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ABSTRACT 11 

We have built three multivariate analysis mathematical models based on principal 12 

component analysis (PCA), partial least squares (PLS), and artificial neural networks 13 

(ANN) to detect sulfate minerals in geological samples from laser Raman spectral data. We 14 

have critically assessed the potential of the models to automatically detect and quantify the 15 

abundance of selected Ca-, Fe-, Na-, and Mg-sulfates in binary mixtures. Samples were 16 

analyzed using a laboratory version of the Raman Laser Spectrometer (RLS) instrument 17 

onboard the European Space Agency 2018 ExoMars mission. Our results show that PCA 18 

and PLS, can be used to quantify to some extent the abundance of mineral phases. PCA 19 

separated hydrated from dehydrated mixtures and classified mixtures depending on the 20 

phases abundances. PLS provided relatively good calibration curves for these mixtures. 21 

Upon spectral pre-processing, ANN provided the most precise qualitative and quantitative 22 

results. The detection of mineral phases was 100% accurate for pure samples, as was for 23 

binary mixtures where the abundance of mineral phases was > 10%. The outputs of the 24 
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ANN were proportional to the phase abundance of the mixture, thus demonstrating the 25 

ability of ANN to quantify the abundance of different phases without the need for 26 

calibration. Taken together, our findings demonstrate that multivariate analysis provides 27 

critical qualitative and quantitative information about the studied sulfate minerals. 28 

Keywords: Sulfates, ExoMars, Raman spectroscopy, Multivariate Analysis, 29 

Qualitative, Quantitative 30 

INTRODUCTION 31 

Laser Raman spectroscopy has been proposed as a powerful tool for the identification 32 

of minerals in the context of planetary exploration, including Mars (Sharma et al., 2003; 33 

Sobron et al., 2013a; Sobron et al., 2008; Wang et al., 2003; Wiens et al., 2007), Europa 34 

(Angel et al., 2012; Sobron et al., 2013b), Venus (Lambert et al., 2010), the Moon (Ling et 35 

al., 2009), and asteroids (Kong and Wang, 2010).  In addition, the feasibility of using laser 36 

Raman spectroscopy for the detection of biosignatures in terrestrial analogues to Mars has 37 

been demonstrated, e.g. (Bower et al., 2013; Dickensheets et al., 2000; Edwards et al., 38 

2012; Edwards et al., 2011; Edwards et al., 2003; Ellery and Wynn-Williams, 2003; Steele 39 

et al., 2010; Wynn-Williams and Edwards, 2000). A Raman Laser Spectrometer (RLS) is 40 

part of the science instrument payload of the European Space Agency 2018 ExoMars 41 

mission; the RLS instrument will target mineralogical and astrobiological investigations on 42 

the surface and subsurface of Mars (Rull et al., 2011a; Rull et al., 2011b). 43 

The current concept of operation of the RLS instrument is a raster analysis of crushed 44 

drill-core materials (Rull et al., 2011a). In this configuration, the geological and 45 

morphological context of the spots analyzed by RLS will be lost, as the crushing stage will 46 

preclude correlation between RLS spectra and the imagery acquired by the rover Close-Up 47 

Imager CLUPI (Josset et al., 2012). While the synergy between these instruments in the 48 
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current ExoMars payload configuration has been demonstrated (Lopez-Reyes, 2013a), 49 

identification of the mineral phases present in the geological targets and quantification of 50 

their abundance with RLS will mostly rely on spectral data and not morphology or texture. 51 

Therefore, in order to enable unambiguous identification and quantification of phase 52 

abundance, robust spectral processing methods are needed. 53 

Mineral identification using Raman spectroscopy is often performed by comparing 54 

acquired spectra to reference spectra available from the literature and different databases 55 

e.g., the RRUFF project database (Downs, 2006). A number of algorithms have been 56 

developed that enable an automated identification of Raman spectra using traditional 57 

univariate analysis, i.e., the description of individual variables in a given spectrum 58 

(Hermosilla, 2013; Kriesten et al., 2008; Perez-Pueyo et al., 2004; Sobron et al., 2008). 59 

These algorithms, however, fail to accurately estimate mineral abundance in complex 60 

geological samples, though applications for the quantitative analysis of relatively simple 61 

mixtures have been proposed (Lopez-Reyes, 2013a; Schumacher et al., 2011; Vagenas, 62 

2003).  63 

Multivariate Analysis Techniques (MVAT) are statistical techniques which deal with 64 

simultaneous measurements on many variables, and aim at understanding the relationships 65 

between these many variables to predict the values of important properties not directly 66 

measurable (Johnson and Wichern, 2002). Some examples of MVAT applied to the 67 

analysis of Raman spectra in the literature show that principal component analysis (PCA) is 68 

capable of differentiating mineral species such as carbonates, sulfates, oxides and silicates 69 

in geological samples (Lafuente, 2012). Partial least squares (PLS) has been used to 70 

determine the quality of biodiesel fuels (Ghesti et al., 2007). Artificial neural networks 71 

