock m	elt vein; ^d low-Ca pyroxene is pi

geonite; ^eclast is partially coated with glassy impact melt.

clast	mesostasis / glass ^a	plagioclase	pyroxene	olivine	chromite	FeS + FeNi	void space	modal lithology ^b	size	type
	[vol%]	[vol%]	[vol%]	[vol%]	[vol%]	[vol%]	[vol%]		[mm ²]	
2	48.8	39.4	n.d.	11.8	n.d.	n.d.	1.4	anorthositic troctolite	3.668	angular, hyalophitic, clast-
6	42.4	56.5	n.d.	1	n.d.	0.1	4.5	troctolitic anorthosite	0.991	angular, hyalophitic, clast-
7	24.4	52.6	11	11.7	0.3	n.d.	10.1	anorthositic norite	0.774	angular hyalophitic, clast-
11	14.3	85.7	n.d.	n.d.	n.d.	n.d.	8.7	anorthosite	0.975	angular, hyalophitic, clast-
12	16	39.4	26.5	18.1	n.d.	n.d.	5.8	olivine norite	1.251	ameboid, hyalophitic, clast-
13	73.5	25.2	1.3	n.d.	n.d.	n.d.	4.5	noritic anorthosite	0.471	angular, hyalophitic, clast-
15	58	15.9	22.2	3.7	0.1	0.1	2.5	norite	0.252	hyalophitic, clast- rich (ropy glass)
19	38	47.7	12.9	1.2	0.1	0.1	4.7	anorthositic norite	0.348	angular, hyalophitic, clast-
20	31.5	50.1	16.1	2.2	n.d.	0.1	8.1	olivine norite	0.708	angular, hyalophitic, clast-
28	54.7	43.3	1.2	0.7	0.1	n.d.	6	anorthositic norite	0.141	ameboid, hyal- phitic, clast-rich (ropy glass)
30	n.d. (holohyaline	62.7	34.6	2.7	n.a.	n.a.	n.a.	anorthositic norite	0.406	ameboid, ropy glass, clast-rich
33	44.2	55.8	n.d.	n.d.	n.d.	n.d.	6	anorthositic norite	0.359	ameboid, hyalophitic, clast- rich (ropy glass)
37	n.d. (hypohyaline	62.6	35.0	2.4	n.a.	n.a.	n.a.	anorthositic norite	0.973	ameboid, ropy glass, clast-rich
44	n.d. (hypohyaline)	79.1	13.0	7.9	n.a.	n.a.	n.a.	noritic anorthosite	0.238	glass shard
51	n.d. (hypohyaline	86.6	7.4	6.0	n.a.	n.a.	n.a.	noritic anorthosite	0.349	glass shard
52	n.d. (holohyaline	65.6	30.9	3.6	n.a.	n.a.	n.a.	anorthositic norite	0.549	ameboid, ropy glass, clast-rich
53	n.d. (hypohyaline)	64.9	31.7	3.4	n.a.	n.a.	n.a.	anorthositic norite	12.023	glass coat ^b
58	32	63.8	3.2	0.7	n.d.	0.3	9.5	troctolitic anorthosite	1.403	angular, hyalophitic, clast-
59	cryptocrystal line	86.8	6.9	6.3	n.a.	n.a.	n.a.	noritic anorthosite	0.245	subrounded, clast- free
77	n.d. (hypohyaline)	86.0	6.5	7.5	n.a.	n.a.	n.a.	troctolitic anorthosite	0.089	glass shard
81	64.8	33.9	n.d.	1.3	n.d.	n.d.	6.5	anorthositic norite	0.562	angular, hyalophitic, clast-
95	45.1	52.5	n.d.	2.4	n.d.	n.d.	7.4	anorthositic norite	0.706	angular, hyalophitic, clast-
102	n.d. (hypohyaline	70.1	23.8	6.1	n.a.	n.a.	n.a.	anorthositic norite	0.276	ameboid, hyalophitic, clast-

Table 3. Modal mineralogy of vitrophyre clasts in Shişr 161.

123	36.4	63.1	n.d.	0.3	n.d.	0.2	7.1	anorthositic norite	0.946	ameboid, hyalophitic, clast- bearing
136	43.3	55.1	n.d.	1.5	0.1	n.d.	13.3	anorthositic norite	0.555	angular, hyalophitic, clast-
g-1	n.d. (holohyaline)	59.3	40.7	0.0	n.a.	n.a.	n.a.	gabbroic norite	0.077	glass shard
g-3	n.d. (holohyaline)	63.2	32.0	4.9	n.a.	n.a.	n.a.	anorthositic norite	0.052	glass shard
g-4	n.d. (holohyaline)	85.8	7.5	6.7	n.a.	n.a.	n.a.	troctolitic anorthosite	0.02	glass shard
g-5	n.d. (holohyaline)	85.9	4.5	9.7	n.a.	n.a.	n.a.	troctolitic anorthosite	0.028	glass shard
g-6	n.d. (holohyaline)	80.3	11.8	7.8	n.a.	n.a.	n.a.	noritic anorthosite	0.006	ropy glass shard, clast-bearing
g-7	n.d. (holohyaline)	85.5	11.0	3.5	n.a.	n.a.	n.a.	noritic anorthosite	0.008	glass shard
g-8	n.d. (holohyaline	62.8	37.2	0.0	n.a.	n.a.	n.a.	anorthositic norite	0.005	ropy glass shard, clast-bearing
g-9	n.d. (hypohyaline)	80.1	8.7	11.2	n.a.	n.a.	n.a.	troctolitic anorthosite	0.015	glass shard
g-10	n.d. (holohyaline	100.0	0.0	0.0	n.a.	n.a.	n.a.	anorthosite	0.014	ropy glass shard, clast-bearing
g-11a	n.d. (holohyaline)	83.9	11.5	4.6	n.a.	n.a.	n.a.	noritic anorthosite	0.028	glass shard, clast- free
g-11b	n.d. (holohyaline)	76.7	9.1	14.1	n.a.	n.a.	n.a.	anorthositic troctolite	0.009	ropy glass shard
g-12	n.d. (holohyaline	26.0	68.9	5.1	n.a.	n.a.	n.a.	norite	0.011	ameboid, ropy glass, clast-rich
g-13	n.d. (holohyaline)	75.3	10.6	14.1	n.a.	n.a.	n.a.	anorthositic troctolite	0.07	ameboid glass, clast- + sulfide melt- rich

a in clasts that are mostly devitrified, the remaining mesostasis melt was quantified and the modal mineral components were determined by imag

e analysis, in glassy clasts, glass proportions were not determined (n.d.) and melt compositions were determined from glass analyses by calcul

lating the modal mineralogy with the CIPW-norm; b calculated from the modaly reconstituted bulk compositions of mesostasis-bearing vitrop

hyres or or glass analyses in hyaline clasts, lithologic classification after St öffler et al. (1980); n.a.-not applicable; n.d.-not determined; b part

ticle is a clast-rich glass coat on a cumulate clast.

