This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735 3/26 Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃ Thomson *et al.* (2014) 1 EXPERIMENTAL DETERMINATION OF MELTING IN THE SYSTEMS ENSTATITE-MAGNESITE AND 2 MAGNESITE-CALCITE FROM 15 TO 80 GPA 3 **Revision** 1 A.R. THOMSON^a*, M.J. WALTER^a, O.T. Lord^{a,b}, S.C. KOHN^a. 4 5 6 ^aSchool of Earth Sciences, University of Bristol, Wills Memorial Building, Queens's Road, Bristol, 7 BS8 2HX. 8 ^bDepartment of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK 9 10 *Corresponding Author 11 Email: and rew.thomson@bristol.ac.uk 12 Phone: +44 117 3315196 13 14 ABSTRACT 15 Pressure-temperature melting curves in two carbonate bearing systems of relevance to Earth's 16 mantle have been determined using the laser-heated diamond anvil cell (LH-DAC). The solidus along the MgSiO₃-MgCO₃ join in the MgO-SiO₂-CO₂ system (MS-CO₂) was defined from 15 to 80 17 18 GPa using *in-situ* melting criteria, reaching a maximum temperature of ~2340 K at 80 GPa. The 19 occurrence of melting has been confirmed with *ex-situ* textural and chemical analysis of recovered 20 samples. The melting curve has a negative dT/dP slope at pressures between ~15 and 23 GPa resulting 21 from the subsolidus phase transition of ilmenite- to perovskite-structured MgSiO₃. The shallow slope of 22 the melting curve at pressures higher than this transition indicate that for plausible mantle geotherms 23 carbonate-bearing silicate lithologies will melt throughout the lower mantle. The solidus of a mixture

24	along the MgCO ₃ -CaCO ₃ join was determined as a proxy for alkali-free carbonate lithologies. Melting
25	temperatures increase from 1860 K at 16 GPa to \sim 2100K above 35 GPa, where the melting curve
26	flattens. The melting reaction magnesite + post-aragonite (high-pressure CaCO ₃) = melt was confirmed
27	using an <i>in-situ</i> experiment. We conclude that crystalline Mg and Ca carbonate mixtures are unstable
28	with respect to molten carbonate at conditions of the convective lower mantle. The flat melting curves
29	at high pressures in both systems suggests that subducted carbonates will undergo melting at lower
30	mantle conditions, a process that may be important for superdeep diamond formation and carbon
31	storage in the deep mantle.
32	
33	Keywords: deep carbon, diamond anvil cell, magnesite, melting
34	
35	1. INTRODUCTION
36	Carbon is a key component of Earth's atmosphere and biosphere and is essential for the preservation of
37	a habitable climate throughout geological time. The atmospheric carbon budget is maintained by
38	exchange with mantle reservoirs through subducting material and volcanic degassing (Sleep and
39	Zhanle, 2001). The overall mantle carbon budget is not well constrained due to uncertainties in the
40	primary bulk earth carbon budget and incoming/outgoing fluxes, but its massive size makes it a large
41	potential carbon storage reservoir (Dasgupta and Hirschmann, 2010). Hirschmann and Dasgupta (2009)
42	estimate that the H/C ratio of the mantle is superchondritic, an observation inconsistent with a
43	chondritic Earth or one where the late veneer dominates the volatile budget, and the presence of a
44	hidden carbon-rich reservoir in the deep Earth is one possible explanation. The fate of subducted
45	carbon has been the subject of many studies in recent decades, and its presence can have large effects
46	on the chemical, physical and redox behaviour of the mantle (Frost and McCammon 2008; Gaillard et

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735

 3/26

 Thomson et al. (2014)

 Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

- 47 *al.*, 2008; Stagno and Frost, 2010; Rohrbach and Schmidt, 2011; Walter *et al.*, 2011; Dasgupta *et al.*,
 48 2013; Dasgupta, 2013; Shirey *et al.*, 2013).
- 49

50 The activity of oxygen is the critical factor in determining the form of carbon that exists in the mantle, 51 as it fixes the distribution of oxidised and reduced carbon species. Peridotitic mantle with constant 52 oxygen content should become more reducing with depth as a consequence of increased ferric iron 53 solubility in deep mantle phases like majorite and perovskite. There is evidence for this in samples of 54 cratonic lithosphere and some inclusions in diamonds originating in the lower mantle (McCammon et 55 al, 1997; Woodland and Koch, 2003; Frost and McCammon, 2008; Rohrbach and Schmidt, 2011). 56 However, the exact oxygen content of the majority of the mantle is not constrained by samples. The 57 redox state of carbon within slabs as they subduct into the mantle is also not well known. Initially the 58 majority of carbon introduced into the mantle is in oxidised forms, mostly carbonates added to ocean-59 floor material during alteration by hydrothermal fluids and seawater interaction (Shilobreeva et al., 60 2011). Thermodynamic models and petrological experiments indicate that carbonates can remain stable 61 in slabs as they undergo metamorphism and dehydration in the sub-arc mantle (Connolly, 2005; 62 Gorman et al., 2006; Molina and Poli, 2000; Poli et al., 2009), and carbonate phases are known to have 63 stability fields that extend throughout the mantle depth range (Isshiki *et al.*, 2004). There is now 64 significant tomographic and geodynamic evidence that subducting slabs can penetrate into the lower 65 mantle (van der Meer et al., 2010; Steinberger et al., 2012). It is therefore important to understand what happens to the carbon cargo carried by slabs into the deep mantle. 66 67

- 68 Previous work on the effect of carbonate on silicate phase relations at upper mantle pressures is
- 69 extensive (e.g Katsura and Ito, 1990; Luth, 1993; Hammouda, 2003; Dasgupta et al., 2004; Yaxley and

70	Brey, 2004; Kiseeva et al., 2012; Keshav and Gudfinnsson, 2010; Litasov and Ohtani, 2010; Martin et
71	al., 2012; Kiseeva et al., 2013). At pressures relevant to the lower mantle, the stability of carbonate
72	minerals coexisting with mantle silicates is much more uncertain, and it is possible that decarbonation
73	reactions, which produce free CO ₂ or other carbon phases, can occur. Recent work shows that at lower
74	mantle pressures and temperatures CO_2 should be a liquid or may even dissociate into $C + O_2$ (Litasov
75	et al., 2011; Boates et al., 2012; Teweldeberhan et al., 2013). In contrast, the stability of magnesite at
76	85 GPa and 3000 K (Isshiki et al., 2004) suggests that the decarbonation of carbonate minerals does not
77	occur under mantle conditions. This view is further supported by the observation that MgO and CO_2
78	react to form MgCO ₃ at 5-40 GPa and 1400-1800 K (Scott et al., 2013). Seto et al. (2008) investigated
79	the reaction of $MgCO_3$ and SiO_2 at lower mantle pressures to address the potential decarbonation of
80	subducting materials that contain free SiO ₂ . It was observed that MgSiO ₃ and CO ₂ were formed by a
81	decarbonation reaction above ~ 2400 K from $30 - 80$ GPa. However, thermodynamic modelling of this
82	reaction was found to be inconsistent with the experimental data (Litasov et al., 2008).
83	
84	Carbonate suppresses the silicate solidus considerably at upper mantle conditions, so carbonated-melt
85	is potentially the most important deep mantle carbon-bearing phase. Experimental studies on
86	carbonated materials, both peridotitic and eclogitic, at upper mantle pressures have shown that low
87	degree melts are carbonate-rich, often containing < 1 wt.% SiO ₂ (Dalton and Presnall, 1998;
88	Hammouda, 2003; Dasgupta et al., 2004; Kiseeva et al., 2013 etc.). Therefore the melting temperature
89	of all such carbonated (anhydrous) materials can be estimated from the melting curves of pure
90	carbonate systems (Buob et al., 2006, Franzolin et al., 2011). The melting behaviour of simple
91	carbonate systems is a suitable proxy for many alkali-free carbonate-bearing lithologies. For example
92	they can be used to understand the behaviour of slab material that has undergone sub-arc melting (and

- hence contains low residual concentrations of alkali components) or the melting of carbonatedperidotite.
- 95

