| 1<br>2        |                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|
| $\frac{2}{3}$ |                                                                                                                             |
| 4             |                                                                                                                             |
| 5             |                                                                                                                             |
| 6             |                                                                                                                             |
| 7             |                                                                                                                             |
| 8             |                                                                                                                             |
| 9<br>10       | Earroon Calification and Counted Spinal Dutile Excelution from Titanchematites                                              |
| 10            | Ferroan Gerkiente and Coupled Spinel-Rutile Exsolution from Thanonematite.                                                  |
| 11            | Interface Characterization and Magnetic Properties                                                                          |
| 12            |                                                                                                                             |
| 13            |                                                                                                                             |
| 14            | Robinson, Peter <sup>1</sup> , Langenhorst, Falko <sup>2*</sup> , McEnroe, S. A. <sup>3</sup> , Fabian, Karl <sup>1</sup> , |
|               |                                                                                                                             |
| 15            | and Boffa Ballaran, Tiziana <sup>-</sup>                                                                                    |
| 16            |                                                                                                                             |
| 17            |                                                                                                                             |
| 18            |                                                                                                                             |
| 19            |                                                                                                                             |
| 20            |                                                                                                                             |
| 21            |                                                                                                                             |
| 22            |                                                                                                                             |
| 23            | <sup>2</sup> Geological Survey of Norway, N-/491 Irondheim, Norway, <u>peter.robinson(a)ngu.no</u>                          |
| 24<br>25      | <sup>3</sup> Norwegian University of Science and Technology N 7401 Trondheim Norwey                                         |
| 25<br>26      | Norwegian Oniversity of Science and Technology, N-7491, Hondheim, Norway                                                    |
| 20<br>27      |                                                                                                                             |
| 28            | * now at Institut für Geowissenschaften. Friedrich-Schiller-Universität Jena, 07745 Jena, Germany                           |
| 29            |                                                                                                                             |
| 30            |                                                                                                                             |
| 31            |                                                                                                                             |
| 32            |                                                                                                                             |
| 33            |                                                                                                                             |
| 34            |                                                                                                                             |
| 33<br>26      | Corresponding Author: Peter Robinson, <u>peter.robinson(a/ngu.no</u>                                                        |
| 30<br>27      |                                                                                                                             |
| 38            |                                                                                                                             |
| 39            |                                                                                                                             |
| 40            |                                                                                                                             |
| 41            |                                                                                                                             |
| 42            |                                                                                                                             |
| 43            |                                                                                                                             |
| 44            |                                                                                                                             |
| 45            | Abstract                                                                                                                    |
| 46            |                                                                                                                             |

1

|    | 2                                                                                                                                                          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 | Extensive negative aeromagnetic anomalies in the Modum area, south Norway derive from                                                                      |
| 48 | rocks containing ilmenite with hematite exsolution, or hematite with ilmenite exsolution, carrying                                                         |
| 49 | strong/stable reversed remanence. Here we describe a 2.5-cm-thick high-temperature metamorphic                                                             |
| 50 | vein of exsolved titanohematite. Reflected-light and EMP analyses show it contains three types of                                                          |
| 51 | exsolution: spinel plates on (001); rutile blade satellites on spinel oriented at angles of ~ $60-90^{\circ}$ to                                           |
| 52 | titanohematite (001); and lamellae 0.1-0.3 $\mu$ m thick too fine for EMP analyses, also parallel to                                                       |
| 53 | (001). Powder XRD gave <i>a</i> =5.0393 Å, <i>c</i> =13.7687 Å, V=302.81 Å <sup>3</sup> for titanohematite (≈IIm9), and                                    |
| 54 | unrefined reflections of rutile and geikielite. Overlap EMP analyses showed enrichment in MgO,                                                             |
| 55 | TiO <sub>2</sub> and lack of Al <sub>2</sub> O <sub>3</sub> , indicating a mixture of titanohematite and geikielite. Non-overlap analyses                  |
| 56 | showed the titanohematite is 6%Fe <sup>2+</sup> TiO <sub>3</sub> , 2%MgTiO <sub>3</sub> , 92% Fe <sub>2</sub> O <sub>3</sub> , generally confirmed by TEM- |
| 57 | EDX analyses that also showed the geikielite is 30%Fe <sup>2+</sup> TiO <sub>3</sub> , 70%MgTiO <sub>3</sub> .                                             |
| 58 | Orientation and interface relationships between exsolutions and host titanohematite were                                                                   |
| 59 | characterized with TEM, using conventional and high-resolution imaging complemented by                                                                     |
| 60 | selected area electron diffraction. As expected, spinel shares (111) with the (001) basal plane of                                                         |
| 61 | titanohematite and geikielite (001) the same. The epitactic relationship between rutile and                                                                |
| 62 | titanohematite, previously not well constrained, was estimated from reflected-light and TEM                                                                |
| 63 | images and lattice-fit studies. The $a_1$ axis of rutile is parallel to $a_1$ of hematite and $c$ of rutile is                                             |
| 64 | normal to $a_2$ of hematite, all in the hematite basal plane, which, however is not a phase interface.                                                     |
| 65 | The rutile appears to occur in blades within prism planes in titanohematite located $\sim 69^{\circ}$ from <i>a</i> axes                                   |
| 66 | of hematite, with long axes of the blades oriented in a minimum strain direction within the planes at                                                      |
| 67 | $\sim 63^{\circ}$ from the (001) basal plane.                                                                                                              |
| 68 | Spinel and rutile, analyzed by EMP, exsolved first. Spinel gave 96%MgAl <sub>2</sub> O <sub>4</sub> , 3%FeFe <sub>2</sub> O <sub>4</sub> ,                 |
| 69 | Mg/ total $R^{2+} = 0.98$ . Magnesian/aluminous spinel lacking Ti exsolved from titanohematite in                                                          |
| 70 | coupled exsolution with ferrian rutile, where combined components were dissolved as                                                                        |

71 corundum/geikielite components in high-T aluminous magnesian titanohematite. Early exsolution

3

lowered geikielite, and eliminated the corundum component. Later fine exsolution of ferroan
geikielite moved the titanohematite closer to Fe<sub>2</sub>O<sub>3</sub>.

 $Mg^{2+}$  has no magnetic moment, but breaks up linkages between Fe atoms, lowers Néel Ts, 74 75 and produces unusual low-T properties. This titanohematite has Néel T, 873K (600°C). Geikielite 76 at 70%MgTiO<sub>3</sub>, is far beyond its theoretical nearest-neighbor percolation threshold at 77 30.3%MgTiO<sub>3</sub>. However, the sample shows a negative magnetic exchange bias below 25 K and 78 low-T remanence lost above  $\sim 40$  K. Such properties are reported in samples containing thin 79 ilmenite lamellae in titanohematite, in theory with odd numbers of Fe layers, where exchange bias 80 is linked to lamellar magnetism at the phase interfaces, when the ilmenite becomes a high-81 anisotropy magnet in a magnetically softer host. The behavior of the ferroan geikielite has three 82 potential explanations, formation of Fe-rich Mg-impoverished "clusters" allowing local percolation 83 and magnetic interaction with adjacent contact layers, increased magnetic interactions at low 84 temperatures between non-nearest-neighbor Fe atoms, allowing ferroan geikielite to percolate 85 magnetically in unexpected fashion, and exsolution of much finer Fe-richer ilmenite lamellae, so far 86 undetected in TEM. (503 Words, limit is 800, but 250 recommended) 87 Introduction 88 Figure 1 shows magnetic anomalies over the Mesoproterozoic basement rocks of the 89 Modum district, south Norway (inset Figure 1), and northwest margin of the Permian Oslo Rift that 90 preserves Cambro-Silurian fossiliferous sedimentary strata cut by Permian intrusions, many in 91 classic ring-dike complexes. In many locations the rift boundary (thin dashed black line) is an east-92 dipping normal fault, but locally in Figure 1, the boundary is a gently east-dipping unconformity. 93 The underlying basement rocks show a north-northwest trending structural grain produced during 94 early Sveconorwegian (~1092 Ma) deformation and amphibolite-facies regional metamorphism 95 (Bingen 2008). 96 The aeromagnetic map shows areas of positive induced magnetization (red-lavender colors)

97 and areas of magnetic lows (orange through dark blue). The orange-blue areas west of the rift

4 98 margin are areas dominated by negative remanent magnetization, reflecting, in part, the structural 99 grain of titanohematite-bearing layers. These rocks have a reversed paleomagnetic vector with 100 declination 276, inclination -67, reflecting the late Mesoproterozoic time of remanence acquisition. 101 This vector is at a large angle to the present Earth field vector with declination 51°, inclination 102  $+72.5^{\circ}$  and results in magnetic lows. The rift margin is poorly resolved, because it is mainly an 103 unconformity. The positive anomaly in the northeast of the map is a mafic body in the basement 104 that extends southeast beneath the unconformity under Lake Tyrifjorden. The main magnetic low 105 in the southeast relates to the strong circular magnetic high associated with a Permian ring dike 106 complex. 107 Our strategy has been to study aeromagnetic maps and related reports covering Proterozoic 108 "basement" areas in Norway, Sweden, Australia, and the Grenville Province in eastern USA, and 109 Canada. In these areas, negative magnetic anomalies quite commonly reflect substantial magnetic 110 remanence. In many examples, such remanence, commonly related to the rhombohedral oxides 111 hematite and ilmenite, proves to be very stable magnetically, commonly reflecting the orientation of

112 the magnetic field at the time of cooling field millions or even billions of years before the present

(McEnroe et al., 2001a, 2002, 2007a, 2007b, 2008, 2009; McEnroe & Brown 2001; Robinson et al.