clast	malt tyma ^a	heam Ø	n	Na ₂ O	MgO	AlaOa	SiO	K-0	CaO	MnO	FeO	TiO	CraOa	P ₂ O ₂
clust	men type	fum 1		F+0/1	F=====================================	F=====================================	510 ₂	F=====================================	CuO	F======0/1	F===========	F=====================================	C1203	F
-		[μm]		[Wt%]	[Wt%]	[Wt%]	[Wt%]	[wt%]	[wt%]	[Wt%]	[Wt%]	[Wt%]	[wt%]	[Wt%]
2	m	0	4	0.05	14.7	14.9	44.9	b.d.	8.9	0.22	15.2	0.53	0.38	b.d.
6	m	0	3	0.33	14.3	17.0	42.9	0.09	10.7	0.18	13.9	0.58	0.28	0.06
/	m	0	4	0.11	13.7	13.9	45.9	0.03	10.8	0.24	14.6	0.51	0.28	b.d.
11	m	0	8	0.08	3.9	11.5	52.0	0.06	12.3	0.32	16.3	1.79	0.45	0.04
12	m	0/20	5	0.22	9.7	19.4	46./	b.d.	12.5	0.15	10.3	0.49	0.26	b.d.
13	m	0	4	0.31	4.9	29.2	44.8	b.d.	16.6	0.06	4.3	0.12	0.07	b.d.
15	m	0	4	0.21	10.9	20.0	46.4	b.d.	12.3	0.13	9.4	0.37	0.24	b.d.
16	g	0/5	4	0.38	3.5	29.6	44.7	b.d.	17.7	b.d.	3.8	0.21	0.08	b.d.
19	m	0	6	0.06	12.7	11.6	47.9	b.d.	9.5	0.25	16.8	0.56	0.36	b.d.
20	m	0	1	0.10	6.2	14.3	51.3	0.03	12.4	0.28	14.3	1.15	0.35	b.d.
23-	m	5	1	0.30	13.2	17.9	49.8	b.d.	9.8	0.08	7.9	0.16	0.66	b.d.
28	m	0	5	0.13	10.5	15.8	48.3	b.d.	10.9	0.20	13.1	0.66	0.35	b.d.
30	g	0/10	6	0.26	8.7	19.9	46.3	b.d.	12.5	0.16	10.1	0.48	0.26	b.d.
33	m	0	9	0.16	11.4	17.4	46.7	b.d.	10.7	0.19	12.0	0.50	0.33	b.d.
37	g	10	4	0.26	8.9	19.8	46.6	b.d.	12.4	0.10	10.1	0.43	0.27	b.d.
44	g	0/10	4	0.28	7.1	26.5	44.1	b.d.	15.0	b.d.	5.4	0.20	0.16	b.d.
51	g	10	7	0.17	5.3	29.9	43.6	b.d.	16.4	b.d.	3.2	0.12	b.d.	b.d.
52	g	0	4	0.28	8.9	21.5	45.9	b.d.	12.9	0.12	8.9	0.39	0.22	b.d.
53	g	20	10	0.28	9.0	21.1	46.7	b.d.	13.0	0.14	9.0	0.41	0.25	b.d.
58	m	0	6	0.20	15.9	17.4	44.4	b.d.	10.5	0.14	10.4	0.35	0.27	b.d.
59	g	10	12	0.23	5.2	30.2	44.0	b.d.	16.6	b.d.	3.1	0.12	0.06	b.d.
77	g	10	14	0.38	5.4	29.7	44.2	b.d.	16.5	b.d.	3.2	0.12	b.d.	b.d.
81	m	5	6	0.21	13.1	17.8	47.2	b.d.	11.4	0.16	9.0	0.41	0.23	b.d.
95	m	0	5	0.15	10.9	17.1	46.5	b.d.	11.6	0.19	12.0	0.53	0.28	b.d.
102	g	0	5	0.25	8.4	23.0	45.5	b.d.	13.7	0.13	7.7	0.30	0.25	b.d.
123	m	0	2	b.d.	19.6	10.8	46.5	b.d.	7.6	0.22	13.2	0.90	0.58	0.10
136	m	0	3	0.10	17.5	8.77	46.7	b.d.	9.0	0.27	16.9	0.63	0.37	b.d.
g-1	g	20	5	0.04	8.5	16.5	51.5	0.03	11.5	0.13	7.9	1.46	0.19	b.d.
g-3	g	20	5	0.26	8.6	19.9	45.4	b.d.	12.7	0.15	10.0	0.46	0.31	b.d.
g-4	g	20	5	0.08	4.5	29.6	43.0	b.d.	16.9	0.07	4.2	0.20	0.08	b.d.
g-5	g	20	4	0.36	5.4	29.3	43.3	b.d.	16.9	b.d.	3.3	0.13	0.07	b.d.
g-6	g	20	3	0.05	6.6	27.4	43.4	b.d.	16.4	0.07	4.0	0.22	0.20	b.d.
g-7	g	20	3	0.15	3.4	28.8	43.0	b.d.	16.5	0.07	5.0	0.18	0.14	b.d.
g-8	g	20	3	1.90	6.0	13.3	44.5	0.77	10.4	0.16	12.8	4.14	0.17	2.49
g-9	g	20	4	0.37	6.3	26.7	43.4	b.d.	16.1	0.08	5.4	0.27	0.13	b.d.
g-10	g	20	3	0.15	4.4	33.5	38.6	b.d.	19.5	b.d.	2.0	0.19	0.11	b.d.
g-11a	g	20	4	0.32	4.4	28.5	44.2	b.d.	16.6	0.07	4.6	0.23	0.14	b.d.
g-11b	g	20	4	0.20	9.6	25.7	43.3	0.05	14.5	0.06	4.8	0.19	0.13	b.d.
g-12	g	20	4	0.09	4.8	7.04	44.3	b.d.	10.5	0.39	29.3	1.68	0.25	b.d.
g-13	g	20	1	0.22	7.6	24.8	42.9	b.d.	14.4	0.10	8.2	0.24	0.15	b.d.
Sph1	m	0	4	0.15	13.9	19.6	49.0	b.d.	10.7	0.11	5.8	0.57	0.33	b.d.
Sph2	m	0	2	0.12	28.4	6.14	41.9	0.06	4.5	0.17	20.3	0.28	0.09	0.11
Sph6	m	0	3	0.20	7.3	26.36	43.9	0.04	14.6	0.10	6.7	0.30	0.06	0.06
Sph7	m	0	4	0.39	2.5	12.6	58.9	3.60	6.6	0.12	6.1	3.84	0.09	2.87
Sph8	m	0	4	0.22	6.2	24.8	45.1	0.05	15.0	0.12	7.3	0.42	0.11	0.05
Sph9 ^e	g	0	6	1.07	2.3	0.17	64.2	0.07	2.6	0.35	27.8	b.d.	0.21	b.d.
Sph10	m	0	5	0.19	11.1	17.8	43.5	0.06	13.0	0.21	13.2	0.55	0.22	0.09
Sph13	m	0	4	0.39	3.4	30.4	43.6	b.d.	16.8	0.07	3.9	0.15	0.09	b.d.
Sph15	m	0	4	0.20	9.3	19.9	46.9	0.03	13.3	0.15	10.4	0.40	0.30	b.d.

Table 4. Compositions of glassy phases in Shişr 161.

n-number of averaged analyses; b.d.-below detection; ^a melt types are m-mesostasis or g-glass, see text for details; ^b Mg# is 100×molar Mg/(Mg+Fe

SO_3	total	total	Mg# ^b	Ca ^b	Na ^b	K ^b	Mg/Al
[wt%]	[wt%]	[afu]	[mol%]	[mol%]	[mol%]	[mol%]	[wt%]
0.15	100.0	16.0	63.2	98.5	1.2	b.d.	1.1
0.32	100.5	16.1	64.7	93.9	5.2	0.9	1.0
0.17	100.3	15.9	62.6	97.9	1.8	0.3	1.1
0.23	99.0	15.0	30.3	98.3	1.2	0.5	0.4
0.12	99.8	15.5	63.0	96.7	3.1	b.d.	0.6
0.07	100.6	15.3	67.0	96.6	3.3	b.d.	0.2
0.13	100.2	15.6	67.4	97.0	2.9	b.d.	0.6
b.d.	100.0	15.2	62.1	96.1	3.8	b.d.	0.1
0.07	99.8	15.8	57.1	98.6	1.1	b.d.	1.2
0.29	100.8	15.1	43.7	98.2	1.4	0.3	0.5
0.03	99.9	15.4	74.8	94.6	5.2	b.d.	0.8
0.16	100.0	15.5	58.8	97.9	2.1	b.d.	0.8
0.13	98.9	15.5	60.5	96.3	3.6	b.d.	0.5
0.09	99.6	15.6	63.1	97.3	2.5	b.d.	0.7
0.11	99.1	15.5	61.1	96.2	3.6	b.d.	0.5
0.08	98.9	15.4	70.0	96.6	3.3	b.d.	0.3
b.d.	98.9	15.3	74.9	98.1	1.8	b.d.	0.2
0.09	99.2	15.5	64.1	96.2	3.7	b.d.	0.5
0.13	100.1	15.5	63.9	96.2	3.7	b.d.	0.5
0.15	99.7	16.0	73.2	96.6	3.3	b.d.	1.0
b.d.	99.6	15.3	75.1	97.5	2.5	b.d.	0.2
0.07	99.7	15.3	75.3	95.9	4.0	b.d.	0.2
0.07	99.7	15.6	72.1	96.6	3.2	b.d.	0.8
0.15	99.5	15.6	61.4	97.5	2.3	b.d.	0.7
b.d.	99.2	15.5	66.1	96.7	3.2	b.d.	0.4
0.14	99.7	16.0	72.5	99.3	0.5	b.d.	2.1
0.05	100.3	16.2	65.0	97.7	2.1	b.d.	2.3
b.d.	97.7	15.0	45.7	99.3	0.4	0.3	0.6
0.09	97.9	15.5	40.1	97.8	2.1	b.d.	0.5
b.d.	98.7	15.3	45.5	99.4	0.5	b.d.	0.2
0.06	98.9	15.4	56.4	97.7	2.2	b.d.	0.2
b.d.	98.5	15.4	56.0	99.7	0.3	b.d.	0.3
b.d.	97.4	15.2	34.3	98.9	0.9	b.d.	0.1
b.d.	96.6	15.4	26.8	78.3	14.9	6.8	0.5
0.14	99.0	15.5	47.6	97.6	2.3	b.d.	0.3
b.d.	98.6	15.6	62.4	99.1	0.8	b.d.	0.1
b.d.	99.1	15.3	42.3	98.0	2.0	b.d.	0.2
0.05	98.5	15.6	60.9	98.2	1.4	0.4	0.4
0.36	98.7	15.8	11.2	99.1	0.9	b.d.	0.8
0.08	99.2	15.6	62.3	97.2	2.6	b.d.	0.4
b.d.	100.1	15.5	81.0	97.3	2.5	b.d.	0.8
0.05	102.1	17.1	71.2	94.3	4.6	1.1	5.3
0.02	99.6	15.5	66.1	97.3	2.4	0.3	0.3
0.14	97.8	14.1	42.6	57.2	6.1	36.7	0.2
0.37	99.7	7.7	61.0	97.0	2.6	0.4	0.3
0.98	99.8	14.4	12.7	55.1	43.1	1.8	15.2
0.26	100.2	15.9	60.6	96.9	2.6	0.6	0.7
b.d.	98.9	12.7	61.2	95.8	4.1	b.d.	0.1
0.05	101.0	15.5	61.1	97.1	2.7	0.2	0.5

e), Ca is 100×molar Ca/(Ca+Na+K), Na is 100×molar Na/(Na+Ca+K), and K is 100*molar K/(Ca+Na+K); ^c analyses on glassy shock melt vein that

t transsects cumulate clast 16; ^d analyses on scarce domains of mesostasis in the crystallized melt clast; afu is atoms per formula unit; ^ecomposition
is nearly identical to the Al- and Ca-depleted (Fe-)GASP particles of Warren (2008), except for an enrichment in Na₂O; the composition of all anal

yses were below the detection limit for NiO except clast g-13 (0.34 wt%).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

