1	American Mineralogist, Volume XX, pages XXX-XXX, XXXX.
2	REVISION 1
3	Reflectance spectroscopy and optical functions for hydrated Fe-sulfates
4	Karly M. Pitman ^{1,*} , Eldar Z. Noe Dobrea ¹ , Corey S. Jamieson ² , James B. Dalton III ³ ,
5	William J. Abbey ³ , and Emily C. S. Joseph ¹
6	¹ Planetary Science Institute, 1700 E. Fort Lowell Road., Suite 106, Tucson, Arizona
7	85719, U. S. A.
8	² SETI Institute, 189 Bernardo Ave., Ste. 100, Mountain View, California 94043, U. S. A.
9	³ Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive,
10	Pasadena, California 91109, U. S. A.
11	*E-mail: pitman@psi.edu
12	Abstract
13	Visible and near-infrared wavelength (VNIR, λ =0.35 - 5 μ m) laboratory diffuse
14	reflectance spectra and corresponding optical functions (real and imaginary refractive
15	indices) for several iron sulfates (natural K- and Na-jarosite, szomolnokite, rhomboclase)
16	are presented. On Mars, jarosite has been identified in Meridiani Planum, Mawrth Vallis,
17	Melas Chasma, and Eridania Basin; szomolnokite has been found as distinct layers at
18	Columbus Crater and as outcrops at Juventae Chasma, and rhomboclase has been
19	identified at Gusev Crater. Constraining the mineralogy and chemistry (Fe- vs. Mg-rich)
20	of the sulfates on Mars may contribute to our understanding of the environmental and
21	aqueous conditions present on Mars during their formation. The data presented here will
22	help to constrain the mineralogy, abundance, and distribution of sulfates on the martian
23	surface, which will lead to improvements in understanding the pressure, temperature, and

24 humidity conditions and how active frost, groundwater, and atmospheric processes once 25 were on Mars. 26 Keyword: jarosite, szomolnokite, rhomboclase, optical constants, visible to near-infrared 27 wavelength, laboratory diffuse reflectance spectroscopy 28 29 Introduction 30 Iron sulfates, hereafter Fe-sulfates, have been observed spectroscopically on Mars 31 in a variety of forms via Earth-based telescope observations as well as spacecraft, landed, 32 and rover missions. This suggests that acidic aqueous conditions occurred in the past and 33 that evaporation and dessication processes were at work on Mars. 34 Sulfate minerals have been inferred for Mars since the Viking and Pathfinder 35 spacecraft missions (e.g., Toulmin et al. 1977; Kieffer et al. 1992 and references therein) 36 and have been found in the Mars-derived SNC meteorite class (e.g., Chatzitheodoridis 37 and Turner 1990; Gooding 1992; Treiman 1993; Bridges and Grady 2000; Bridges et al. 38 2001; Wentworth et al. 2002, 2005; Farquhar et al. 2007). A variety of sulfates have also 39 been directly observed on Mars at near- and thermal-IR wavelengths using the NASA 40 Infrared Telescope Facility in Hawaii and from Mars orbiter and landed mission 41 instrumentation including the Phobos 2 infrared imaging spectrometer (ISM), Mars 42 Global Surveyor Thermal Emission Spectrometer (MGS TES), Mars Exploration Rovers 43 (MER) Spirit and Opportunity, Mars Express Observatoire pour la Mineralogie, l'Eau, les 44 Glaces et l'Activite (OMEGA), and Mars Reconnaissance Orbiter Compact 45 Reconnaissance Imaging Spectrometer for Mars (MRO CRISM) (Pollack et al. 1990; 46 Blaney and McCord 1995; Bandfield 2002; Cooper and Mustard 2002; Bibring et al.

2

47	2004; Lane et al. 2004, 2008; Squyres et al. 2004; Johnson et al. 2007; Murchie et al.
48	2007). Observations performed with the Mars Exploration Rovers (MER) and Mars
49	Express OMEGA visible and near-infrared imaging spectrometer led to the discovery of
50	hydrated sulfates exposed in outcrops on the martian surface (e.g., Squyres et al. 2004;
51	Gendrin et al. 2005; Bibring et al. 2006). Observations performed at a higher spatial
52	resolution with MRO CRISM led to the discovery of many more small (kilometer-sized)
53	hydrate-bearing outcrops scattered throughout the martian surface (e.g., Pelkey et al.
54	2007; Murchie et al. 2009). The diversity of hydrated phases on Mars overall suggests an
55	aqueous history where water was present in a large variety of geological environments
56	and pH levels.

57 Several Fe-bearing sulfate minerals are of particular interest for Mars research. 58 Fe-sulfates have been found only in specific areas (e.g., Lichtenberg et al. 2010; Roach et 59 al. 2010; Ling and Wang 2010 and references therein; Liu and Wang 2012 and references 60 therein). Pathways to the formation of Fe-hydroxides and other Fe-sulfates such as 61 melanterite and jarosite by weathering sulfides, acid fog alteration, and Fe-oxidation have 62 been suggested for Mars (e.g., King and McSween 2005; Golden et al. 2005; Tosca et al. 63 2008 and references therein). Fe-sulfates were found by the MER rovers in a variety of 64 forms, including jarosite, in Meridiani Planum and Gusev Crater, suggesting that acidic 65 aqueous, evaporation, and dessication processes were at work in these locations (Fairen et 66 al. 2009 and references therein). Jarosite outcrops have also been found in Mawrth Vallis 67 (Farrand et al. 2009) and western Melas Chasma (Weitz et al. 2009, 2012, 2013). 68 Szomolnokite and jarosite have been found as distinct layers within polyhydrated non-Fe

sulfate at Columbus Crater on Mars (Wray et al. 2008, 2009a), and hydrated Fe-sulfates

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

4/2

3

70	have been positively identified in the martian southern highlands and Endeavour Crater in
71	Meridiani Planum (Wray et al. 2009b,c). Szomolnokite has been suggested as a possible
72	match for the monohydrated sulfate at Aram Chaos (Lichtenberg et al. 2010). Juventae
73	Chasma, located northeast of Valles Marineris, also matches spectral signatures of mono-
74	and polyhydrated sulfates, including szomolnokite, dehydrated ferric sulfate and
75	copiapite, and hydronium jarosite (Bishop et al. 2008, 2009; Bishop and Weitz 2011).
76	Jarosite, rozenite, and szomolnokite have been definitively identified on Mars by
77	OMEGA and CRISM (Carter et al. 2013). X-ray diffraction results from temperature
78	series experiments of dehydrating ferrous sulfates (melanterite, rozenite, szomolnokite,
79	halotrichite, and romerite) suggest that melanterite might be unstable under Martian
80	surface conditions, but other ferrous sulfates, including szomolnokite, should be stable
81	(Brown et al. 2008). Rhomboclase has been extensively investigated in stability field
82	studies of Mars minerals (e.g., Wang and Ling 2011 and references therein).
83	Rhomboclase and other Fe-sulfates (hydronium jarosite, ferricopiapite, paracoquimbite,
84	fibroferrite) have been suggested for Mars based on MER Pancam and laboratory spectral
85	analyses (Johnson et al. 2007; Lane et al. 2008; Ling and Wang 2010 and references
86	therein). Whereas the sulfate chemical varieties (Fe-, Mg-, Ca-bearing) on Mars may be
87	caused by acidic surface water, some of these (Mg-sulfates) do not require acidic surface
88	water to form, so determining the exact type of Mars sulfates (Fe- vs. Mg-rich) may lead
89	to critical information on the epoch of their formation or humidity conditions on Mars
90	during their formation (Marion and Farren 1999; King and McSween 2005; Vaniman et
91	al. 2004; Cloutis et al. 2007).

92	Although the presence of sulfates and hydrous alteration minerals on Mars
93	strongly suggests that Mars experienced at least one period of aqueous activity at some
94	point in its history, the extent of this activity is still not fully understood: Was alteration
95	extensive to the point that aqueous minerals became the dominant mineralogical species
96	in the areas where alteration occurred, or was it limited such that the alteration products
97	now form a small part of a mineral assemblage that includes unaltered primary minerals?
98	In order to resolve this issue, it is necessary to constrain the type and abundance of
99	aqueous and non-aqueous minerals present in an assemblage. Laboratory diffuse
100	reflectance spectra may be used to constrain surface abundance to first order via linear
101	mixture modeling of spacecraft observations, in which the spacecraft spectrum is
102	modeled as a linear combination of laboratory spectra of individual minerals, scaled by
103	their abundances (cf. Ramsey and Christensen 1998). This method is primarily
104	applicable in the mid-infrared ($\lambda \sim 5-50 \mu\text{m}$), where minerals present a very low albedo
105	(0.12-0.14 for unaltered minerals) and light that undergoes multiple reflections is
106	commonly absorbed before it can escape the assemblage. When minerals are intimately
107	mixed, such that light reflects off of multiple surfaces before escaping to the observer, or
108	when materials have a higher albedo, which occurs in the visible and near-infrared (λ
109	~0.35-5 μ m) portion of the electromagnetic spectrum, spectral mixing is non-linear.
110	Radiative transfer theory (e.g., Hapke 1993, 2002, 2008; Shkuratov et al. 1999) can be
111	used to model the spectra of such intimate mixtures. These models rely on the optical
112	functions, or "constants" (real and imaginary refractive indices $n(\lambda)$ and $k(\lambda)$) of the
113	materials involved, which can be derived from laboratory spectra of grain size separates.
114	Availability of reflectance spectra and optical constants for Fe-sulfates will enable

115	detailed analysis of remote and landed spectral observations, improving our
116	understanding of the physical and chemical evolution of the Martian surface. Therefore,
117	in this study, we present both laboratory visible to near-infrared ($\lambda \sim 0.35-5 \mu m$) diffuse
118	reflectance spectra and derived optical constants of a suite of Mars-relevant Fe-sulfates.
119	Prior Work
120	Whereas the full range of Fe-sulfate chemistries has been explored in detail with
121	Raman, LIBS, Mossbauer, reflectance, absorption, and emissivity spectroscopy, few
122	optical constant datasets exist for hydrated Fe-sulfates, largely because few reflectance
123	spectral datasets have been published with robust particle size estimates. Diffuse
124	reflectance spectra, especially in the visible to near-infrared wavelength (VNIR) range,
125	exist for Fe-sulfates (Table 1), typically at standard temperature and pressure conditions
126	for Earth. For this work, we surveyed the literature and also several spectral databases in
127	use by Mars researchers to determine which Fe-sulfates and grain sizes would be the
128	most useful to add to known holdings. The PDS Geosciences Node Spectral Library
129	(http://speclib.rsl.wustl.edu/) yielded Fe-sulfate samples in $<45\mu m$ and $<125\mu m$ size
130	fractions. The ASTER spectral library (Advanced Spaceborne Thermal Emission and
131	Reflection Radiometer, http://speclib.jpl.nasa.gov) contains only < 45 μ m, 45-125 μ m,
132	125-500 μ m samples of jarosite, plumbojarosite, and natrojarosite. The HOSERLab
133	collection (Hyperspectral Optical Sensing for Extraterrestrial Reconnaissance Laboratory,
134	http://psf.uwinnipeg.ca/Sample_Database.html; E. Cloutis, pers. comm. 2013) offers a
135	wide variety of Fe-sulfate compositions, but these are only available for one size fraction:
136	$< 45 \ \mu m$. Brown University's RELAB database (Reflectance Experimental Laboratory,