114 2012). Because of their high stability, such rocks are an important and useful source of

115 paleomagnetic data, but they have also proved to be valuable for their unusual magnetic properties,

some of which may ultimately provide blueprints for technological applications (McEnroe et al.

117 2007a). The negative magnetic anomalies over the basement rocks of the Modum area have proved

118 particularly fruitful in this respect.

113

119 Figure 1 shows ten localities where we have collected, mostly within significant negative

120 anomaly areas. One (Mod-2) was the subject of a detailed study of low-temperature (*T*) magnetic

121 exchange bias in titanohematite with 1-2 nm scale ilmenite exsolution lamellae (McEnroe et al.

122 2007a, Harrison et al. 2007, 2010; Fabian et al. 2008). The samples at Mod-22 (manuscript in

123 preparation) also contain titanohematite with similar properties but with ilmenite lamellae so thin as

| 124 | to be undetectable except by magnetic techniques. The present study is based on one sample                             |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 125 | collected at Mod-24.                                                                                                   |
| 126 | Sample occurrence at Mod-24                                                                                            |
| 127 | The Mod-24 vein sample occurs in a north-northwest trending belt of metamorphosed                                      |
| 128 | stratified rocks marked by prominent negative magnetic anomalies. The outcrop is limited and we                        |
| 129 | focused our attention on a north-south trending ridge west of a wood road, where an east-west                          |
| 130 | ground-magnetic profile was measured before collecting samples from different layers. The                              |
| 131 | magnetic profile shows two narrow, steep-sided moderate magnetic lows at 48,800 (W) and 49,100                         |
| 132 | nT (E) apparently associated with particular layers or groups of layers. The Earth field at this                       |
| 133 | location had intensity 50,784 nT, higher than nearly all the measurements. The high- $T$ metamorphic                   |
| 134 | titanohematite vein, discussed here, was found on a very small, glaciated, outcrop surface near the                    |
| 135 | east end of the traverse and on the eastern flank of the eastern anomaly. The $\sim$ 2.5-cm-thick vein                 |
| 136 | cuts through feldspathic gneiss that is not very magnetic.                                                             |
| 137 | Reflected-light microscopy                                                                                             |
| 138 | Figure 2 shows a polarized reflected-light photomicrograph of a part of the sample. The                                |
| 139 | dominant hematite host shows light-gray reflectivity. The most prominent exsolved phase is spinel                      |
| 140 | in thin plates parallel to (001) of the host (using 3 hexagonal indices in the 4 index system),                        |
| 141 | showing black because of very low reflectivity. Commonly attached to these plates are blades or                        |
| 142 | rods of rutile showing dark gray reflectivity. The blades or rods lie at angles of $60^{\circ}$ or greater to the      |
| 143 | spinel plates. Throughout the hematite host there are very thin lamellae of lower (gray) reflectivity                  |
| 144 | parallel to (001) that have been identified as ferroan geikielite. Figure 2b is a close-up reflected-                  |
| 145 | light image of spinel and tiny ferroan geikelite plates parallel to (001) of the titanohematite host and               |
| 146 | blades or rods of rutile formed as attachments to the spinel plates. The plates or rods make angles of                 |
| 147 | $\approx 60^{\circ}$ to rarely 90° to the spinel lamellae. The nearly constant association of spinel and rutile within |
| 148 | this sample provided a necessary clue to the nature and sequence of exsolution reactions.                              |

149

## X-ray diffraction

4/9

| 1 |  |
|---|--|
| 6 |  |
| v |  |

| 150                                                                                      | An X-ray powder diffraction pattern was collected at the Bayerisches Geoinstitut, University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 151                                                                                      | of Bayreuth, using a Panalytical X'Pert Pro X-ray diffraction system operating in reflection mode at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 152                                                                                      | 40 kV and 40 mA equipped with a CoK $\alpha_1$ ( $\lambda = 1.78897$ Å) radiation selected with a focusing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 153                                                                                      | monochromator, a symmetrically cut curved Johansson Ge(111) crystal, and with a Philips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 154                                                                                      | X'celerator detector. The diffraction pattern was analysed with a full pattern profile fitting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 155                                                                                      | refinement (Rietveld analysis) using the GSAS software package (Larson and von Dreele, 1994)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 156                                                                                      | and the Windows interface, EXPGUI (Toby, 2001). This showed a hematite host and traces of rutile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 157                                                                                      | and geikielite. The hematite gave the following refined lattice parameters: $a = 5.0393$ Å, $c =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 158                                                                                      | 13.7687Å, V = 302.81Å <sup>3</sup> compared to pure Fe <sub>2</sub> O <sub>3</sub> with $a = 5.038$ Å, $c = 13.772$ Å, V = 302.72Å <sup>3</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 159                                                                                      | pure geikielite with $a = 5.0548$ Å, $c = 13.8992$ Å, $V = 307.56$ Å <sup>3</sup> , and pure ilmenite with $a =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 160                                                                                      | 5.0884Å, $c = 14.0855$ Å, V = 315.84Å <sup>3</sup> . The cell volume on our working curves suggests a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 161                                                                                      | composition $\approx$ Ilm 0.09.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 162                                                                                      | Electron microprobe conditions, standards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 163                                                                                      | The instrument, instrument conditions, and standards for these are given in Table 1A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 164                                                                                      | TEM-EDX analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 165                                                                                      | To analyze the chemical compositions of exsolutions and hosts we used an analytical Philips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 166                                                                                      | CM20 field emission gun (FEG) transmission electron microscope (TEM) at the Bayerisches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 167                                                                                      | Geoinstitut, University of Bayreuth. The TEM was operated at 200 kV. Compositions were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 168                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1(0                                                                                      | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 169                                                                                      | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The EDX detector is equipped with an ultrathin window and a Germanium detector, allowing also the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 170                                                                                      | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The EDX detector is equipped with an ultrathin window and a Germanium detector, allowing also the detection of the $k$ lines of light elements including the oxygen $k$ line. To determine the chemical                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 170<br>171                                                                               | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The EDX detector is equipped with an ultrathin window and a Germanium detector, allowing also the detection of the $k$ lines of light elements including the oxygen $k$ line. To determine the chemical compositions of exsolutions and host titanohematite we have calibrated the $k_{X/O}$ factors for the                                                                                                                                                                                                                                                                                                                                 |
| 170<br>171<br>172                                                                        | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The<br>EDX detector is equipped with an ultrathin window and a Germanium detector, allowing also the<br>detection of the <i>k</i> lines of light elements including the oxygen <i>k</i> line. To determine the chemical<br>compositions of exsolutions and host titanohematite we have calibrated the $k_{X/O}$ factors for the<br>elements <i>X</i> contained using a set of oxide standards (Langenhorst et al. 1995). The quantification of                                                                                                                                                                                               |
| <ul> <li>169</li> <li>170</li> <li>171</li> <li>172</li> <li>173</li> </ul>              | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The<br>EDX detector is equipped with an ultrathin window and a Germanium detector, allowing also the<br>detection of the <i>k</i> lines of light elements including the oxygen <i>k</i> line. To determine the chemical<br>compositions of exsolutions and host titanohematite we have calibrated the $k_{X/O}$ factors for the<br>elements <i>X</i> contained using a set of oxide standards (Langenhorst et al. 1995). The quantification of<br>analyses involved an X-ray absorption correction, which was based on the principle of                                                                                                      |
| <ul> <li>169</li> <li>170</li> <li>171</li> <li>172</li> <li>173</li> <li>174</li> </ul> | determined by aid of an attached ThermoNoran energy-dispersive X-ray spectrometer (EDX). The<br>EDX detector is equipped with an ultrathin window and a Germanium detector, allowing also the<br>detection of the <i>k</i> lines of light elements including the oxygen <i>k</i> line. To determine the chemical<br>compositions of exsolutions and host titanohematite we have calibrated the $k_{X/O}$ factors for the<br>elements <i>X</i> contained using a set of oxide standards (Langenhorst et al. 1995). The quantification of<br>analyses involved an X-ray absorption correction, which was based on the principle of<br>electroneutrality, i.e. the thickness was varied until the charges of anions (oxygen) and cations |