Table 5. Modaly	recombined bu	alk compositions o	f melt clasts in	Shişr 161.								
clast	type ^a	SiO ₂	TiO ₂	Al_2O_3	Cr ₂ O ₃	FeO ^b	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5
		[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]
2	vi	43.4	0.3	20.4	0.2	10.7	0.2	13.0	11.5	0.2	0.0	0.0
6	vi	43.3	0.3	26.6	0.1	6.8	0.1	6.9	15.3	0.4	0.0	0.0
7	vi	44.2	0.3	21.1	0.3	9.5	0.1	10.8	13.4	0.2	0.0	0.0
11	vi	45.1	0.3	32.1	0.1	2.8	0.1	0.9	18.3	0.2	0.0	0.0
12	vi	46.3	0.3	16.4	0.2	9.6	0.1	17.4	9.4	0.2	0.0	0.0
13	vi	44.5	0.1	30.2	0.1	3.5	0.1	4.0	17.2	0.3	0.0	0.0
15	vi	47.5	0.4	16.9	0.3	9.3	0.1	14.7	10.3	0.2	0.0	0.0
19	vi	46.5	0.3	20.5	0.3	10.3	0.2	9.0	12.6	0.2	0.0	0.0
20	vi	45.1	0.3	18.2	0.2	10.1	0.1	15.1	10.5	0.2	0.0	0.0
28	vi	46.5	0.4	23.3	0.3	8.3	0.1	6.7	14.0	0.2	0.0	0.0
33	vi	46.4	0.3	25.4	0.2	6.6	0.1	5.9	14.7	0.4	0.0	0.0
58	vi	44.0	0.2	27.9	0.1	4.8	0.1	7.0	15.4	0.3	0.0	0.0
81	vi	46.5	0.3	22.6	0.2	6.8	0.1	9.6	13.5	0.3	0.0	0.0
95	vi	44.9	0.3	26.0	0.1	6.9	0.1	6.6	14.7	0.2	0.0	0.0
123	vi	44.2	0.4	25.6	0.2	6.8	0.1	7.6	14.6	0.2	0.0	0.0
136	vi	44.9	0.3	22.5	0.2	8.7	0.1	8.9	13.9	0.2	0.0	0.0
Sph1	vi	49.9	0.7	15.5	0.2	8.8	0.2	13.4	10.6	0.3	0.0	0.1
Sph2-main	vi	37.3	0.1	7.4	0.5	27.3	0.2	23.2	3.9	0.1	0.0	0.0
Sph2-accreted	vi	43.2	0.1	28.8	0.0	5.0	0.0	6.5	15.9	0.3	0.0	0.0
Sph6	vi	44.2	0.3	26.8	0.1	5.7	0.1	6.6	15.9	0.2	0.0	0.0
Sph7	vi	48.8	1.4	20.4	0.2	7.4	0.1	6.5	11.7	0.6	1.2	1.0
Sph8	vi	44.4	0.5	25.6	0.1	6.9	0.1	7.0	14.6	0.3	0.1	0.0
Sph10	vi	43.3	0.1	32.6	0.0	2.4	0.0	2.2	18.9	0.3	0.0	0.0
Sph13	vi	42.0	0.1	30.4	0.0	57	0.1	47	16.5	0.3	0.0	0.0
Sph15	vi	44 2	0.2	30.8	0.1	3 5	0.0	31	17.7	0.3	0.0	0.0
3	cm	44.6	0.30	27.1	0.20	5.66	0.10	5 89	15.7	0.35	0.04	0.02
4	cm	44 3	0.42	27.9	0.19	4 98	0.08	6.02	15.7	0.28	0.03	0.02
8	cm	44 3	0.24	27.1	0.25	5.27	0.10	5 77	16.6	0.26	0.01	0.01
18	cm	44 7	0.33	24.1	0.23	6.87	0.10	9 10	14.2	0.24	0.02	0.01
23	cm	48.8	0.28	14.6	0.66	14 33	0.24	10.68	10.2	0.20	0.01	0.01
23	cm	44 1	0.14	24.9	0.15	5 99	0.09	10.00	13.4	0.29	0.01	0.01
36	cm	42.3	0.14	24.9	0.15	7.06	0.09	16.20	12.2	0.20	0.01	0.01
43	cm	44.4	0.43	22.5	0.17	6.15	0.09	13.46	12.2	0.20	0.01	0.02
45	cm	44.7	0.12	22.5	0.11	4 90	0.09	6.52	15.4	0.21	0.01	0.01
50	cm	44.6	0.12	29.8	0.11	3.92	0.03	4.46	16.5	0.25	0.01	0.02
63	cm	46.2	0.22	20.6	0.10	8 99	0.07	 6 54	15.5	0.20	0.02	0.02
74	cm	40.2	0.74	20.0	0.30	788	0.14	10.02	13.5	0.33	0.02	0.01
115	cm	40.2	0.50	22.4	0.31	8 42	0.13	8 65	14.7	0.24	0.02	0.01
110	cili	43.3	0.50	22.4	0.26	0.42	0.14	0.00	13./	0.20	0.01	0.01
118	cm	45.4	0.4/	20.2	0.25	0.12	0.09	0.55	14.0	0.41	0.02	0.02