(ANN) have been designed for the identification and quantification of inorganic salts in 72 
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water solutions with Raman spectra (Dolenko et al., 2005). Also, combinations and 73 

comparisons of these techniques for chemometrical analysis from Raman spectra (mostly 74 

qualitative) have been reported (Dorfer et al., 2010; Ishikawa and Gulick, 2013; Özbalci et 75 

al., 2013). 76 

In this work we evaluate the feasibility of using PCA, PLS, and ANN for the 77 

identification and quantification of sulfate salts in binary mixtures through analysis of 78 

spectra recorded using a breadboard of the flight Raman Laser Spectrometer. The use of 79 

binary mixtures is a first step to evaluate these techniques, prior to being tested with more 80 

complex samples. We utilized a set of pure sulfates synthetized in the laboratory in order to 81 

prepare the binary mixtures. The sulfates we have considered have been proposed as 82 

priority targets for astrobiological investigation of Mars (Chou et al., 2013; King and 83 

McLennan, 2010; Knoll et al., 2005; Wang et al., 2011) because of their association with 84 

liquid water on certain locations on Mars and sulfate reducing bacteria in terrestrial 85 

analogue environments (Fernandez-Remolar et al., 2012; Nixon et al., 2013; Sanchez-86 

Andrea et al., 2012). Such environments are known to preserve chemical and 87 

morphological fossils (Bonny and Jones, 2003), thus testifying to the importance of the 88 

detection and identification of sulfates and the detailed study of their degree of hydration in 89 

order to address Mars’ hydrologic history and potential for habitability.  90 

In terms of identification, Raman spectroscopy is a very powerful technique for the 91 

analysis of the mineralogy of terrestrial sulfate samples analogue to Mars (Sobron et al., 92 

2014; Sobron and Alpers, 2013; Sobron et al., 2009), as well as for the detailed 93 

characterization of the hydration states of this kind of salts, which is critical for the rigorous 94 

interpretation of the hydrologic history of Mars (Chou et al., 2013; Ling et al., 2008; Wang 95 

et al., 2006).  96 
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MATERIALS AND METHODS 97 

Samples 98 

A set of 17 Raman spectra of sulfates were used as input for training the PCA, PLS, 99 

and ANN MVAT models; hereinafter, we will refer to this set of spectra as training set. 100 

Table 1 lists the materials used to record our set of spectra.  The materials were synthesized 101 

in the laboratory using standard techniques (Ling et al., 2008) -- they were characterized 102 

using X-ray diffraction in order to certify their mineralogical composition. The Raman 103 

spectra of these materials were acquired using Raman instrumentation described in (Ling et 104 

al., 2008; Wang et al., 2006). 105 

Apart from the training set, two more sets of spectra have been defined: the validation 106 

and the test sets. A random selection of the three sets of spectra spectra is shown in Figure 107 

1. The training set was divided in four subsets: Ca-, Mg-, Fe-, and Na-sulfates. Each of 108 

these four groups included sulfates with several degrees of hydration. The validation set 109 

consists on a set of binary mixed spectra with different proportions (0.1:0.9, 0.25:0.75, 110 

0.5:0.5, 0.75:0.25, 0.9:0.1) of all mineral pairs of the samples. It was synthetically 111 

generated by computing linear combinations of these spectra, parameterized with the 112 

expected proportion of the mixture and the cross-section of the mixed materials. 113 

Randomized noise with realistic amplitude was added to the synthetic spectra to guarantee 114 

differentiation. Though probably not totally accurate, this set of spectra is expected to 115 

behave similarly to weight-proportion mixtures, providing an easy and convenient way to 116 

execute the models with hundreds of spectra without the actual need of preparing mixtures 117 

and acquiring spectra.   118 

The third set of spectra, the test set, included the Raman spectra of powdered 119 

mixtures of anhydrite (CaSO4), thenardite (NaSO4), and MgSO4. This set of spectra is 120 
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used to test the models as well as to assess the goodness of using the computed spectra of 121 

the validation set as part of the model training/validation procedure. The Raman spectra of 122 

anhydrite and MgSO4 show non-overlapping peaks with thenardite, thus facilitating the 123 

spectral processing described below. Two subsets of samples (anhydrite + thenardite, and 124 

thenardite + MgSO4) with a total of 7 samples each were prepared by mixing these 125 

materials in the following weight proportions: 0.01:0.99, 0.1:0.9, 0.25:0.75, 0.5:0.5, 126 