137	http://www.planetary.brown.edu/relabdata/catalogues/Spectra_Catalogue.xls) repeats
138	many of the HOSERLab samples, as well as additions from contributors such as J.
139	Bishop, M. Lane, J. Mustard, and R.V. Morris. A few studies have varied pressure-
140	temperature or dehydration conditions to resemble Mars but at the expense of measuring
141	multiple particle sizes. Overall, few past studies acquired reflectance spectra for multiple
142	grain sizes or even documented the grain size of the samples; those that did document
143	sizes listed the sieve fractions used to produce their samples, which were often either
144	extremely broad or open-ended (e.g., $< 45 \ \mu m$), suggesting that the mean effective
145	diameter is unknown, with sizes likely dominated by clumps and the finest particles in
146	the sample. This is problematic for four reasons: (1) At least three grain sizes are
147	essential for deriving optical functions that can be used to generate models of different
148	grain sizes (e.g., Lucey 1998). (2) Sieve fractions are rough-cut estimates of grain size;
149	for sieved particulates, the mean effective diameter of a sample can be much different
150	than the median value of the sieve fraction limits (~20% larger than the upper screen size;
151	Moersch & Christensen 1995). (3) Knowing the grain size well is important because it is
152	the main variable and largest source of error in determining optical constants. (4) The
153	particle sizes in past studies fall into two categories, motivated by IRTM/TES and MER
154	results: atmospheric dust/silt-sized (e.g., < 45 μ m size fraction) or sand-sized (~ 200 μ m).
155	However, for aqueous terrains such as fluvial and lacustrine deposits, there should be a
156	range of particle sizes between and greater than those diameters, up to mm-scale or
157	gravel sizes (Folk 1974). Thus, there is a need for laboratory reflectance spectra that
158	represent Mars equatorial surface temperatures (T \sim 280-300 K) and different particle
159	sizes that have not been measured before, to better represent aqueous terrains and

4/2

160	converge on the best set of optical constants (which should be independent of particle
161	size). Thus, we concentrated on four hydrated Fe-sulfate minerals for which sieve
162	fractions were typically broad in past literature (Table 2) and six finite size fractions
163	between 53 and 250 μ m (Table 3) to fill in the missing size range between atmospheric
164	dust and sand-sized particles.
165	Experimental Details
166	Table 2 lists the samples measured in this study. A larger suite of Fe-sulfates of
167	different hydration types was purchased from Excalibur Minerals and Minerals
168	Unlimited, including some of the same lots previously measured for the Mars program.
169	Upon X-ray diffraction (XRD) analysis, it was determined that many of these samples
170	were contaminated with mixed phases or rinds. We present data on the purest samples
171	from the original Excalibur / Minerals Unlimited suite (natural K-jarosites from three
172	localities and rhomboclase), a natural powdered sample of Na-jarosite (Caltech
173	collection, courtesy of Drs. Joel Hurowitz and Ken Farley), and synthesized samples
174	(szomolnokite). The szomolnokite was synthesized by putting ferrous sulfate in an oven
175	at 80°C until it reached chemical stability.
176	Optical constants may be estimated from spectral measurements of reflectance at
177	multiple particle sizes, or derived from a combination of reflectance and transmittance
178	spectra. In diffuse reflectance spectroscopy, the samples are loosely packed powders
179	having randomly-oriented particles of a known size range. Samples for this study were
180	ground and sieved to consistent particle size ranges. The natural rhomboclase sample
181	(Alcaparrosa, Chile) and Na-jarosite were already in particulate form, so were sieved

182 without crushing; for the remaining samples, all grain sizes $> 250 \ \mu m$ were crushed and

4/2

183	resieved to the six size fractions in Table 3. The average grain diameters in Table 3 were
184	also verified by optical microscopy in transmitted and reflected light at 10x zoom and
185	analyzed with the particle sizing software suite Simagis Live TM , Smart Imaging
186	Technologies, Co., Houston, TX: http://www.simagis.com (Fig. 1), which performs
187	similarly to the ImageJ particle analysis software used for Mars analog clays (e.g., Brown
188	et al. 2012). For our optical microscopy images, the particle detection limit for the
189	Simagis Live TM automated grain size analysis software with intensity threshold set to
190	zero was equivalent spherical particle diameter ~ 1.1-3 μ m. Particles with projected
191	areas 0.84 μ m ² (diameter ~ 1.03 μ m) and less were rejected as blank pixels. Grain
192	boundaries and overlapping particles were verified both by automated and manual
193	identification of 8-10 fields-of-view per size fraction, yielding the total number of
194	particles per size fraction on the order of 100-1000. The histograms showing the
195	distribution of grain sizes for all samples are available by request. Table 3 summarizes
196	the diameters for the samples, including mode 1 (the dominant grain size by area) and
197	mode 2 (the amount of fines in the sample). Particles with larger geometric cross-
198	sectional area most affect the single scattering phase function; for example, increasing the
199	number of mid-sized particles or adding fines in various proportions to create bimodal or
200	trimodal size distributions in multisphere T-matrix models does not have much effect on
201	the phase function or even the single scattering albedo of collections of loosely or
202	closely-packed Mg-sulfate particles (values change in the 1e-5 place; Pitman et al. 2013).
203	Thus, we assume mode 1 diameters in our n, k derivations.
204	

204

4/2

205	Processing of the samples was performed by lightly crushing the materials using a
206	mortar and pestle, and subsequently dry sieving to the size fractions of interest. The
207	synthetic szomolnokite and natural K-jarosite samples were most stable to crushing and
208	sieving. With the exception of the rhomboclase, the Fe-sulfates (notably natrojarosite)
209	formed aggregates and clumps immediately upon sieving. The sieved rhomboclase
210	particles were very transparent and did not readily form aggregates. To avoid changing
211	the hydration state of the sulfates, the samples were not washed; however, under optical
212	microscopy, we saw no evidence of coating with very small fines. Whereas SEM images
213	can provide more detail for particle diameters from 0.01-5 μ m (e.g., for monitoring
214	clinging fines in clays; Roush et al. 2013), optical microscopy should suffice for
215	characterizing particle sizes of the order of one to hundreds of microns (Yang, 2003).
216	Due to the fact that the hydration state of some sulfates is very sensitive to
217	environmental humidity and temperature, maintaining the long-term stability of the
218	mineral was an issue of concern. Thus, for the synthesized samples, sample preparation
219	was performed immediately after synthesis under controlled humidity and temperature
220	conditions. Spectral and XRD analyses were performed as quickly as possible after
221	samples were prepared, after they were processed, and after they were measured. For
222	spectral analysis, the prepared hydrated Fe-sulfate powders were placed in stainless steel
223	sample holder cups with sample volume on the order of 2 cm^3 (1 cm depth), to ensure
224	that each material was optically thick in the near-IR.
225	Powder XRD patterns were obtained for all samples using JPL's Bruker AXS model
226	D8 Discover X-ray diffractometer which is equipped with a graphite monochromator and

227 a General Area Detector Diffraction System (GADDS). The radiation applied was $CuK\alpha$

228	$(\lambda = 1.5404 \text{ Å})$ operated at 40 kV and 20 mA. The phase identification was confirmed by
229	comparing the 13 to $47^{\circ} 2\theta$ range (Fig. 2) with standard powder diffraction files from the
230	International Centre for Diffraction Data (ICDD), 2000.
231	Room temperature (T~300 K) diffuse reflectance spectra were acquired at ambient
232	pressure (1 bar) at JPL's Planetary Ices Characterization Laboratory. From $\lambda = 0.35$ -2.5
233	μ m (resolution: 3 nm for λ < 1 μ m, 10 nm for λ > 1 μ m), diffuse bidirectional reflectance
234	spectra were acquired with an Analytical Spectral Devices Inc. (ASD) FieldSpec FR ³
235	fiber optic spectrometer at three viewing geometries (incidence angle i=0°, phase angle g
236	and emergence angle $e=10^{\circ}$, 15° ; $i=30^{\circ}$, $g=e=0^{\circ}$) for each of the six grain sizes. A
237	Thermo Scientific® mercury cadmium telluride (MCTA) detector was used to collect
238	conical-hemispherical reflectance spectra at $\lambda = 1.5-25 \ \mu m$ (resolution: 2 cm ⁻¹). Spectral
239	data are truncated at $\lambda \leq 10 \ \mu m$ due to signal attenuation by CaF ₂ infrared windows;
240	however, this exceeds the wavelength range needed for NASA Mars missions. The
241	sample cup was illuminated from above through two separate viewports at 11.5° relative
242	to normal by two light sources: a globar from a Thermo Scientific® Nicolet 6700 Fourier
243	transform infrared (FT-IR) spectrometer and a Sciencetech Inc.® 650W quartz-tungsten-
244	halogen (QTH) lamp with low-OH silica fiber optics. For each grain size fraction, 25
245	individual spectra were acquired with the ASD FieldSpec 3 and spectrally averaged to
246	produce signal-to-noise ratios of 1000 or better. The spectra were calibrated with two
247	NIST-approved standards: Spectralon® (Labsphere, Inc.) for the VNIR and diffuse
248	InfraGold® for the NIR-MIR range. The NIR-MIR spectra from the MCTA detector
249	were scaled and merged to the VNIR ASD spectra at $\lambda = 2 \ \mu m$.
250	