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

cm	45.9	0.41	23.6	0.38	6.58	0.11	7.33	15.3	0.35	0.02	0.01
cm	44.3	0.19	29.4	0.18	4.58	0.07	4.94	16.0	0.27	0.01	0.02
cm	44.5	0.13	28.6	0.07	4.70	0.07	4.87	16.5	0.29	0.02	0.03
cm	46.7	0.41	24.9	0.23	3.26	0.08	5.50	18.4	0.41	0.01	0.02
cm	41.3	0.04	21.5	0.07	8.20	0.10	16.55	11.8	0.21	0.01	0.02
cm	47.5	0.43	18.7	0.24	9.88	0.13	10.34	10.9	0.41	0.07	0.06
cm	45.0	0.22	23.0	0.28	8.00	0.13	9.36	13.7	0.19	0.01	0.03
cm	40.9	0.10	17.1	0.12	11.40	0.12	19.99	9.2	0.34	0.07	0.14
cm	45.9	0.25	25.2	0.35	5.79	0.13	5.87	16.1	0.22	0.02	0.01
mg-cu	45.60	0.25	25.50	0.21	3.97	0.07	8.72	15.37	0.25	0.01	0.01
mg-cu	45.02	0.13	28.35	0.12	3.24	0.06	6.85	15.79	0.29	0.01	0.02
mg-cu	43.51	0.15	28.02	0.06	3.85	0.05	7.52	16.39	0.32	0.01	0.02
mg-cu	43.67	0.21	26.54	0.53	4.43	0.07	8.26	15.87	0.29	0.01	0.02
mg-cu	45.67	0.17	24.03	0.12	5.22	0.08	11.21	13.20	0.24	0.01	0.03
fe-cu	43.91	0.15	28.47	0.06	5.44	0.08	4.67	16.83	0.34	0.01	0.03
fe-cu	43.88	0.13	34.09	0.02	1.41	0.03	1.12	18.90	0.37	0.01	0.01
mg-cu	45.47	0.22	27.15	0.16	3.84	0.07	7.17	15.54	0.29	0.01	0.02
mg-cu	44.25	0.14	24.29	0.21	5.64	0.09	11.75	13.21	0.29	0.01	0.02
mg-cu	43.54	0.12	27.17	0.43	4.51	0.07	9.26	14.61	0.24	0.01	0.02
mg-cu	43.80	0.12	24.71	0.31	5.72	0.08	11.28	13.58	0.24	0.01	0.01
fe-cu	45.59	0.94	23.88	0.29	7.18	0.11	5.30	16.29	0.30	0.02	0.02
	cm cm cm cm cm cm cm cm cm cm cm cm cm c	cm 45.9 cm 44.3 cm 44.5 cm 46.7 cm 41.3 cm 47.5 cm 45.0 cm 45.0 cm 45.9 mg-cu 45.60 mg-cu 45.60 mg-cu 43.67 mg-cu 43.67 mg-cu 43.67 mg-cu 45.67 fe-cu 43.88 mg-cu 45.47 mg-cu 45.47 mg-cu 43.54 mg-cu 43.54 mg-cu 43.54 mg-cu 43.54	cm 45.9 0.41 cm 44.3 0.19 cm 44.5 0.13 cm 46.7 0.41 cm 41.3 0.04 cm 47.5 0.43 cm 45.0 0.22 cm 40.9 0.10 cm 45.9 0.25 mg-cu 45.60 0.25 mg-cu 43.51 0.15 mg-cu 43.67 0.21 mg-cu 43.67 0.21 mg-cu 43.67 0.21 mg-cu 43.67 0.17 fe-cu 43.88 0.13 mg-cu 45.47 0.22 mg-cu 45.47 0.22 mg-cu 43.54 0.12 mg-cu 43.54 0.12 mg-cu 43.54 0.12 mg-cu 43.80 0.12 fe-cu 43.80 0.12 fe-cu 43.80 0.12	cm45.90.4123.6cm44.30.1929.4cm44.50.1328.6cm46.70.4124.9cm41.30.0421.5cm47.50.4318.7cm45.00.2223.0cm40.90.1017.1cm45.90.2525.2mg-cu45.600.2525.50mg-cu43.510.1528.02mg-cu43.670.2126.54mg-cu43.880.1334.09mg-cu45.470.2227.15mg-cu43.540.1227.17mg-cu43.800.1224.71fe-cu43.800.1224.71fe-cu43.800.1224.71fe-cu43.800.1224.71fe-cu43.800.1224.71fe-cu43.800.1224.71	cm 45.9 0.41 23.6 0.38 cm 44.3 0.19 29.4 0.18 cm 44.5 0.13 28.6 0.07 cm 46.7 0.41 24.9 0.23 cm 41.3 0.04 21.5 0.07 cm 47.5 0.43 18.7 0.24 cm 45.0 0.22 23.0 0.28 cm 40.9 0.10 17.1 0.12 cm 45.9 0.25 25.2 0.35 mg-cu 45.60 0.25 25.50 0.21 cm 45.60 0.25 25.50 0.21 mg-cu 43.51 0.15 28.02 0.06 mg-cu 43.67 0.21 26.54 0.53 mg-cu 43.67 0.21 26.54 0.53 mg-cu 43.88 0.13 34.09 0.02 mg-cu 43.84 0.13 34.09 0.02 mg-cu 43.54 0.12 27.17 0.43 mg-cu 43.54 0.12 27.17 0.43 mg-cu 43.80 0.12 24.71 0.31 fe-cu 43.80 0.12 24.71 0.31 fe-cu 43.80 0.12 24.71 0.31 fe-cu 43.59 0.94 23.88 0.29	cm 45.9 0.41 23.6 0.38 6.58 cm 44.3 0.19 29.4 0.18 4.58 cm 44.5 0.13 28.6 0.07 4.70 cm 46.7 0.41 24.9 0.23 3.26 cm 41.3 0.04 21.5 0.07 8.20 cm 47.5 0.43 18.7 0.24 9.88 cm 45.0 0.22 23.0 0.28 8.00 cm 40.9 0.10 17.1 0.12 11.40 cm 45.9 0.25 25.2 0.35 5.79 mg-cu 45.60 0.25 25.50 0.21 3.97 mg-cu 45.60 0.25 25.50 0.21 3.24 mg-cu 43.67 0.21 26.54 0.53 4.43 mg-cu 43.67 0.21 26.54 0.53 4.43 mg-cu 43.67 0.22 27.15 0.16 3.84 mg-cu 43.88 0.13 34.09 0.02 1.41 mg-cu 43.54 0.12 27.17 0.43 4.51 mg-cu 43.80 0.12 27.17 0.43 4.51 mg-cu 43.54 0.12 27.17 0.43 <	cm 45.9 0.41 23.6 0.38 6.58 0.11 cm 44.3 0.19 29.4 0.18 4.58 0.07 cm 44.5 0.13 28.6 0.07 4.70 0.07 cm 46.7 0.41 24.9 0.23 3.26 0.08 cm 41.3 0.04 21.5 0.07 8.20 0.10 cm 47.5 0.43 18.7 0.24 9.88 0.13 cm 45.0 0.22 23.0 0.28 8.00 0.13 cm 45.0 0.25 25.2 0.35 5.79 0.13 cm 45.0 0.25 25.2 0.35 5.79 0.13 mg-cu 45.60 0.25 25.50 0.21 3.97 0.07 mg-cu 45.67 0.15 28.02 0.06 3.85 0.05 mg-cu 43.67 0.21 26.54 0.53 4.43 0.07 mg-cu 43.67 0.22 27.15 0.16 3.84 0.07 mg-cu 43.88 0.13 34.09 0.02 1.41 0.03 mg-cu 45.47 0.22 27.15 0.16 3.84 0.07 mg-c	cm 45.9 0.41 23.6 0.38 6.58 0.11 7.33 cm 44.3 0.19 29.4 0.18 4.58 0.07 4.94 cm 44.5 0.13 28.6 0.07 4.70 0.07 4.87 cm 46.7 0.41 24.9 0.23 3.26 0.08 5.50 cm 41.3 0.04 21.5 0.07 8.20 0.10 16.55 cm 47.5 0.43 18.7 0.24 9.88 0.13 10.34 cm 45.0 0.22 23.0 0.28 8.00 0.13 9.36 cm 45.9 0.25 25.2 0.35 5.79 0.13 5.87 mg-cu 45.60 0.25 25.50 0.21 3.97 0.07 8.72 mg-cu 45.60 0.25 25.50 0.21 3.97 0.07 8.72 mg-cu 45.60 0.25 25.50 0.21 3.97 0.07 8.72 mg-cu 43.67 0.21 26.54 0.53 4.43 0.07 7.52 mg-cu 43.67 0.21 26.54 0.53 4.43 0.07 8.26 mg-cu 43.67 0.15 28.47 0.06 5.44 0.08 4.67 fe-cu 43.88 0.13 34.09 0.02 1.41 0.03 1.12 mg-cu 43.64 0.14 24.29 0.21 5.64 0.09 11.75 <td>cm45.90.4123.60.386.580.117.3315.3cm44.30.1929.40.184.580.074.9416.0cm44.50.1328.60.074.700.074.8716.5cm46.70.4124.90.233.260.085.5018.4cm41.30.0421.50.078.200.1016.5511.8cm47.50.4318.70.249.880.1310.3410.9cm45.00.2223.00.288.000.139.3613.7cm40.90.1017.10.1211.400.1219.999.2cm45.600.2525.20.355.790.135.8716.1mg-cu45.020.1328.020.063.850.057.5215.37mg-cu45.060.2525.500.213.970.078.7215.37mg-cu45.670.1728.020.063.850.057.5216.39mg-cu43.670.2126.540.534.430.078.2615.87mg-cu43.670.1724.030.125.220.0811.2113.20fe-cu43.880.1334.090.021.410.031.1218.90mg-cu43.640.1334.090.021.410.031.1218.90<th< td=""><td>cm$45.9$$0.41$$23.6$$0.38$$6.58$$0.11$$7.33$$15.3$$0.35cm44.3$$0.19$$29.4$$0.18$$4.58$$0.07$$4.94$$16.0$$0.27cm44.5$$0.13$$28.6$$0.07$$4.70$$0.07$$4.87$$16.5$$0.29cm46.7$$0.41$$24.9$$0.23$$3.26$$0.08$$5.50$$18.4$$0.41cm41.3$$0.04$$21.5$$0.07$$8.20$$0.10$$16.55$$11.8$$0.21cm47.5$$0.43$$18.7$$0.24$$9.88$$0.13$$10.34$$10.9$$0.41cm45.0$$0.22$$23.0$$0.28$$8.00$$0.13$$9.36$$13.7$$0.19cm45.9$$0.25$$25.2$$0.35$$5.79$$0.13$$5.87$$16.1$$0.22$mg-cu$45.60$$0.25$$25.50$$0.21$$3.97$$0.07$$8.72$$15.37$$0.25$mg-cu$43.67$$0.21$$28.02$$0.06$$3.85$$0.05$$7.52$$16.39$$0.32$mg-cu$43.67$$0.21$$28.47$$0.06$$5.44$$0.08$$4.67$$16.83$$0.34$fe-cu$43.91$$0.15$$28.47$$0.06$$5.44$$0.08$$4.67$$16.83$$0.34$fe-cu$43.68$$0.13$$34.09$$0.02$$1.41$$0.03$$1.12$$18.90$$0.37$</td><td>cm45.90.4123.60.386.580.117.3315.30.350.02cm44.30.1929.40.184.580.074.9416.00.270.01cm44.50.1328.60.074.700.074.8716.50.290.02cm46.70.4124.90.233.260.085.5018.40.410.01cm41.30.0421.50.078.200.1016.5511.80.210.01cm47.50.4318.70.249.880.1310.3410.90.410.07cm45.00.2223.00.288.000.139.3613.70.190.01cm45.90.2525.20.355.790.135.8716.10.220.02cm45.600.2525.500.213.970.078.7215.370.250.01mg-cu45.600.2525.500.213.970.078.7215.370.250.01mg-cu43.670.1528.020.063.850.057.5216.390.320.01mg-cu43.670.1724.400.0311.2113.200.240.01mg-cu43.670.1724.030.125.220.0811.2115.370.290.01mg-cu43.670.1724.030.125.22</td></th<></td>	cm45.90.4123.60.386.580.117.3315.3cm44.30.1929.40.184.580.074.9416.0cm44.50.1328.60.074.700.074.8716.5cm46.70.4124.90.233.260.085.5018.4cm41.30.0421.50.078.200.1016.5511.8cm47.50.4318.70.249.880.1310.3410.9cm45.00.2223.00.288.000.139.3613.7cm40.90.1017.10.1211.400.1219.999.2cm45.600.2525.20.355.790.135.8716.1mg-cu45.020.1328.020.063.850.057.5215.37mg-cu45.060.2525.500.213.970.078.7215.37mg-cu45.670.1728.020.063.850.057.5216.39mg-cu43.670.2126.540.534.430.078.2615.87mg-cu43.670.1724.030.125.220.0811.2113.20fe-cu43.880.1334.090.021.410.031.1218.90mg-cu43.640.1334.090.021.410.031.1218.90 <th< td=""><td>cm$45.9$$0.41$$23.6$$0.38$$6.58$$0.11$$7.33$$15.3$$0.35cm44.3$$0.19$$29.4$$0.18$$4.58$$0.07$$4.94$$16.0$$0.27cm44.5$$0.13$$28.6$$0.07$$4.70$$0.07$$4.87$$16.5$$0.29cm46.7$$0.41$$24.9$$0.23$$3.26$$0.08$$5.50$$18.4$$0.41cm41.3$$0.04$$21.5$$0.07$$8.20$$0.10$$16.55$$11.8$$0.21cm47.5$$0.43$$18.7$$0.24$$9.88$$0.13$$10.34$$10.9$$0.41cm45.0$$0.22$$23.0$$0.28$$8.00$$0.13$$9.36$$13.7$$0.19cm45.9$$0.25$$25.2$$0.35$$5.79$$0.13$$5.87$$16.1$$0.22$mg-cu$45.60$$0.25$$25.50$$0.21$$3.97$$0.07$$8.72$$15.37$$0.25$mg-cu$43.67$$0.21$$28.02$$0.06$$3.85$$0.05$$7.52$$16.39$$0.32$mg-cu$43.67$$0.21$$28.47$$0.06$$5.44$$0.08$$4.67$$16.83$$0.34$fe-cu$43.91$$0.15$$28.47$$0.06$$5.44$$0.08$$4.67$$16.83$$0.34$fe-cu$43.68$$0.13$$34.09$$0.02$$1.41$$0.03$$1.12$$18.90$$0.37$</td><td>cm45.90.4123.60.386.580.117.3315.30.350.02cm44.30.1929.40.184.580.074.9416.00.270.01cm44.50.1328.60.074.700.074.8716.50.290.02cm46.70.4124.90.233.260.085.5018.40.410.01cm41.30.0421.50.078.200.1016.5511.80.210.01cm47.50.4318.70.249.880.1310.3410.90.410.07cm45.00.2223.00.288.000.139.3613.70.190.01cm45.90.2525.20.355.790.135.8716.10.220.02cm45.600.2525.500.213.970.078.7215.370.250.01mg-cu45.600.2525.500.213.970.078.7215.370.250.01mg-cu43.670.1528.020.063.850.057.5216.390.320.01mg-cu43.670.1724.400.0311.2113.200.240.01mg-cu43.670.1724.030.125.220.0811.2115.370.290.01mg-cu43.670.1724.030.125.22</td></th<>	cm 45.9 0.41 23.6 0.38 6.58 0.11 7.33 15.3 0.35 cm 44.3 0.19 29.4 0.18 4.58 0.07 4.94 16.0 0.27 cm 44.5 0.13 28.6 0.07 4.70 0.07 4.87 16.5 0.29 cm 46.7 0.41 24.9 0.23 3.26 0.08 5.50 18.4 0.41 cm 41.3 0.04 21.5 0.07 8.20 0.10 16.55 11.8 0.21 cm 47.5 0.43 18.7 0.24 9.88 0.13 10.34 10.9 0.41 cm 45.0 0.22 23.0 0.28 8.00 0.13 9.36 13.7 0.19 cm 45.9 0.25 25.2 0.35 5.79 0.13 5.87 16.1 0.22 mg-cu 45.60 0.25 25.50 0.21 3.97 0.07 8.72 15.37 0.25 mg-cu 43.67 0.21 28.02 0.06 3.85 0.05 7.52 16.39 0.32 mg-cu 43.67 0.21 28.47 0.06 5.44 0.08 4.67 16.83 0.34 fe-cu 43.91 0.15 28.47 0.06 5.44 0.08 4.67 16.83 0.34 fe-cu 43.68 0.13 34.09 0.02 1.41 0.03 1.12 18.90 0.37	cm45.90.4123.60.386.580.117.3315.30.350.02cm44.30.1929.40.184.580.074.9416.00.270.01cm44.50.1328.60.074.700.074.8716.50.290.02cm46.70.4124.90.233.260.085.5018.40.410.01cm41.30.0421.50.078.200.1016.5511.80.210.01cm47.50.4318.70.249.880.1310.3410.90.410.07cm45.00.2223.00.288.000.139.3613.70.190.01cm45.90.2525.20.355.790.135.8716.10.220.02cm45.600.2525.500.213.970.078.7215.370.250.01mg-cu45.600.2525.500.213.970.078.7215.370.250.01mg-cu43.670.1528.020.063.850.057.5216.390.320.01mg-cu43.670.1724.400.0311.2113.200.240.01mg-cu43.670.1724.030.125.220.0811.2115.370.290.01mg-cu43.670.1724.030.125.22