0.75:0.25, 0.9:0.1 and 0.99:0.01. These mixtures were acquired with the RLS instrument, 127 

contrary to the training and validation spectra. This way, the models independence with 128 

respect to the instruments responses could be assessed. Thirty spectra of each mixture were 129 

acquired and averaged, providing one final spectrum of each mixture. These spectra are 130 

representative of the overall behavior of the samples, as the average of different 131 

acquisitions of 30 spectra have proved to be almost equal when obtained from an ExoMars-132 

type powdered sample with the RLS instrument (Lopez-Reyes. 2013a). 133 

Instrument and Raman spectroscopy 134 

In its current configuration, the ExoMars rover will crush the subsurface drilled 135 

samples and provide the instruments a flattened surface of the powdered sample for 136 

analysis. The RLS instrument, in its baseline mode operation, will analyze from 20 to 40 137 

points of each sample, with a 50 µm spot size and an irradiance level of 0.6 – 1.2 kW/cm2 138 

of a 532 nm continuous wave laser (Rull et al., 2011a). In order to test the analytical 139 

capabilities of the instrument in an operation-like environment, including fully automated 140 

analysis on powdered samples, a RLS ExoMars Simulator has been developed at the 141 

University of Valladolid – CSIC – Center of Astrobiology Associated Unit ERICA 142 

(Foucher, 2012; Lopez-Reyes, 2013a; Rull, 2011). The Simulator was used to acquire the 143 

test set spectra from the mixtures with different phase abundances.  144 
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In order to improve the accuracy of the analytical models described below, and given 145 

that the aim of the models is to distinguish among different types of sulfates, only spectral 146 

regions that are relevant to sulfates were considered. These spectral regions are: (1) the 147 

sulfate symmetric stretching ν1 (950 to 1100 cm-1); (2) the sulfate asymmetric stretching ν3 148 

(1100 to 1220 cm-1); (3) the sulfate symmetric and asymmetric bending ν2 and ν4, 149 

respectively (100-750 cm-1); (4) the water bending (1600-1700 cm-1); and (5) the water and 150 

OH stretching (2800-3800 cm-1). The spectra were baseline-corrected to remove 151 

background contributions (e.g., fluorescence), and normalized in intensity in a way such the 152 

maximum peak intensity is 1. In our case, the separation between consecutive points of the 153 

spectrum is 0.5 cm-1, which provides a total number of variables of about 4000 (each 154 

variable corresponding to the intensity at a determined wavenumber of the selected spectral 155 

regions), which is the size of the input data to the different models. 156 

MVAT 157 

This section describes the MVAT that have been used in this work: Principal 158 

Component Analysis (PCA), Partial Least-Squares regression (PLS) and Artificial Neural 159 

Networks (ANNs). PCA and PLS extract latent variables from the system in order to 160 

represent the system in a complexity-reduced variable system. Ideally, the extracted latent 161 

variables will respond to physical properties of the model. The difference between PCA and 162 

PLS is that, while PCA extracts the variables, PLS also performs a regression on the 163 

expected responses of the system for a determined set of inputs. ANNs, on the other hand, 164 

is a technique that can model any non-linear function by example-based training of 165 

computational networks. While ANNs philosophy makes it possible to have direct outputs 166 

of the sample presence and abundance, PCA and PLS provide responses based on the latent 167 

variables of the system that need to be classified and/or calibrated to extract the mineral 168 
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phases presence/abundance values. The scope of this work does not include the 169 

classification step for PCA and PLS responses, but it aims at evaluating the techniques 170 

ability to differentiate among such samples. All these techniques are described below in 171 

more detail, and were implemented for this work using Mathworks MATLAB. 172 

Principal Component Analysis  173 

PCA is a multivariate technique that computes the variance-covariance structure of a 174 

set of variables through a few linear combinations of them, with the objective of reducing 175 

the number of data variables (Johnson and Wichern, 2002). PCA calculates new variables 176 

called Principal Components (PCs) as linear combinations of the original variables. All the 177 

principal components are orthogonal to each other, so the variables in the principal 178 

component space do not provide redundant information. The principal components as a 179 

whole form an orthogonal basis for the space of the data, which can thus be represented in 180 

this new space. There is an infinite number of ways to construct an orthogonal basis to 181 

represent the data, so PCA calculates the PCs taking into account that they are uncorrelated 182 

among them, while maximizing their variance with coefficient vectors of unit length (as the 183 

variance can easily be increased by multiplying by a constant (Johnson and Wichern, 184 

2002)). In other words, the first PC is calculated, among all the possibilities, as the single 185 

axis (linear combination of the original variables) in the space that provides the greatest 186 

variance by any projection of the data on that axis. The second PC is another single axis 187 

that provides the second greatest variance by any projection of the data, and that is 188 

orthogonal to the first PC. The third will be also perpendicular to the previous two, and so 189 

on. This way, the set of PCs conforms a new set of coordinates which can represent the 190 

original data, where most of the variance of the system can be explained with only a few of 191 

the PCs. This is due to the fact that, usually, many of the variables of a system are highly 192 
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correlated, making it possible to remove some of them and still have a variable set which 193 

can account for most of the variability of the system.  194 

The PCA model was trained with the 17 spectra from the pure sulfates (training set), 195 

and then applied to the validation and test spectra sets. 196 

Partial Least Squares  197 

Partial Least Squares (PLS) is a common term for a family of multivariate modeling 198 

methods that appeared in the 1980’s to solve problems in social sciences (e.g. (Wold et al., 199 