4/2

251	Spectroscopic Results
252	In Figures 3-5, we present diffuse laboratory reflectance spectra and estimated
253	optical constants for K-jarosite, Na-jarosite, rhomboclase, and szomolnokite. Electronic
254	data tables for all reflectance spectra and optical constants shown are available as a
255	supplement to this article. For K-jarosite (Fig. 3), we first compared the VNIR range for
256	the three different localities, then focused our analyses on the two samples with the
257	greatest range in spectral behavior: Copiapo Mine and Arabia. The Arabia jarosite is the
258	purest in terms of K-jarosite chemistry whereas the Copiapo jarosite dataset is superior in
259	terms of size analysis, as some grain size fractions were excluded from the Arabia
260	jarosite and rhomboclase analyses due to poor sorting or microscopy image quality.
261	Reflectance spectra for Na-jarosite, rhomboclase, and szomolnokite (Fig. 5) are plotted in
262	different wavelength ranges ($\lambda = 0.35$ to 2.5, 5, or 10 µm) to illustrate the important
263	peaks for each compound. In Figures 4-5, optical constants are shown in the same VNIR
264	range for best comparison, as the rhomboclase reflectance spectra drop for $\lambda > 2.5 \ \mu m$.
265	We modeled the laboratory reflectance spectra to derive k using analytic radiative
266	transfer scattering theory, as described in detail in Dalton and Pitman (2012). Briefly, we
267	used the USGS package radtran (Clark 1993), which creates synthetic reflectance spectra
268	from the approximation of Hapke (1981, 1993),
269	$R_{synth} = \frac{\omega}{4\pi} \frac{\mu_0}{\mu + \mu_0} \{ [1 + B(g)] P(g) + H(\mu_0) H(\mu) - 1 \}. \text{ (Eq. 1)}$

270 In Eq. 1, ω is the single-scattering albedo, μ_0 and μ are the cosines of the incidence and 271 emergence angles e and e, H(μ_0) and H(μ) describe the intensity of the radiation

272 scattered, the backscatter function B(g) depends on phase angle g, opposition surge width 273 and height, and P(g) is the single particle phase function weighted by coefficients b and c. 274

For a given wavelength, we calculated the best ω to make the synthetic spectrum

275 match the laboratory spectrum. Assuming that particles are closely packed, ω is

276
$$\omega = S_E + \frac{(1 - S_E)(1 - S_I) \left\{ r + \exp\left[-2(\alpha(\alpha + s))^{\frac{1}{2}} d/3\right] \right\}}{1 - rS_I + (r - S_I) \exp\left\{-2[\alpha(\alpha + s)]^{\frac{1}{2}} d/3\right\}}, \text{ (Eq. 2)}$$

277 where S_E and S_I are reflection coefficients defined in terms of n; s is the wavelength-

278 dependent internal scattering efficiency; r is the bihemispherical reflectance; and d is the

279 grain diameter. By supplying the laboratory reflectance spectrum, n_{vis} (from Table 4), s,

and d, we obtained $k(\lambda)$ from the absorption coefficient α in units of μ m⁻¹ (Eq. 3): 280

281
$$\alpha = \frac{4\pi k}{\lambda}.$$
 (Eq. 3)

282 We assumed the following values in calculating α :

(2) Density = 3.09 (K-jarosite), 3.18 (Na-jarosite), 2.23 (rhomboclase), 3.0 g cm⁻³ 284

285 (szomolnokite). Sources: CRC Handbook of Chemistry and Physics (electronic

286 version, http://www.hbcpnetbase.com, http://www.mindat.org,

(3) Incidence angle
$$i = 0^{\circ}$$
, emission angle $e =$ phase angle $g = 10^{\circ}$,

289 (4)
$$B(g) = 0$$
 and $P(g) = 1 + bcos(g)$ – see Eq. 1 description,

290 (5) radtran specific settings: $d_f = 0$, $w_0 = 1.8$, sd = 0.3. In radtran (Clark 1993), the

diameter is a function of a constant scale factor,
$$d_f$$
, and a user-specified

wavelength, w_0 , that divides the reflectance spectrum into two regimes with lower 292

4/2

293 and higher amounts of photon scattering (see Dalton & Pitman 2012 and
294 references therein).
$$d_f$$
 is the grain size that produces the best spectral match for λ
295 > w_0 divided by the grain size that produces the best match for $\lambda < w_0$. sd is the
296 internal scattering coefficient times particle diameter (i.e., the mean number of
297 scattering events per grain diameter).
298 (6) No preferred orientation of samples for n_{vis} ($\lambda \sim 0.589 \mu$ m), i.e., $n_{vis} = n_{mean} =$
299 $(1/3)(n_{\alpha} + n_{\beta} + n_{\gamma})$ or $(1/2)(n_{\omega} + n_e)$, where n_{α} , n_{β} , n_{γ} , n_{ω} and n_e are the crystal-
300 axis-specific indices of refraction averaged from standard table values (Table 4).
301 We solved for $n(\lambda)$ at different wavelengths after Warren (1984) using equation 4,
302 $n(\lambda_i) = n_{vis} + \frac{2(\lambda_{vis}^2 - \lambda_i^2)}{\pi} P \int_0^{\beta} \frac{\lambda^2 k(\lambda)}{(\lambda_i^2 - \lambda_i^2)(\lambda_{vis}^2 - \lambda_i^2)} d \ln \lambda$ (Eq. 4),
303 where "P" denotes the principal part of the integral, and iterate until n and k do not
304 change significantly.
305 Discussion
306 VNIR-MIR band assignments for Fe-sulfates are given in detail by Cloutis et al.

307 (2006), Basciano and Peterson (2008), and Bishop and Murad (2005). Briefly, the Fe-

- 308 sulfate reflectance spectra in Figures 3 and 5 exhibit a sharp rise from $\lambda = 0.35$ to 5.0 μ m,
- 309 with evidence of an iron band at 0.45 $\mu m,$ then a broad plateau from 0.5 to 1.0 μm and a
- 310 broad iron absorption centered near 0.80 μ m (Fe³⁺) to 0.90 μ m (Fe²⁺). Changes in the
- 311 wavelength position and band shape of certain features ($\lambda \sim 1.4, 1.85, 2.26 \,\mu m$) are
- 312 important diagnostics for identifying K- vs. Na-jarosite and formation temperature
- 313 (Basciano and Peterson 2007, 2008; Swayze et al. 2008; Spratt et al. 2013 and references
- 314 therein). Water absorptions may be present at 1.4 and 1.9 μ m, though this is not

315	necessarily structural water. Figures 3a,b show a water band near $\lambda \sim 1.9 \mu\text{m}$ that is not
316	characteristic of K-jarosite (but is present for hydronium jarosite), suggesting that the
317	Copiapo jarosite sample is either contaminated with a hydrated material or contains some
318	H_3O^+ substituting for K ⁺ . Our XRD analysis confirmed that the Arabia jarosite is pure K-
319	jarosite (Fig. 2, line a) and that the Copiapo Mine jarosite (Fig. 2, line b) is a blend of K-
320	jarosite and Na- and/or H_3O^+ -jarosite with a hydrated mineral contaminant, possibly
321	scorodite. The spectral intensity drops to a minimum near the 3.0 μ m water fundamental,
322	suggesting at least some structural water, but the 3.1 μ m crystalline ice emission band is
323	rarely present, indicating that the samples were measured above the freezing point of
324	water. S-O overtones and combinations give rise to complex structure in the 4.0-5.0 μm
325	region. Our Arabia and Copiapo jarosite spectra show most or all of the expected
326	features in the $\lambda = 1.2$ -2.6 μ m range: $\lambda \sim 1.46 \mu$ m (OH vibration + H ₂ O absorption);
327	1.514, 1.84, 2.214, 2.26, and 2.296 μm (Fe-OH vibrations); 1.96 μm (H ₂ O absorption);
328	and 2.38-2.5 μ m ((SO ₄) ₂ stretching + OH vibration) (cf. Basciano and Peterson 2007,
329	2008). Comparing different source localities in Fig. 3e, all three of the jarosites (Arabia,
330	Copiapo, and Bolivia) exhibit the $\lambda \sim 1.46$ and 1.84 μm features, with Copiapo jarosite
331	having the deepest feature. The $\lambda \sim 1.514 \ \mu m$ feature is most on mark for the Bolivia
332	jarosite, whereas the Copiapo jarosite is slightly offset in terms of wavelength position.
333	The $\lambda \sim 1.514 \ \mu m$ feature is weak to nonexistent for the Arabia jarosite. The Bolivia
334	jarosite also presents a λ ~ 1.9 μm hydrated band. The Arabia and Bolivia jarosites have
335	a more pronounced shoulder at λ ~ 2.296 μm and more peaks at λ ~ 2.38-2.5 μm than
336	does the Copiapo jarosite. For jarosite, diagnostic $v_3(SO_4)^{2-}$ modes at ~ (1200–1000 cm ⁻
337	¹) 8.33 – 10 μ m and one T ₂ mode, the triply degenerate antisymmetric stretch at 1104 cm ⁻

338	1 ~ 9.06 $\mu m,$ also fall within our detectors' wavelength range (Spratt et al. 2013 and
339	references therein). However, the fine particulates within our samples result in feature
340	enhancement (i.e., deeper bands) in the VNIR and features being damped out in the IR,
341	such that features longward of 8 μm in our spectra, including the ν_3 and main
342	fundamental modes, cannot be uniquely assigned (M. Lane, personal communication,
343	2013). In general, our jarosite and rhomboclase spectra compare favorably to figure 5 of
344	Swayze et al. (2008) and Liu and Wang (2012), respectively. Our szomolnokite
345	resembles the spectra from Cloutis et al. (2006) as well.
346	Reflectance and single scattering albedo depend on particle size; the final set of
347	optical constants per compound does not. However, by using multiple particle sizes, we
348	have attempted to constrain the envelope of possible absorption coefficient values and
349	better converge on $k(\lambda)$ for the bulk mineral. In Figures 4 and 5, the average optical
350	constants for each Fe-sulfate mineral (solid lines) are bracketed by the estimated error
351	due to the diameter estimates in Table 3. Other sources of uncertainty in $n(\lambda)$ and $k(\lambda)$
352	are the quality of the laboratory reflectance spectra, which we have minimized by using
353	long integration times (~2500 s), and approximations in the radiative transfer derivation.
354	Our natural jarosite $n(\lambda)$ and $k(\lambda)$ are in good agreement with a separate experiment on
355	synthetic jarosites using different codes (Sklute et al. 2013). To our knowledge, there are
356	no other optical constants datasets available for Na-jarosite, rhomboclase, or
357	szomolnokite, making these values unique.
358	The laboratory analog reflectance spectra and optical constants contained here
359	will permit determination of the abundance and distribution of Fe-sulfates, and the

360 mineral assemblages in which they are found. Knowledge of the concentration and