96	Previously, Katsura and Ito (1990) investigated the MgSiO ₃ -MgCO ₃ binary system, observing that at 8
97	and 15 GPa a eutectic melt is formed at $\sim 2050 - 2100$ K. Despite its potential relevance throughout the
98	mantle, this eutectic melting reaction has not been explored further. In this study we extend the melting
99	curve to ~ 80 GPa in the MgSiO ₃ -MgCO ₃ system using laser-heated diamond anvil cell (LH-DAC)
100	experiments. In addition, we determine the melting curve in the system MgCO ₃ -CaCO ₃ to \sim 80 GPa.
101	These experiments provide new information regarding the maximum temperature stability of carbonate
102	phases within the convecting mantle.
103	
104	2. METHODS
105	This study consists of experiments in two separate chemical systems, MgSiO ₃ -MgCO ₃ and MgCO ₃ -
106	CaCO ₃ . Melting curves were determined using experiments performed in the LH-DAC at the School of
107	Earth Sciences, University of Bristol (described in section 2.1). One subsolidus run was performed in
108	the MgSiO ₃ -MgCO ₃ system. Additionally a single experiment was conducted with <i>in-situ</i> X-ray
109	diffraction (XRD) in the LH-DAC at beamline ID-27 of the European Synchrotron Radiation Facility
110	(ESRF) in Grenoble, France (described in section 2.2).
111	
112	The starting materials were made by mixing equal masses of natural magnesite with either synthetic
113	MgSiO ₃ glass or reagent grade CaCO ₃ (>99.99% purity). Before weighing, the individual components
114	were dried at 220°C for more than 24 hours. After a minimum of 30 minutes grinding under ethanol in
115	an agate mortar, ~ 10 wt.% platinum black was added to each mix as a laser absorber. Subsequently,

116	mixes were ground for a further 2-3 hours to ensure homogeneity and to reduce the grainsize of the Pt
117	black; particles are observed to be predominantly sub-micron, but with the occasional grain in the one
118	to ten micron range that are avoided. In order to ensure that the systems remain iron-free the crucibles
119	and agate mortars had never previously been used with iron-bearing compositions. EDS analysis
120	revealed that the MgCO ₃ -CaCO ₃ starting mix contains minor contamination of up to 0.5 wt\% SiO_2 in
121	the bulk.
122	
123	2.1 Off-line LH-DAC experiments on MgSiO ₃ -MgCO ₃ and MgCO ₃ -CaCO ₃

Experiments were performed in Princeton-type symmetric DACs using anvils with standard 250 μ m culets (200 μ m culet diamonds were used in the highest pressure MgCO₃-CaCO₃ experiment). Rhenium was used as the gasket material, pre-indented to ~ 25 GPa. Three or four 30-40 μ m sized holes were drilled in the central portion of each gasket using an UV laser ablation unit (New Wave research, LUV series, operating wavelength 266 nm) creating multiple, physically separated sample chambers (see figure 1a). A single starting mix, either MgSiO₃-MgCO₃ or MgCO₃-CaCO₃, was loaded into all the sample chambers, to eliminate the possibility of cross-contamination. A single ruby grain (< 2-3 μ m)

131 was added to one of the sample chambers. Each loaded cell was heated at 125°C for 1 hour prior to

132 sealing in order to eliminate any adsorbed water contamination acquired during loading.

133

Pressure was monitored in one chamber during compression using the shift in the R1 ruby fluorescence
peak as calibrated by Mao et al. (1986). Pressure was measured at room temperature after the
experiment in all chambers using two different methods. Firstly, the ruby scale pressure was
determined in the ruby-bearing chamber. Then, pressure in all sample chambers was measured using
the shift of the 1332 cm⁻¹ Raman peak of diamond at the culet surface measured with a custom-built

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735

 3/26

 Thomson et al. (2014)

 Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

139 confocal Raman system. The Raman peak shift, Δv , was converted to sample chamber pressure using a 140 calibration curve specific to the materials used as pressure media (e.g. the sample mixes). The 141 calibration was made by plotting the ruby pressure vs. Δv for the ruby-bearing chambers in all 142 experiments, as shown in Fig. 2. A highly correlated linear relation exists between ruby pressure and 143 Δv , with a measurement precision in each reported pressure of ± 1.9 GPa at one standard error; pressure 144 accuracy is tied to the ruby scale. This method of pressure measurement is preferred as it avoids 145 possible contamination with ruby (Al_2O_3) during laser heating, and allows pressure to be measured 146 directly adjacent to the heated region thereby minimising the effects of pressure gradients. Reported 147 pressures are those recorded post-heating. Thermal pressure during heating was estimated in one 148 experiment as described below. 149 150 Samples were laser heated in a double-sided configuration using a pair of 100 W diode-pumped fibre 151 lasers (TEM₀₀) emitting at 1070 nm. The Gaussian energy distribution of the lasers can generate strong 152 temperature gradients in the sample. Such gradients are undesirable as they exacerbate errors in 153 temperature measurement related to chromatic aberration (Walter and Koga, 2004), can lead to Soret

154 diffusion, and increase the sensitivity of measured temperature to system alignment. Therefore, we 155 have employed beam shaping optics combined with variable beam expanders to create a flat-topped 156 energy profile at the sample surface of up to $\sim 30 \,\mu m$ diameter. This setup can yield a nearly isothermal 157 temperature at the surface of uniformly absorbing samples. In the experiments reported here, the 158 temperature distribution across the sample is observed to depend considerably on the distribution of the 159 Pt absorber within the flat-topped energy profile. Laser power was increased automatically (after an 160 initial temperature of 1600-1700 K was reached) in linear steps with intervals of 7 seconds with a 161 temperature measured at each interval. Experiments lasted 3-10 minutes in total duration.

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735

 3/26

 Thomson et al. (2014)

 Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

162

163 Temperature was measured along a vertical profile located centrally across the heated region on both 164 sides of the sample simultaneously, using standard imaging spectroradiometry techniques. Details of 165 the optical configuration, procedures and calibrations are presented in full elsewhere (Lord *et al.*, 166 submitted; 2010; 2009; Walter and Koga, 2004), but a brief description of salient points is presented 167 here. We focus the lasers and image the sample using a 20 mm focal length Mitotoyu apochromatic 168 lens designed for radiation in the near-infrared. The light from the sample is focused at the 169 spectrometer slit (image plane) using a 1 metre f achromatic doublet, which in combination with the 170 objective yields a magnification of 50x. On the basis of the magnification and detector pixel size, our 171 system has an ideal resolution of $\sim 0.5 \,\mu\text{m}$. However, the diffraction limit at 700 nm, which is the 172 nominal central wavelength used in the spectral fitting, is $\sim 1.3 \,\mu\text{m}$, defining the maximum spatial 173 resolution that can practically be achieved. Optical aberrations can further reduce the resolution. Based 174 on measurements using a resolution target the diffraction limit is achieved in our system for a flat-field 175 illumination. However, chromatic aberrations can further limit the effective spectroradiometric 176 resolution if a temperature gradient is present (Boehler and Chopelas, 1991; Walter and Koga, 2004; 177 Benedetti et al., 2009). On the basis of the measured focal deviations of our system (maximum of ± 5 um at the image plane over the 200 nm spectral window), we calculate a worst-case spectroradiometric 178 179 resolution of $\sim 3 \,\mu m$ at the sample surface (object plane). Errors associated with chromatic aberration can be deduced from the precision of the spectral fits to the ideal greybody Wien function, and are a 180 181 function of the temperature gradient (Walter and Koga, 2004). The precision of the spectral fits 182 reported here are typically less than 5 K, and in all cases < 10 K, indicating that chromatic effects are 183 not a significant component of the fits. All things considered, we make a conservative estimate of error 184 in calculated temperatures associated with optical aberrations of less than 50 K, and likely less than 25

185	K. The accuracy of the temperature measurement system has previously been tested at ambient
186	pressure against the known melting points of a range of metals (Lord et al., 2009; 2010) and is
187	estimated at 50-200 K. The source of this inaccuracy is likely the unknown emissivity of the samples
188	used in calibration, a parameter that is both material specific and dependent on temperature and
189	pressure. Because we have very little information regarding the emissivity of our samples, we choose
190	not to include this error in our reported uncertainties, but simply acknowledge that it exists. It is also
191	noteworthy that where our data overlap with those of previous multi-anvil experiments we find a very
192	good consistency in melting temperature (see below).