1983)), but that can be applied to a large variety of modeling problems (Martens and Naes, 200 

1992), including Raman spectroscopy, as discussed above. The underlying assumption of 201 

all PLS methods is, as for PCA, that the observed data is generated by a system which is 202 

driven by a small number of latent (not directly observed or measured) variables, called 203 

components. In addition, PLS performs a regression of the expected responses for each set 204 

of input variables (observations). Thus, this technique is some kind of combination of PCA 205 

and linear regression: PLS creates orthogonal score vectors (the latent vectors or 206 

components) by maximizing the covariance between two different blocks of variables 207 

(Rosipal and Krämer 2006) which correspond to the input variables (predictor variables or 208 

observations) and the expected responses (predicted variables or predictions). The higher 209 

the number of computed components, the better the model fits the system. In our work, the 210 

SIMPLS algorithm (de Jong, 1993) has been used, which calculates the PLS factors directly 211 

as linear combinations of the original variables. With SIMPLS, the PLS factors are 212 

determined such as to maximize the covariance between the predictor variables and the 213 

expected responses, while obeying certain orthogonality and normalization restrictions (de 214 

Jong, 1993).  215 
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The responses chosen for the analysis of Raman spectra of sulfates were the weight 216 

atomic fraction of the sulfate cation (calcium, magnesium, iron and sodium), as well as the 217 

weight ratio of the water bound to the sulfate molecule, providing a set of five responses. 218 

These responses were chosen to reflect the composition of the samples, thus providing the 219 

model with a physical basis for the regression of the input variables. Given that the shifts in 220 

the Raman bands are produced as a consequence of the frequency shifts associated to the 221 

cation-sulfate group oscillators, the cation ratio is the subjacent physical property that we 222 

choose as a response in our model. The spectra were baseline-removed, normalized with 223 

respect to the maximum peak height, mean centered and scaled in order to avoid biasing the 224 

model.  225 

The model was trained with the spectra from the 17 pure salts (training set). As in 226 

every model where input variables are regressed to expected responses, there is a risk of 227 

over-fitting. To minimize this effect, we optimized our model using a leave-one-out cross-228 

validation method with the validation and test spectra sets, as outlined in the Results and 229 

Discussion section. 230 

Artificial Neural Network  231 

An Artificial Neural Network (ANN) is a mathematical procedure for transforming 232 

inputs into desired outputs using highly connected networks of relatively simple processing 233 

units called neurons (Johnson and Wichern, 2002). Each neuron performs a mathematical 234 

operation that produces an output which is a function (usually non-linear) of a series of 235 

biased and weighted inputs coming from other neurons. The underlying principle is that 236 

neural networks be modeled after the neural activity in the human brain, in which the 237 

interconnection of very simple functional units (the neurons) can solve many complex and 238 

non-linear problems in a very fast way. Thus, ANNs consist on parallel computational 239 
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models comprised of densely interconnected adaptive processing units (the neurons). These 240 

networks provide a tool for modelling nonlinear static or dynamic systems, making use of 241 

their adaptive nature, based on “learning by example”. This feature makes this kind of 242 

computational models very appealing in applications in which the understanding of the 243 

problem is little or incomplete, but where training data is readily available (Hassoun, 1995). 244 

ANNs can provide very fast outputs, as it only has to compute a limited number of 245 

very simple operations that are easily parallelizable. However, the design and training of 246 

the network can be a hard task. ANNs are set in layers of interconnected networks, in which 247 

the first layer has as many neurons as inputs in the system, and the output layer has as many 248 

neurons as required outputs. All intermediate layers are called hidden layers, and can have 249 

any number of neurons (Johnson and Wichern, 2002).  250 

For our design, many different architectures were trained and evaluated to obtain the 251 

network with the best performance. In the end, a three-layer network with 33 neurons on 252 

the hidden layer was chosen. The input layer was configured with 33 neurons each 253 

corresponding to determined spectral positions. The neurons where configured with log-254 

sigmoid transfer functions. The output layer consisted on 17 outputs, each corresponding to 255 

one of the sulfates (where each output should take values between 0 and 1, proportional to 256 

the abundance of the sample).  257 

As suggested by (Koujelev et al., 2010), and in order to improve the ANN model 258 

performance, only a selection of spectral positions is fed into the network as input; the ν1 259 

peak positions of all the sulfates, as well as the most intense non-overlapping secondary 260 

peaks of the pure samples were selected as inputs. This allows the definition of a predefined 261 

set of spectral positions that will be extracted from the input spectra and fed to the network. 262 