7

| 176 | factors and the counting statistics of analyses. The relative errors in $k$ factors are 1–3 per cent and                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 177 | represent systematic errors in the quantification. EDX analyses were run for 3 minutes in order to                               |
| 178 | obtain >10000 counts for major elements (O, Fe, Ti in titanohematite + Mg in geikielite). The                                    |
| 179 | resultant relative statistical errors expressed as a $1\sigma$ deviation are 0.5–1 per cent for major elements                   |
| 180 | and 2-3 per cent for minor elements (Mg, Cr in titanohematite). Trace elements with a                                            |
| 181 | concentration smaller than 1 atom % are only considered as detected.                                                             |
| 182 | <b>Results of chemical analyses</b>                                                                                              |
| 183 | Electron microprobe analyses of spinel, rutile, and rhombohedral oxide are presented in                                          |
| 184 | Tables 1 and 2. Analysis of spinel without hematite overlap (Table 1) was possible because of the                                |
| 185 | presence of a few blebs and wider lamellae. A typical composition formulated to a three-cation                                   |
| 186 | formula gives Al 1.925, Mg 0.986, Fe <sup>2+</sup> 0.016, Fe <sup>3+</sup> 0.067, Cr 0.002, Ti 0.003, Zn 0.001, Ni 0.001.        |
| 187 | In terms of general end-member compositions, this calculates to 96.3% $R^{2+}Al_2O_4$ (aluminous                                 |
| 188 | spinel) 3.3% $R^{2+}Fe^{3+}_{2}O_4$ (ferrite), and 0.3% $R^{2+}_{2}TiO_4$ (ulvöspinel) with a ratio Mg/(Mg+ Fe <sup>2+</sup> ) = |
| 189 | 0.984. It is interesting that such a composition, obviously exsolved in some way from hematite                                   |
| 190 | with only minor Al and Mg substitution, though substantial Fe $^{2+}$ and Ti substitutions, could exsolve                        |
| 191 | a phase dominated by Al and Mg, with very minor Fe <sup>3+</sup> and trivial Ti.                                                 |
| 192 | Only rare places in rutile were wide enough to obtain reasonable electron probe analyses                                         |
| 193 | without overlap with the host (Table 1). A formulation to 1 cation gave 0.886 Ti, 0.087 $\text{Fe}^{3+}$ , 0.021                 |
| 194 | V $^{3+}$ , and 0.005 Mg. Fe has been formulated as Fe $^{3+}$ , based on work of Bromiley et al. (2004) and                     |
| 195 | Bromiley and Hilairet (2005), and V as $V^{3+}$ . Very substantial charge imbalance shown by the                                 |
| 196 | formula could be partially relieved if V were taken as V <sup>5+</sup> . According to Bromiley and co-authors,                   |
| 197 | there are two likely ways toward balancing the charge of Fe <sup>3+</sup> substitution, by oxygen vacancies and                  |
| 198 | by placing (OH) for O in the formula. Their studies suggest the former mechanism is more closely                                 |
| 199 | coupled with Fe <sup>3+</sup> substitution than the latter. One speculates that the latter mechanism could be                    |
|     |                                                                                                                                  |

200 important in a sample formed under amphibolite-facies conditions. Lacking information on oxygen

201 vacancy, the latter mechanism was used for the formulae in Table 1. The results thus reflect a

8

maximal estimate of (OH) content. The composition should be described as ferrian rutile, and,
because of its source as an exsolution product in hematite, is likely one of the more Fe-rich rutiles
reported.

205 Among the rhombohedral oxide analyses, many can be shown to result from overlaps with 206 spinel and rutile and were not treated further. The remaining analyses, with the best examples listed in Table 2, are plotted in Figure 3. Here the vertical axis is  $2\text{Ti}/(2\text{Ti}+\text{R}^{3+})$ , which provides the total 207 208 fraction of "ilmenite-like" component. Subtraction of this fraction from 1 gives the fraction of hematite component. The horizontal axis Mg /[ $(R^{2+}+(R^{3+}/2))$ ], by its construction, gives the 209 210 absolute value of the MgTiO<sub>3</sub> geikielite end-member component. The EMP analyses in Figure 3 211 show a cluster at and slightly below "ilm" 0.1, with a considerable tail up to about "ilm" 0.2, with 212 "geikielite" up to just above 0.1, representing analyses where geikielite lamellae overlap with 213 hematite. There are two more probable geikielite overlap analyses (not in Table 2 due to poor 214 sums) with "ilm" near or slightly above 0.3 and "geikielite" just below 0.3. Using these two points 215 and the geikielite-poor cluster as an anchor, a trend can be drawn, implying that the actual giekielite 216 lamellae compositions are near "geikielite" 0.9.

217 Also plotted on Figure 3 are the TEM-EDX analyses performed on the hematite host areas 218 between lamellae (Table 3) and on geikielite lamellae (Table 4) using an analytical spot size of 219 about 10 nm. The TEM has the ability to measure in much smaller areas than the electron 220 microprobe, but the counting statistics are less robust, and the spectral resolution is not so good 221 (Langenhorst et al. 1995), making the detection and quantification of minor elements like Mg and 222 Ti difficult. At the small scale of Figure 3, the TEM hematite analyses appear to fall quite close to 223 the EMP hematite analyses, though closer inspection shows this is misleading. The TEM geikielite 224 analyses, dominated by Mg and Ti show considerable scatter both above and below the horizontal 225 line at "ilm" = 1.0, and also about a location on that line centered at "geikielite" 0.70, quite different from the position at 0.9 implied by the EMP trend. The reason for this difference is unclear, but we 226

9

feel that the TEM results, though scattered around "geikielite" 0.70 must be reasonably close to this
value.
Figure 4 covers the hematite-rich part of Figure 3, extending only to "ilm" 0.2 and

"geikielite" 0.2. Here the hematite-rich cluster and geikielite overlap tail of the spinel-free EMP
analyses are well shown. This also shows that the more dispersed cluster of hematite TEM analyses
falls outside the cluster of EMP analyses. Comparison of the results, suggests that some of the
EMP analysis points are from areas where there were no geikielite lamellae. On this basis, the
hematite host composition is quite confidently located at Hematite 0.92, Ilmenite 0.06, and

- 235 Geikielite 0.02.
- 236

### Secondary hematite-chlorite vein

237 The EBS image of Figure 5 shows one part of the sample where there is a clean cross-238 cutting secondary vein of Ti-free hematite about 200 µm thick. This is lined with plates of magnesian chlorite, that are lined up parallel to (001) of the host titanohematite. Analyses of this 239 240 hematite are listed in Table 5 and plotted at exaggerated scale in the inset of Figure 4. This 241 emphasizes the remarkable purity of the vein hematite. All analyses plot in the extreme lower 242 corner, with a maximum "ilmenite" component of 0.002. Because the vein contains no Ti minerals 243 at all, it seems likely that the vein was not produced by interaction of fluid with the host hematite 244 but rather that constituents for the vein hematite and chlorite were introduced from an external 245 source long after the high-grade regional metamorphism.

246

#### TEM imaging of exsolutions

To characterize the orientation relationships between exsolutions and host titanohematite (see also TEM-EDX analyses), we used the afore-mentioned CM20 TEM at the Bayerisches Geoinstitut, University of Bayreuth. The characterization of orientation relationships focused mainly on rutile exsolutions, as in the reflected-light images of Figure 2, where spinel and geikielite plates appear to be parallel to (001) of the hematite, whereas rutile blades or rods make angles of  $\approx$ 60-90° to the spinel lamellae. This epitactic relationship with titanohematite was so far not well

| 253 | constrained. For this purpose we complemented conventional (bright-field – BF and dark-field –                   |
|-----|------------------------------------------------------------------------------------------------------------------|
| 254 | DF) and high-resolution imaging (HRTEM) techniques with selected area electron diffraction                       |
| 255 | (SAED).                                                                                                          |
| 256 | Crystallographic orientation of exsolutions in titanohematite                                                    |
| 257 | The intergrowth between two rutile exsolutions, a spinel blade, and the host titanohematite                      |
| 258 | is visible in Figure 6. Figures 7a and 7b show the corresponding electron diffraction patterns in the            |
| 259 | same orientation of titanohematite and rutile. The zone axis patterns ([211] for titanohematite and              |
| 260 | [0 -1 1] for rutile) reveal the following orientation relationship:                                              |
| 261 | [-102] <sub>hematite</sub> // [011] <sub>rutile</sub> and [-120] <sub>hematite</sub> //[100] <sub>rutile</sub> . |
| 262 | These relationships are illustrated in the precisely oriented unit cell diagrams of Figure 8 based on            |

263 the measured lattice parameters of titanohematite, a = 5.0393 Å, c = 13.7687 Å, and lattice

264 parameters estimated for ferrian rutile based on ionic radii of the ions substituting for  $Ti^{4+}$ , a =

4.6218 Å, c = 2.7086 Å. Calculating from hematite parameters, the (blue) plane (-1 0 2) makes an

angle  $57.63^{\circ}$  with the (001) basal plane. Calculating from rutile parameters, the (blue) plane (011)

267 makes an angle 59.63° from the (010) bottom plane. In this relationship one a axis (here  $a_2$ ) of rutile

268 is quasi-parallel to the c axis of titanohematite and the second a axis (here  $a_1$ ) of rutile is parallel to

269 one a axis (here  $a_2$ ) of titanohematite. The latter can be directly seen in the high-resolution TEM

270 image (Figure 9). This rational orientation relationship means also that the hexagonal close packing

271 (hcp) of oxygen is retained between the two phases (titanohematite: hcp // (001); rutile: hcp //

272 (010)).

273 Spinel is commonly known to possess an orientation relationship with [111] being parallel 274 to [001] of titanohematite. In this way, the close-packed layers of oxygens in both structures are 275 parallel to each other. The plane of interface between the two phases can be determined from Figure 276 6 by taking the width of the fringe pattern (about 200 nm) on the side of the spinel blade and 277 assuming a typical thickness of the foil of about 100 nm. Taking these values, one can calculate that 278 the plane of interface is about 60° inclined to the beam direction, i.e. [211] of titanohematite (Figure

11

7a). Furthermore, we see in Figure 7a that the  $a_2$  axis of titanohematite is quasi-parallel to the trace of the spinel blade, thus demonstrating the comprehensive relationship between the two phases and the TEM foil shown in Figure 10. A rotation of about 60° about  $a_2$  would bring the (001) plane edge-on. Thus, the plane of intergrowth is (001) for titanohematite and (111) for spinel. Because geikelite possesses the same structure as titanohematite, the lattices of both phases are in the same orientation.

