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Abstract – Water is dissolved in silicate glasses and melts as hydroxyl groups 15 

and molecular water, with mostly hydroxyl groups at low water contents and 16 

mostly molecular water at high water contents. However, we recently predicted 17 

that water will be dissociated nearly completely in potassium aluminosilicate 18 

glasses with more alumina than silica because of the strong aluminum avoidance 19 

and the strong tendency for Al-O-Al linkages to hydrolyze in such glasses. In the 20 

present study, I test this prediction on hydrous K2Al2SiO6 glasses: the Raman and 21 

infrared absorption spectra show that water is indeed predominantly present as 22 

hydroxyl groups, even for glasses with more than 7 wt% water. This observation 23 

validates the previously proposed speciation reactions, demonstrates that 24 

variations in water speciation are related to the nature of the cations to which the 25 

hydroxyl groups are bonded, and indicates that the classical picture of water 26 

dissolution, with predominantly molecular water at high water contents, may not 27 

apply near compositional extremes.  28 

 29 

Key words – Potassium aluminosilicate glasses; Raman spectroscopy; Infrared 30 

absorption spectroscopy; Water speciation; Aluminum avoidance.  31 
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INTRODUCTION 32 

 33 

It has been known for nearly half a century that water is dissolved in silicate melts and 34 

glasses as hydroxyl groups (OH) and molecular water (H2Omol) (Eq. 1) (Scholze, 1966; Stolper, 35 

1982a, b).  36 

 37 

O2- + H2Omol = 2 OH- with K1=[OH-]2/([O2-].[H2Omol])     (Eq. 1) 38 

 39 

Since these pioneering studies, a large experimental effort has been devoted to quantify 40 

the OH/H2Omol speciation as a function of composition and temperature with Fourier transform 41 

infrared (FTIR) spectroscopy (Behrens and Muller, 1995; Behrens and Nowak, 2003; Behrens et 42 

al., 1996; Behrens and Yamashita, 2008; Malfait, 2009; Nowak and Behrens, 1995, 2001; Shen 43 

and Keppler, 1995; Silver and Stolper, 1989; Silver et al., 1990; Stolper, 1982a, b) and nuclear 44 

magnetic resonance (NMR) spectroscopy (Schmidt et al., 2001). As a result, the OH/H2Omol 45 

speciation of magmatic glasses and melts is now relatively well known.   46 

 47 

The nature of the hydroxyl groups has also been investigated. In Al-free silicate glasses, 48 

hydroxyl groups are mostly present as silanol groups (Si-OH), with additional free hydroxide 49 

(M-OH), i.e. hydroxyls that are ionically bonded to network modifiers (M, e.g. Mg, Ca), for 50 

highly depolymerized compositions (Farnan et al., 1987; Kummerlen et al., 1992; Xue and 51 

Kanzaki, 2004; Zotov and Keppler, 1998). The amount of free hydroxide decreases with 52 

increasing degree of polymerization and decreasing cationic field strength of the network-53 

modifying or charge-balancing cations (Xue and Kanzaki, 2004, 2008). Thus, no significant 54 
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amounts of free hydroxyls are expected for metaluminous alkali aluminosilicate glasses. For 55 

Al-bearing glasses, initial NMR data were interpreted to indicate the absence of significant Si-56 

OH and Al-OH groups (Kohn et al., 1989; Kohn et al., 1994). However, subsequent NMR and 57 

infrared spectroscopic studies demonstrated that water is dissolved in aluminosilicate glasses as 58 

Si-OH, Al-OH in addition to M-OH for more depolymerized compositions (Malfait and Xue, 59 

2010a, b; Sykes and Kubicki, 1993, 1994; Xue and Kanzaki, 2009; Xue, 2009; Xue and Kanzaki, 60 

2006, 2007, 2008; Zeng et al., 1999, 2000).  61 

 62 

Recently, we have quantified the Si-OH and Al-OH abundances of nominally fully 63 

polymerized sodium and potassium aluminosilicate glasses with 1H, 27Al-1H and 1H-29Si-1H 64 

NMR spectroscopy (Malfait and Xue, submitted; Malfait and Xue, 2010a, b). The derived 65 

concentrations enabled us to constrain the equilibrium constants (K2-K5) for the aluminum 66 

avoidance reaction (Eq. 2) (Loewenstein, 1954; Tossel, 1993) and the different hydrolysis 67 

reactions (Eqs. 3-5).  68 

 69 

Si-O-Si + Al-O-Al = 2 Si-O-Al with K2=[Si-O-Al]2/[Si-O-Si].[Al-O-Al]   (Eq. 2) 70 