In order to determine these peaks, the input spectra to the ANN have to be pre-preprocessed 263 
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so that only the most intense peaks have non-zero intensities, as depicted in Figure 2: from 264 

all the inputs to the model, those below a determined threshold will be set to 0. The 265 

definition of this threshold depends on the sample noise and can be decided for each 266 

spectrum. In addition, a deconvolution of peaks is needed for mixtures where the peaks are 267 

partially overlapped.  268 

The training process was performed using a Levenberg-Marquardt back-propagation 269 

algorithm (Levenberg, 1944; Marquardt, 1963) that used spectra of pure sulfates (training 270 

set) plus some spectra of mixtures with 0.25:0.75, 0.5:0.5 and 0.75:0.25 proportions. The 271 

network was trained to provide outputs proportional to the abundance of each sulfate. To 272 

avoid over-fitting, the early-stopping technique with the validation set was used. This 273 

consists in stopping the iterative training process when the output errors for the validation 274 

set increase. Finally, to test the network in a more representative scenario, the test set from 275 

the RLS instrument was fed to the network. 276 

RESULTS AND DISCUSSION 277 

PCA 278 

The training of the PCA model showed that the first three components PC1, PC2 and 279 

PC3 explain more than 80% of the variance of the training data set, and 90% if the first five 280 

components are considered (Fig. 3). This means that 90% of the variance of the system is 281 

explained with only 5 of the calculated orthogonal variables. A dendrogram showing the 282 

interconnections for the 3 PCs model is depicted in Figure 4. Models with higher number of 283 

components (up to ten) do not present better separation among different cations, and 284 

worsen the discrimination between low- and high-hydration sulfates. In addition, the lower 285 

the number of components, the more general the model can be, so the 3-PC model was 286 

selected as the optimal one. The representation of the scores of the training samples in the 287 
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new variable system (with only the first two components, for representation convenience) is 288 

displayed in Figure 5 as circles. From the validation set, only the calculated scores for 289 

mixed spectra of sulfates of the same cation in 50:50 proportions (worst case) are plotted in 290 

Figure 5 as triangles. The mixed spectra contain sulfates with different degree of hydration. 291 

The scores in Figure 5 show how PCA succeeds in separating, mostly along PC1, the low 292 

hydration mixtures from the high hydrated ones, though it fails to distinguish among 293 

different types of cations. For example, the model scores the mixture of Fe-sulfates with 4 294 

and 7 water molecules between those two elements, and the same happens with the Ca-295 

sulfates. However, the model fails to correctly separate the Mg-sulfates by hydration level. 296 

Therefore, the general conclusion is that PC1 can only be used to separate low hydration 297 

from high hydration sulfates, but not to distinguish among different hydration states of 298 

same-cation sulfates.  299 

While no additional direct associations between the principal components and the 300 

physical properties of the different molecules (as for example the cation ratio) can be 301 

inferred, the PCA analysis of sulfates can provide useful information when representing the 302 

PC1-PC2 scores. For example, the representation of the scores of the test spectra set is 303 

depicted in Figure 6 (for graphical simplicity, only two PCs are represented). This figure 304 

shows how the mixtures are placed between the pure components depending on their 305 

relative abundance: the higher the abundance of a sulfate of the mixture, the closer to the 306 

corresponding pure sulfate score. This would mean that some kind of quantification could 307 

be possible based on the PCA model, even when only trained with pure Raman spectra.  308 

PLS 309 

The PLS regression of the pure sulfates spectra to their expected weight cation atomic 310 

fractions and water presence was performed for different numbers of components. To 311 
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decide the optimal number of components, the Mean Squared Error (MSE) of the 312 

predictions for the training, validation and tests sets was calculated. Figure 7 shows some 313 

spectra from the training set and the corresponding loadings, where the energies that have 314 

the greatest effect on the PLS predictions can be observed. The application of the model to 315 

the spectra sets yielded the prediction errors shown in Figure 8 – a. As expected, the 316 

prediction error for the training samples (blue line) tends to 0 with increasing number of 317 

components, as the model is fitted better. The values of the error for the regression of the 318 

test set of spectra (black lines) indicates that the best fitting (minimum prediction error) 319 

occurs for a 12-component PLS model. As a general rule, lower numbers of components 320 

imply a more general response of the model. Since the spectra of the natural samples were 321 

acquired with a different experimental setup than the spectra of the training and validation 322 

sets, we interpret the 13-component model (where the minimum prediction error for the 323 

validation set is found – see red line) as one in which the 13th component accounts for the 324 

spectrometer response. Thus, the 12-component model is considered as the optimum for our 325 

set of sulfates spectra; more than 98% of the variance of the system can be explained with 326 

this model (Fig. 8 – b), apparently with no over-fitting. 327 

The average absolute prediction error values for the training, validation and test sets 328 

are presented in Table 2 for the 12-component model. This table shows how the average 329 

error is close to 0 for the training and validation sets, while the model prediction is biased 330 

in the prediction values for the test set spectra. The RMSEP (Root Mean Square Error of 331 