285 The plane of intergrowth between titanohematite and rutile is more difficult to determine. 286 because, first, the interface is not exactly edge-on in the projection of the [211] zone axis (Figs. 6 287 and 7) and, secondly, the limited tilting capabilities of the TEM did not make it possible to orient 288 the beam along the c axis of titanohematite (being 32° away from [211]). A recent study (Daneu et 289 al., 2007, their Figure 10) provided insights into the relationships between rutile and ilmenite when 290 (1) an interface between the two phases is seen edge-on, (2) the c axis of the rhombohedral phase is 291 along the beam and (3) the c axis of rutile is perpendicular to it, as in our sample. They identified an 292 interface as (310) rutile parallel to a prism plane (100) of ilmenite (thus parallel to  $a_2$ ). The rutile c 293 axis was inclined to the interface by  $30^\circ$ , thus making an angle of  $30^\circ$  with the ilmenite *a2* axis. By 294 contrast, in our sample, the rutile c axis makes an angle of 90° to the **a2** axis of hematite. In Figure 295 9, the trace of the rutile-hematite interface makes an angle of about  $75^{\circ}$  to the *a2* axis of hematite, 296 also the *a1* axis of rutile, suggesting a prism plane of intergrowth (h01) with h>3. A similar interface between rutile and hematite can be seen on the right hand side of Figure 6, where it is  $\sim 75^{\circ}$ 297 298 from the trace of spinel (but not exactly to *a***2**, see below). In Figure 9 the interface is also inclined 299 by an uncertain amount in a direction normal to the image.

A complication in making interface angle measurements in Figures 6 and 9 is that both images show angles in the plane of the TEM foil, which is tilted approximately  $58^{\circ}$  from the proposed prism planes, and the axis of tilting is not necessarily parallel to the *a2* axis. Assuming  $58^{\circ}$  tilting is parallel to *a2*, a true prism angle yields an apparent prism angle about  $2^{\circ}$  larger, thus for  $72^{\circ}$  true,  $74^{\circ}$  apparent; for  $69^{\circ}$  true,  $71^{\circ}$  apparent. However, in cases where the foil is not tilted

4/9

12

parallel to a2, but on an axis at an angle to a2, the two apparent angles are not symmetric. For a true angle 69° with tilting about an axis 4° from a2, the resulting angles are ~68° and ~75°, and slight tilting in other directions will similarly alter apparent angles. With these complications in mind, measurements of the angle between a2 in the combined Figures 6 and 7 yielded 68° to the left and 73° to the right, and caused us to select 69° as the best prism angle.

310 The information derived from Figures 6, 7, 8, 9 can be used to understand the orientation of 311 the elongate rutile blades or rods, which cannot be parallel to c of rutile, which is parallel to the 312 hematite basal plane (Figure 8). The study by Daneu et al. (2007) suggested that a promising 313 interface direction would lie in a prism plane parallel to c of the rhombohedral phase. Observation 314 of Figure 9 indicated a probable interface orientation about  $75^{\circ}$  from *a*<sub>2</sub>, subject to the fact that this 315 interface segment may not be strictly parallel to the interface over a larger interface distance. To 316 simplify efforts to determine lattice best fits between the two phases, we reduced both sets of lattice 317 parameters to equivalent rhombohedral cells (easy to visualize in Daneu et al.'s Figure 10) and also 318 gave the cells initially a common orientation along non-crystallographic x, y, and z axes. For 319 titanohematite we used our measured lattice parameters. For rutile we corrected the lattice parameters to account for the substitution of cations larger than  $Ti^{4+}$ , namely  $Fe^{3+}$ ,  $V^{3+}$  and  $Mg^{2+}$  as 320 321 reported in Table 1.

| 322 | For titanohematite: For ferrian rutile:        |                                      |
|-----|------------------------------------------------|--------------------------------------|
| 323 | Along x: $a \tan 30^\circ = 2.09944 \text{ Å}$ | Along x: $c = 2.70862 \text{ Å}$     |
| 324 | Along y: <i>a2</i> = 5.0393 Å                  | Along y: <b><i>a1</i></b> = 4.6218 Å |
| 325 | Along z: <i>c</i> = 13.7687 Å                  | Along z: 3 x <i>a2</i> = 13.86528 Å  |

Assuming a prism plane interface, one first seeks a minimum strain plane using only the x and z values of the equivalent-cell parameters as in Figure 11a,b. Here rutile is consistently smaller than hematite, hence under tension. The lattice points of both phases, without any rotation, lie very close to a line passing through coordinates 0, 0 and 9, 2. This makes the angle  $69 \pm -0.15^{\circ}$  with the y coordinate direction (also an *a* direction of both phases).

331

332

333

334

335

336

337

338

339

4/9

One next examines relations within the prism plane illustrated in Figure 11c,d. In doing this the diagonal distance within the x, y plane is compared against the different distances in the z direction, where rutile is slightly larger tha hematite. By rotating the rutile lattice only 2° clockwise Figure 11d) or counter clockwise (Figure 11c), a good lattice fit is obtained between the two phases. At the lattice point 9, 2, 4 in 3-D in (Figure 12a), the x and z coordinates for rutile compared to hematite () are 25.9703 Å (26.1850) and 55.5494 Å (55.0748) in good agreement. There is no change in the y coordinate, because the rotation is about the y axis parallel to the common *a* axes,. not about a line normal to the prism plane. A more direct solution can be obtained from the TEM results in Figures 7 and 8, wherein the

two phases share a common lattice plane (-1 2 0) for titanohematite and (011) for rutile. From the lattice parameters, the titanohematite (001) basal plane lies  $57.63^{\circ}$  from the common plane, whereas (010) of rutile lies  $59.63^{\circ}$  from the common plane. This, in turn, means that the *c* axis of rutile is rotated  $2^{\circ}$  counterclockwise (see Figure 11c) about the common *a* axes from the *c* axis of titanohematite. This is geometrically identical to the  $2^{\circ}$  clockwise rotation calculated from Figure 12a, through equations.

346 The sense of the above results is shown in Figure 12b, based on the  $9 \times 2 \times 4$  cell model. 347 Within the geometrically equivalent titanohematite block, there are two best-fit prism planes (red and purple) both at  $69^{\circ}$  to the common *a* axes, and each containing two diagonal best-fit lines. The 348 349 best-fit lines to the right involve clockwise rotation of rutile c axes about the common a axes to 350 achieve best fit (the red one modeled in Figure 12a). The diagonal best fit lines to the left involve 351 counterclockwise rotation of rutile c axes about the common a axes. Counterclockwise rotation is 352 the one actually observed in the right area of the TEM image of Figure 6, involving the rutile blade 353 in the diffraction image of Figure 7b (left red blade in Figure 12b). The same rotation can involve 354 also the rutile blade in the left area of Figure 6 (left blue blade in Figure 11b), though that is not yet 355 proved by selected area diffraction. If true, then both blades in Figure 6 would have long axes that 356 'plunge' to the right with respect to the foil surface.

4/9

14

357 There is another aspect of the high-resolution image in Figure 9 not yet explained. 358 Although the lattice planes normal to the mutual hematite  $a_2$  and rutile  $a_1$  axes are perfectly parallel, 359 the lattice planes in rutile that should be parallel to  $a_1$  are in fact misoriented counterclockwise by about 2°, so that the crystallographic  $a_1$  axis and [0-1-1] direction are not at 90°, but at ~92°. This 360 361 discrepancy cannot be related to the lattice rotations described above because the interface is at a 362 high angle (estimated 84°) to the foil so that such rotations could not be observed. The true 363 explanation for this seems to be in the strong lattice strain along the rutile blade edges. This is 364 obvious in Figure 11a and b, where the amount of interface stretch of rutile increases dramatically 365 away from the blade axis with increasing distance from the anchoring points, where growth 366 presumably started, in these lattice views. For Figure 9, then, one can conclude that the anchoring 367 point for this particular rutile blade, likely a location where exsolution was initiated, lies to the 368 right, so that the hematite host is causing a sinistral shear (in this view) in the adjacent rutile. 369 The overall result of these considerations is that the rutile appears to have grown in blades or rods within prism planes parallel to c and at  $69^{\circ}$  to the  $a_2$  axis of hematite, and elongated along 370 371 best fit lines that lie at 63° to the hematite (001) basal plane. Furthermore, all the different rutile 372 orientations with different lattice and interface orientations with respect to hematite, can be 373 accommodated within the confines of a single titanohematite single crystal. The different rutile 374 lattice and interface orientations would then have been initiated locally at the beginning of coupled 375 exsolution. These conclusions are illustrated for a more extensive array of planes and lines in 376 Figure 13. Figure 13a shows positions of prism best-fit planes for rutile in hematite oriented at 377 angles of  $69^{\circ}$  to each of the *a* axes. Figure 13b shows positions of three rutile blades oriented along 378 one best fit line in each of three planes in (a). Based on the synthetic lattices, there might be two 379 such lines in each prism plane, thus giving twelve possible orientations. That number could be 380 reduced based on interface details not explored in the simplified model. Also the number of blades 381 visible near given surfaces may be greatly reduced compared to the total number present. Note that the back two prism planes in Figure 13c lie at 138° from each other. In Figure 6 the two rutile 382