16

361	locations of these materials will improve understanding of the geochemical evolution of
362	the surface of Mars, contents of past water bodies, from channels to paleolakes; tectonic,
363	atmospheric, and other transport phenomena driving chemical and mineral distributions,
364	and the present state of aqueous and organic chemical processes. The power of models
365	utilizing these measurements will be further amplified in the deployment of future surface
366	and orbital infrared instruments to locate sites of past and/or recent aqueous activity,
367	potential habitats for life, and resources for possible human exploration.
368	Implications
369	The results presented herein will enhance the scientific return of orbiter spacecraft
370	missions by substantially contributing to the spectral databases of analog minerals
371	currently available for Mars. This study is unique because it provides both geometry-
372	controlled reflectance spectra and estimated optical constants for hydrated Fe-sulfates,
373	which can be used as tracers of the past composition and state (e.g., relative humidity,
374	oxygen fugacity, salt formation temperature) of Mars and Earth. Whereas fine-grained or
375	coarse-grained standards exist for these minerals, we have explored grain sizes that have
376	not previously been studied in reflectance spectroscopy. Spectral modeling of intimate
377	mixtures that include Fe-sulfates has been impossible until now because of the paucity of
378	published optical constants for Fe-sulfates; this study provides optical constants that can
379	be used as inputs to the most commonly used planetary science radiative transfer models.
380	These data will be applicable to a range of studies on evaporate and hydrothermal
381	mineralogy on Mars and useful for designing future Mars sample return missions. These
382	data may also be useful for mapping the abundances and types of Fe-sulfates in terrestrial
383	environments to identify acidic mine water contamination, acidity patterns in

384	groundwater flow, and subsurface mineral resources (Cloutis et al. 2006; Swayze et al.
385	2008).
386	Acknowledgments
387	This work was supported by NASA's Mars Fundamental Research Program
388	(NNX10AP78G: PI Pitman) and partly performed at the Jet Propulsion Laboratory,
389	California Institute of Technology, under contract to the National Aeronautics and Space
390	Administration. The authors thank Robert Anderson, Janice Bishop, Adrian Brown, Ed
391	Cloutis, Ken Farley, Troy Hudson, Joel Hurowitz, Brendt Hyde, Penny King, and Melissa
392	Lane for helpful comments, conversations, and assistance with samples and equipment.
393	References Cited
394	Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Eds. (2013) Handbook
395	of Mineralogy, Mineralogical Society of America, Chantilly, VA 20151-1110, USA.
396	http://www.handbookofmineralogy.org/, accessed Apr. 18, 2013.
397	Bandfield, J.L. (2002) Global mineral distributions on Mars. Journal of Geophysical
398	Research Planets, 107, 9-1, CiteID 5042, doi:10.1029/2001JE001510.
399	Basciano, L.C., and Peterson, R.C. (2007). Jarosite-hydronium jarosite solid solution
400	series with full iron site occupancy: Mineralogy and crystal chemistry. American
401	Mineralogist, 92, 1464-1473, doi:10.2138/am.2007.2432.
402	Basciano, L.C., and Peterson, R.C. (2008) Crystal chemistry of the natrojarosite-jarosite
403	and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full
404	Fe site occupancy. American Mineralogist, 93, 853-862.

405	Bibring, JP., et al. (2004) OMEGA: Observatoire pour la Mineralogie, l'Eau, les Glaces
406	et l'Activite. In Wilson, A. and Chicarro, A., Eds., Mars Express: the scientific
407	payload, ESA SP-1240, Noordwijk, Netherlands; ESA Publications Division, 37-49.
408	Bibring, JP., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A.,
409	Gondet, B., Mangold, N., Pinet, P., and Forget, F. (2006) Global mineralogical and
410	aqueous Mars history derived from OMEGA/Mars Express data. Science, 312,
411	5772, 400-404.
412	Bishop, J.L., and Murad, E. (1996) Schwertmannite on Mars? Spectroscopic analyses of
413	schwertmannite, its relationship to other ferric minerals, and its possible presence in
414	the surface material on Mars. In M. D. Dyar, C. McCammon, and M. W. Schaefer,
415	Eds., Mineral Spectroscopy: A tribute to Roger G. Burns, Special Publication
416	Number 5, p. 337-358. The Geochemical Society. Houston, TX.
417	Bishop, J.L., and Murad, E. (2005) The visible and infrared spectral properties of jarosite
418	and alunite. American Mineralogist, 90, 1100-1107, doi: 10.2138/am.2005.1700.
419	Bishop, J.L., and Weitz, C.M. (2011) Morphology and mineralogy of light-toned layered
420	deposits on the Juventae Chasma plateau and the location of a proposed future
421	landing site. 42 nd Lunar and Planetary Science Conference, 2115.
422	Bishop, J.L., Dyar, M.D., Lane, M.D., and Banfield, J.F. (2004) Spectral identification of
423	hydrated sulfates on Mars and comparison with acidic environments on Earth.
424	International Journal of Astrobiology, 3, 275-285.
425	Bishop, J.L., Lane, M.D., Dyar, M.D., Parente, M., Roach, L.H., Murchie, S.L., and
426	Mustard, J.F. (2008) Sulfates on Mars: how recent discoveries from CRISM,

427	OMEGA, and the MERs are changing our view of the planet. Geochimica et
428	Cosmochimica Acta, 72, A86.
429	Bishop, J.L., Parente, M., Weitz, C.M., Noe Dobrea, E.Z., Roach, L.H., Murchie, S.L.,
430	McGuire, P.C., McKeown, N.K., Rossi, C.M., Brown, A.J., Calvin, W.M., Milliken,
431	R., and Mustard, J.F. (2009) Mineralogy of Juventae Chasma: Sulfates in the light-
432	toned mounds, mafic minerals in the bedrock, and hydrated silica and hydroxylated
433	ferric sulfate on the plateau. Journal of Geophysical Research, 114, E00D09,
434	doi:10.1029/2009JE003352.
435	Blaney, D.L, and McCord, T.B. (1995) Indications of sulfate minerals in the Martian soil
436	from Earth-based spectroscopy. Journal of Geophysical Research, 100, 14,433-
437	14,442.
438	Bridges, J.C., and Grady, M.M. (2000) Evaporite mineral assemblages in the nakhlite
439	(martian) meteorites. Earth and Planetary Science Letters, 176, 267-279.
440	Bridges, J.C., Catling, D.C., Saxton, J.M., Swindle, T.D., Lyon, I.C., and Grady, M.M.
441	(2001) Alteration assemblages in martian meteorites: Implications for near-surface
442	processes. Space Science Reviews, 96, 365-392.
443	Brophy, G.P., and Sheridan, M.F. (1965) Sulfate studies IV: The jarosite- natrojarosite-
444	hydronium jarosite solid solution series. American Mineralogist, 50, 1595-1607.
445	Brown, A.J., Bish, D.L., and Bishop, J.L. (2008) Dehydration of ferrous sulfates
446	monitored by XRD - implications for CHEMIN, Lunar and Planetary Science
447	XXXIX, LPI Contribution No. 1391, p. 1008.

Brown, A.J., Bishop, J.L., Roush, T.L., Hunkins, L., Bristow, T., and Blake, D. (2012)

449	Controlled study for quantitative clay abundance on Mars. 43 rd Lunar and Planetary
450	Science Conference, 1747.
451	Carter, J., Poulet, F., Bibring, JP., Mangold, N., and Murchie, S. (2013) Hydrous
452	minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers:
453	Updated global view. Journal of Geophysical Research: Planets, 118, 831-858,
454	doi:10.1029/2012JE004145.
455	Chatzitheodoridis, E., and Turner, G. (1990) Secondary minerals in the Nakhla
456	meteorite. Meteoritics, 25, 354.
457	Clark, R.N. (1993) SPECtrum processing routines user's manual version 3.0 (program
458	SPECPR). U.S. Geological Survey Open File Report, 93-595, 210 pp.
459	Clark, R.N., Swayze, G.A., Wise, R., Livo, E., Hoefen, T., Kokaly, R., and Sutley, S.J.
460	(2007) USGS digital spectral library splib06a: U.S. Geological Survey, Digital Data
461	Series 231.
462	Cloutis, E.A., Hawthorne, F.C., Mertzman, S.A., Krenn, K., Craig, M.A., Marcino, D.,
463	Methot, M., Strong, J., Mustard, J.F., Blaney, D.L., Bell, J.F. III, and Vilas, F. (2006)
464	Detection and discrimination of sulfate minerals using reflectance spectroscopy.
465	Icarus, 184, 121-157.
466	Cloutis, E.A., Craig, M.A., Mustard, J.F., Kruzelecky, R.V., Jamroz, W.R., Scott, A.,

- 467 Bish, D.L., Poulet, F., Bibring, J.-P., and King, P.L. (2007) Stability of hydrated
- 468 minerals on Mars. Geophysical Research Letters, 34, CiteID L20202,
- doi:10.1029/2007GL031267.

470	Cloutis, E.A., Craig, M.A., Kruzelecky, R.V., Jamroz, W.R., Scott, A., Hawthorne, F.C.,
471	and Mertzman, S.A. (2008) Spectral reflectance properties of minerals exposed to
472	simulated Mars surface conditions. Icarus, 195, 140-168.
473	Cooper, C.D., and Mustard, J.F. (2002) Spectroscopy of loose and cemented sulfate-
474	bearing soils: implications for duricrust on Mars. Icarus, 158, 42-55.
475	Craig, M., Cloutis, E.A., Kaletzke, L., McCormack, K., and Stewart, L. (2006) Alteration
476	of hydration absorption features in reflectance spectra of selected sulfates in a low
477	pressure environment; 0.45-4.3 μ m. Lunar and Planetary Science Conference
478	XXXVII, 2112.
479	Dalton, J.B. III, and Pitman, K.M. (2012) Low temperature optical constants of some
480	hydrated sulfates relevant to planetary surfaces. Journal of Geophysical Research:
481	Planets, 117, CiteID E09001, doi:10.1029/2011JE004036.
482	Dyar, M.D., Lane, M.D., Bishop, J.L., O'Connor, V., Cloutis, E., and Hiroi, T. (2005)
483	Integrated spectroscopic studies of hydrous sulfate minerals. Lunar and Planetary
484	Science Conference XXXVI, 1622.
485	Fairen, A.G., Schulze-Makuch, D., Rodriguez, A.P., Fink, W., Davila, A.F., Uceda, E. R.,
486	Furfaro, R., Amils, R., and McKay, C.P. (2009) Evidence for Amazonian acidic
487	liquid water on Mars – a reinterpretation of MER mission results. Planetary and
488	Space Science, 57, 276-287.
489	Farquhar, J., Kim, ST., and Masterson, A. (2007) Implications from sulfur isotopes of

- the Nakhla meteorite for the origin of sulfate on Mars. Earth and Planetary Science
- 491 Letters, 264, 1-8.