Prediction) for each test is presented in Table 3. This value represents the prediction error 332 

deviation, to compare the prediction accuracy between the different spectra sets. In 333 

addition, the predicted vs. expected responses correlations are shown in Table 4, and the 334 

responses represented in Figure 9. This figure presents the expected vs. calculated cation 335 



15 
 

ratios for each spectrum. As each spectrum is represented as one individual point in the 336 

graph, the estimation error is defined by the y-axis displacement from the expected value. 337 

Thus, the estimation error is 0 when the point is placed on the line with unitary slope (y = 338 

x). These data show that a correlation between the predicted and the expected responses is 339 

present with this model for all the training, validation and test spectra sets.  340 

The RMSEP results for the training set in Table 3 show that the model has the lower 341 

prediction capabilities for the hydration response, which can be explained by the influence 342 

of the many close-to-zero values of these responses, as shown in the plot of the training 343 

responses in Figure 9 – a. It is important to note how the results of the test samples provide 344 

too high values of the iron cation response, especially in Figure 9 – d, when it should 345 

always be 0.  346 

For the validation spectra, the prediction accuracy is lower (higher RMSEP) than for 347 

the training spectra, as expected, which is also reflected in its lower correlation and higher 348 

prediction bias. The model behavior is worse for well-balanced mixtures (0.5:0.5) than for 349 

mixtures with unbalanced proportions, as the model was trained with pure samples only. 350 

Most of the outlier points observed in Figure 9 – b belong to the mixtures in this proportion. 351 

The values in Table 4 for the validation set correspond to the averaged correlation for all 352 

the proportions, but these improve between 0.5% and 1% when the 0.5:0.5 mixture is not 353 

considered.  354 

The results for the test spectra show better correlations than the training set in the Na-355 

sulfates case, though the RMSEP value is much higher than for the training and validation 356 

sets. This can be explained by the fact that the correlation value for the training samples is 357 

biased with all the spectra from the rest of the sulfates, which are not represented with the 358 

test samples. This can be readily observed in Figure 9 – a, b vs. Figure 9 – c, d; the slopes 359 
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of the curves are more or less unitary for the training and validation tests, which indicates a 360 

certain accuracy of the model (and which is reflected in similar RMSEP values and low 361 

bias), while the test sets show a non-unitary slope linear correlation between the expected 362 

and calculated sodium response (with a much higher RMSEP value and prediction bias). 363 

This implies that the 12-component PLS model seems to fail to directly predict hydration 364 

states and cation abundances for this case. However, it still provides linear calibration 365 

curves that could be used to compute these values.  366 

ANN 367 

The training process of our ANN consisted on providing outputs proportional to the 368 

abundance of the materials. As ANN can model any non-linear function, this seemed to be 369 

the most convenient way to do it, contrary to PLS, where the underlying physical principles 370 

tried to be modeled.  371 

In order to evaluate the identification accuracy of the ANN, we established the 372 

criteria to consider that a sulfate is detected when the corresponding output is higher than a 373 

determined threshold. For this network, this threshold was set to 0.06. As the output of the 374 

network ranges from 0 to 1, this value will be the theoretically lowest detection threshold 375 

for this model (i.e. no sulfates will be detected below concentrations of 6%).  376 

Under these premises, the training set spectra were detected with 100% accuracy with 377 

this ANN. Furthermore, the major phase present in all the samples of validation and test 378 

sets was also detected in 100% of the cases. Both phases of the mixtures were detected with 379 

100% accuracy only when the minor phase was present with at least 10% abundance. In 380 

other words, the ANN detects 100% of the minerals present in binary mixtures with 381 

proportions ranging from 10:90 to 90:10. This implies that the ANN model provides a 382 

robust system for the qualitative detection of sulfates in this kind of mixtures, with a 383 
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detection threshold for minor phases of around 10%, even for spectra acquired with a 384 

different hardware setup than the training spectra. 385 

The representation of the ANN outputs for spectra of mixtures with different 386 

proportions (validation and test sets) shows that the network outputs also provide 387 

information on the relative abundance of the materials. As part of the validation set was 388 

used to train the model, the results for this set proved very good also in terms of 389 

quantification of mineral abundance, as expected. More interesting are the results for the 390 

test spectra, which are shown in Figures 10 and 11, where the estimated concentration 391 

values from the ANN with respect to the expected ones are represented. These results show 392 

that the model accuracy might somehow depend on the samples (e.g., the results for the 393 

mixture in Fig. 11 show that the Mg-sulfate concentration tends to be underestimated for 394 

mixtures where it is the major component). However, a certain degree of correlation 395 

between the modeled values and the actual abundances of the mixtures exists. This is an 396 

interesting result, especially bearing in mind that this is true for the test set spectra, while 397 

the model was trained with pure spectra obtained with a different spectrometer (training 398 

set) and computed spectra of mixtures calculated from those samples. 399 

The representation of the maximum and minimum values of the outputs of the ANN 400 

which do not correspond to the minerals present in the spectra can be seen in Figures 10 401 

and 11  – b. The representation of these values, which should always be 0, is of relevance to 402 

show that, with a threshold of 6%, no false identifications are obtained. The conclusion is 403 

that the use of ANN looks promising for providing robust and reliable results under the 404 

described premises, not only for identifying the phases present in binary mixtures of 405 

sulfates, but also to provide some kind of quantification of their abundance.  406 
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MVAT comparative 407 