15

| 383 | blades are separated by 141°, the difference being due to different viewing angle. All these results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 384 | are entirely consistent with observations in reflected-light and in EBS images. Local deviations in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 385 | observed angles will depend on the exact angle of the surfaces on which measurements are made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 386 | Chemography for the nature and sequence of exsolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 387 | Figure 14a illustrates the nature of a low-T reaction in the system FeO-Fe <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> (Lindsley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 388 | 1991) as expressed by the cation proportions of $Fe^{2+}$ , $Fe^{3+}$ , and $Ti^{4+}$ . At low <i>T</i> , below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 389 | approximately 400°C, coexisting ilmenite + titanohematite react to produce the assemblage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 390 | magnetite + rutile. Two previous three-phase equilibrium triangles ilmenite-hematite-rutile and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 391 | ilmenite-hematite-magnetite are then replaced by two new three-phase equilibrium triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 392 | ilmenite-rutile-magnetite and hematite-rutile-magnetite. In the new ilmenite assemblage, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 393 | further cooling, the ilmenite would lose hematite component, producing more rutile and magnetite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 394 | In the new hematite assemblage, with further cooling, the hematite would lose ilmenite component,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 395 | also producing more rutile and magnetite. These reactions provide inspiration for explaining the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 396 | Mod-24 sample, because they show how rhombohedral oxides can break down to an equivalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 397 | amount of a spinel mineral and rutile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 398 | To follow this reaction more closely, consider breakdown of the rhombohedral oxide exactly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 399 | intermediate between ilmenite and hematite to yield magnetite + rutile, according to the reaction 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 400 | Ilmenite <sub>50</sub> Hematite <sub>50</sub> = $0.50$ Magnetite + $0.50$ Rutile. The stoichiometric reaction is 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 401 | $(Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1}O_3) = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ , or in cation terms $Fe^{2+}_{0.5}Ti_{0.5}Fe^{3+}_{1} = 0.50 (Fe^{2+}Fe^{3+}_{2}O_4) + 0.50 TiO_2$ . |
| 402 | $Fe^{2+}_{0.5}Fe^{3+}_{1} + Ti_{0.5}$ . The relative volumes of the product magnetite and rutile can be estimated from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 403 | the proportions of oxygen of these two phases, which is 4/2, or double the volume of magnetite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 404 | compared to rutile. The intermediate rhombohedral oxide reactant may be thought of as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 405 | "extracted component" from rhombohedral oxide used to produce magnetite and rutile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 406 | The relationships in Figure 14a are used in Figure 14b to consider reactions in a wider                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 407 | chemical system, with Mg, Zn, and Ni added to the $Fe^{2+}$ apex, and Al, $V^{3+}$ and Cr added to the $Fe^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 408 | apex. Here, we place Mg-spinel in the previous position of magnetite, and show rutile with its                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

16

| 434 | Magnetic properties                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|
| 433 | at low T.                                                                                                                                      |
| 432 | provided by Ghiorso (1990), including evidence for an incipient ilmenite-geikielite miscibility gap                                            |
| 431 | titanohematite and ilmenite-geikielite is speculative. An exhaustively calculated view of this is                                              |
| 430 | titanohematite with Mg/(Mg+ Fe <sup>2+</sup> ) = 0.25. The shape shown for the miscibility gap between                                         |
| 429 | fractionation of Mg under these conditions between geikielite with Mg/(Mg+ $Fe^{2+}$ ) = 0.70 and                                              |
| 428 | final composition Fe <sub>2</sub> O <sub>3</sub> 0.92, FeTiO <sub>3</sub> 0.06, MgTiO <sub>3</sub> 0.02. The final analyses show a significant |
| 427 | lamellae of ferroan geikielite of compositon "geikielite" 0.70 separated, driving the hematite to its                                          |
| 426 | cooling widened the miscibility gap between titanohematite and the ilmenite-geikielite series. Fine                                            |
| 425 | composition to the Al-free plane, which has the same topology and orientation as Figure 3. Further                                             |
| 424 | free plane, which formed spinel + rutile. The extraction drove the residual titanohematite                                                     |
| 423 | original high- $T$ aluminous magnesian titanohematite yielded an extracted component near the Fe <sup>3+</sup> -                               |
| 422 | show the entire exsolution sequence during cooling from peak amphibolite-facies conditions. An                                                 |
| 421 | The simplified compositions (omitting $V_2O_3$ ) are used in the tetrahedron in Figure 15 to                                                   |
| 420 | (compare Figures 13a and 13b), is easily understood using the lever rule.                                                                      |
| 419 | volume of spinel compared to rutile. The lower proportion of spinel compared to magnetite                                                      |
| 418 | from relative proportions of oxygen of these two phases, which is 3.75/2.13, or 1.76 times the                                                 |
| 417 | cation rhombohedral oxide formula. Relative volumes of product spinel and rutile are estimated                                                 |
| 416 | titanohematite is a fictive extract component, but, in the Appendix, is normalized to a standard 2                                             |
| 415 | formulated to 3.000 cations and rutile formulated 0.999 cations. The aluminous magnesian                                                       |
| 414 | magnesian spinel + 0.5315 ferroan rutile (see Appendix), based on the analyses of the spinel                                                   |
| 413 | estimated by the reaction $0.9685$ aluminous magnesian titanohematite component = $0.4685$                                                     |
| 412 | extracted component necessarily lies on the spinel – rutile tie line in Figure 14b. Its composition is                                         |
| 411 | end-member composition, plus magnesian spinel and ferrian rutile. The composition of the                                                       |
| 410 | extracted from high-T aluminous magnesian hematite to produce a new titanohematite closer to                                                   |
| 409 | ferrian component. One can then examine a reaction where an aluminous magnesian component is                                                   |
|     | 10                                                                                                                                             |

17

435 The magnetic properties of this sample are dominated by the titanohematite host. Minor 436 substitutions of FeTiO<sub>3</sub> and MgTiO<sub>3</sub> are sufficient to suppress a Morin transition. It is challenging 437 to determine whether any of the magnetic properties measured can be assigned to the ferroan geikielite exsolution lamellae.  $Mg^{2+}$  is not a paramagnetic ion, i.e. it contains no unpaired d-orbital 438 electron spins and creates no exchange coupling. In ferroan geikielite it essentially dilutes the 439 network of magnetic exchange interactions between the  $Fe^{2+}$  ions. We assumed the spinel and 440 441 ferrian rutile are not significantly magnetic. Rutile blades passing through antiferromagnetically 442 coupled layers parallel to (001) in the host, at best, could create a type of magnetic interface 443 moment.

444 In the case of magnetic interactions in the ilmenite structure at 57 K and below (Burton et al. 445 2008; Robinson et al. 2010), there are relatively weak double-layer antiferromagnetic interactions which cause the magnetic moments to be opposite along c in alternating Fe<sup>2+</sup> layers. In addition, 446 strong ferromagnetic interactions within each  $Fe^{2+}$  layer cause all the moments to be oriented in the 447 same direction within the layer. Mathematical analysis (Ziff and Gu, 2009) of a hexagonal network 448 of points, such as that of  $Fe^{2+}$  ions in the (001) plane of ilmenite, indicates a site percolation 449 450 threshold of 0.6970 for this strong interaction, meaning that nearest-neighbor magnetic exchange coupling would require that at least 69.7% of sites to be occupied by  $Fe^{2+}$  to generate an infinite 451 percolating cluster within this plane, hence not more than 30.3% Mg replacement of Fe<sup>2+</sup>. This 452 suggests that the ferroan geikielite lamellae discussed here, with ~70% Mg replacement, should not 453 show global antiferromagnetic ordering at any T. However, low-T magnetic experiments described 454 455 below show that the geikielite lamellae have a significant magnetic expression below 40 K, and 456 strongly affect the bulk magnetic properties at Ts below 25 K.

457 In the case of FeTi-ordered hematite-ilmenite solid solutions, the situation is different, 458 because  $Fe^{3+}$  ions are equally distributed between adjacent cation layers even where  $Fe^{2+}$  and  $Ti^{4+}$ 459 are not, and also  $Fe^{3+}$  interactions between adjacent layers are very much stronger than the double-460 layer interactions in the ilmenite structure (Robinson et al. 2010). This means that adjacent-layer

interactions can percolate in the end-member system until  $\sim X \text{ IIm} = 0.87$  (Burton et al. 2008). Mg

461

462

463

464

465

466

4/9

18

substitution in the ilmenite component, lowers the percolation threshold somewhat, but far less significantly than in the ilmenite-geikielite series. In addition, at very Ti-rich compositions, we know that a small amount of hematite substitution lowers the Néel *T* of antiferromagnetic ilmenite (McEnroe et al. 2007b, Burton et al. 2008), but have been less sure if Mg substitution has a greater or lesser effect. Magnetic measurements of Mg-substituted and hematite-substituted ilmenite-rich

467 compositions (Table 6) show a decrease in Néel *T*, but the details of Mg effects are a subject for468 future work.