193

194 2.2 In-situ LH-DAC experiment on MgCO₃-CaCO₃

195 Unlike the off-line experiments ($\S2.1$), this experiment employed a single, 100µm diameter sample 196 chamber. The sample chamber was filled with a foil of sample material containing platinum black 197 sandwiched between foils of the same composition without platinum black, which act as both pressure 198 medium and thermal insulation. The foils were created by compressing powder between diamond 199 anvils and pieces of appropriate size were chosen for loading. A single ruby grain was placed on the 200 edge of the sample chamber to allow the pressure to be monitored during compression. Laser heating 201 was performed using a double-sided, off-axis geometry generating a heated spot of $\sim 30 \,\mu\text{m}$ diameter. 202 The incandescent light is collected using reflective optics and a 2 x 2 µm region at the centre of the 203 heated spot is selected for temperature measurement. Temperatures on both sides are equalised before 204 the experiment, but only measured on the upstream side during the experiment to allow simultaneous 205 XRD. For further details see Schultz *et al.* (2005). The 33 keV X-ray beam ($\lambda = 0.3738$ Å) had a 206 FWHM of 4 µm and was aligned with the centre of the heated spot using the X-ray induced 207 fluorescence of the sample. Diffraction patterns were collected on a MAR345 CCD using an exposure

208	time of 15 seconds. The distance between sample and detector was calibrated using a LaB_6 standard. X-
209	ray diffraction patterns were taken before, periodically throughout and after sample heating. 2-D XRD
210	patterns were masked and integrated into 1-D patterns using Fit2D (Hammersley, 1997). These patterns
211	were in turn fitted and analysed using the Le Bail method (Le Bail et al., 1988) as implemented in the
212	GSAS suite of programmes (Larson and Von Dreele, 2000; Toby, 2001). The pressure in this
213	experiment was calculated from the measured unit cell volume of the platinum laser absorber and the
214	measured temperature using the Mie-Grüneisen-Debye P-V-T equation of state (EOS) for platinum of
215	Zha et al. (2008).
216	

217 2.3 Melt Detection

218 We use multiple criteria to deduce the temperature at which the sample melts during laser heating, of 219 which the primary criterion is a discontinuity in the temperature vs. laser power curve generated during 220 the heating ramp. The key perturbation is the development of a temperature plateau, where over some 221 range of increasing power, temperature remains essentially constant or oscillates around some value. 222 Temperature plateaux have been used extensively as a melting criterion in the LH-DAC (e.g. Lord et 223 al., 2009; 2010; submitted; Fischer et al., 2013; Asanuma et al., 2010), and are well correlated with 224 independent observations of melting using in situ X-ray diffraction techniques (Fischer et al., 2013; 225 Lord *et al.*, submitted). The exact causes of the perturbations are difficult to assess fully, but are likely 226 related to a combination of differences in the thermal properties of the co-existing solid and liquid 227 phases during melting and changes in sample absorption properties (Lord *et al.*, submitted; 2010; 228 Geballe and Jeanloz, 2012). In the experiments reported here where an extrinsic absorber (Pt black) is 229 used, mechanical changes in the sample upon melting and subsequent redistribution of the Pt grains 230 also contributes to the perturbation, and can be recognized by variations in the shape of the temperature profile that occur once a plateau is reached. Finally, using a variable neutral density filter and a CCD camera we can visually observe movement in the sample (mechanical or convective) that occurs once the temperature plateau is reached. After melting begins, during the temperature plateau, we observe that the Pt absorbers often migrate away from the melted-region and often form a bright doughnut shape that expands as the experiment continues.

236

In experiments on the MgSiO₃-MgCO₃ system the discontinuities that define melting are flat plateaux and are also extremely stable, remaining at constant temperature until the end of the experiment (figure 3). In this case the melting temperature is defined as the average of all temperatures within the plateau. The uncertainty associated with the melting temperature is reported as twice the standard deviation of all the temperature measurements in the plateau (2σ).

242

243 MgCO₃-CaCO₃ experiments display a slightly different behaviour. Discontinuities in this system do not 244 typically appear as long, stable plateaux, but instead as a short plateau followed by rising temperatures 245 (figure 4). On close inspection of individual temperature profiles collected throughout the heating ramp 246 it can be seen that increasing temperatures after the short plateau are caused by the presence of 247 localised hotspots of platinum-rich material at temperatures above the liquidus of the sample. As this superheating continues, often the entire sample becomes heated to super-liquidus temperatures, during 248 249 which time convection is observed to be vigorous. During the subsolidus heating ramp, samples can 250 display considerable temperature topographies depending on the initial distribution of platinum within 251 the sample chamber (Fig. 1). When the melting temperature is reached the temperature profile across 252 the sample becomes flatter as convection begins to occur. Once the temperature across the entire 253 sample has equalised, the platinum-rich hotspots begin to form. A schematic illustration of this process

254	can be seen in figure 1b and an example of real data can be seen in figure 1c. Due to the presence of
255	this behaviour the definition of the melting temperature in MgCO ₃ -CaCO ₃ experiments is based on a
256	combination of three criteria, not all of which are always observed in each experiment. These are a) the
257	observation of a limited plateau, b) visible convective motion of the sample and c) the loss of any
258	subsolidus topography in temperature profiles as the melting temperature is reached. It is also worth
259	noting that in all cases a break in slope of the temperature-power curve is seen at the point of initial
260	melt generation (see figures 3 and 4) and that all three criteria provide the same result. As the plateaux
261	in this system are much shorter the uncertainty in the melting temperature has often been
262	conservatively estimated, instead of reporting a standard deviation value based on fewer than 10 data
263	points.
264	
265	In some experiments there was a significant difference between temperatures measured on each side of
266	the DAC throughout heating. As chromatic aberration is insignificant (see above) it is suggested that
267	this is caused either by poor laser coupling or by misalignment of the emitted light with the
268	spectrometer entrance slit on one side of the system. This is likely due to the difficulties in perfectly
269	aligning the system at low temperatures, when the emitted light is weak. When this occurs only the
270	higher temperature side is used to determine melting temperatures (e.g. fig 3c), as misalignment will
271	cause an underestimation, and never an overestimation, of true temperature.
272	

273 2.4 Ex-situ Sample Analysis

After complete pressure release samples were recovered from the DAC and selected MgSiO₃-MgCO₃
experiments mounted in epoxy to permit *ex-situ* analysis. Samples were polished by hand using 0.3 μm
alumina-impregnated Mylar sheets prior to Ar-ion polishing using a Technoorg Linda ion mill.

277	Textural and chemical analyses were performed using the JEOL JXA8530F Field Emission Gun
278	Electron Microprobe at the University of Bristol operated at 5-9 keV and 20 nA over three analytical
279	sessions. The system was calibrated using St John's Island olivine and platinum metal as primary
280	standards and was verified with diopside as a secondary standard.
281	
282	3. RESULTS
283	3.1 Enstatite-Magnesite
284	All melting experiments in the enstatite-magnesite system produced clearly defined plateaux in
285	temperature vs. laser power that were used to define the eutectic melting temperature (figure 3).
286	Previous work (Newton et al., 1975; Katsura and Ito, 1990; Koziol and Newton, 1998) has shown that
287	this system becomes a simple binary above ~5 GPa and up to 15 GPa, producing a eutectic melt at
288	2073 - 2173 K at 15 GPa. As there are no known phases with intermediate compositions we assume
289	that the system continues to behave similarly throughout all the high pressures experiments of this
290	study. The measured eutectic temperatures and associated errors are listed in Table 1 and plotted as a
291	function of pressure in figure 5a.
292	
293	The lowest pressure experiment in this study was conducted at 16 ± 2 GPa and was found to melt at
294	2080 ± 40 K. This is within the temperature bracket for eutectic melting of previous experiments
295	determined from ex-situ analysis of multi-anvil press experiments (Katsura and Ito, 1990), providing
296	further credibility for the accuracy of both our temperature measurement and melting criteria. With
297	increasing pressure the eutectic temperatures decrease, reaching a minimum at ~ 23 GPa. It is clearly
298	not possible to fit a single melting curve to the entire dataset, as there is a change in melting slope at \sim
299	23 GPa. This pressure corresponds to the location of the phase change from ilmenite- to perovskite-

300 structured MgSiO₃ (Ono *et al.*, 2001) at the solidus. The melting curve in the interval 5 - 23 GPa marks 301 the reaction ilmenite $MgSiO_3$ + magnesite = melt and is defined by a polynomial with coefficients 302 reported in table 2; all data collected at pressure < 24.5 GPa are used in this fit. 303 304 At pressures above ~ 23 GPa, the eutectic temperature rises consistently to 2350 ± 75 K (2 σ) at 80 GPa. 305 The experiments above 22 GPa were fitted using a damped Simon-Glatzel melting equation $(T_{in} = T_0 \left(\frac{p}{n} + 1\right)^{\frac{1}{n}} \exp(-cP))$, Simon and Glatzel, 1929; Kechin, 2002) with coefficients reported in 306 307 table 2. This defines the eutectic melting curve where the reaction perovskite $MgSiO_3 + magnesite =$ 308 melt. The intersection of the two fitted curves at ~ 23 GPa represents the triple point corresponding to 309 the assemblage magnesite + ilmenite + perovskite + liquid. Figure 5a shows that this point falls almost 310 exactly upon the ilmenite + perovskite phase boundary in the MgSiO₃ system previously determined 311 using *in-situ* experiments (Ono *et al.*, 2001). With increasing pressure dT/dP decreases such that the 312 estimated melting temperature at the core mantle boundary (135 GPa), assuming no further phase 313 changes occur, is 2522 ± 131 K (2 σ). 314