492	Farrand, W.H., Rice, J.W., and Glotch, T.D. (2009) Evidence of the presence of jarosite
493	and diagenetic activity in the Mawrth Vallis region. Lunar and Planetary Science
494	Conference XL, 2080.
495	Folk, R.L. (1974) Petrology of sedimentary rocks: Austin, Texas, Hemphill Publishing
496	Company, 182 pp. http://www.lib.utexas.edu/geo/folkready/
497	Freeman, J.J., and Wang, A. (2009) Hydrated magnesium sulfates below $0^{\circ}C$ – stable
498	phases and polymorphs. Lunar and Planetary Science Conference XL, 2301.
499	Freeman, J.J., Jin, M., and Wang, A. (2008) D ₂ O substitution experiment on hydrated
500	iron and magnesium sulfates and its application for spectral interpretation of martian
501	sulfates. Lunar and Planetary Science Conference XXXIX, 2390.
502	Gendrin, A., Mangold, N., Bibring, JP., Langevin, Y., Gondet, B., Poulet, F.,
503	Bonello, G., Quantin, C., Mustard, J., Arvidson, R., and LeMouélic, S. (2005)
504	Sulfates in martian layered terrains: The OMEGA/Mars Express view. Science 307,
505	5715, 1587-1591.
506	Golden, D.C., Ming, D.W., Morris, R.V., and Mertzman, S.A. (2005) Laboratory-
507	simulated acid-sulfate weathering of basaltic materials: implications for formation of
508	sulfates at Meridiani Planum and Gusev crater, Mars. Journal of Geophysical
509	Research, 110(E12), CiteID E12S07.
510	Gooding, J.L. (1992) Soil mineralogy and chemistry on Mars – possible clues from salts
511	and clays in SNC meteorites. Icarus, 99, 28-41.
512	Hapke, B.W. (1993) Theory of reflectance and emittance spectroscopy. Cambridge Univ.

513 Press, New York.

4/2

- 514 Hapke, B. (2002) Bidirectional reflectance spectroscopy 5. The coherent backscatter
- 515 opposition effect and anisotropic scattering. Icarus, 157, 523–534,
- 516 doi:10.1006/icar.2002.6853.
- 517 Hapke, B.W. (2008) Bidirectional reflectance spectroscopy. Icarus, 195, 918-926.
- Johnson, J.R., Bell, J.F., Cloutis, E., Staid, M., Farrand, W.H., McCoy, T., Rice, M.,
- 519 Wang, A., and Yen, A. (2007) Mineralogic constraints on sulfur-rich soils from
- 520 Pancam spectra at Gusev Crater, Mars. Geophysical Research Letters, 34, L13202,
- 521 doi:10.1029/2007GL029894.
- 522 Kieffer, H.H., Jakosky, B.M., Snyder, C.W., and Matthews, M.S., Eds. (1992) Mars,
- 523 University of Arizona Press (Tucson, AZ), 1498 pp.
- 524 King, P.L., and McSween, H.Y. (2005) Effects of H₂O, pH, and oxidation state on the

525 stability of Fe minerals on Mars. Journal of Geophysical Research, 110(E12),

- 526 CiteID E12S10.
- 527 Lichtenberg, K.A., Arvidson, R.E., Morris, R.V., Murchie, S.L., Bishop, J.L.,
- 528 Fernandez Remolar, D., Glotch, T.D., Noe Dobrea, E., Mustard, J.F., Andrews-Hanna, J.,
- and Roach, L.H. (2010) Stratigraphy of hydrated sulfates in the sedimentary

530 deposits of Aram Chaos, Mars. Journal of Geophysical Research, 115(B6),

- 531 E00D17.
- Lane, M.D., Dyar, M.D., and Bishop, J.L. (2004) Spectroscopic evidence for hydrous
- iron sulfate in the Martian soil. Geophysical Research Letters, 31, CiteID L19702,
- 534 doi:10.1029/2004GL021231.
- Lane, M.D., Bishop, J.L., Dyar, M.D., King, P.L., Parente, M., and Hyde, B.C. (2008)
- 536 Mineralogy of the Paso Robles soils on Mars. American Mineralogist, 93, 728-739.

- 537 Ling, Z.C., and Wang, A. (2010) A systematic spectroscopic study of eight hydrous ferric
- sulfates relevant to Mars. Icarus, 209, 422–433.
- 539 Liu, Y., and Wang, A. (2012) Dehydration of Na-jarosite, ferricopiapite, and
- 540 rhomboclase at high T and implications on martian ferric sulfates. 43rd Lunar and
- 541 Planetary Science Conference, 2791.
- 542 Lucey, P.G. (1998) Model near-infrared optical constants of olivine and pyroxene as a
- 543 function of iron content. Journal of Geophysical Research, 103, 1703-1713.
- 544 Marion, G.M., and Farren, R.E. (1999) Mineral solubilities in the Na-K-Mg-Ca-Cl-SO₄-
- 545 H₂O system: a re-evaluation of the sulfate chemistry in the Spencer-Moller-Weare

546 model. Geochimica et Cosmochimica Acta, 63, 1305-1318.

- 547 Moersch, J.E., and Christensen, P.R. (1995) Thermal emission from particulate surfaces:
- a comparison of scattering models with measured spectra. Journal of Geophysical
 Research, 100(E4), 7465-7477.
- 550 Morris, R.V., Golden, D.C., Ming, D.W., Graff, T.G., Arvidson, R.E., Wiseman, S.M.,
- 551 Lichtenberg, K.A., and Cull, S. (2009) Visible and near-IR reflectance spectra for
- smectite, sulfate and perchlorate under dry conditions for interpretation of martian

surface mineralogy. Lunar and Planetary Science Conference XL, 2317.

- 554 Murchie, S., Arvidson, R., Bedini,, P., Beisser, K., Bibring,, J.-P., Bishop, J., Boldt, J.,
- 555 Cavender,, P., Choo,, T., Clancy, R.T., Darlington, E.H., Des Marais, D., Espiritu,
- 556 R., Fort, D., Green, R., Guinness, E., Hayes, J., Hash, C., Heffernan, K.,
- 557 Hemmler, J., Heyler, G., Humm, D., Hutcheson, J., Izenberg, N., Lee, R., Lees, J.,
- 558 Lohr, D., Malaret, E., Martin, T., McGovern, J.A., McGuire, P., Morris, R.,
- 559 Mustard, J., Pelkey, S., Rhodes, E., Robinson, M., Roush, T., Schaefer, E.,

560	Seagrave, G., Seelos, F., Silverglate, P., Slavney, S., Smith, M., Shyong, WJ.,
561	Strohbehn, K., Taylor, H., Thompson, P., Tossman, B., Wirzburger, M., and
562	Wolff, M. (2007) Compact Reconnaissance Imaging Spectrometer for Mars
563	(CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical
564	Research, 112, CiteID E05S03.
565	Murchie, S.L., Mustard, J.F., Ehlmann, B.L., Milliken, R.E., Bishop, J.L., McKeown,
566	N.K., Noe Dobrea, E.Z., Seelos, F.P., Buczkowski, D.L., Wiseman, S.M., Arvidson,
567	R.E., Wray, J.J., Swayze, G.A., Clark, R.N., Des Marais, D.J., McEwen, A.S., and
568	Bibring, J.P. (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of
569	observations from the Mars Reconnaissance Orbiter. Journal of Geophysical
570	Research, 114, doi:10.1029/2009JE003342.
571	Pelkey, S.M., Mustard, J.F., Murchie, S., Poulet, F., Bibring, JP., Bishop, J., Izenberg,
572	N., Seelos, F., Ehlmann, B.L., Roach, L.H., Milliken, R.E., and the
573	CRISM Science Team (2007) CRISM observations of hydrated craters deposits in
574	Terra Tyrrhena, Mars. Lunar and Planetary Science Conference XXXVIII, 1994.
575	Pitman, K.M., Wolff, M.J., and Cloutis, E.A. (2013) Radiative transfer in clusters of
576	regolith particles: fundamental scattering unit? Lunar and Planetary Science
577	Conference XLIV, 2337.
578	Pollack, J.B., Roush, T.L., Witteborn, F., Bregman, J., Wooden, D., Stoker, C., Toon, O.
579	B., Rank, D., Dalton, B., and Freedman, R. (1990) Thermal emission spectra of
580	Mars (5.4 - 10.5 μ m): evidence for sulfates, carbonates and hydrates. Journal of

581 Geophysical Research, 95, 14595-14627.

26

582	Ramsey, M.S., and Christensen, P.R. (1998) Mineral abundance determination:
583	quantitative deconvolution of thermal emission spectra. Journal of Geophysical
584	Research, 103, 577-596.
585	Roach, L.H., Mustard, J., Gendrin, A., Fernández-Remolar, D., Amils, R., and Amaral-
586	Zettler, L. (2006) Finding mineralogically interesting targets for exploration from
587	spatially coarse visible and near IR spectra. Earth and Planetary Science Letters,
588	252, 201–214.
589	Roach, L.H., Mustard, J.F., Lane, M.D., Bishop, J.L., and Murchie, S.L. (2010)
590	Diagenetic haematite and sulfate assemblages in Valles Marineris. Icarus, 207, 659-
591	674.
592	Rothstein, Y.R., Dyar, M.D., and Bishop, J.L. (2006) Moessbauer and reflectance
593	spectroscopy of synthetic jarosite with variable compositions and temperatures,
594	Lunar and Planetary Science Conference XXXVII, 1727.
595	Roush, T.L., Brown, A.J., Bishop, J., Blake, D., and Bristow, T.F. (2013) Initial
596	estimates of optical constants of Mars candidate materials, 44 th Lunar and Planetary
597	Science Conference, LPI Contribution No. 1719, p. 1297.
598	Shkuratov, Y., Starukhina, L., Hoffmann, H., and Arnold, G. (1999) A model of spectral
599	albedo of particulate surfaces: Implications for optical properties of the Moon.
600	Icarus, 137, 235-246.
601	Sklute, E.C., Glotch, T.D., and Dyar, M.D. (2012) VNIR optical constant determination
602	of synthetic jarosites for quantitative abundance analysis of remote sensing data sets,
603	43 rd Lunar and Planetary Science Conference, 1508.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4730

604 Sklute, E.C., Glotch, T.D., and Woerner, W. (2013) Visible and near infrared optical constants of synthetic jarosites. 44th Lunar and Planetary Science Conference, 2142. 605 606 Spratt, H.J., Rintoul, L., Avdeev, M., and Martens, W.N. (2013) The crystal structure and 607 vibrational spectroscopy of jarosite and alunite minerals, American Mineralogist, 98, 608 1633-1643. 609 Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., Bell, J.F. III, Calvin, W. Christensen, P. 610 R., Clark, B.C., Crisp, J.A., Farrand, W.H., Herkenhoff, K.E., Johnson, J.R., 611 Klingelhöfer, G., Knoll, A.H., McLennan, S.M., McSween, H.Y., Morris, R.V., 612 Rice, J.W., Rieder, R., and Soderblom, L.A. (2004) In situ evidence for an ancient 613 aqueous environment at Meridiani Planum, Mars. Science, 306, 5702, 1709-1714. 614 Swayze, G.A., Desborough, G.A., Smith, K.S., Lowers, H.A., Hammarstrom, J.M., 615 Diehl, S.F., Leinz, R.W., and Driscoll, R.L. (2008) Chapter B: Understanding 616 jarosite - from mine waste to Mars, p. 8-13. In Verplanck, P. L., Ed.. 617 Understanding contaminants associated with mineral deposits: U.S. Geological 618 Survey Circular 1328, 96 pages. 619 Tosca, N.J., McLennan, S.M., Dyar, M.D., Sklute, E.C., and Michel, F.M. (2008) Fe 620 oxidation processes at Meridiani Planum and implications for secondary Fe 621 mineralogy on Mars. Journal of Geophysical Research, 113(E5), CiteID E05005. 622 Toulmin, P., Baird, A.K., Clark, B.C., Keil, K., Rose, H.J., Jr., Christian, R.P., Evans, P. 623 H., and Killiher, W.C. (1977) Geochemical and mineralogical interpretation of the 624 Viking inorganic chemical results. Journal of Geophysical Research, 84, 4625-4634. 625 Treiman, A.H. (1993) The parent magma of the Nakhla (SNC) meteorite, inferred from 626 magmatic inclusions. Geochimica et Cosmochimica Acta, 57, 4753.