^avi are vitrophyres, cm are crystallized melts, mg-cu are magnesian cumulates, fe-cu are ferroan cumulates; clasts3-Sph17 are crystallized melts; ^ball iron as FeO; ^cmagnesium number is molar 100×[Mg/(Mg+Fe)].

total	Mg# ^c	An# ^d	plagioclase content ^e
[wt%]	[mol%]	[mol%]	[vol%]
99.9	68.3	97.4	62.8
99.8	64.3	95.4	79.3
99.9	67.2	97.3	64.4
99.9	37.0	98.5	92.6
100.0	76.3	96.8	51.2
99.9	66.8	96.7	86.7
99.8	73.9	96.9	52.8
99.9	60.9	97.0	62.8
99.9	72.6	96.7	56.6
99.9	59.0	97.2	70.2
99.9	61.6	95.0	75.9
99.8	72.2	96.7	81.5
99.9	71.4	96.3	68.0
99.9	62.9	97.1	76.9
99.7	66.6	97.0	76.2
100.0	64.5	97.1	68.0
100.0	73.0	94.3	49.7
100.0	60.3	95.6	24.8
100.0	69.6	96.2	83.9
100.0	67.5	97.4	78.6
100.0	61.2	82.3	70.7
100.0	64.6	95.6	76.9
100.0	62.7	97.3	91.6
100.0	59.5	97.1	87.1
100.0	61.4	97.4	88.0
100.0	65.0	95.8	79.9
100.0	68.3	96.6	81.9
100.0	66.1	97.2	79.2
99.9	70.2	96.9	72.0
100.0	57.0	96.3	47.1
100.0	76.5	96.0	69.3
100.0	80.3	97.0	65.3
99.8	79.6	96.8	68.0
99.8	70.4	97.1	80.8
100.0	67.0	97.0	85.9
99.7	56.5	96.1	63.6
99.9	69.4	97.1	53.9
99.9	64.7	96.6	68.0
100.0	64.8	95.0	78.4

100.0	66.5	95.9	70.8
100.0	65.8	96.9	85.2
99.8	64.9	96.8	83.0
100.0	75.0	96.1	73.2
99.9	78.2	96.8	64.1
100.0	65.1	93.1	59.6
100.0	67.6	97.5	69.1
100.0	75.7	92.8	54.0
100.0	64.4	97.5	74.3
100.0	79.7	97.0	74.8
100.0	79.0	96.7	82.1
100.0	77.7	96.5	81.4
100.0	76.9	96.7	78.1
100.0	79.3	96.7	71.4
100.0	60.5	96.4	82.9
100.0	58.5	96.5	95.8
100.0	76.9	96.7	79.2
100.0	78.8	96.0	72.5
100.0	78.5	97.0	79.1
100.0	77.9	96.8	73.5
99.9	56.8	96.6	71.9

; ^danorthite number is molar 100×[Ca/(Ca+Na+K)]; ^cPlagioclase content from CIPW normalization, normalized to 100 vol% plagioclase + olivine + pyroxene.