315 *Ex-situ* analysis of subsolidus runs performed at ~ 100 and 300 K below the melting point at ~ 35 GPa $(T_m^{35} = 2104 \pm 69 \text{ K})$ reveal experimental products consisting only of coexisting crystals of perovskite 316 317 and magnesite approximately 1 - 3µm in size (figure 6a). Crystal compositions were confirmed as 318 stoichiometric MgSiO₃ and MgCO₃ (CO₂ by difference) using multiple quantitative analyses and WDS 319 element maps. In these experiments the platinum laser absorber remains evenly distributed as small (< 320 1 μ m) grains throughout the sample chamber. A third experiment in the same gasket (31.5 GPa, T_{max} = 321 2040 K) was guenched within 15 seconds of achieving the melting temperature. This experiment also 322 has a larger grain size (up to $\sim 10 \ \mu m$) in one portion of the experiment, assumed to correspond to the

location of heating. No phases other than perovskite, magnesite or Pt metal were observed in thisexperiment.

325

326 The textural and chemical features observed in the recovered experiments that were interpreted as 327 having partially melted (using the plateau and other criteria described above) are significantly different 328 than the subsolidus runs. The location of the centre of the heated spot is clearly defined either by the 329 small grain size in the central region due to quench crystallisation or the annular distribution of phases 330 in the experiments (e.g. figure 6b and c). We observe that phase separation occurred in the molten 331 region, with grains of MgO, SiO_2 and diamond identified. It is also observed that the platinum absorber 332 has migrated away from the centre of this region and often formed clumps at the boundary with 333 surrounding material (figure 6c). Outside this central area the samples consist of MgSiO₃ and MgCO₃ 334 with well-dispersed Pt, as seen in subsolidus runs. Within the hotspot region MgO grains are most 335 commonly found in areas near the sample surfaces, adjacent to the diamond culets (figure 6b), whilst 336 SiO₂ is only observed in the central region of the sample (figure 6c). This axial phase distribution was 337 confirmed by analysing the same experiments at two different levels during subsequent analysis 338 sessions (e.g. figure 6b and c) and has been confirmed in experiments conducted at $\sim 18, 27$ and 36 339 GPa. The phase distribution corresponds to SiO₂ migration towards the hotter regions and MgO 340 migration towards the cooler regions of the sample, a feature that results from Soret diffusion in LH-341 DAC experiments (Sinmyo and Hirose, 2010). The changes observed in the textural and chemical 342 features between subsolidus and molten conditions provide further confirmation that our *in-situ* criteria 343 are reliable indicators of melting. However, the estimation of melt compositions is prevented by phase 344 separation occurring after melting and is beyond the scope of this study.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735 3/26 Thomson *et al.* (2014) Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

346 3.2 Magnesite-Calcite

347 Previously, the minimum melting point in the MgCO₃-CaCO₃ system had been defined at 1, 2.7 and 6 348 GPa (Byrnes and Wyllie, 1981; Irving and Wyllie, 1975; Buob et al., 2006 respectively), corresponding 349 to the reaction dolomite_{ss} = melt. Our experimental data points range from 16 - 80 GPa (table 1 and 350 figure 5b) and corresponds to the reaction magnesite + aragonite = melt (confirmed by *in-situ* 351 experiment and the previous study of Luth, 2001). We observe that the melting temperature increases 352 as pressure rises to above ~ 35 GPa, above which the melting temperature is nearly constant at ~ 2100 353 K and possibly decreases with continued pressure increase. The fitting coefficients corresponding to the 354 parameterised melting curve in figure 5b and 7 are presented in table 2. The melting temperature at 135 355 GPa, again assuming no phase changes occur in the intervening pressure interval, is 1994 ± 239 K (2σ). 356 357 The single *in situ* experiment undertaken at ESRF was used to confirm that the melting temperatures 358 determined from the off-line experiments do indeed represent a eutectic melting reaction, rather than a 359 subsolidus phase change. The post-heating pressure of the experiment, calculated from the room 360 temperature EoS of platinum (Zha et al., 2008), was 45.7 GPa. The pressure during melting (2030 K) 361 was 52.4 GPa, implying a thermal pressure of 6.7 GPa (~15%). This experiment avoided the effect of 362 hotspot growth as temperature was only measured in a single spot aligned with the x-ray beam within 363 the centre of the melt pool. The maximum temperature reached in this experiment was 2066 K and the 364 melting temperature is estimated as 1990 ± 90 K from a clearly defined plateau. Dynamic 365 recrystallisation, indicated by the appearance of saturated spots that move between consecutive 366 diffraction patterns, was observed throughout the temperature plateau. The melting temperature is 367 slightly lower than (but within error of) the melting curve defined by the off-line experiments. The 368 same three-component phase assemblage was present before, during (figure 7) and after heating:

periment, so is
aks from
experiment
er, plateaux

375

376 *3.3 Effect of thermal pressure*

In our study we have reported all pressures as post-heating pressures, without any correction for the possible effect of thermal pressure. The thermal pressure was determined in the single *in-situ* experiment as ~ 15% of the post-heating pressure. However, as the sample geometry employed during the *in-situ* experiment was significantly different from that during all off-line experiments there is no reason to believe this thermal pressure should apply to all experiments. Furthermore, the proximity of the known ilmenite/perovskite phase boundary and the pressure at which we observe the cusp in the MgSiO₃-MgCO₃ melting curve suggests that thermal pressure is negligible.

384

385

4. DISCUSSION

The occurrence of carbonated melting in the deep mantle depends on whether carbonates are stable at high pressure. As suggested in the introduction, there is significant uncertainty about whether carbon is present in oxidized or reduced forms throughout the mantle. The oxygen fugacity required to reduce carbonate to diamond is thought to be 2-3 orders of magnitude above the iron-wüstite buffer (Stagno *et al.*, 2011), and would be reached for ferric/ferrous ratios typical of the lithospheric mantle at depths in excess of ~ 200 km. The extent to which lithospheric mantle is representative of the ambient mantle is

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735

 3/26

 Thomson et al. (2014)

 Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

392 unclear, but it suggests that melting curves of carbonated lithologies might only be applicable to 393 abnormally oxidised regions of the mantle where carbonates remain stable.

394

395 If we assume that redox conditions allow carbonate stability then the system $MgSiO_3-MgCO_3$ is a 396 proxy for the behaviour of carbonated silica-poor mantle material, i.e. the peridotitic mantle or 397 lowermost portions of subducting assemblages. The results of this study imply that a model magnesite 398 + enstatite/perovskite mantle would be subsolidus along a mantle adiabat (e.g. Katsura, 2010) in the 399 upper mantle and transition zone. However, due to the cusp along the solidus associated with the 400 ilmenite-perovskite transition, this model carbonated mantle would begin melting at pressures in excess 401 of \sim 35 GPa (figure 8). The addition of other chemical components, especially alkalis, would be 402 expected to reduce the solidus and smear out the cusp, but a solidus depression, even a deep one, might 403 still be expected in a natural carbonated peridotite system; previous experimental data are consistent 404 with this interpretation. Ghosh et al. (2009) bracketed the solidus of carbonated peridotite from 10-20 405 GPa using multi-anvil experiments, and data from their study are plotted in figure 9 alongside the 406 melting curves of carbonated peridotite from natural and model systems. Ghosh et al. (2009) suggest a 407 flat melting curve above ~ 14 GPa, but a negative $\partial P/\partial T$ slope from 16 – 20 GPa as indicated by our 408 data in the simple MgO-SiO₂-CO₂ system is also consistent with their experimental data. Ghosh *et al.* 409 (2009) suggested that the close relationship of the mantle geotherm with the carbonated peridotite 410 solidus could lead to a region of melting at the top of the lower mantle. Our new data showing a cusp 411 along the solidus related to the subsolidus transition to a perovskite-bearing lower mantle strengthens 412 this interpretation considerably, and indicates that the upper/lower mantle boundary could be a 413 potential location where carbonate melts are produced.