Si-O-Si + H2O = 2 Si-OH with K3=[Si-OH]2/[Si-O-Si].[H2O]    (Eq. 3) 71 

Si-O-Al + H2O = Si-OH + Al-OH with K4=[Si-OH].[Al-OH]/[Si-O-Al].[H2O]  (Eq. 4) 72 

Al-O-Al + H2O = 2 Al-OH with K5=[Al-OH]2/[Al-O-Al].[H2O]    (Eq. 5) 73 

 74 

One of the striking results of the study on potassium aluminosilicate glasses was the 75 

strong aluminum avoidance (K2=1340) compared to sodium aluminosilicate glasses 76 

(K2=50). Please note that this observation is not incompatible with the possible occurrence 77 
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of Al rich regions in orthoclase melts (Le Losq and Neuville, 2013; Rammensee and Fraser, 78 

1982), because the proposed Al/(Al+Si) ratio of these regions (~0.33) is low enough to easily 79 

accommodate a strong Al avoidance through the rearrangement of the next-nearest-80 

neighbors. The strong aluminum avoidance for potassium aluminosilicate glasses drives the 81 

hydrolysis of Al-O-Al linkages (K5=27) upon the addition of water. For dry glasses with 82 

Al/(Al+Si)<0.5, Al-O-Al linkages can be avoided through rearrangement of the next-nearest-83 

neighbors of Al, but for samples with higher Al contents, significant amounts of Al-O-Al must 84 

be present. As a result, most of the water added to such glasses will be consumed to hydrolyze 85 

the Al-O-Al bridges. Indeed, even at high water contents, little H2Omol is predicted to be present 86 

in these glasses (Fig. 1), resulting in very large OH/H2Omol ratios and values for K1=[OH-]2/([O2-87 

].[H2Omol]).  88 

 89 

In this study, I test the predictions made by the speciation model derived from 1H and 90 

27Al-1H NMR data (Eqs. 2-5) by verifying one of its most striking predictions: the nearly full 91 

dissociation of water in glasses for Al/(Al+Si)>0.5, even at high water content. For this, I 92 

synthesized K2Al2SiO6 glasses (Al/(Al+Si)=0.67) with nominally 5 and 8 wt% water and 93 

determined the water speciation by Raman and FTIR spectroscopy. The spectra of the 94 

hydrous K2Al2SiO6 glasses indicate that the concentration of H2Omol is indeed much lower 95 

compared to conventional compositions. This observation validates the results and methodology 96 

by Malfait and Xue (2010, subm.) and illustrates the strong effect of aluminum avoidance on 97 

water speciation. 98 

 99 

EXPERIMENTAL METHODS 100 
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 101 

The synthesis of a dry K2Al2SiO6 glass as starting material is extremely challenging due 102 

to the excessively high, still unknown, liquidus temperature (> 2000 K) for this composition 103 

(Schairer and Bowen, 1947). In order to synthesize the hydrous glasses, mixtures of K2CO3, 104 

Al2O3 and SiO2 were decarbonated and sintered overnight at 1073 K and welded in Pt capsules 105 

with de-ionized water. Synthesis experiments were performed in an end-loaded piston cylinder 106 

apparatus (Boyd and England, 1960) with a talc-silica glass-MgO assembly at 0.7 GPa and 1923 107 

K for 30 and 60 minutes for nominal water contents of 5 and 8 wt%, respectively. The melts 108 

were quenched to glasses by switching of the power to the graphite furnace (quench rate ~150 109 

K/s). The composition and homogeneity of the glasses was verified by electron microprobe 110 

analysis (JEOL, JXA-8200)  with an acceleration voltage of 15 kV, using a large spot size (30 111 

µm) and low beam current (2 nA) to avoid the migration of potassium under the electron beam 112 

(Table 1). Natural orthoclase was used as a standard for all elements. Within analytical 113 

uncertainty, the compositions were found to be identical to the target composition. The 114 

K2Al2SiO6-5 sample contains euhedral crystals (~20-50 µm) of K2Al2SiO6, indicating that the 115 

liquidus temperature is above 1923 K for 5 wt% water, but the glass phase was otherwise 116 

homogenous. The K2Al2SiO6-8 sample was completely glassy and homogenous. The difficulty 117 

of preparing carbonate free glasses with very high K2O content has been reported before 118 

(Bourgue and Richet, 2001; Malfait et al., 2007). Indeed, the Raman spectra contain a 119 

strong, relatively sharp band near 1050 cm-1 and a very weak, broad band near 1420 cm-1 120 

(Fig. 2). Similar bands at the same positions were observed for carbonate-bearing 121 

potassium silicate glasses (Bourgue and Richet, 2001). The carbonate content cannot be 122 

robustly quantified from the Raman spectra because our unusual glass composition lies far 123 
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outside the calibration ranges for existing quantification models (Morizet et al., 2013). 124 