			P					
clast	Sph1	Sph2-accret	t Sph2-main	Sph3	Sph5	Sph7	Sph9	Sph10
Lithology	spherule	spherule	spherule	spherule	spherule	spherule	spherule	spherule
Na	2780±192	2866 ±253	629 ±43	4341 ±300	4188 ±289	9403 ±831	11853 ±1047	3208 ±221
Κ	858 ±77	49 ±0.8	165±15	830 ±7 4	6020±537	9457±158	789±13	129±12
Sc	16.9 ±0.2	8.7 ±0.2	9.4 ±0.1	20.2 ±0.3	16.6 ±0.2	25.7 ±0.6	6±0.1	9.2 ±0.13
Ti	5345 ±8 5	1121 ±27	592±9	5536 ±88	5533 ±88	9985±243	638±16	1248±20
v	33.5 ±0.4	13.4 ±0.2	10.2 ±0.1	44.7 ±0.6	32.1±0.4	45.3 ±0.6	48.7 ±0.6	14.7 ±0.2
Cr	1253±22	391 ±14	303±5	1614 ±28	1081 ±19	1544 ±56	1438 ±52	503 ±9
Mn	859 ±0.5	605 ±7	1756 ±1	1197 ±0.7	809 ±0.4	1134 ±12	1972 ±22	441 ±0.2
Co	11.8±0.002	213.7±0.4	55.7±0.01	32.7±0.004	10.58±0.001	8.4 ±0.2	128 ±4	9.7 ±0.001
Ni	6.38±0.03	51.7 ±1.7	119 ±0.5	322 ±1.3	68 ±0.3	106 ±3	375±12	40±0.2
Cu	1.65±0.03	<2.63	2.11±0.03	14.7 ±0.2	1.62±0.02	7.5 ±0.2	10.6 ±0.3	1.89±0.03
Zn	1.64±0.07	<2.19	8.5 ±0.3	12.3 ±0.5	1.9 ±0.08	6.3 ±0.2	< 0.71	1.74 ±0.07
Ga	0.74 ±0.04	<1.76	< 0.37	4.3 ±0.3	3.55±0.19	6.6±0.5	7.1 ±0.5	3.5 ±0.2
Sr	138+3.8	257+9	133+4	397+11	134+4	290+10	41 1 +1 4	181+5
Y	188+12	5 2+0 3	2 53+0 16	151+10	183+12	289+15	2.06+0.11	6 6+0 4
Zr	757+24	16 7+0 7	3 82+0 12	432+14	824+26	1363+56	4 42+0 18	19 8+0 6
Nb	50±1.6	0.96±0.02	0.61±0.02	34.7±1.1	49.3±1.6	93±2	0.25±0.01	1.34±0.04
Ba	475±31	23.7±3.1	12.8±0.9	441 ±2 9	513±34	971±125	4.9±0.6	19.6±1.3
La	54±1.6	1.25±0.01	0.59±0.02	43.8±1.3	51.8±1.6	85.4±0.3	0.289±0.001	1.5±0.05
Ce	137 ±1	3.6±0.1	1.49±0.01	113 ±1	133 ±1	222 ± 6	0.96±0.03	3.66±0.03
Pr	19.3±0.2	0.43±0.01	0.171±0.00	15.3±0.1	18 ±0.2	30.3±0.9	0.108±0.003	0.51±0.005
Nd	84 ± 2	2.17±0.01	0.78±0.02	67.7 ±1.6	79 ±2	128 ±0.8	0.521±0.003	2.6±0.1
Sm	24.4±0.6	0.62±0.01	0.171±0.00	19.3±0.5	24±0.6	37.5±0.7	0.226±0.004	0.68±0.02
Eu	1 64+0 03	0 66+0 01	0 187+0 00	1 69+0 03	1 63+0 03	2 17+0 03	0 181+0 002	0 92+0 02
Gd	29.2±2.1	0.73±0.04	0.27±0.02	22.6±1.6	28 ±2	43.8±2.6	0.24±0.01	0.95±0.07
Tb	5±0.3	0.16±0.01	0.045±0.00	4.04±0.26	4.9±0.3	7.6±0.3	0.049±0.002	0.16±0.01
Dy	33.4±1.1	0.66±0.02	0.39±0.01	26.4±0.8	32.8±1	50.6±1.4	0.46±0.01	1.32±0.04
Но	6.9 ±0.4	0.18±0.01	0.087±0.00	5.6 ±0.3	6.7 ±0.4	11 ±0.3	0.071±0.002	0.27±0.02
Er	20.5±0.5	0.76±0.01	0.27±0.01	16.6 ±0.4	19.7 ±0.5	31.3 ±0.5	0.236±0.004	0.7 ±0.02
Tm	3±0.1	0.111±0.00	0.05±0.002	2.44±0.08	2.88±0.09	4.54±0.09	0.039±0.001	0.099±0.003
Yb	18.5 ±0.2	0.6±0.01	0.4 ±0.01	15.6 ±0.2	18.6 ±0.2	29.4 ±0.7	0.275±0.006	0.76±0.01
Lu	2.58±0.11	0.09±0.01	0.068±0.00	2.2 ±0.1	2.6±0.1	4.28±0.32	0.034±0.003	0.099±0.004
Hf	18.3 ±1.3	0.3±0.01	0.12±0.01	11.6 ±0.8	20.2±1.5	30.7 ±1.3	0.162±0.01	0.51±0.04
Та	2.2±0.03	0.054±0.00	0.016±0.00	1.42 ±0.02	2.22±0.03	3.72±0.13	0.03±0.001	0.081±0.001
Pb	2.2 ±0.3	0.47±0.01	0.83±0.11	1.92 ±0.25	2.34±0.31	5.17 ±0.16	0.033±0.001	0.18±0.02
Th	10.6 ±1.2	0.16 ±0.01	0.08±0.01	6.36 ±0.69	n.d.	17.3 ±1.4	0.038±0.003	0.21±0.02
beam Ø	90	50	90	90	9()	50	50 90
[μm]				~			1	1 .
n analyses	1	1	1	3]	l	1	1 l

Table 6. LA-ICP-MS trace element compositions of Shişr 161 clasts.

All concentrations in ppm; 1-sigma errors given as relative standard deviations of the average of repeated analyses of USGS standard BIR-1