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735

 3/26

 Thomson et al. (2014)

 Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

415 Slab materials undergo hydrous melting at sub-arc pressures, causing loss of alkali and water 416 components (Yaxley and Green, 1994; Molina and Poli, 2000; Kerrick and Connolly, 2001; Connolly, 417 2005; Poli *et al.*, 2009), but are thought to retain the majority of their carbon. It is also likely that redox 418 conditions in the remnants of subducted materials are more oxidising than the ambient mantle, and thus 419 carbonates are the dominant carbon species. In this situation the system $MgCO_3$ -CaCO₃ is an 420 appropriate proxy for carbonate-rich components of subducting assemblages whereas the MgSiO₃-421 $MgCO_3$ system is relevant to peridotitic (or SiO_2 undersaturated) portions. Based on subduction 422 geotherms from Syracuse et al. (2010) and the shallow or flat solidi defined in this study, it is expected 423 that these portions of subducted assemblages will experience melting within the lower mantle (figure 424 8). It is uncertain whether carbonated eclogite material will experience a similar fate as the study of 425 Seto et al. (2008) suggests that silica-rich compositions experience a different behaviour at lower 426 mantle pressures.

427

428 Carbonate melts have been shown to be highly mobile in the upper mantle (Hammouda and Laporte, 429 2000) and would be expected to rapidly percolate into surrounding mantle regions. Upon reaching a 430 reduced mantle domain (normal ambient mantle) it has been experimentally shown that they will 431 undergo 'redox-freezing' reactions to form diamond and other minerals (Rohrbach and Schmidt, 2011). 432 As this study suggests that carbonated melting occurs in the upper/lower mantle boundary region it is 433 also implied that a significant amount of diamond formation might occur in this region, provided that 434 carbonate melts remain mobile at these pressures. Diamonds from the transition zone and lower mantle 435 that have been discovered worldwide may share a common origin related to melting of carbonated 436 protoliths and redox driven crystallization (see Harte, 2010 for a review of sub-lithospheric diamonds). 437

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735

 3/26

 Thomson et al. (2014)

438

5. IMPLICATIONS

Our study implies that, if conditions are sufficiently oxidising, carbonate phases will melt along a geotherm throughout the lower mantle. The Clausius-Clapeyron slope of both melting curves indicate that low-degree melting of subducted carbonated lithologies is expected to be widespread at lower mantle depths. Extrapolation of our melting curves suggest that the maximum temperature of carbonate stability in the mantle is ~ 2500 K. The initiation of carbonated melting near the upper/lower mantle boundary that is predicted by our data can help explain the widespread discovery of 'superdeep' diamonds from this depth interval.

446

A further possible consequence of our results relates to the observation that the slopes of both melting 447 448 curves presented (dT/dP) approach zero, or become negative, at high pressures. Given the relationship 449 $dT/dP = \Delta V/\Delta S$ it is implied, assuming that ΔS is positive for the melting reaction, that the density of 450 the melt approaches, or possibly becomes greater than that of the residual solid with increasing 451 pressure. Therefore, if any carbonated material does survive to lower mantle depths the melts they 452 eventually produce may be neutrally, or even negatively, buoyant allowing them to become trapped in 453 the lower mantle. This would allow the creation of a carbon-rich reservoir hidden from materials 454 sampled at the Earth's surface. This hidden reservoir could balance the superchondritic H/C 455 composition of the bulk Earth (Hirschmann and Dasgupta, 2009), thus removing the reliance on either 456 carbon storage in the core, removal of a CO₂ atmosphere or a non-chondritic late-veneer to explain the 457 bulk earth's volatile budget.

458

459

6. ACKNOWLEDGEMENTS

This	is a preprint, the final version is subject to change, of the American Mineralogist (MSA)	
	Cite as Authors (Year) Title. American Mineralogist, in press.	
	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735	3/26
Thomson et al. (2014)	Melting curves of MgSiO ₃ -MgCO ₃ and	MgCO ₃ -CaCO ₃

460	This work was supported by the Natural Environmental Research Council by grants awarded to ART at
461	Bristol (grant number NE/J500033/1), MJW at Bristol (grant number NE/I010947/1) and Lidunka
462	Volčado at UCL (grant number NE/H003975/1). We would like to thank Craig Manning and an
463	anonymous reviewer for their constructive feedback and Daniel Hummer for his editorial handling of
464	this paper. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron
465	radiation facilities and we would like to thank Mohamed Mezouar for assistance in using beamline
466	ID27.
467	
468	7. References
469	Asanuma, H., Ohtani, E., Sakai, T., Terasaki, H., Kamada, S., Kondo, T., and Kikegawa, T. (2010)
470	Melting of iron-silicon alloy up to the core-mantle boundary pressure: implications to the thermal
471	structure of the Earth's core. Physics and Chemistry of Minerals, 37, 353-359.
472	
473	Benedetti, L.R., Farber, D.L., and Kavner, A. (2009) The great wedge: Quantifying chromatic
474	aberration in imaging spectroscopy systems and application to temperature measurements in the laser-
475	heated diamond anvil cell. Journal of Applied Physics, 105 (2), 023517.
476	
477	Berg, G.W. (1986) Evidence for carbonate in the mantle. Geology, 324, 50-51.
478	
479	Boates B., Teweldeberhana, A.M., and Boneva, S.A. (2012) Stability of dense liquid carbon dioxide.
480	Proceedings of the National Academy of Sciences, 109 (37), 14808-14812.
481	

- 482 Boehler, R., and Chopelas, A. (1991) A New approach to laser-heating in high-pressure mineral
- 483 physics. Geophysical Research Letters, 18 (6), 1147-1150.
- 484
- Buob, A., Luth, R.W., Schmidt, M.W., and Ulmer, P. (2006) Experiments on CaCO₃-MgCO₃ solid
- 486 solutions at high pressure and temperature. American Mineralogist, 91, 435-440.
- 487
- 488 Byrnes, A.P. and Wyllie, P.J. (1981) Subsolidus and melting relations for the join CaCO₃-MgCO₃ at
- 489 10-kbar. Geochimica et Cosmochimica Acta, 45, 321-328.
- 490
- 491 Connolly, J.A.D. (2005) Computation of phase equilibria by linear programming: A tool for
- 492 geodynamic modelling and its application to subduction zone decarbonation. Earth and Planetary
- 493 Science Letters, 236, 524-541.
- 494
- 495 Dalton, J.A., and Presnall, D.C. (1998) Carbonatitic melts along the solidus of model lherzolite in the
- 496 system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa. Contributions to Mineralogy and Petrology,

497 131, 123-135.

- 499 Dasgupta, R., Hirschmann, M.M., and Withers, A.C. (2004) Deep global cycling of carbon constrained
- 500 by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth and Planetary
- 501 Science Letters, 227, 73-85.
- 502
- 503 Dasgupta, R. (2013) Ingassing, storage, and outgassing of terrestrial carbon through geologic time.
- 504 Reviews in Mineralogy and Geochemistry, 75, 183-229.

505	
506	Dasgupta, R., and Walker D. (2008) Carbon solubility in core melts in a shallow magma ocean
507	environment and distribution of carbon between the Earth's core and the mantle. Geochimica et
508	Cosmochimica Acta, 72, 4627-4641.
509	
510	Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth's interior.
511	Earth and Planetary Science Letters, 298, 1-13.
512	
513	Dasgupta, R., Mallik, A., Tsuno, K., Withers, A.C., Hirth, G., and Hirschmann, M.M. (2013) Carbon-
514	dioxide-rich silicate melt in the Earth's upper mantle. Nature, 493, 211-215.
515	
516	Fiebig, J., Chiodini, G., Caliro, S., Rizzo, A., Spangenberg, J., and Hunziker, J.C. (2004) Chemical and
517	isotopic equilibrium between CO ₂ and CH ₄ in fumarolic gas dischrages: Generation of CH ₄ in arc
518	magmatic-hydrothermal systems. Geochimica et Cosmochimica Acta, 68, 2321-2334.
519	
520	Fischer R.A., Campbell A.J., Reaman D.M., Miller N.A., Heinz D.L., Dera P., and Prakapenka V.B.
521	(2013) Phase relations in the Fe–FeSi system at high pressures and temperatures. Earth and Planetary
522	Science Letters, 373, 54-64
523	
524	Franzolin, E., Schmidt, M.W., and Poli, S. (2011) Ternary Ca-Fe-Mg carbonates: subsolidus phase
525	relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contributions
526	to Mineralogy and Petrology, 161, 213-227.
527	

This	is a preprint, the final version is subject to change, of the American Mineralogist (MSA)				
Cite as Authors (Year) Title. American Mineralogist, in press.					
	(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735	3/26			
Thomson et al. (2014)	Melting curves of MgSiO ₃ -MgCO ₃ an	d MgCO ₃ -CaCO ₃			