PCA, PLS and ANN models have been trained based-only in 17 spectra of pure 408 

sulfates and mixed spectra computed as linear combinations of those. This procedure has 409 

allowed evaluating these analytical techniques without the need to actually prepare all 410 

possible combinations of samples for the calibration of the models.  411 

The analysis of selected regions from the Raman spectrum implies the analysis of 412 

several thousands of variables at the same time. To deal with this amount of information, 413 

PCA and PLS calculate new sets of orthogonal variables as linear combinations of the 414 

original ones. PLS then regresses these variables to expected responses, while PCA doesn’t. 415 

These new variables correspond to latent variables which ideally should be directly related 416 

to physical properties of the system (e.g., the degree of hydration of a sulfate). However, 417 

this is not always the case. This is probably due to the non-linear nature of the Raman 418 

emission, which PCA and PLS try to model with linear processing. ANNs, on the other 419 

hand, can provide non-linear transfer functions. Thus, they might be more adequate for the 420 

modeling of non-linear effects (as the Raman emission). However, ANNs require a 421 

relatively low number of input variables to provide any relevant results. This technique 422 

does not perform a reduction to latent variables on its own, so it has been made by only 423 

inputting the most relevant spectral positions (corresponding to the wavenumbers of the 424 

most representative peaks of the training spectra).   425 

We have shown the ability of these MVAT models of providing useful qualitative and 426 

even quantitative information for simple binary mixtures, even when the training and 427 

testing were performed with spectra recorded with different hardware setups. As discussed 428 

in the previous sections, PCA separated low from high hydrated sulfates, and also 429 

somewhat classified samples of mixtures depending on their relative abundance. PLS 430 
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model outputs presented good correlations to the expected responses. However, though 431 

well correlated, the responses in some cases were relatively far from the expected values. 432 

The conclusion is that PCA and PLS provided a classification method which needs a 433 

previous calibration for the sample under analysis, and a classification method. On the 434 

other hand, the ANN model outputs directly provided the abundance of the corresponding 435 

salt, in addition to a 100% qualitative detection for mixtures with abundances as low as 436 

10%. 437 

To overcome the various limitations of these MVATs, a synergy between them might 438 

be interesting to improve the overall performance of the models. Some classifiers for the 439 

qualitative analysis of minerals have been proposed based on integrated PCA and ANN 440 

models (Dorfer et al., 2010; Ishikawa and Gulick, 2013). Future research will thus focus in 441 

developing models for the quantification of mineral abundances which integrate different 442 

MVATs. 443 

IMPLICATIONS FOR EXOMARS 444 

ExoMars’ RLS instrument will determine the structural and compositional features of 445 

materials in rocks and soils at the surface and subsurface of Mars. The ExoMars samples 446 

will be collected by a drill, then crushed and delivered to a suite of instruments located in 447 

the rover’s analytical laboratory, where the RLS instrument sits. A crushing station will 448 

provide homogenized powdered samples that will likely feature complex mixtures of 449 

mineral phases.   450 

Fast, robust, unsupervised RLS data processing tools able to interpret the intricate 451 

sprectra that will be obtained from Martian samples would benefit ExoMars mission 452 

operations in that they may directly support the daily tactical operations of the rover.  The 453 

different multivariate analysis techniques methodologies – PCA, PLS, and ANN – we have 454 
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discussed here promise to provide an efficient way to process RLS data during the ExoMars 455 

mission. 456 

Future work in this direction will focus on exploring the capabilites of these 457 

methodologies to evaluate more complex mixtures; these will include additional synthetic 458 

sulfates, oxides, clays, phyllosilicates, carbonates, perchlorates, as well as natural samples. 459 

We will carry out this research using the RLS ExoMars Simulator we have developed 460 

at the University of Valladolid-Centro de Astrobiologia and the different RLS models and 461 

prototypes that we are developing with the Spanish National Institute for Aerospace 462 

Technology (INTA). 463 
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 650 

 651 

Hydration 
state Mg Ca Fe Na 

Anhydrous Anhydrous Mg-
Sulfate Anhydrite -- Thenardite 

1/2 H2O -- Bassanite -- -- 
1 H2O Kieserite -- Szomolnokite -- 
2 H2O Sanderite Gypsum -- -- 