160	8	18	23	27	36	43	50	63	74
mono-crystalline	crystallized melt	crystallized melt	crystallized melt	crystallized melt	crystallized melt	crystallized melt	crystallized melt	crystallized melt	crystallized melt
29822 ±2850	2729 ±261	2233 ±213	1986 ±190	1771 ±169	2145 ±205	1976 ±189	2883 ±276	2590 ±248	1724 ±165
2226±600	90±24	143±39	111±30	49.2±13.3	84±23	86±23	139±38	235±63	152±41
0.51±0.02	17.8 ±0.7	16.1 ±0.6	35.7 ±1.4	6.8 ±0.3	11.8 ±0.5	9.2 ±0.4	9.2 ±0.4	41 ±1.6	43.2 ±1.7
499±2	1192±6	2012±10	1999±10	745±4	1142±5	995±5	1087±5	3207±15	3779±18
4.18 ±0.04	36.5 ±0.4	40.7 ±0.4	134 ±1	17.4 ±0.2	27.5 ±0.3	21.5 ±0.2	22.5 ±0.2	83 ± 1	75 ±1
13.3±0.4	1004 ±33	1158 ±38	2667 ±88	580±19	955 ±31	580 ±19	666 ±22	1515 ±50	2081 ±68
313 ±1	1468 ±3	836 ±2	1506 ±3	472 ±1	491 ±1	557 ±1	522±1	1763 ±4	1389 ±3
1.05±0.02	35.1 ±0.5	17.3 ±0.3	21.3±0.3	14.1 ±0.2	10.5±0.2	18.1 ±0.3	10.6±0.2	18 ±0.3	24.5±0.4
9.3 ±0.1	63.9 ±0.7	89±1	7.8 ±0.1	32.3±0.4	32 ±0.4	87 ±1	54 ±1	20.1±0.2	140 ±2
< 0.87	2.44 ±0.05	3.46±0.07	2.44±0.05	2.62±0.05	2.31±0.05	3 ±0.1	2.5 ±0.1	3.15±0.06	5.3±0.1
3.4 ±0.1	5.74 ±0.12	5.3 ±0.1	2.55 ±0.05	3.22±0.07	2.68 ±0.06	4.1 ±0.1	3.1±0.1	4.8 ±0.1	8.3±0.2
15.5 ±0.9	2.75 ±0.15	2.55±0.14	2.08±0.11	2.06±0.11	2.23 ±0.12	2.21 ±0.12	2.82±0.15	3 ±0.2	2.05±0.11
940 ± 35	184 ±7	428 ± 16	114 ±4	132 ±5	134 ±5	132 ±5	184 ±7	150 ±6	136 ±5
4.94±0.04	11.1 ±0.1	9.1 ±0.1	6.8 ±0.1	3.34±0.03	5.5 ±0.1	4.42 ±0.04	6.1 ±0.1	17.1 ±0.1	26.2±0.2
0.8±0.03	18.6±0.7	26.7±1	13.8±0.5	8.7±0.3	11.8±0.4	11.9±0.4	19.9±0.7	14.2±0.5	75±3
0.01±0.004	0.54 ±0.02	1.6 ±0.1	0.63±0.03	0.31±0.01	0.61±0.03	0.56±0.03	1.9 ±0.1	1.6 ±0.1	2 ±0.1
1741±113	29.3±1.9	99±6	17.2±1.1	14.8±1	12±1	40.3±2.6	21.4±1.4	28.1±1.8	20.4±1.3
12.9 ±0.1	2.64 ±0.02	1.77 ±0.01	0.88±0.01	0.64±0.01	0.8 ±0.01	0.62±0.01	1.3 ±0.01	1.47 ±0.01	1.65±0.01
23.7 ±0.3	6.94 ±0.08	4.98 ±0.06	2.29±0.03	1.73 ±0.02	2.19 ±0.02	1.69 ±0.02	3.34±0.04	4.5 ±0.1	6.39±0.07
2.77±0.12	1.00 ±0.04	0.73 ±0.03	0.33±0.01	0.25±0.01	0.32±0.01	0.26±0.01	0.46 ± 0.02	0.68±0.03	1.15 ±0.05
10±0.1	4.7±0.1	3.31±0.05	1.55±0.02	1.11±0.02	1.6±0.02	1.22±0.02	2.13±0.03	3.6±0.1	6.72±0.09
2.29±0.02	1.35±0.01	1.04±0.01	0.54±0.01	0.36±0.004	0.6±0.01	0.47±0.01	0.73±0.01	1.3±0.01	2.8±0.03
6.36±0.04	0.8±0.01	0.71±0.004	0.414±0.002	0.609±0.004	0.557±0.00	0.528±0.003	0.80±0.01	0.67±0.004	0.45±0.003
1.54 ±0.02	1.71 ±0.03	1.33 ±0.02	0.74 ±0.01	0.51±0.01	0.71±0.01	0.63±0.01	0.79±0.01	1.91±0.01	3.69±0.06
0.214±0.003	0.3±0.004	0.24±0.004	0.138±0.002	0.01 ± 0.001	0.135±0.002	0.106±0.002	0.138±0.00	0.37±0.01	0.68±0.01
1.04±0.01	1.86 ±0.01	1.58 ±0.01	1.03±0.01	0.56 ± 0.004	1.02±0.01	0.76±0.01	1.02±0.02	2.79 ±0.02	4.72 ±0.04
0.192±0.002	0.422±0.005	0.35±0.004	0.24±0.003	0.134±0.001	0.205±0.002	0.168±0.002	0.247±0.00	0.6 ±0.01	0.97±0.01
0.38±0.01	1.30 ±0.03	1.00±0.02	0.75±0.02	0.37±0.01	0.58±0.01	0.51±0.01	0.68±0.02	1.94±0.04	2.87±0.06
0.056±0.001	0.20±0.004	0.16±0.004	0.126±0.003	0.05±0.001	0.09 ± 0.002	0.066±0.001	0.1 ± 0.002	0.3±0.01	0.41±0.01
0.33±0.01	1.3 ±0.04	1.04 ±0.04	0.91±0.03	0.35±0.01	0.6±0.02	0.47 ±0.02	0.74 ±0.03	2 ±0.1	2.6±0.1
0.03±0.001	0.18±0.004	0.15±0.003	0.13±0.003	0.054±0.00	10.083±0.002	0.064±0.001	0.093±0.00	0.28±0.01	0.35±0.01
0.031±0.002	0.55 ±0.03	0.74 ±0.04	0.39±0.02	0.24±0.01	0.3±0.02	0.32±0.02	0.58 ± 0.03	0.58±0.03	1.9 ±0.1
< 0.00095	0.05±0.0001	0.086 ± 0.0003	0.035 ± 0.0001	0.02±0.0001	0.042±0.000	0.032±0.0001	0.101±0.00	0.073±0.00	$0.107 {\pm} \textbf{0.00}$
0.55±0.001	0.37±0.001	0.45±0.001	0.185±0.001	0.584±0.002	20.086±0.000	0.114±0.0003	0.155±0.00	0.143±0.00	0.33 ± 0.001
< 0.0153	0.43 ±0.04	0.42±0.04	0.102±0.009	0.09±0.01	0.11±0.01	0.11±0.01	0.26±0.02	0.32±0.03	0.55 ±0.05
90	90	90	90	90	90	90	90	90	90
1	6	5	4	5	3	3	3	4	3

; ^a MR-modaly recombined values, relative standard deviations of measurements on BIR-1 given as 3-sigma errors to reflect reltaively higher uncerta

118	156	2	6	53	59	81	34	5 ^a	54 ^a
crystallized melt	crystallized melt	vitrophyre melt	vitrophyre melt	vitrophyre melt	vitrophyre melt	vitrophyre melt	Mg-cumulate	Mg-cumulate	Mg-cumulate
2891 ±276	2508 ±240	2117 ±202	3073 ±294	2229 ±213	1882 ±180	2257 ±216	1860 ±164	2750 ±729	2412 ±639
159±43	137±37	174±47	136±37	142±38	69±19	114±31	143±2	59±3	43±2.1
21.7 ±0.8	47.2 ±1.8	18.2 ±0.7	8.7 ±0.3	24.8±1	5.3 ±0.2	23.6±0.9	25 ±0.6	8.5 ±0.6	6.3±0.5
2386±11	4601±22	1781±9	1237±6	2502±12	800±4	2208±11	2900±71	961±70	699±51
34.5 ±0.4	93.3±1	49.3 ±0.5	16.5 ±0.2	72 ±1	13.6 ±0.1	60.4 ±0.6	67 ±0.9	20.8 ±0.8	24.1 ±1
748 ±25	2283 ±75	1288 ±42	530 ±17	1761 ±58	472 ±16	1565 ±51	1802 ±66	1007 ±110	749 ±82
821 ±2	891 ±2	790 ±2	439 ±1	1194 ±2	389±1	990 ±2	1408 ±15	365 ±12	379 ±12
14.4 ±0.2	9.7 ±0.1	17.9 ±0.3	10.8±0.2	24.7 ±0.4	13.9 ±0.2	18.1 ±0.3	29 ±0.8	8 ±0.7	7.6 ±0.7
63 ± 1	12.7 ±0.1	62.5 ±0.7	63.3 ±0.7	53.5 ±0.6	58.2±0.7	42.2 ±0.5	60 ±2	43 ±4.2	16.3 ±1.6
3.2±0.1	1.08±0.02	3.6±0.1	2.74±0.05	4.22 ±0.1	1.47±0.03	3.5 ±0.1	3 ±0.1	3.32±0.28	3.1 ±0.3
3.4 ±0.1	4.4 ±0.1	4.1 ±0.1	1.77 ±0.04	4.1 ±0.1	1.39 ±0.03	3.4 ±0.1	11 ±0.3	4.62 ±0.4	4.5 ±0.4
3.1 ±0.2	2.66±0.15	2.24 ±0.12	4.37 ±0.24	2.58 ±0.14	1.8 ±0.1	2.9 ±0.2	2±0.1	3.32±0.68	2.7 ±0.6
199 ±7	1061 ±39	164 ±6	163 ±6	160 ±6	181 ±7	121 ±4	182 ±6	596 ±61	180 ±18
10.1 ±0.1	35.3 ±0.3	6.5 ±0.1	9.4 ±0.1	8.2±0.1	3.87±0.03	8.4 ±0.1	9.9±0.5	3.5±0.5	3.3±0.5
25.2±0.9	103±4	13.5±0.5	34.2±1.3	16.5±0.6	11.9±0.4	17.4±0.7	26±1.1	8.7±1.1	13±1.6
1.9 ±0.1	0.48 ±0.02	0.68 ±0.03	2.02±0.09	0.86±0.04	0.69±0.03	0.83±0.04	0.46±0.01	0.28±0.02	0.44±0.03
28.3±1.8	62±4	18.5±1.2	29.8±1.9	16.8±1.1	16.3±1.1	14±10.9	23±3	23.8±9.2	16.7±6.5
1.21±0.01	1.66±0.01	0.77±0.01	2.37±0.02	0.88±0.01	0.91±0.01	0.97±0.01	0.54±0.002	0.8±0.01	0.81±0.01
3.36±0.04	6.8 ±0.1	1.98 ±0.02	5.9 ±0.1	2.39±0.03	2.29 ±0.03	2.4±0.03	1.86 ±0.05	2.16 ±0.18	2.31±0.19
0.49 ±0.02	1.39 ±0.06	0.3±0.01	0.85±0.04	0.37±0.02	0.31±0.01	0.35 ±0.02	0.31±0.01	0.3 ±0.03	0.32±0.03
2.57±0.04	8.3±0.1	1.51±0.02	3.85±0.05	1.81±0.03	1.52±0.02	1.92±0.03	1.7±0.01	1.33±0.03	1.53±0.03
0.92±0.01	3.65±0.04	0.47±0.01	1.11±0.01	0.58±0.01	0.4±0.004	0.55±0.01	0.72±0.01	0.42±0.02	0.43±0.02
0.81±0.01	0.66±0.004	0.533±0.00	0.84±0.01	0.585±0.00	0.94±0.01	0.62±0.004	0.49±0.01	0.75±0.03	0.63±0.03
1.2±0.02	5.2±0.1	0.77±0.01	1.4±0.02	0.93±0.01	0.5±0.01	1±0.02	1.1±0.07	0.57±0.1	0.59±0.11
0.24±0.004	0.99±0.02	0.148±0.00	0.261±0.00	0.18±0.003	0.1±0.002	0.16±0.002	0.2±0.01	0.1±0.01	0.09±0.01
1.63±0.01	6.5 ±0.05	1.06±0.01	1.77 ±0.01	1.31±0.01	0.69±0.01	1.34 ±0.01	1.6±0.05	0.64±0.06	0.68±0.06
0.35±0.004	1.31±0.01	0.234±0.00	0.37 ± 0.004	0.29 ± 0.003	0.14±0.002	0.31±0.003	0.36±0.01	0.15 ±0.01	0.14 ±0.01
1.17±0.03	3.8±0.1	0.73±0.02	1.13±0.03	0.97±0.02	0.37±0.01	0.98±0.02	1.16±0.02	0.46±0.02	0.43±0.02
0.17±0.004	0.49 ±0.01	0.109±0.00	0.168±0.00	0.14±0.003	0.06 ± 0.001	0.14 ±0.003	0.18 ±0.004	0.07±0.004	0.06±0.004
1.11 ±0.04	3.08±0.12	0.8±0.03	0.99±0.04	0.98 ±0.04	0.45 ±0.02	0.96±0.04	1.2 ±0.03	0.46 ±0.03	0.35±0.02
0.18±0.004	0.43±0.01	0.116±0.00	0.141±0.00	0.16±0.004	0.06±0.001	0.16±0.004	0.2±0.02	0.08±0.02	0.06±0.01
0.69±0.04	2.61±0.15	0.4±0.02	0.85±0.05	0.5±0.03	0.29±0.02	0.51±0.03	0.66±0.03	0.3±0.04	0.38±0.05
0.128±0.00	0.02±0.000	0.036±0.00	0.01±0.000	0.046±0.00	0.04±0.000	0.07 ± 0.0002	0.05±0.002	0.04±0.004	0.05±0.01
0.173±0.00	0.25±0.001	0.29±0.001	0.156±0.00	0.14±0.000	0.11±0.000	0.07 ± 0.0002	0.28±0.01	0.14 ±0.01	0.14±0.01
0.25±0.02	0.34±0.03	0.10±0.01	0.41 ±0.04	0.11 ±0.01	0.14±0.01	0.13±0.01	0.17±0.014	0.07±0.017	0.1±0.02
90	90	90	90	90	90	90	50	50	50
3	2	3	3	.3	3	2	5	^a MR	^a MR