528	Frezzotti, M.L. Selverstone, J., Sharp, Z.D., and Compagnoni, R. (2011) Carbonate dissolution during
529	subduction revealed by diamond-bearing rocks from the Alps. Nature Geoscience, 4, 703-706.
530	
531	Frost, D.J., and McCammon, C.A. (2008) The redox state of the Earth's mantle. Annual Review of
532	Earth and Plametary Sciences, 36, 389-420.
533	
534	Gaillard, F., Mohammed, M., Iacono-Marziano, G., Pichavant, M., and Scaillet, B. (2008) Carbonatite
535	melts and electrical conductivity in the asthenosphere. Science, 322, 1363-1365.
536	
537	Geballe, Z., and Jeanloz, R. (2012) Origin of temperature plateaus in laser-heated diamond anvil cell
538	experiments. Journal of Applied Physics, 111, 123518, doi: 10.1063/1.4729905.
539	
540	Ghosh, S., Ohtani, E., Litasov, K.D., and Terasaki, H. (2009) Solidus of carbonated peridotite from 10
541	to 20 GPa and origin of magnesiocarbonatite melt in the Earth's deep mantle. Chemical Geology, 262,
542	17-28.
543	
544	Gorman, P.J., Kerrick, D.M., and Connolly, J.A.D. (2006) Modeling open system metamorphic
545	decarbonation of subducting slabs. Geochemistry Geophysics Geosystems, 7, Q04007.
546	
547	Hammersley, A.P. (1997) FIT2D: an introduction and overview, Technical Report ESRF-97-HA-02T,
548	ESRF, Grenoble.
549	

550	Hammouda, T., and Laporte, D. (2000) Ultrafast mantle impregnation by carbonatite melts. Geology,
551	28 (3), 283-285.
552	
553	Hammouda, T. (2003) High-pressure melting of carbonated eclogite and experimental constraints on
554	carbon recycling and storage in the mantle. Earth and Planetary Science Letters, 214, 357-368.
555	
556	Harte, B., (2010) Diamond formation in the deep mantle: the record of mineral inclusions and their
557	distribution in relation to mantle dehydration zones. Mineralogical Magazine, 74(2), 189-215.
558	
559	Irving, A.J., and Wyllie, P.J. (1975) Subsolidus and melting relationships for calcite, magnesite and
560	join CaCO ₃ -MgCO ₃ to 36 Kbar. Geochimica et Cosmochimica Acta, 39, 35-53.
561	
562	Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M., and
563	Sakata, M. (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature,
564	427, 60-63.
565	
566	Katsura, T., and Ito, E. (1990) Melting and subsolidus phase relations in the MgSiO ₃ -MgCO ₃ system at
567	high pressures: implications to evolution of Earth's atmosphere. Earth and Planetary Science Letters,
568	99, 110-117.
569	
570	Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., and Ito, E. (2010) Adiabatic temperature profile in
571	the mantle. Physics of Earth and Planetary Interiors, 183, 212-218.
572	

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735 3/26
	Thomson <i>et al.</i> (2014) Melting curves of MgSiO ₃ -MgCO ₃ and MgCO ₃ -CaCO ₃
573	Kechin, V.V. (2002) Melting curve equations at high pressure. Physical Review B, 65(5), doi:
574	10.1103/PhysRevB.65.052102
575	
576	Kerrick, D.M., and Connolly, J.A.D. (2001) Metamorphic devolatilization of subducted marine
577	sediments and the transport of volatiles into the Earth's mantle. Nature, 411, 293-296.
578	
579	Keshav, S., and Gudfinnsson, G.H. (2010) Experimentally dictated stability of carbonated oceanic crust
580	to moderately great depths in the Earth: Results from the solidus determination in the system CaO-
581	MgO-Al ₂ O ₃ -SiO ₂ -CO ₂ . Journal of Geophysical Research - Solid Earth, 115. doi:
582	10.1029/2009JB006457.
583	
584	Kiseeva, E.S., Yaxley, G.M., Hermann, J., Litasov, K.D., Rosenthal, A., and Kamenetsky, V.S. (2012)
585	An experimental study of carbonated eclogite at 3.5–5.5 GPa - implications for silicate and carbonate
586	metasomatism in the cratonic mantle. Journal of Petrology 53, 727-759.
587	
588	Kiseeva, E.S., Litasov, K.D., Yaxley, G.M., Ohtani, E., and Kamenetsky, V.S. (2013) Melting and
589	Phase Relations of Carbonated Eclogite at 9–21 GPa and the Petrogenesis of Alkali-Rich Melts in the
590	Deep Mantle. Journal of Petrology, 54, 1555-1583
591	
592	Koziol, A.M., and Newton, R.C. (1998) Experimental determination of the reaction: Magnesite +

- 593 enstatite = forsterite + CO_2 in the ranges 6-25kbar and 700-1100 degrees C. American Mineralogist,
- **83**, 213-219.

- 596 Larson, A. C., and Von Dreele, R.B. (1994) General Structure Analysis System (GSAS), Los Alamos
- 597 National Laboratory Report LAUR 86-748.
- 598
- 599 Le Bail, A., Duroy, H., and Fourquet, J.L. (1988) Ab-initio structure determination of LiSbWO₆ by X-
- 600 ray powder diffraction. Materials Research Bulletin 23, 447-452.
- 601
- 602 Litasov, K.D., Fei, Y., Ohtani, E., Kuribayashi, T., and Funakoshi, K., (2008) Thermal equation of state
- of magnesite to 32 GPa and 2073 K. Physics of the Earth and Planetary Interiors, 168, 191-203.
- 604
- 605 Litasov, K., and Ohtani, E. (2010) The solidus of carbonated eclogite in the system CaO-Al₂O₃-MgO-
- 606 SiO₂–Na₂O–CO₂ to 32 GPa and carbonatite liquid in the deep mantle. Earth and Planetary Science
- 607 Letters, 295, 115-126.
- 608
- Litasov, K.D., Goncharov, A.F., and Hemley, R.J. (2011) Crossover from melting to dissociation of
- 610 CO2 under pressure: Implications for the lower mantle. Earth and Planetary Science Letters, 309, 318-611 323.
- 612
- Lord, O.T., Walter, M.J., Dasgupta, R., Walker, D., and Clark, S.M. (2009) Melting in the Fe-C system
 to 70 GPa. Earth and Planetary Science Letters, 284, 157-167.
- 615
- Lord, O.T., Walter, M.J., Dobson, D.P., Armstrong, L., Clark, S.M., and Kleppe, A. (2010) The FeSi
 phase diagram to 150 GPa. Journal of Geophysical Research, 115, B06208.
- 618

	This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4735 3/26
	Thomson <i>et al.</i> (2014) Melting curves of MgSiO ₃ -MgCO ₃ and MgCO ₃ -CaCO ₃
619	Lord, O.T., Wann, E.T.H., Hunt, S.A., Walker, A.M., Santangelli, J., Walter, M.J., Dobson, D.P.,
620	Wood, I.G., Vocadlo, L, Morard, G., and Mezouar, M. (submitted) The NiSi melting curve to 70 GPa.
621	Physics of the Earth and Planetary Interiors.
622	
623	Luth, R.W. (1993) Diamonds, eclogites, and the oxidation state of the Earth's mantle. Science, 261, 66-
624	68.
625	
626	Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800-kbar under
627	quasi-hydrostatic conditions. Journal of Geophysical Research – Solid Earth and Planets, 91, 4673-
628	4676.
629	
630	Martin, A.M., Laporte, D., Koga, K.T., Kawamoto, T., and Hammouda, T. (2012) Experimental Study
631	of the Stability of a Dolomite + Coesite Assemblage in Contact with Peridotite: Implications for
632	Sediment – Mantle Interaction and Diamond Formation During Subduction. Journal of Petrology, 53,
633	391-417.
634	
635	McCammon, C., Hutchison, M., and Harris, J. (1997) Ferric iron content of mineral inclusions in
636	diamonds from Sao Luiz: A view into the lower mantle. Science, 278, 434-436.
637	
638	Molina, J.F., and Poli, S. (2000) Carbonate stability and fluid composition in subducted oceanic crust:
639	an experimental study on H ₂ O-CO ₂ -bearing basalts. Earth and Planetary Science Letters, 176, 295-
640	310.
641	