3 H2O Mg-sulfate tri-
hydrate -- -- -- 

4 H2O Starkeyite -- Rozenite -- 
5 H2O Pentahydrate -- -- -- 
6 H2O Hexahydrate -- -- -- 
7 H2O Epsomite -- Melanterite -- 

10 H2O -- -- -- Glauber’s 
salt 

11 H2O Meridianiite -- -- -- 
Table 1. Sulfates used for the analysis with multivariate techniques 652 

  653 

Response  
Training set 

(pure 
sulfates) 

Validation set 
(Mixed 
spectra) 

Test set (Anhydrite 
+ Thenardite) 

Test set (Thenardite 
+ MgSO4) 

Hydration 
ratio 

-4.5-17 
-0.0087 0.0814 0.0509 

Ca- ratio 3.3-17 
0.0027 -0.0249 0.0046 

Mg- ratio -1.9-17 
-0.0061 -0.0288 -0.0625 

Fe- ratio -1.3-17 
0.0021 -0.0737 -0.0211 

Na- ratio -8.1-18 
0.0075 0.1123 0.0962 

Average -1.1-17 -0.0004 0.0132 0.0136 
Table 2. Average prediction error values with the 12 component PLS model 654 

 655 

 656 

 657 

 658 
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 659 

Response  
Training set 

(pure 
sulfates) 

Validation set 
(Mixed 
spectra) 

Test set (Anhydrite 
+ Thenardite) 

Test set (Thenardite 
+ MgSO4) 

Hydration 
ratio 0.0788 0.0821 0.0901 0.0838 

Ca- ratio 0.0072 0.0212 0.0327 0.0178 
Mg- ratio 0.0109 0.0193 0.0356 0.0639 
Fe- ratio 0.0134 0.0227 0.0897 0.0925 
Na- ratio 0.0269 0.0236 0.1368 0.1280 
Average 0.0274 0.0338 0.0770 0.0772 

Table 3. RMSEP values (error variance) with the 12 component PLS model 660 

 661 

 662 

    663 

Response  
Training set 

(pure 
sulfates) 

Validation set 
(Mixed 
spectra) 

Test set (Anhydrite 
+ Thenardite) 

Test set (Thenardite 
+ MgSO4) 

Hydration 
ratio 92.9% 89.5% -- -- 

Ca- ratio 99.7% 97.9% 98.1% -- 
Mg- ratio 98.7% 96.2% -- 98.4% 
Fe- ratio 98.9% 97.1% -- -- 
Na- ratio 93.9% 93.3% 98.9% 98.8% 
Average 96.8% 94.8% 98.5% 98.6% 

Table 4. Correlation values (in %) for the Calculated vs. Expected responses with the 664 

12 component PLS model 665 

 666 

 667 
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 668 

Figure 1. Example spectra from the training (a), validation (b) and test sets (c) 669 

 670 

Figure 2. Spectrum pre-processing example for the ANN model 671 

 672 
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 673 

Figure 3. Explained variance of the data set (pure spectra of sulfates) after PCA 674 

analysis 675 

 676 

Figure 4. Dendrogram showing the classification of the PCA model with 3 PCs. As it 677 

can be seen, low-hydrated sulfates are contained in the blue branch of the dendrogram. 678 

 679 

 680 

Figure 5. Representation of the scores for the training set (pure sulfates, circle) and 681 

50:50 mixtures of the sulfates of the same cation from the validation set (triangles).  682 
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Different colors represent different cations. It can be seen how the low-hydration samples 683 

and mixtures are found with lower values of PC1. 684 

 685 

Figure 6. Scores for the averaged spectra of the different mixtures acquired with the 686 

ExoMars Raman instrument. The scores are placed along lines between the endmembers at 687 

a distance dependent on the mixture concentration. 688 

 689 

 690 

Figure 7. Some spectra from the training set (a) and corresponding PLS loadings (b) 691 
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 692 

 693 

Figure 8. MSE of prediction (a), and accumulated explained variance (b) obtained by 694 

the models with different numbers of components.  695 

 696 
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Figure 9. Calculated vs. Expected responses (cation weight ratio) for the training (a), 698 

validation (b) and test (c,d) spectra for the 12 component PLS model 699 

 700 

 701 

Figure 10. ANN outputs for the test set. Outputs corresponding to Anhydrite (CaSO4 702 

– red) and Thenardite (Na2SO4 – blue) (a). Outputs corresponding to the rest of sulfates (b). 703 

Vertical axis represents the proportion estimated by the ANN, while horizontal axis 704 

represents the expected (known) proportion. 705 

 706 
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 707 

Figure 11. ANN outputs for the test set (mixtures in several proportions from RLS). 708 

Outputs corresponding to Thenardite (Na2SO4 – blue) and Mg-sulfate (MgSO4 – red) (a). 709 

Outputs corresponding to the rest of sulfates (b). Vertical axis represents the proportion 710 

estimated by the ANN, while horizontal axis represents the expected (known) proportion. 711 