469 The Néel temperature  $(T_N)$  of the titanohematite was determined by measuring saturation 470 magnetization (M<sub>s</sub>) and remanence saturation (M<sub>rs</sub>) with temperature from 25 - 700C after the 471 method of Fabian et al. (2013), which yields a much more precise result than earlier methods for 472 determining  $T_{\rm N}$  or Curie T. At each temperature the upper branch of the hysteresis loop up to 1.5 T 473 is measured. From this  $M_s$  is estimated by extrapolating the linear high-field part to H=0.  $M_{rs}$ , is 474 determined from a measurement in zero field. The resulting  $M_s$  and  $M_{rs}$ -T curves are shown in 475 Figure 16. From the measured hysteresis branches, it can be inferred that the apparent drop in  $M_s(T)$ 476 below 200°C is an artifact due to insufficient saturation of the sample within the maximum 477 measurement field of 1.5 T. Both curves give a  $T_{\rm N}$  of 600°C (873 K), clearly below the value of 478  $680^{\circ}$ C (953 K) for pure Fe<sub>2</sub>O<sub>3</sub>. Our corrected polynomial fit of composition versus T<sub>N</sub> for the entire 479 hematite-ilmenite system indicates a composition X Ilm = 0.12 for  $T_{\rm N}$  (873 K), compared to 480 chemical results X FeTiO<sub>3</sub> = 0.06, XMgTiO<sub>3</sub> = 0.02. However, this part of the polynomial curve 481 appears unreliable in that the pure  $Fe_2O_3$  end is anchored at a T above 953 K, suggesting a better 482 estimate at X Ilm = 0.10.

The visibly insufficient saturation complicates the estimation of  $M_s(30^{\circ}C)$ . Therefore, we first determined  $M_s(220^{\circ}C) = 2332$  A/m based on a density of 5219 kg/m<sup>3</sup>. Because Ilm20, the hematite-ilmenite solid solution for which we have a measured  $M_s$  (T) curve with a T<sub>N</sub> closest to Mod-24, shows a 12% drop in  $M_s$  between 30°C and 220°C we used this value to estimate

19

4/9

| 487 | $M_s (30^{\circ}C) = M_s (220^{\circ}C)/0.88 = 2650$         | 0 A/m. The lite             | erature value for          | r the spin-cante | d magnetization of     |
|-----|--------------------------------------------------------------|-----------------------------|----------------------------|------------------|------------------------|
| 488 | pure hematite according to Morrish                           | (1994) is M <sub>s</sub> (3 | $30^{\circ}C) = 2100 A$    | /m. In our case  | this should be         |
| 489 | reduced by 5-8% to allow for 6% F                            | eTiO <sub>3</sub> and 2%I   | MgTi03 substitu            | ition in agreem  | ent with the lower     |
| 490 | $T_{\rm N}$ . Thus the expected $M_s(30^{\circ}{\rm C})$ for | r a diluted hem             | atite would be             | 1995 to 1932 A   | /m. On this basis,     |
| 491 | 75-73% of the magnetization could                            | be explained b              | by the hematite,           | indicating the   | presence of 25-27%     |
| 492 | of an additional component.                                  |                             |                            |                  |                        |
| 493 | In previous measurements o                                   | on exsolved san             | nples, where we            | e knew that a fr | action of the          |
| 494 | hematite magnetism was due to lam                            | ellar magnetis              | m, and we had              | direct composi   | tion estimates of      |
| 495 | hematite composition (McEnroe et                             | al. 2001b, 2002             | 2, 2007, McEnt             | oe &Brown, 20    | 001), $T_{\rm N}$ was  |
| 496 | consistently above the corrected cur                         | rve. Here there             | e is the question          | n of whether the | ere is, or is not      |
| 497 | lamellar magnetism at room $T$ in the                        | is sample. Thi              | s depends on w             | hether the cont  | act layer              |
| 498 | compositions, brought about to imp                           | prove charge in             | ubalance, conta            | in enough Fe to  | couple                 |
| 499 | magnetically to their adjacent hema                          | tite layers. A              | contact layer co           | omposition is de | etermined by           |
| 500 | averaging the compositions of a dis                          | ordered hemat               | ite layer and an           | ilmenite Fe-lay  | yer (Robinson et al.   |
| 501 | 2002, 2004), as indicated for Mod-2                          | 24 below.                   |                            |                  |                        |
| 502 | Disordered Hematite Layer                                    | 0.01 Mg                     | $0.03 \ \mathrm{Fe}^{2^+}$ | 0.04 Ti          | $0.92 \text{ Fe}^{3+}$ |
| 503 | Ferroan Geikielite "Fe" Layer                                | 0.70 Mg                     | $0.30 \ \mathrm{Fe}^{2^+}$ |                  |                        |
| 504 | <u>Totals</u>                                                | <u>0.71 Mg</u>              | $0.33 \text{ Fe}^{2+}$     | <u>0.04 Ti</u>   | $0.92 \text{ Fe}^{3+}$ |
| 505 | Contact Layer Composition                                    | 0.355 Mg                    | 0.165Fe <sup>2+</sup>      | 0.02 Ti          | $0.46 \text{ Fe}^{3+}$ |
| 506 | The calculated total Fe fraction of a                        | contact layer               | is 0.625, within           | the percolation  | n threshold for        |
| 507 | adjacent-layer magnetization. One                            | can speculate               | as to whether a            | contact layer c  | omposition, with       |
| 508 | such a reduced Fe content, would in                          | fluence the ter             | mperature of ac            | quisition of the | lamellar               |
| 509 | magnetism, nominally controlled by                           | y the hematite              | host. One may              | also speculate i | f such a               |
| 510 | composition at phase contacts could                          | d have some in              | fluence on low-            | T magnetic exe   | change bias.           |

Because of the substantial calculated Mg content of a contact layer against geikielite, the

511

4/9 20

512 theoretical net magnetic moment at 0 K is much lower than when a contact layer is against end 513 member ilmenite. 514 Magnetic Moment of Hematite Layer  $0.03 \text{ x} 4 = 0.12 \mu \text{B}$   $0.92 \text{ x} 5 = 4.6 \mu \text{B}$  Total 4.72  $\mu \text{B}$ 515 Magnetic Moment of Contact Layer  $0.33 \text{ x} 4 = 0.66 \mu \text{B}$   $0.46 \text{ x} 5 = 2.3 \mu \text{B}$  Total 2.96  $\mu \text{B}$ 516 Magnetic Moment of One Lamella  $2 \times 2.96 = 5.92 \ \mu\text{B} - 4.72 \ \mu\text{B} = 1.2 \ \mu\text{B}$ 517 The resulting formal lamellar moment is only 1.2  $\mu$ B compared to 4  $\mu$ B for the example of pure 518 FeTiO<sub>3</sub> exsolved from Fe<sub>2</sub>O<sub>3</sub>. This may be sufficient to explain the additional component detected 519 in the Ms measurement. 520 After applying a field of 1.5T, then cooling in zero field, twenty-five hysteresis loops were 521 measured on warming between 10 K and room-T. Shown in Figure 17 are two hysteresis loops 522 measured at 300 K (a) and at 10 K (b). The room-*T* loop shows a typical rhombohedral oxide shape 523 with an Mrs/Ms ratio of 0.70, which is significantly higher than the maximum of Mrs/Ms= 0.50524 expected in a random uniaxial single-domain magnetite ensemble. The bulk coercivity of Hc=43525 mT is larger than that of a typical multi-domain hematite, which has Hc < 10 mT, and results from 526 the abundant fine exsolution lamellae. At low-T the 10 K loop is remarkable in that it shows a 527 negative exchange bias with a shift of -40 mT. From 10 K to 25 K the loops remain shifted with 528 decreasing amounts. At Ts above 25 K no shift is evident and the loops are symmetrical about the 529 origin. Such shifts have now been well documented in hematite-ilmenite intergrowths (McEnroe et 530 al. 2007) and understood on a theoretical basis (Harrison et al. 2007, 2010, Fabian et al. 2008) in 531 hematite containing fine-scale exsolution lamellae of ilmenite, in which a significant magnetic 532 moment only occurs in lamellae with an odd number of Fe layers. These shifts occur in cases when 533 there is strong magnetic coupling across phase interfaces between a magnetically hard phase 534 (ilmenite) and a magnetically soft phase (hematite), in which the contact layers of lamellar 535 magnetism play a crucial role. The necessity of having two stable magnetic phases interacting 536 across an interface to produce the shifted hysteresis loop, leads to the tentative conclusion that the

537 geikielite lamellae, despite their non-percolating nearest-neighbor exchange interactions, are

538 carrying a significant magnetic moment at very low *Ts*.

Figure 18 shows the results of a warming experiment measured in zero-field after first applying a magnetic field of 1.5 T at 8 K. A steep decrease in magnetization between 8 and 25 K corresponds to the interval in which there is the loss of the negative exchange bias of Figure 17B, here tentatively attributed to ferroan geikielite-hematite interfaces. The plateau edge at  $\sim$ 40 K corresponds in other samples to the conditions where ilmenite magnetization begins to decline, and presumably here could correspond to a *T* where geikielite transforms from a nominally AF phase to a paramagnetic phase and thus loses its magnetization.