Nevertheless, a comparison of the intensity of the 1050 cm-1 band in the Raman spectra our 125 

glasses to the spectra of Bourgue and Richet (2001) indicates a carbonate content on the 126 

order of 2.1 and 0.8 wt% (CO2 equivalents) in the K2Al2SiO6-5 and the K2Al2SiO6-8 glass, 127 

respectively. Note that these estimates may be off by as much as a factor of two due to 128 

differences in glass composition between our potassium aluminosilicate glasses and the 129 

aluminum-free glasses studied by Bourgue and Richet.   130 

 131 

The Raman spectra were collected with a LabRam Raman spectrometer, equipped with 132 

an external Argon laser (514 nm, 6 mW measured at the sample surface). The infrared absorption 133 

spectra were collected on double polished sections (540 µm thick) with a Bruker Hyperion 3000 134 

microscope connected to a Vertex 70 interferometer. Spectra were collected on three spots per 135 

section with a spectral resolution of 4 cm-1. In order to compare the Raman and infrared 136 

absorption spectra of the K2Al2SiO6 glasses to those of a sample with a more typical OH/H2Omol 137 

speciation, the infrared and Raman spectra of a hydrous haplogranitic sample with similar water 138 

content (Malfait et al., 2014) were also measured.  139 

 140 

RESULTS AND DISCUSSION 141 

  142 

The Raman spectrum of the haplogranitic glass (Fig. 2) displays two major bands related 143 

to vibrations of hydrous species: a strong, broad band for the fundamental O-H stretching 144 

vibration near 3600 cm-1 and a weaker, narrower band for the fundamental H-O-H bending 145 

vibration near 1600 cm-1. The former band contains signal from both OH and H2Omol, the latter 146 
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from H2Omol only. The band near 1600 cm-1 is within the noise for the spectra of the K2Al2SiO6 147 

glasses. This suggests, at least qualitatively, that the concentration of H2Omol is low in these 148 

glasses. The contrasting behavior between the haplogranitic and K2Al2SiO6 glasses is confirmed 149 

by the FTIR spectra (Fig. 3): the overtone related to H2Omol near 5200 cm-1 is much stronger than 150 

the overtone related to OH near 4500 cm-1 in the haplogranitic glass, but this is reversed for the 151 

K2Al2SiO6 glasses. Unfortunately, the range in water content for which K2Al2SiO6 glasses can be 152 

synthesized is relatively narrow: at water contents up to at least 5 wt%, the liquidus temperature 153 

exceeds the melting temperature of the Pt capsules and at water contents above 8 wt%, the melts 154 

cannot be quenched to a glass. As a result, it was not possible to synthesize a set of samples with 155 

a range of OH/H2Omol ratios and to determine the molar absorption coefficients for the 4500 and 156 

5200 cm-1 bands from an internally consistent calibration.  157 

 158 

The band near 3600 cm-1 has a more pronounced tail to lower wavenumbers for the 159 

K2Al2SiO6 glasses compared to the haplogranitic glass (Fig. 2). In a seminal paper, 160 

Libowitzky (1999) demonstrated that the frequency of the O-H stretching vibrations 161 

correlates with the hydrogen bond strength. Thus, Raman and infrared absorption bands 162 

at lower wavenumbers indicate strong hydrogen bonding and short OH˙˙˙O lengths. 163 

Because water-rich glasses typically display both high degrees of hydrogen bonding and 164 

high H2Omol contents, the correlation between hydrogen bonding and O-H stretching 165 

frequency (Libowitzky, 1999) produces a secondary correlation between the O-H stretching 166 

frequency and water speciation. Several studies tried to use this secondary correlation to 167 

derive OH/H2Omol speciation data from the Raman spectra of hydrous glasses, with 168 

variable success (Behrens et al., 2006; Chabiron et al., 2004; Le Losq et al., 2013; Zajacz et 169 
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al., 2005). It is important to note that, despite the secondary correlation between the O-H 170 

stretching frequency and water speciation, the presence of Raman signal at relatively low 171 

wavenumbers does not a priori imply the presence of molecular water. In fact, there are 172 

numerous minerals that contain hydroxyl groups with O-H stretching vibrations far below 173 

3600 cm-1 (Behrens and Muller, 1995; Libowitzky, 1999). 174 

 175 

In summary, both the Raman (Fig. 2) and infrared absorption (Fig. 3) spectroscopic data 176 

provide strong evidence for the predominance of OH over H2Omol in the K2Al2SiO6 glasses. 177 