28

627	Wang, A., and Ling, Z.C. (2011) Ferric sulfates on Mars: A combined mission data
628	analysis of salty soils at Gusev crater and laboratory experimental investigations,
629	Journal of Geophysical Research, 116, E00F17, doi:10.1029/2010JE003665.
630	Warren, S.G. (1984) Optical constants of ice from the ultraviolet to the microwave.
631	Applied Optics, 23, 1206-1225.
632	Weitz, C.M., Williams, R., Noe Dobrea, E., and Baldridge, A. (2012) Hydrated minerals
633	and fluvial features in and around the Melas Chasma basin. 43 rd Lunar and Planetary
634	Science Conference, 2304.
635	Weitz, C.M., Noe Dobrea, E., and Wray, J.J. (2013) Gypsum, jarosite, and other minerals
636	associated with a blocky deposit in western Melas Chasma, 44 th Lunar and Planetary
637	Science Conference, 2076.
638	Wentworth, S.J., Thomas-Keprta, K.L., and McKay, D.S. (2002) Water on Mars:
639	petrographic evidence. Lunar and Planetary Science XXXIII, 1932.
640	Wentworth, S.J., Gibson, E.K., Velbel, M.A., and McKay, D.S. (2005) Antarctic dry
641	valleys and indigenous weathering in Mars meteorites: implications for water and
642	life on Mars. Icarus, 174, 383-395.
643	Vaniman, D.T., Bish, D.L., Chipera, S.J., Fialips, C.I., Carey, J.W., and Feldman, W.C.
644	(2004) Magnesium sulphate salts and the history of water on Mars. Nature, 431,
645	663.
646	Weitz, C.M., Noe Dobrea, E.Z., Williams, R.M.E., Metz, J., Quantin, C., Parente, M.,
647	and Grotzinger, J. (2009) MRO observations of fluvial features, sulfates, and other
648	landforms in the Melas Chasma basin. Lunar and Planetary Science Conference XL,
649	1874.

650	Wray, J.J., Milliken, R.E., Swayze, G.A., Dundas, C.M., Bishop, J.L., Murchie, S.L.,
651	Seelos, F.P., and Squyres, S.W. (2009a) Columbus Crater and other possible
652	paleolakes in Terra Sirenum, Mars. Lunar and Planetary Science Conference XL,
653	1896.
654	Wray, J.J., Noe Dobrea, E.Z., Arvidson, R.E., Wiseman, S.M., Squyres, S.W., McEwen,
655	A.S., Mustard, J.F., and Murchie, S.L. (2009b) Phyllosilicates and sulfates at
656	Endeavour Crater, Meridiani Planum, Mars. Geophysical Research Letters, 36,
657	L21201, doi:10.1029/2009GL040734.
658	Wray, J.J., Murchie, S.L., Squyres, S.W., Seelos, F.P., and Tornabene, L.L. (2009c)
659	Diverse aqueous environments on ancient Mars revealed in the southern highlands.
660	Geology, 37, 1043-1046, doi: 10.1130/G30331A.1.
661	Yang, WC. (2003) Handbook of Fluidization and Fluid-Particle Systems Ebook
662	Library, Ebooks Corporation CRC Press, Marcel Dekker Ltd., 1868 pages.
663	
664	
665	
666	
667	
668	
669	
670	
671	
672	

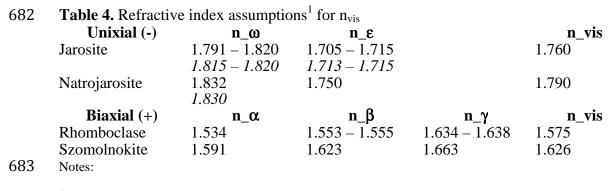
673	Table 1. Examples of prior Mars-relevant reflectance spectral studies of Fe-sulf				
	Mineral Name	Wavelength Range (µm)	Temperature (K)	Particle Size (µm)	Source
	Szomolnokite, jarosite, ferriocopiapite, coquimbite, schwertmannite	0.35-5; 5-25	Not specified	< 45, < 125	Lane et al. (2004); Bishop and Murad (1996); Bishop et al. (2004)
	Fe- & Mg- sulfates, e.g., szomolnokite, melanterite	0.3-5	Not specified (Mars conditions)	< 45 (<125 szomolnokite only)	Dyar et al. (2005)
	Jarosite	0.2-5.3; 0.3-25	300	< 45	Bishop and Murad (2005); Rothstein et al. (2006); Clark et al. (2007)
	42 Fe- & Mg- sulfates (Mars conditions)	0.45-4.3; 0.3-26	293.15	< 45	Craig et al. (2006); Cloutis et al. (2006, 2008); HOSERLab (2013)
	Jarosite; hydronium jarosite	1.2-2.6	Not specified	Not specified	Basciano & Peterson (2007)
	Jarosite (K-, Na-, hydronium)	0.35-2.5	Not specified	Not specified	Swayze et al. (2008)
	Melanterite (Mars conditions)	0.35-2.5	~300; <273.15 (263.15)	Not specified	Freeman et al. (2008); Freeman and Wang (2009)
	Melanterite, szomolnokite, ferric sulfate hydroxide (Mars conditions)	0.35-2.5	298.15 25 °C, 50-330 °C; Humid (laboratory air) and dry (dry N ₂ gas) environments	Not specified	
	Ferricopiapite, rhomboclase, kornelite, pentahydrate, ferric sulfate,etc.	0.35-2.5	Not specified	Not specified	Wang & Ling (2011) and references therein
	Na-jarosite, rhomboclase, ferricopiapite	0.4-2.5	50 & 95 °C for dehydration; ambient	Not specified	Liu & Wang (2012)
	Synthetic jarosite	0.35-2.5; 0.9-4.76; 1.6- 28.5	ambient	< 45, 45- 125, 125- 180; < 63, 63-90, 90- 125	Sklute et al. (2012, 2013)
	K-, Na-, synthesized jarosites;	0.35-2.5	ambient	< 45; < 125	PDS Geosciences Node (2013)

	ferricopiapite, coquimbite, szomolnokite, rozenite, romerite, amaranthine				
	K-, Na-, Pb- jarosite	0.4-2.5; 2-15.385	ambient	< 45; 45- 125; 125-500	ASTER (2013)
	Jarosite; natrojarosite	0.32-2.55	ambient; 300, 248 °C	< 25, 25-75, 75-150, < 45, 125-1000, < 125, < 500, < 75; < 45, 45-125, > 125	RELAB (2013)
	Rhomboclase		ambient	45, < 50, < 125, < 250, 45-125, 125- 250	
	Szomolnokite		ambient	< 45, 45- 125, < 125, > 125	
	Coquimbite		ambient	< 125, < 45, 125-500, < 75	
	Copiapite; ferricopiapite		ambient	< 25, 25-75, 75-150, <45, < 125, 45- 125, 125- 250, 250- 1000, < 75; < 45, < 125	
674					

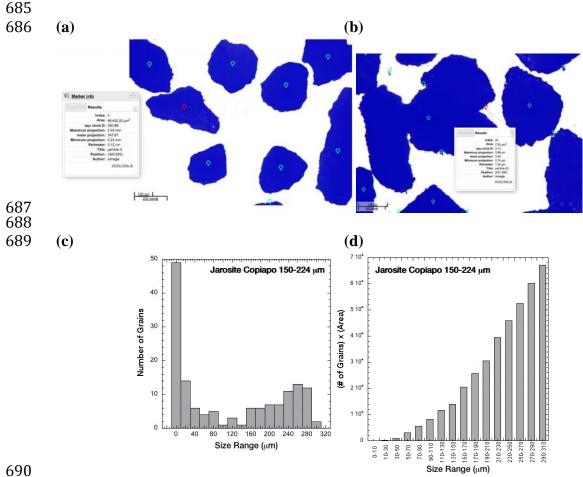
67	74
----	----

675	Table 2. Samples us Mineral Name	ed in this study Description	Structural formula	Source
	Jarosite	Potassium iron sulfate hydroxide	$KFe^{3+}_{3}(SO_{4})_{2}(OH)_{6}$	(1) Copiapo Jarosite Mine, Dona Ana
		sunute nythoxide		Co., New Mexico,
				U.S.A.
				(2) Arabia District, Pershing County,
				Nevada, U. S. A.
				(3) Grande Lode, La
				Colorado Mine,
				Cercado Province,
				Oruro, Bolivia
	Natrojarosite	Sodium iron sulfate hydroxide	$NaFe^{3+}_{3}(SO_{4})_{2}(OH)_{6}$	Natural sample from Caltech collection; source unknown
	Rhomboclase		$H_5Fe^{3+}O_2(SO_4)_2 \cdot 2H_2O$	Alcaparrosa, Chile
	Szomolnokite	Monohydrated iron sulfate	$Fe^{2+}SO_4 \cdot H_2O$	Synthesized
676				