- 642 Newton, R.C., and Sharp, W.E. (1975) Stability of forsterite + CO₂ and its bearing on role of CO₂ in
- mantle. Earth and Planetary Science Letters, 26, 239-244.
- 644
- Ono, S., Katsura, T., Ito, E., Kanzaki, M., Yoneda, A., Walter, M.J., Urakawa, S., Utsumi, W., and
- 646 Funakoshi, K. (2001) In situ observation of ilmenite-perovskite phase transition in MgSiO₃ using
- 647 synchrotron radiation. Geophysical Research Letters, 28, 835-838.
- 648
- Ono, S., Kikegawa, T., Ohishi, Y., and Tsuchiya, J. (2005) Post-aragonite phase transformation in
- 650 CaCO₃ at 40 GPa. American Mineralogist, 90, 667-671.
- 651
- 652 Oppenheimer, C., and Kyle, P.R. (2008) Probing the magma plumbing of Erebus volcano, Antartica, by
- open-path FTIR spectroscopy of gas emissions. Journal of Volanology and Geothermal Research, 177,
 743-754.
- 655
- Poli, S., Franzolin, E., Fumagalli, P., and Crottini, A. (2009) The transport of carbon and hydrogen in
- 657 subducted oceanic crust: An experimental study to 5 GPa. Earth and Planetary Science Letters, 278,
- 658 350-360.
- 659
- Rohrbach, A., and Schmidt, M. (2011) Redox freezing and melting in the Earth's deep mantle resulting
 from carbon–iron redox coupling. Nature, 472, 209-212.
- 662
- 663 Schultz, E., Mezouar, M., Crichton, W., Bauchau, S., Blattmann, G., Andrault, D., Fiquet, G., Boehler,
- R., Rambert, N., Sitaud, B., and Loubeyre, P. (2005) Double-sided laser heating system for in situ high

pressure-high temperature monochromatic X-ray diffraction at the ESRF. High Pressure Research, 25,
71-83.

667

- 668 Scott, H.P., Doczy, V.M., Frank, M.R., Hasan, M., Lin, J.F., and Yang, J. (2013) Magnesite formation
- from MgO and CO₂ at pressures and temperatures of the Earth's mantle. American Mineralogist, 98,
- 670 1211-1218.

671

- 672 Seto, Y., Hamane, D., Nagai, T., and Fujino, K. (2008) Fate of carbonates within oceanic plates
- 673 subducted to the lower mantle, and a possible mechanism of diamond formation. Physics and
- 674 Chemistry of Minerals, 35, 223-229.

675

- 676 Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P., and Laverne, C. (2011) Insights into C and H
- 677 storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochimica et
- 678 Cosmochimica Acta, 75, 2237-2255.

679

- 680 Shirey, S.B., Cartigny, P., Frost, D.J., Keshav, S., Nestola, F., Nimis, P., Pearson, D.G., Sobolev, N.V.,
- and Walter, M.J. (2013) Diamonds and the geology of mantle carbon. Reviews in Mineralogy and
- 682 Geochemistry, 75, 355-421.
- 683
- 684 Simon F.E., and Glatzel G.Z., (1929) Remarks on fusion pressure curve. Zeitschrift fur Anorganische
 685 und Allgemeine Chemie, 178, 309-312.

- 687 Sinmyo, R., and Hirose, K., (2010) The Soret diffusion in laser-heated diamond-anvil cell. Physics of
 688 the Earth and Planetary Interiors, 180, 172-178.
- 689
- 690 Sleep, N.H., and Zhanle, K. (2001) Carbon dioxide cycling and implications for climate on ancient
- Earth. Journal of Geophysical Research 106, 1373–1399.
- 692
- 693 Stagno, V., and Frost, D.J. (2010) Carbon speciation in the asthenosphere: Experimental measurements
- 694 of the redox conditions at which carbonate-bearing melts coexist with graphite or diamond in peridotite
- assemblages. Earth and Planetary Science Letters, 300, 72-84.
- 696
- 697 Stagno, V., Tange, Y., Miyajima, N., McCammon, C.A., Irifune, T., and Frost, D.J. (2011) The
- 698 stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity.
- 699 Geophysical Research Letters, 38, L19309.
- 700
- 701 Steinberger, B., and Torsvik, T.H. (2012) A geodynamic model of plumes from the margins of Large

Low Shear Velocity Provinces. Geochemistry Geophysics Geosystems, 13, Q01W09.

- Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction zone thermal
 models. Physics of The Earth and Planetary Interiors, 183, 73-90.
- 706
- Teweldeberhan, A.M., Boates, B., and Bonev, S.A. (2013) CO₂ in the mantle: Melting and solid–solid
 phase boundaries. Earth and Planetary Science Letters, 373, 228-232.
- 709

710	Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography,
711	34, 210-213.
712	
713	van der Meer, D.G., Spakman, W., van Hinsbergen, D.J.J., Amaru, M.L., and Torsvik, T.H. (2010)
714	Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geoscience, 3, 36-
715	40.
716	
717	Walter, M.J., and Koga, K.T. (2004) The effects of chromatic dispersion on temperature measurement
718	in the laser-heated diamond anvil cell. Physics of the Earth and Planetary Interiors, 143, 541-588.
719	
720	Walter, M.J., Kohn, S.C., Araujo, D., Bulanova, G.P., Smith, C.B., Gaillou, E., Wang, J., Steele, A.,
721	and Shirey, S.B. (2011) Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and their
722	Mineral Inclusions. Science, 334, 54-57.
723	
724	Woodland, A.B., and Koch, M. (2003) Variation in oxygen fugacity with depth in the upper mantle
725	beneath the Kaapvaal craton, Southern Africa. Earth and Planetary Science Letters, 214, 290-310.
726	
727	Yaxley, G.M., and Brey, G.P. (2004) Phase relations of carbonate-bearing eclogite assemblages from
728	2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contributions to Mineralogy and
729	Petrology, 146, 606-619.

- 731 Zha, C.S., Mibe, K., Bassett, W.A., Tschauner, O., Mao, H.K., and Hemley, R.J. (2008) P-V-T
- equation of state of platinum to 80 GPa and 1900K from internal resitive heating/x-ray diffraction
- measurements. Journal of Applied Physics, 103, doi: 10.1063/1.2844358.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.47353/26Thomson et al. (2014)Melting curves of MgSiO₃-MgCO₃ and MgCO₃-CaCO₃

735 736	FIGURE CAPTIONS
737	Figure 1: (a) Photograph of the experiment #21 taken whilst pressurised at ~ 80 GPa. Three (or four in
738	the case of other experiments) $\sim 40 \ \mu m$ sample chambers were drilled into a rhenium gasket that had
739	been pre-indented using 200 or 250 µm diamond culets. Ruby was placed in one sample chamber only.
740	The laser spot filled almost all of one sample chamber. (b) Illustrative cartoon showing how the
741	temperature profiles across the heated spot change throughout each experiment. Any 'topography' in
742	the temperature profile is maintained through the heating ramp until the melting temperature is reached,
743	at which point the sample becomes isothermal. Further heating causes platinum migration and super-
744	heating, generating hotspots in some experiments. If these develop, local peaks in temperature are
745	observed that develop until the entire sample is at super-liquidus temperatures. (c) An example of the
746	behaviour described in (b) with real data from the right-hand side of an experiment at 59.6 GPa with a
747	melting point at 2080 ± 50 K (plateau shown in figure 4c). Even numbered profiles are shown as solid
748	lines, odd as dashed lines. The first and last profile are labelled with the total laser power.
749	
750	<i>Figure 2:</i> Calibration curve for pressure determination using the shift in the 1332 cm ⁻¹ Raman peak for
751	diamond. The pressure measured by ruby fluorescence (one chamber in each experiment contained
752	ruby) is plotted against the shift in Raman frequency (Δv = measured Raman shift – 1332.4 cm ⁻¹).
753	
754	Figure 3: Three examples of temperature vs. laser power plateaux observed in enstatite-magnesite
755	experiments and used to define eutectic melting temperatures. Temperatures marked are maximum
756	temperatures observed within profiles measured on each side of the DAC. (a) 22.6 GPa, (b) 37.3 GPa,
757	(c) 76.1 GPa (right hand side only used to define plateau). Open symbols show temperatures measured
758	on the right hand side of the DAC, closed symbols are from the left hand side. The downward pointing