546 What, then, can we understand about the magnetization of geikielite in a situation where 547 nearest-neighbor magnetic percolation is not possible? One possibility is that, even without 548 complete percolation through the major magnetic interactions, there are sufficiently large Fe-rich 549 Mg-depleted clusters to allow very local double-layer magnetizations to occur. This may create a 550 significant hard magnetic moment in geikielite which is coupled, through the more Fe-rich contact 551 layers, to the titanohematite. Another possibility is that at low-T, non-nearest neighbor interactions 552 become important. These could either allow a different path of percolation in geikielite, not 553 predicted on a theoretical basis from the nearest-neighbor interactions, or provide a random 554 exchange coupling network with spin-glass properties. A third possibility is that at very low T the 555 contact layers themselves, with their higher Fe content than the geikielite, interact independently 556 with the adjacent hematite. A fourth possibility is that, at a finer scale not yet resolved in TEM, 557 there are ilmenite lamellae more Fe-rich than those measured by the TEM-EDX analyses. Based on 558 our composition estimates for the titanohematite host, there is not a chemical possibility to produce 559 such lamellae in abundance, even in the unlikely case that it could be predicted from the chemical 560 phase relations (Figure 15).

561

#### Implications

21

4/9

22 562 The results of this study demonstrate the value gained from examination of areas of 563 remanent magnetic anomalies over igneous and metamorphic rocks in the search for magnetic 564 oxides with unusual compositions and exsolution intergrowths, where the magnetic interactions on 565 phase interfaces create special properties. Exsolution of high-temperature mineral solid solutions to 566 two phases of different composition, but identical structure, is the simplest phenomenon that can 567 occur during slow cooling. However, more complex phenomena are widespread and may include 568 exsolution of two phases with closely related but different structures, for example hematite and 569 ilmenite, or of phases with entirely different structure, such as pyroxene and ilmenite, etc. 570 Exsolution may occur within a material of constant composition, or may occur because of a change 571 of composition driven by an external chemical input. The classic example of the latter is the so-572 called "oxy-exsoluton" of titanomagnetite to produce lamellae of ilmenite. 573 In the example described here, an initial high-T aluminous magnesian titanohematite, which 574 might have exsolved isostructural corundum, did not do so, but instead produced a coupled epitaxial 575 intergrowth of magnesian spinel and ferroan rutile, effectively extracting all Al and considerable 576 Mg and Ti from the host. After this, there was a second more simple phase separation of structurally 577 related ferroan geikielite (X MgTiO<sub>3</sub> = 0.70), further reducing Ti and Mg in the host to its final 578 composition X Fe<sub>2</sub>O<sub>3</sub> = 0.92, X FeTiO<sub>3</sub> = 0.06, X MgTiO<sub>3</sub> = 0.02. These coexisting oxides provide 579 new insights into the stability of oxide phase assemblages and element fractionation between 580 phases. 581 Orientations of phase interfaces produced during exsolution are of considerable interest,

particularly when the interfaces are not along simple or rational directions, requiring close study. Here we found that spinel (111) and geikielite (001) make simple interfaces with titanohematite (001). By contrast, using combined techniques, it was found that rutile forms blades within the titanohematite host that are not oriented in a simple rational direction of either, but do lie within prism planes of minimal tensional strain and, particularly, are elongated along lines of least strain at about 63° to the titanohematite (001) plane. These directions are achieved by the rotation of rutile

4/9

23

588 lattice directions by 2°, as directly determined in selected area electron diffraction images,

589 documenting an example where a misorientation of two lattices by this small amount,

590 accommodates growth of interfaces in apparently irrational directions. This approach may apply to

- the many other examples of rutile hosted in rhombohedral oxide.
- 592The special exsolution intergrowth of ferroan geikielite with titanohematite provides a593surprising new insight into the theory of 'lamellar magnetism'. This would normally involve

594 ilmenite (FeTiO<sub>3</sub>) and hematite (Fe<sub>2</sub>O<sub>3</sub>), but here 70% of the Fe<sup>2+</sup> of the ilmenite is replaced by Mg.

595 Formal percolation theory suggests that nearest neighbor exchange interaction in this ferroan

596 geikielite could not lead to an antiferromagnetic transition. Here we observed lamellar magnetism

below 600°C, and, at 10 K, a significant negative magnetic exchange bias of 40 mT is shown in

598 hysteresis measurements, demonstrating magnetic coupling via the "contact layers" of lamellar

599 magnetism across phase interfaces between titanohematite and ferroan geikielite. This work

600 indicates the possible presence of complex chemical clusters, non-nearest neighbor exchange

601 coupling, spin-glass behavior, or low-*T* behavior of contact layers. It points the way toward more

 $602 \qquad \text{magnetic study of synthetic samples in the systems } FeTiO_3-MgTiO_3 \text{ and } Fe_2O_3-MgTiO_3.$ 

603

### Acknowledgements

Work by Robinson and McEnroe at University of Bayreuth, 2006-2008, was supported by an
EU Access to Infrastructures Grant administered by Bayerisches Geoinstitut. This and related
research was supported by grant 189721 from the Research Council of Norway (Nanomat Program)

607 in the EU Matera Program, a Marie Curie Fellowship for McEnroe at Bayerisches Geoinstitut (GA-

608 2009-237671), and visiting fellowships to the Institute of Rock Magnetism, which is supported by

- an NSF Instruments and Facilities Grant. Financial support was also provide by the Deutsche
- 610 Forschungsgemeinschaft (LA 830/14-1). EMP analyses and key information for interpretation were
- 611 provided by M. J. Jercinovic, University of Massachusetts, Amherst. The manuscript was improved
- by suggestions from two reviewers. To each of these persons and institutions we extend our grateful
- 613 acknowledgement.

|     | 24                                                                                                                                                                           |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 614 | <b>Appendix – Determination of extracted component</b>                                                                                                                       |
| 615 | <b>Spinel:</b> 1.925 Al, 0.986 Mg, Fe <sup>2+</sup> 0.016, Fe <sup>3+</sup> 0.067, Cr 0.002, Ti 0.003, Zn 0.001, Ni 0.001 with                                               |
| 616 | simplified composition R <sup>2+</sup> Al <sub>2</sub> O <sub>4</sub> (aluminous spinel) 96.2%, R <sup>2+</sup> Fe <sup>3+</sup> <sub>2</sub> O <sub>4</sub> (ferrite) 3.3%, |
| 617 | $R^{2+}Cr_2O_4$ (chromite) 0.1%, $R^{2+}_2TiO_4$ (ulvöspinel) 0.3%.                                                                                                          |
| 618 | <b>Rutile:</b> Ti 0.886, Fe <sup>3+</sup> 0.087, V <sup>3+</sup> 0.021, Mg 0.005.                                                                                            |
| 619 | "Extracted" rhombohedral oxide component: This sums to 1.93695 cations from the balanced                                                                                     |
| 620 | reaction, but is normalized to 2 cations for a standard rhombohedral oxide formulation, thus,                                                                                |
| 621 | 0.931 Al, 0.488 Ti, 0.480 Mg, 0.080 Fe <sup>3+</sup> , 0.012 V <sup>3+</sup> , 0.001 Cr, 0.008 Fe <sup>2+</sup> with simplified                                              |
| 622 | composition Al <sub>2</sub> O <sub>3</sub> (corundum) 46.6%, Fe <sub>2</sub> O <sub>3</sub> (hematite) 4.0%, V <sub>2</sub> O <sub>3</sub> (karelianite) 0.6%,               |
| 623 | MgTiO <sub>3</sub> (geikielite) 48.0%, FeTiO <sub>3</sub> (ilmenite) 0.8%.                                                                                                   |
| 624 | REFERENCES                                                                                                                                                                   |
| 625 | Ancey, M., Bastenaire, F. and Tixier, R. (1978) Applications of statistical methods in                                                                                       |
| 626 | microanalysis. In F. Maurice, I. Meny, and R. Tixier, Eds., Microanalysis and scanning                                                                                       |
| 627 | electron microscopy. Proceedings Summer School St. Martin-d'Heres, Les Editions de                                                                                           |
| 628 | Physique, Orsay, France, p. 319-343.                                                                                                                                         |
| 629 | Bingen, B., Davis, W.J., Hamilton, M.A., Engvik, A., Stein, H.J., Skår, Ø., and Nordgulen, Ø.                                                                                |
| 630 | (2008) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S Norway: U-                                                                                     |
| 631 | Pb, Th-Pb and Re-Os data. Norwegian Journal of Geology, 88, 13-42.                                                                                                           |
| 632 | Brok, E., Sales, M., Lefmann, K., Kuhn, L. T., Schmidt, W. F., Roessli, B., Robinson, P., McEnroe,                                                                           |
| 633 | S. A., and Harrison, R. J. (2014) Experimental evidence for lamellar magnetism in hemo-                                                                                      |
| 634 | ilmenite by polarized neutron scattering. Physical Review B, 85, 054430-054437.                                                                                              |
| 635 | 10.1103/PhysRevB. 89.054430.                                                                                                                                                 |
| 636 | Bromiley, G.D. and Hilairet, N. (2005) Hydrogen and minor element incorporation in synthetic                                                                                 |
| 637 | rutile. Mineralogical Magazine, 69, 345-358.                                                                                                                                 |
| 638 | Bromiley, G.D., Hilairet, N. and McCammon, C. (2004) Solubility of hydrogen and ferric iron in                                                                               |
| 639 | rutile and TiO2 (II): Implications for phase assemblages during ultrahigh-pressure                                                                                           |