(77	T-11- 2	C			4 -	1	1_
677	Table 3.	Grain	sizes	usea	το	derive n	I, K


Initial Estimates (µm)							
Mineral	Sieve Interval	Median	Weighted Mean Diameter ¹	Microscopy		Diameter Used (µm)	
		Runge	Diumeter	Mode 1	Mode 2 (e.g., fines)		
Jarosite (Copiapo)	53-75 75-106 106-125 125-150 150-224 224-250	64 90.5 115.5 137.5 187 237	89.79 112.55 128.68 158.50 240.13 296.40	$\begin{array}{c} 56.67 \pm 38.52 \\ 104.15 \pm 25.01 \\ 135.54 \pm 22.14 \\ 170.44 \pm 24.36 \\ 244.27 \pm 50.22 \\ 296.37 \pm 42.17 \end{array}$		57 104 135 170 244 296	
Jarosite (Arabia)			72.64	$\begin{array}{c} 33.97 \pm 8.52 \\ 75.83 \pm 19.43 \end{array}$	7.75 ± 3.18 ,	76	
			128.45	$51.67 \pm 15.35, \\ 113.53 \pm 13.63$	9.23 ± 8.03	Excluded	
			128.92	133.35 ± 38.53	9.94 ± 8.13	133	
			186.14	$^{-135 \pm 20,}_{188.50 \pm 12.35,}_{266.75 \pm 8.77}$	$\sim 15 \pm 10,$ 49.62 ± 15.30	Excluded	
			247.30		19.34 ± 14.45	250	
			319.38	319.22 ± 37.17	~20 ± 12	319	
Natrojarosite			104.23	87.94 ± 26.96	10.94 ± 7.42		
			152.95 179.85	$\begin{array}{r} 121.02 \pm 53.55 \\ 148.78 \pm 36.02 \end{array}$		121 149	
			200.36	140.70 ± 30.02 142.60 ± 73.25		143	
			235.61	213.42 ± 53.75		213	
			281.68	286.83 ± 82.28	15.60 ± 12.62	287	
Rhomboclase						64	
						90.5	
			153.85 183.40	$\begin{array}{c} 152.91 \pm 28.42 \\ 156.58 \pm 62.05 \end{array}$	5.65 ± 0.52 16.33 + 5.02	153 157	
			278.07	130.38 ± 02.03 247.81 ± 75.55			
			325.43	298.23 ± 52.65	186.97 ± 45.48	298	
Szomolnokite			69.57	57.20 ± 21.57	$\sim 8.5 \pm 5$	57	
			114.87	88.06 ± 28.61	7.48 ± 4.00	88	
			133.14 146.24	$\begin{array}{c} 133.12 \pm 18.34 \\ 145.14 \pm 45.59 \end{array}$	10.56 ± 6.55 11 14 + 8 63	133	
			277.11	145.14 ± 45.57 222.91 ± 36.27			
			284.71	302.92 ± 36.41	13.01±11.76		

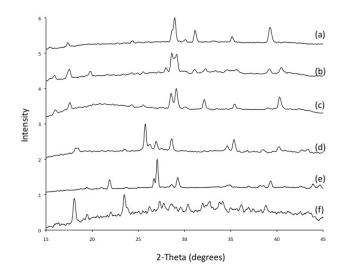
678 Notes:


679 ¹Roush (2005), page 260. ²Mean and standard deviation values from a Gaussian histogram fit. Duplicated

680 or poorly sorted grain sizes were excluded from n, k derivation.

681

684 ¹Table values adopted from Anthony et al. (2013), http://www.webmineral.com, http://www.mindat.org.


691

692

Figure 1. Example of diameter determination from optical microscopy images 693 using Simagis Live[™] particle size analysis software. Panel (a): one field-of-view for K-694 jarosite (Copiapo Mine) $d_{sieve} = 150-224 \mu m$ size fraction. Panel (b): The minimum grain size in this size fraction (the " 0^{th} " bin of panel c right histogram) is 3.1 µm. Panels (c, d): 695 696 Histograms represent total results for eight fields-of-view. The left histogram illustrates

the number of grains in each d_{sieve} size bin ("mode 2" given in Table 3). The right
histogram scales the number of grains per size bin by geometric cross-sectional area

 $\pi(d/2)^2$, to yield the dominant grain size affecting area (Table 3 "mode 1").

701 Figure 2. X-ray diffraction patterns for Fe-sulfates: (a) jarosite, (b) jarosite + natrojarosite, (c) natrojarosite, (d) szomolnokite, (e) rhomboclase, and (f) melanterite. The intensity of each pattern has been normalized to 1 and offset by 1 for clarity.

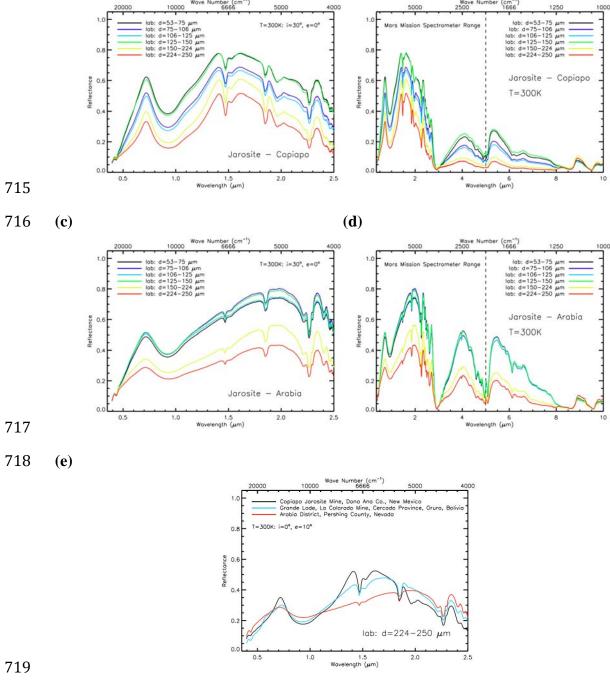


Figure 3. Jarosite laboratory diffuse reflectance spectra in six grain sizes.

- 721 Panel (a, b): K-jarosite and Na- and/or H₃O⁺-jarosite with a hydrated mineral
- 722 contaminant, from Copiapo Jarosite Mine, Dona Ana County, New Mexico. The band at

1.9 µm is not diagnostic of K-jarosite but due to either hydronium or a hydrated
component (cf. water band "B" in synthetic K-jarosite, figure 11, Basciano & Peterson
2007). Panel (c, d): Pure K-jarosite, from Arabia District, Pershing County, Nevada.
Panel (e) illustrates the spectral differences between natural jarosite from three localities.

(b)

728 (a)

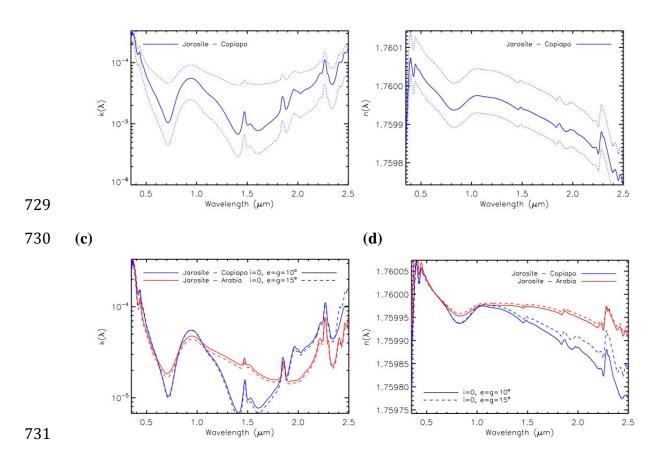
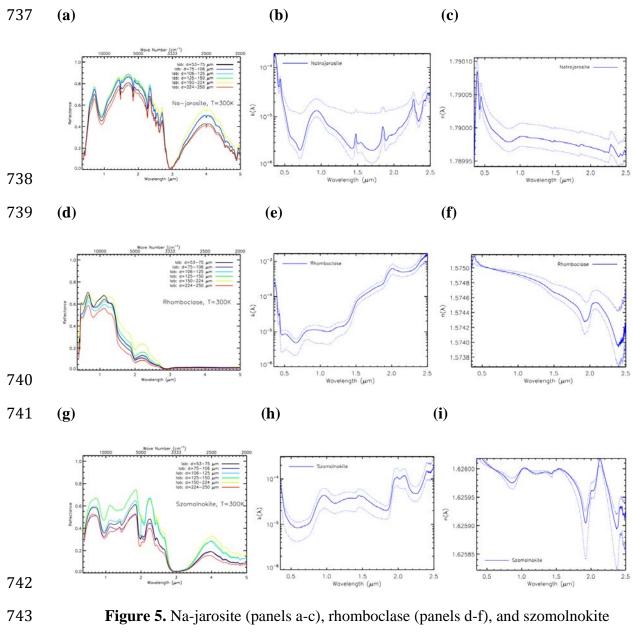
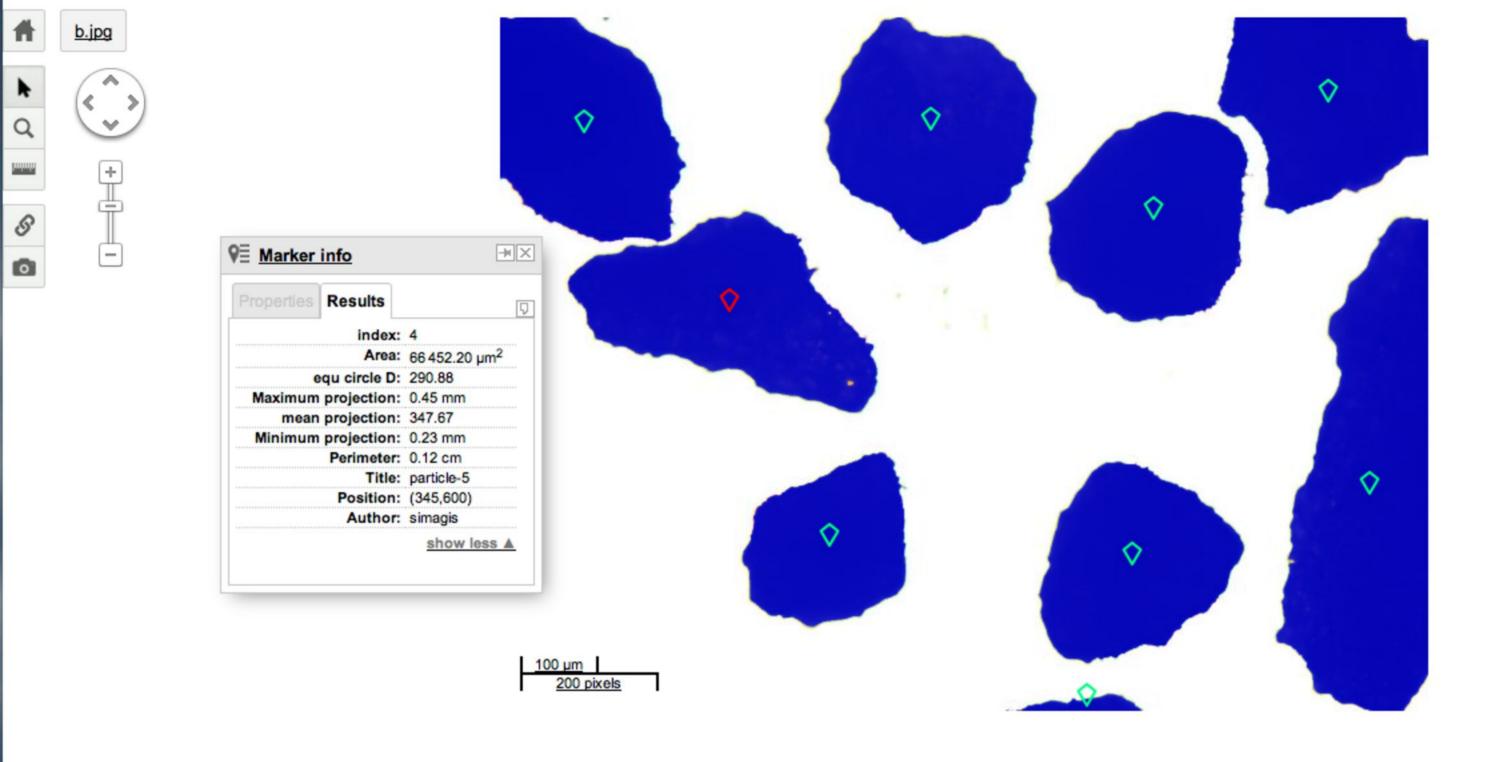
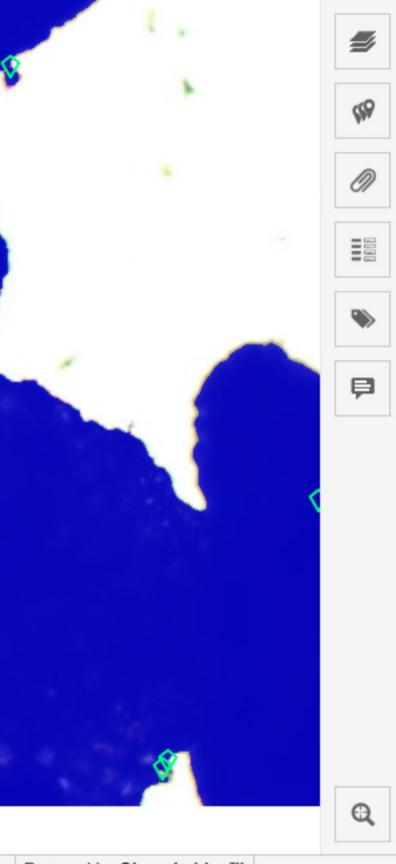