759	arrow marks the first observation of visible convection within the sample chamber. The error of each
760	individual temperature measurement is < 10 K. The temperatures used to define the melting
761	temperatures (grey bars) and uncertainties (2σ) are those between the two vertical black lines.
762	
763	Figure 4: As figure 3, but for experiments in the magnesite-calcite system. (a) 19.6 GPa (b) 45.7 GPa
764	(in-situ experiment) (c) 59.6 GPa. Unlike enstatite-magnesite experiments plateaux appear short-lived,
765	due to the formation of platinum hotspots that become superheated relative to the melting temperature
766	(see text). The melting point is identified by examining individual temperature spectra in combination
767	with the presence of plateaux in temperature-power curves.
768	
769	Figure 5: (a) Melting curve for MgSiO ₃ -MgCO ₃ system to 80 GPa. Open (ruby-bearing) and grey-
770	filled (ruby-free) circles are experiments from this study. Black squares are the eutectic melting
771	temperature at lower pressure defined in multi-anvil experiments by Katsura and Ito (1990). The
772	known transition of ilmenite to perovskite structured MgSiO ₃ is plotted as a long dashed line (Ono <i>et</i>
773	al., 2001). The melting curve is kinked at a pressure corresponding to this transition. The short dashed
774	line, open and grey squares indicates the location of the decarbonation reaction $MgSiO_3 + MgCO_3 =$
775	Mg ₂ SiO ₄ + CO ₂ at low pressure (Newton and Sharp, 1975; Koziol and Newton, 1998). The coefficients
776	defining the melting curve equations are presented in table 2. (b) Eutectic melting curve for the
777	MgCO ₃ -CaCO ₃ system to 80 GPa. Open (ruby-bearing) and grey-filled (ruby-free) circles are
778	experiments from this study. The minimum melting temperature at low pressure corresponding to the
779	reaction dolomite _{ss} = melt are shown as square symbols and taken from Irving and Wyllie (1975),
780	Byrnes and Wyllie (1981) and Buob et al. (2006). The triangular symbols represent data from Luth

781	(2001) defining the reaction dolomite _{ss} = aragonite + magnesite, and this reaction has been extrapolated
782	with a dashed line. The <i>in-situ</i> experiment performed at ESRF is shown as a black diamond.

783

784	Figure 6: Field-emission gun EPMA mages of recovered products from a subsolidus (a) and
785	a partially melted (b and c) experiment. The column at the left shows backscattered electron images,
786	the centre (SiO ₂) and right (MgO) columns show X-ray maps calibrated to show approximate
787	composition (in weight %) by greyscale. Labels correspond to crystalline phases: Pv = perovskite, Mag
788	= magnesite and Di = diamond and the location of the laser spot during heating is defined by a white
789	circle in (b) and (c). (a) Subsolidus experiment conducted at 33.9 ± 1.9 GPa and a maximum
790	temperature of 1950 K. Experiment consists of perovskite (with beam damage), magnesite and
791	platinum (the white phase in BSE images) of uniform grainsize evenly distributed throughout the
792	charge. (b) A surface section, adjacent to the culet, of experiment #07a conducted at 36.3 GPa. Inside
793	this heated region the grain size is significantly smaller than the surrounding material and consists of a
794	phase assemblage of MgO, perovskite and magnesite (seen in the MgO map). The colder surrounding
795	region has the same phase assemblage as (a). (c) A central section of the same experiment after further
796	polishing. In the centre of this heated region grains of SiO ₂ and diamond (dark phase in BSE;
797	confirmed with Raman spectroscopy) have been identified. The central region of this experiment is
798	essentially devoid of MgO. The heterogeneity observed in (b) and (c) is a consequence of partial
799	melting and Soret diffusion in the melt (see text). The observations provide independent supporting
800	evidence for the location of the solidus and a verification of the methods used here to determine
801	melting temperatures in <i>in-situ</i> DAC experiments.

803	Figure 7: XRD data (black dots) collected at 2030K and 52.7 GPa during the <i>in-situ</i> experiment in the
804	magnesite-calcite system and fitted using the Le Bail method (solid black curve). The background
805	(grey dashed line) and residual (lowermost grey line) are also shown. The sample consists of the
806	assemblage MgCO ₃ + CaCO ₃ in the post-aragonite structure.
807	
808	Figure 8: The experimentally determined melting curves from this study for MgSiO ₃ -MgCO ₃ and
809	MgCO ₃ -CaCO ₃ systems (solid black lines), with associated 95% confidence intervals (grey dotted
810	lines), extrapolated to the pressure of the core-mantle boundary (135 GPa). The light grey field
811	represents the Earth's adiabat from Katsura (2010) while the geotherm of a hot subducting slab is
812	indicated by the grey arrow (Syracuse et al., 2010).
813	
814	Figure 9: A comparison of the melting curve of carbonated peridotite defined in a simple system
815	(MgSiO ₃ -MgCO ₃ , this study) and in a natural carbonated peridotite system with 5 wt% CO ₂ (labelled
816	G-09, Ghosh et al., 2009). Squares represent experimental runs from Ghosh et al. (2009); closed
817	squares are subsolidus conditions (all carbonate as magnesite solid), open squares are experiments
818	containing a carbonated melt and split squares are charges containing both solid and liquid carbonate.
819	In the two experiments at 20 GPa with split symbols magnesite was only found at the cold end of the
820	capsule estimated by the authors to be $40 - 70$ °C colder than the quoted run temperature. It is
821	suggested that the solidus of natural carbonated peridotite will also have a cusp, as observed in the
822	simple system; a potential solidus that is consistent with the experimental data of Ghosh et al. (2009) is
823	shown as a dashed curve.
824	

825 *Table 1:* Summary of experimental results from this study

826

827 *Table 1:* Fitting parameters for the melting curves defined in this study. Polynomial equations take the

828 form T = k₀P² + k₁P + k₂. The damped Simon-Glatzel equation is $T_{in} = T_0 \left(\frac{p}{a} + 1\right)^{\frac{1}{p}} \exp\left(-cP\right)$.

Total Laser Power

P(GPa)

Experiment No.	$\Delta \mathbf{v} (\mathbf{cm}^{-1})$	P (Gpa)	$T_m(K)$	2σ (K)	ruby P (GPa)
MgSiO3 - MgCO3	42	20.6	2020	78	21.5
06	46	22.6	1941	43	
	36	17.7	2095	91	
	38	18.7	2050	250	
07	74	36.3	2116	51	34.1
	76	37.3	2094	72	
	56	27.5	2056	83	
09	104	51.0	2191	33	53.4
	89	43.7	2234	37	
10	83	40.7	2117	91	561
10	116	56.9	2219	108	56.1
	107	52.5	2230	90	
11	111	54.5 16.2	2222	134	167
11	33 26	10.2	2088	98 72	10.7
	30 26	1/./	2041	/3	
	30 22	1/./	2005	08 20	
12	52 53	13.7 26.0	2075	59 55	267
12	55 51	20.0 26 5	2022	55 80	20.7
	34 42	20.5	2074	09 //1	
15	+2 63	20.0	2080	-11 26	30.5
15	159	78.0	2005	50	50.5 78 5
	155	76.1	2325	31	70.5
	162	79.5	2325	30	
20	46.4	22.8	1983	38	
20	47.3	23.2	2029	44	
	48.7	23.9	1983	19.6	
	49.2	24.1	1990	22	
МоСОЗ - <i>Са</i> СОЗ	80	39 3	2050	50	36.42
02	90	14.2	2030	60	50.12
02	90 73	44.2 35.8	2030	50	
03	101	<i>4</i> 9.6	2100	50 75	51 71
05	101	49.6	2080	50	51.71
	96.5	47.4	2000	50	
13	44	21.6	1900	50	
	40	19.6	1885	25	
	33	16.2	1860	75	
14	55	27.0	2012	76	24.6
	70	34.4	2077	126	31.1
	69	33.9	2050	75	
	87	42.7	2109	71	
16	84	42.1	2083	58	42.3
	97	47.6	2141	76	
	99	48.6	2127	44	
17	103	50.6	2100	80	48.1
	-	61.5	2100	50	
	131.5	64.5	2060	50	
	121.5	59.6	2075	50	
18	104	51.0	2100	100	52.4
	98	48.1	2100	75	
	105	51.5	2100	75	
19	85	41.7	2094	50	46.7
	96	47.1	2109	32	
	79	38.8	2101	37	
21	159.9	78.5	2151	56	
	164.6	80.8	2114	100	
. .	161.9	79.5	2134	39.5	
In-situ experiment	N/A	45.7*	1986	86	

In-situ experiment N/A 45.7* 1986 *post-heating pressure from Pt MGD EoS (Zha *et al.*, 2008)

MgSiO ₃ - MgCO ₃	\mathbf{k}_{0}	k ₁	k ₂	
5-23 GPa	-1.305	38.32	1806	
±	0.7976	27.56	231	
	T_m^{0}	a	b	c
> 23 GPa	1039	0.1848	7.44	0
±	2.06E+04	28.1152	5.32	0
MgCO ₃ - CaCO ₃	T_m^{0}	a	b	c
> 12 GPa	994.05	0.67003	4.8058	0.00303
±	1.08E+04	40.8	10.58	0.00542