Thus, the vibrational spectroscopic data confirm the prediction of the OH/H2Omol speciation 178 

based on NMR spectroscopic data on samples with lower Al contents (Fig. 1) and validate the 179 

analytical procedure and speciation model (Malfait and Xue, submitted; Malfait and Xue, 2010a, 180 

b) with independent methods.  181 

 182 

IMPLICATIONS 183 

 184 

The strong dissociation of water in the K2Al2SiO6 glasses is directly related to the 185 

instability of the Al-O-Al linkages associated with the strong aluminum avoidance in potassium 186 

aluminosilicate glasses, evidenced by high equilibrium constants for reactions 2 and 5. The 187 

strong tendency for Al-O-Al linkages to hydrolyze compared to other oxygen bridges has 188 

also been observed for zeolite materials (Stebbins et al., 1999). The potassium aluminosilicate 189 

glasses provide a model system where the strong variation of the OH/H2Omol speciation can be 190 

rationalized in terms of the nature of the cations to which the hydroxyl groups are bonded. Future 191 

work on the nature of the cations to which the hydroxyl groups are covalently (e.g. Si4+, Al3+) or 192 
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ionically (e.g. Mg2+, Ca2+) bonded may help to rationalize, and ultimately predict, the 193 

compositional variations of the OH/H2Omol speciation in geologically relevant melts and glasses. 194 

The strong dissociation of water in K2Al2SiO6 glasses with high water content strongly contrasts 195 

to what was observed for all other investigated compositions, for which H2Omol is the dominant 196 

species at high water contents (Behrens and Yamashita, 2008; Stolper, 1982a, b). This strikingly 197 

different behavior exemplifies the role of aluminum avoidance on the water speciation and 198 

indicates that the classical picture of water dissolution, with predominantly molecular water at 199 

high water contents, may not apply near extremes in compositions.  200 

 201 
 202 
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TABLES 324 

 325 

 326 

 327 
 328 

Table 1. Electron microprobe results, IR absorbances and 
predicted OH/H2Omol ratio. 

K2Al2SiO6-5 K2Al2SiO6-8 

SiO2 (wt%) 22.2 ± 0.2 21.4 ± 0.2 

Al2O3 (wt%) 36.5 ± 0.3 35.2 ± 0.1 

K2O (wt%) 34.2 ± 0.4 32.5 ± 0.2 

Total a (wt%) 92.9 ± 0.5 89.0 ± 0.2 

H2O b (wt%) 5.3 8.5

H2O c (wt%) n.d. e 7.2

Formula K2.00Al1.97Si1.02O6 K1.98Al1.98Si1.02O6 

A4500  (cm-1) 3.0 ± 0.5 4.9 ± 0.5 

A5200 (cm-1) 0.19 ± 0.04 1.7 ± 0.2 

A4500/A5200 15.8 ± 4.2 2.9 ± 0.4 

OH/H2Omol
 d 

 

      

 

     
a Low totals are related to dissolved H2O and CO2. 
b Nominal water content. 
c Determined by Karl Fischer Titration (KFT). 
d Predicted by Malfait and Xue, subm. 
e No homogenous fraction of the heterogeneous sample 
(glass and crystals) could be measured by KFT.  
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Figure 1. Predicted abundances of H2Omol, OHtotal, Si-OH and Al-OH for metaluminous 331 

potassium aluminosilicate glasses with ca. 8 wt% water (Eq 2-5) (Malfait and Xue, submitted). 332 

Molecular water is the most abundant species for Al/(Al+Si)<0.5, but hydroxyl groups are 333 

predicted to be more abundant at higher Al contents. The model is calibrated for Al/(Al+Si) 334 

ratios between 0.25 and 0.50, but its extrapolation predicts that water will be predominantly 335 

present as Al-OH for the K2Al2SiO6 composition investigated in this study (grey line). 336 
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Figure 2. Raman spectra of a hydrous haplogranitic (HGG5+5b, 7.7 wt% water) and two hydrous 339 

K2Al2SiO6 glasses (nominally 5 and 8 wt% water). A band for the H-O-H bending mode near 340 

1600 cm-1 is present for the haplogranitic glasses, but absent for the K2Al2SiO6 glasses. The 341 

sharp band near 1050 cm-1 is related dissolved carbonate groups.  342 
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 343 

Figure 3. FTIR spectra of a hydrous haplogranitic (HGG5+5b, 7.7 wt% water) and two hydrous 344 

K2Al2SiO6 glasses (nominally 5 and 8 wt% water); intensities are normalized to a section 345 

thickness of 1 cm. For the haplogranitic glass, the band near 5200 cm-1, related to H2Omol, is 346 

larger than the band near 4500 cm-1, related to hydroxyl groups; this is reversed for the 347 

K2Al2SiO6 glasses.  348 
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