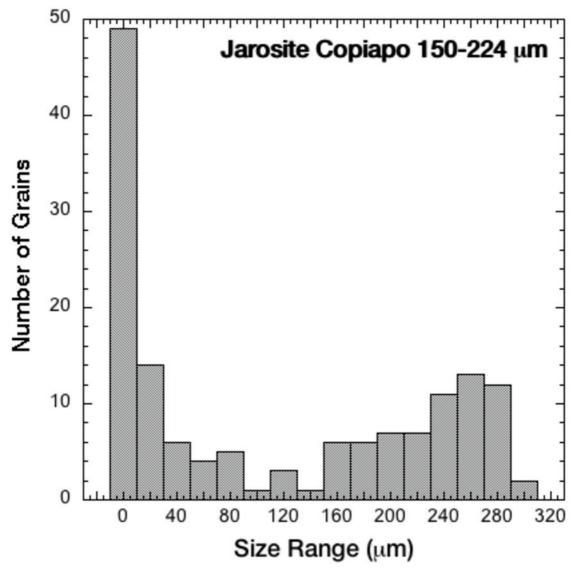
Figure 4. K-jarosite imaginary and real indices of refraction $k(\lambda)$ and $n(\lambda)$, for Copiapo Mine and Arabia samples. Top panels: dotted lines indicate estimated error bars. Bottom panels: solid vs. dashed lines illustrate the effect of viewing angle on average indices of refraction. Colored lines indicate the differences in optical constants due to spectral differences of the natural K-jarosite samples.

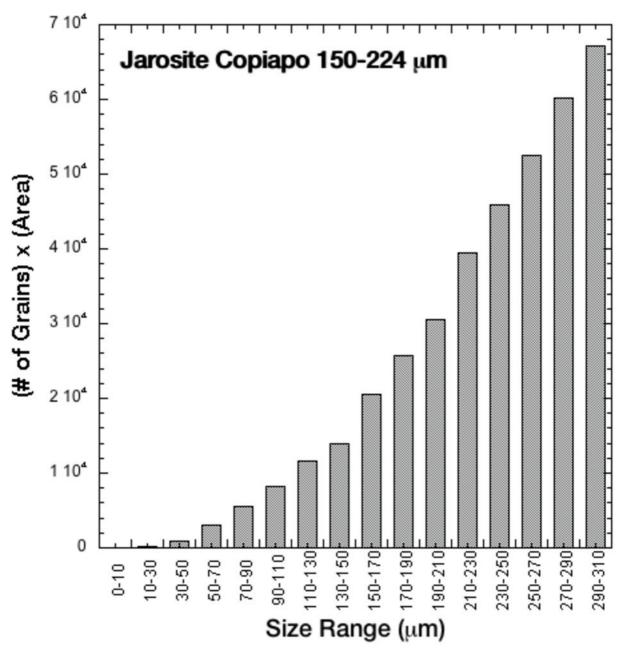
744 (panels g-i) diffuse reflectance spectra and optical constants $k(\lambda)$ and $n(\lambda)$. Dashed lines 745 represent upper and lower bounds on estimated $k(\lambda)$ and $n(\lambda)$.

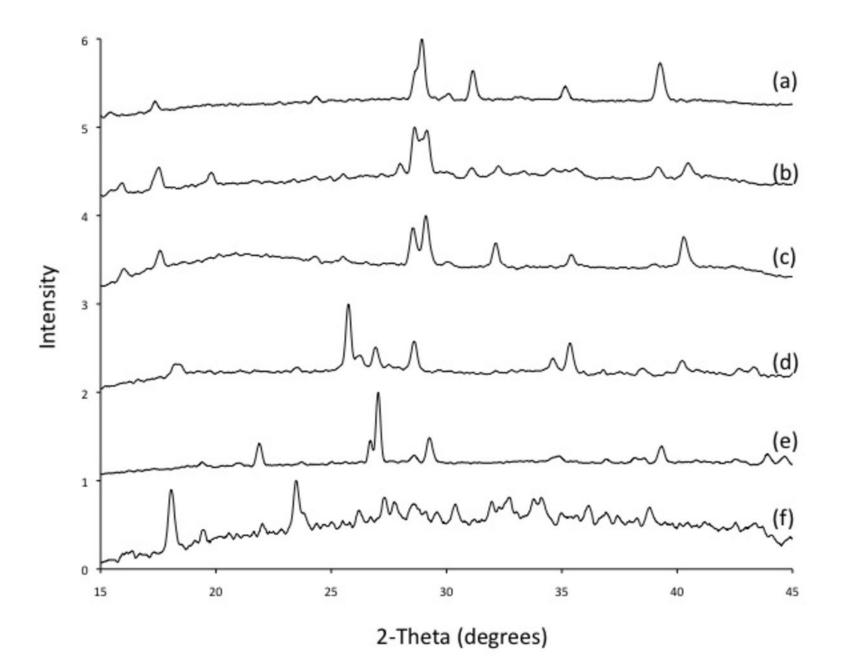
746

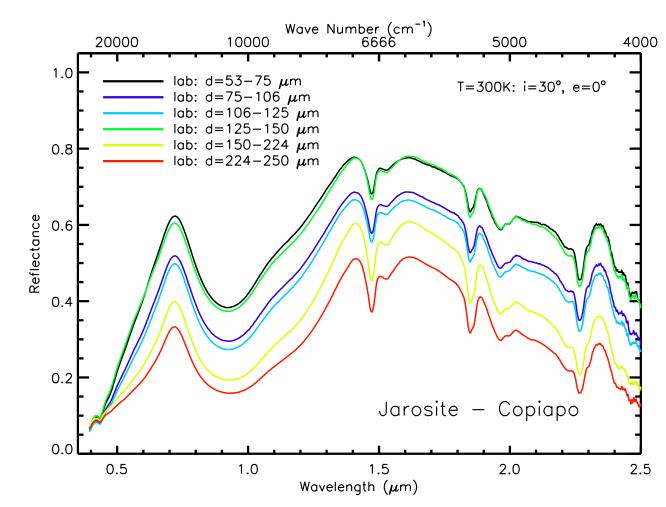
Jarosite_Copiano_150-224▲

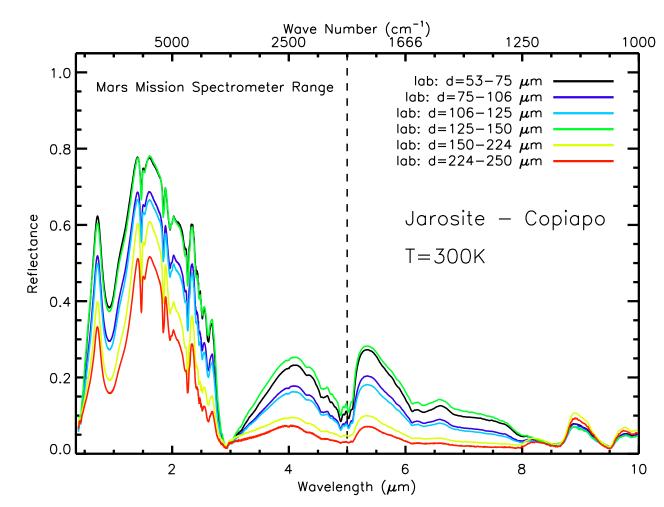



g1.jpg	
불	
	Properties Results
	index: 22
	Area: 7.53 µm ²
	equ circle D: 3.10
	Maximum projection: 3.88 µm
	mean projection: 3.49
	Minimum projection: 2.74 µm
	Perimeter: 7.32 µm
	Title: particle-23
	Position: (501,395)
	Author: simagis
	show less A
\diamond	


Jarosite_Copiano_150-224▲


Coords: 448, -34 pixels 409.3, -30.6 µm Drag to navigate, Shift+drag to select markers




karpitman Powered by Simagis Live™