ainty; n.d.-not detected.

26^a

Fe-cumulate 2567**±680** 146±7 21**±1.5** 5725±418 34**±1.4** 1777±194 803**±26** 7.2±0.6 10.1±1 3±0.3 4.2**±0.4** 1.71±0.35 460**±**47 8.8 ± 1.4 11.2±1.4 0.09 ± 0.01 102±39 0.36±0.004 1.3±0.11 0.21 ± 0.02 1.29±0.02 0.58±0.03 0.61 ± 0.03 1.02±0.18 0.21±0.02 1.4±0.1 0.33±0.03 1.12±0.05 0.17 ± 0.01 1.19±0.08 0.18±0.04 0.3±0.04 0.023±0.002 0.54±0.05 0.04 ± 0.01 50

^aMR

Table 7. Equilibrium crystallization MELTS modeling results. Model inputs

FC %		CN 9/	oliv	vine		low-Ca pyroxene			
	DU 70	UN /0	Mg#	wt%	En	Fs	Wo	Mg#	
100	0	0	70	4.9	62	25	14	71	
95	5	0	75	9.2	65	22	13	75	
90	10	0	77	13.8	67	20	13	77	
85	15	0	80	17.9	69	19	11	78	
95	0	5	70	5.1	61	25	14	71	
90	0	10	69	4.6	61	25	14	71	
85	0	15	69	3.9	61	25	14	71	
34	33	33	82	32.3	70	18	13	80	
Shişr 161 Mg-cumulates		74-79	5-19	74-79	17-21	2-5	78-82		
Shişr 161	Fe-cumulates		46-56	1-8	47-57	38-43	5-15	53-60	

FC is the average composition of the feldspathic upper crust based on lunar meteorites after Korotev et al. (2003), DU is dunite 72415 (Gast (

	Modelin	g outputs									
		ł	nigh-Ca pyroxen	ie		feld	spar	final T °C 1130 1140 1140 1130 1130 1130 1130 1130			
wt%	En	Fs	Wo	Mg#	wt%	An	wt%	°C			
14.8	47	15	38	77	1.6	96	77.3	1130			
14.5	48	13	39	80	1.5	96	73.9	1140			
11.1	50	12	39	82	3	96	71	1140			
12.6	49	10	41	83	2.1	96	66.5	1130			
15.7	47	15	38	76	2.8	95	75.1	1130			
18.4	47	15	38	76	2.5	95	73.1	1130			
20.9	47	15	38	76	3.1	95	70.6	1130			
21	53	11	37	84	6	90	38.7	1160			
5-22	47-50	7-10	41-45	83-87	0-8	95-98	66-77	n.a.			
1-14	39-47	17-27	30-42	59-72	3-19	95-97	65-94	n.a.			

et al. 1973), GN is gabbronorite 61224,6 (Marvin and Warren 1980); residual is the remaining liquid at the final temperature; Mg# is molar (N

residual wt%

0.72

0.72

0.77

0.19

0.88

0.96

0.89

0.86

n.a.

n.a.

 $\label{eq:main_star} \label{eq:main_star} \ensuremath{\texttt{Mg/(Mg+Fe})}\xspace \ensuremath{\texttt{Nig/(Mg+Fe})}\xspace \ensure$

ar (Ca/(Ca+Na+K))×100; n.a. is not applicable; bold face fonts indicate values fall within the range observed in Shişr 161 magnesian cumulat

e clasts. Spinel is an accessory in all model runs with compositions and abundances that do not match observed values in Shişr 161 magnesia

n cumulate clasts.

Table 8. Fractional crystallization MELTS modeling results.

Model input	5	·	Spinel anorthosite 1390-1250°C	Anorthositic troctolite 1260-1190°C	Spinel gabbronorite 1190-1020°C	(Olivine) norite 1040-980°C
FC100	mafic phases	wt%	0.45	7.7	11	0.7
FC100	plagioclase	wt%	52.7	16.7	7	0.4
FC100	avg. ρ liquid	g/cm ³	2.69	2.74	2.77	2.64
FC ₉₅ DU ₅	mafic phases	wt%	0.8	11.6	10.1	1.4
FC ₉₅ DU ₅	plagioclase	wt%	39	26.3	6.7	0.8
FC ₉₅ DU ₅	avg. ρ liquid	g/cm ³	2.69	2.74	2.76	2.64
$FC_{90}DU_{10}$	mafic phases	wt%	1	14.8	11.8	0.7
$FC_{90}DU_{10}$	plagioclase	wt%	24.2	36.2	7.9	0.4
$FC_{90}DU_{10}$	avg. ρ liquid	g/cm ³	2.69	2.73	2.76	2.68
FC ₈₅ DU ₁₅	mafic phases	wt%	1.7	18.1	12.9	0.4
FC ₈₅ DU ₁₅	plagioclase	wt%	11.4	43.8	8.4	0.3
FC ₈₅ DU ₁₅	avg. ρ liquid	g/cm ³	2.70	2.72	2.74	2.64
FC ₉₅ GN ₅	mafic phases	wt%	0.8	11.6	10.1	1.4
FC ₉₅ GN ₅	plagioclase	wt%	39	26.3	6.7	0.8
FC ₉₅ GN ₅	avg. ρ liquid	g/cm ³	2.69	2.74	2.76	2.64
FC90GN10	mafic phases	wt%	0.4	7.6	13.9	1.8
FC90GN10	plagioclase	wt%	45.3	17.5	9.7	0.8
FC90GN10	avg. ρ liquid	g/cm ³	2.69	2.74	2.77	2.67
FC85GN15	mafic phases	wt%	0.3	7.8	17.3	1
FC85GN15	plagioclase	wt%	41.5	18.1	11.4	2.53
FC ₈₅ GN ₁₅	avg. ρ liquid	g/cm ³	2.69	2.73	2.72	2.51
$FC_{34}DU_{33}GN_{33}$	mafic phases	wt%	0.6*	35.4^{\dagger}	18.9 [#]	1.8
FC34DU33 GN33	plagioclase	wt%	_	24.5 [§]	12.9	0.8
FC34DU33 GN33	avg. ρ liquid	g/cm ³	2.72	2.72	2.76	2.66

Data shows wt% of each phase present at the end of the indicated temperature intervals and the densities of the residual melt at that point. Te

emperature ranges vary ~10-30°C for the different melt compositions, except where indicated. *T range is 1400-1250 °C; [†]T range is 1450-12

200 °C; [§]T range is 1240-1200 °C; [#]T range is 1190-1050 °C; note that the main mass of plagioclase has a density of 2.70 g/cm³, except in F

 $C_{34}DU_{33}GN_{33}$, where it has a density of 2.69 g/cm³; 3.3 to 4.7 wt% liquid remained after the model runs stopped at ~1000°C.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4837

3/12

3/12