- 640 metamorphism and for the stability of silica polymorphs in the lower mantle. Geophysical
- 641 Research Letters, 31, L04610 1-5.
- 642 Burton, B.P., Robinson, P., McEnroe, S.A., Fabian, K. and Boffa Ballaran, T (2008) A low-
- temperature phase diagram for ilmenite-rich compositions in the system Fe<sub>2</sub>O<sub>3</sub>-FeTiO<sub>3</sub>.
- 644 American Mineralogist, 93, 1260–1272.
- 645 Daneu, N., Schmid, H., Recnik, A. & Mader, W. (2007) Atomic structure and formation mechanism
- of (301) rutile twins from Diamantina (Brazil). American Mineralogist, 92, 1789-1799.
- 647 Fabian K., McEnroe, S.A., Robinson, P. and Shcherbakov, V.P. (2008) Exchange bias identifies
- 648 lamellar magnetism as the origin of the natural remanent magnetization in titanohematite from
- 649 ilmenite exsolution, Modum, Norway. Earth and Planetary Science Letters, 268, 339-353.
- Fabian, K., Shcherbakov, V.P. and McEnroe, S.A. (2013) Measuring the Curie temperature.
- 651 Geochemistry, Geophysics, Geosystems, 14, 947–961, doi:<u>10.1029/2012GC004440</u>
- 652 Ghiorso, M.S. (1990) Thermodynamic properties of hematite-ilmenite-geikielite solid solutions.
- 653 Contributions to Mineralogy and Petrology, 104, 645–667.
- Harrison, R.J., McEnroe, S.A., Robinson, P., Carter-Stiglitz, B., Palin, E.J. and Kasama, T. (2007)
- 655 Low-temperature exchange coupling between Fe2O3 and FeTiO3: Insight into the mechanism
- of giant exchange bias in a natural nanoscale intergrowth. Physical Review B, 76: 174436, 10
  pp.
- Harrison, R.H., McEnroe, S.A., Robinson, P. and Howard, C. (2010) Spin orientation in a natural
- Ti-bearing hematite: Evidence for an out-of-plane component. American Mineralogist, 95, 974-979.
- Langenhorst, F., Joreau, P., and Doukhan, J.C. (1995) Thermal and shock metamorphism of the
- Tenham meteorite: A TEM examination. Geochimica et Cosmochimica Acta, 59, 1835-1845.
- Larson, A.C., Von Dreele, R.B. (2004) General Structure Analysis system (GSAS). Los Alamos
- 664 National Laboratory Report LAUR 86-748.

25

- 665 Lindsley, D. H. (1991) Experimental studies of oxide minerals. In D.H. Lindsley, Ed., Oxide
- 666 minerals: Petrologic and magnetic significance. Reviews in Mineralogy, 25, 69-106,
- 667 Mineralogical Society of America, Washington, D. C.
- Lutro, O. and Nordgulen, Ø. (2004) Oslofeltet, bergrunnskart M 1:250.000. Norges geologiske
  undersøkelse.
- 670 McEnroe, S.A. and Brown, L.L. (2000) A closer look at remanence-dominated anomalies: Rock-
- 671 magnetic properties and magnetic mineralogy of the Russell Belt microcline-sillmanite gneisses,
- 672 Northwest Adirondacks Mountains, New York. Journal of Geophysical Research, 105, 16,437-
- 673 16,456.
- 674 McEnroe, S.A., Robinson, P. and Panish, P. (2001a) Aeromagnetic anomalies, magnetic petrology
- and rock magnetism of hemo-ilmenite- and magnetite-rich cumulates from the Sokndal Region,

676 South Rogaland, Norway. American Mineralogist, 86, 1447-1468.

- 677 McEnroe, S.A., Harrison, R.J., Robinson, P., Golla, U. and Jercinovic, M.J. (2001b) The effect of
- 678 fine-scale microstructures in titanohematite on the acquisition and stability of NRM in granulite
- facies metamorphic rocks from southwest Sweden: Implications for crustal magnetism. Journal
- 680 of Geophysical Research, 106, 30523-30546.
- 681 McEnroe, S.A., Harrison, R.J., Robinson P. and Langenhorst, F. (2002) Nanoscale haematite-
- ilmenite lamellae in massive ilmenite rock: an example of 'lamellar magnetism' with
- 683 implications for planetary magnetic anomalies. Geophysical Journal International, 151, 890-
- 684 912.
- 685 McEnroe, S.A., Carter-Stiglitz, B., Harrison, R.J., Robinson, P., Fabian, K. and McCammon, C.
- (2007a) Magnetic exchange bias of more than 1 Tesla in a natural mineral intergrowth. Nature
  Nanotechnology 2, 631-634.
- 688 McEnroe, S.A., Robinson, P., Langenhorst, F., Frandsen, C., Terry, M.P., and Boffa Ballaran, T.
- 689 (2007b) Magnetization of exsolution intergrowths of hematite and ilmenite: Mineral chemistry,
- 690 phase relations, and magnetic properties of hemo-ilmenite ores with micron- to nanometer-

- scale lamellae from Allard Lake, Quebec. Journal of Geophysical Research, 112, B10103,
- 692 doi:10.1029/2007JB004973.
- 693 McEnroe, S. A., Brown, L. L. and Robinson, P. (2008) Remanent and induced magnetic anomalies
- 694 over a layered intrusion: Effects from crystal fractionation and recharge events.
- 695 Tectonophysics, 478 119–134. doi: 10.1016/j.tecto.2008.11.021.
- 696 McEnroe, S.A., Fabian, K. Robinson, P., Gaina, C. and Brown, L.L. (2009a) Crustal magnetism,
- 697 lamellar magnetism and rocks that remember. Elements 5, 241-246.
- 698 Morrish, A.H. (1994) Canted antiferromagnetism: hematite. World Scientific Publishing, Singapore.
- 699 Pouchou, J-L and Pichoir, F. (1984) A new model for quantitative X-ray microanalysis. Part 1.
- Application to the analysis of homogeneous samples. La Recherche Aerospatiale, 3, 167-192
- 701 <u>(in French).</u>
- 702 Robinson P., R.J. Harrison, S.A. McEnroe and Hargraves, R. (2002) Lamellar magnetism in the
- hematite-ilmenite series as an explanation for strong remanent magnetization, Nature, 418, 517520.
- Robinson, P., Harrison, R.J., McEnroe, S.A. and Hargraves, R.G. (2004) Nature and origin of
- lamellar magnetism in the hematite-ilmenite series. American Mineralogist, 89,725-747.
- 707 Robinson, P., Heidelbach, F., Hirt, A.M., McEnroe, S.A. and Brown, L.L. (2006) Crystallographic-
- 708 magnetic correlations in single crystal haemo-ilmenite: New evidence for lamellar magnetism.
- Geophysical Journal International, 165, 17-31.
- 710 Robinson, P., Fabian, K., and McEnroe, S.A. (2010) The geometry of ionic arrangements and
- 711 magnetic interactions in ordered ferri-ilmenite solid solutions and its effect on low-
- temperature magnetic behavior. Geochemistry, Geophysics, Geosystems, 11, Q05Z17,
- 713 doi:10.1029/2009GC002858.
- 714 Robinson, P., Fabian, K., McEnroe, S.A. and Heidelbach, F. (2013) Influence of lattice-preferred
- orientation with respect to magnetizing field on intensity of remanent magnetization in

27

28

4/9

| 716  | polver | vstalline | hemo-ilr | nenite. | Geoph | vsical | Journal | International. | 192   | . 514 | 4-536. | doi: |
|------|--------|-----------|----------|---------|-------|--------|---------|----------------|-------|-------|--------|------|
| / 10 |        | ,         |          |         |       | ,      |         |                | , -/- | ,     |        |      |

- 717 10.1111/j.1365-246X.2012.05692.x
- 718 Toby, B. H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied
- 719 Crystallography, 34, 210-221.
- Van Cappellen, E. & Doukhan, J.-C. (1994. Quantitative X-ray microanalysis of ionic compounds,
- 721 Ultramicroscopy, **53**, 343–349.
- Wechsler, B.A. and Prewitt, C.T. (1984) Crystal structure of ilmenite (FeTiO<sub>3</sub>) at high temperature
  and at high pressure. American Mineralogist, 69, 176-185.
- 724 Ziff, R.M. and Gu, H. (2009) Universal condition for critical percolation thresholds of kagome-like
- 725 lattices. Physical. Review E **79** 020102-1 020102-4.

### 726 **Figure Captions**

Figure 1 Helicopter aeromagnetic survey map over the Mesoproterozoic basement of the Modum

district, south Norway, and the adjacent Permian Oslo Rift to the southeast, with a distinctive ring

dike magnetic anomaly (Lutro and Nordgulen 2004). Shows the location of sample MOD-24 and

other samples of magnetic interest. The selected area with magnetic color scale and shading was

731 compiled by Giulio Viola from a larger magnetic anomaly map at the Geological Survey of

732 Norway. Side color scale gives magnetic intensities in n T. Red-lavender indicates areas of positive

induced magnetization to over 900 nT. Orange through blue indicates areas of negative remanent

magnetization, or induced magnetic lows marginal to highs, with values to below -700 n T. Inset

map shows geographic location in south Norway. Thin black line indicates the western boundary of

the Oslo Rift, which is locally either a normal fault or an unconformity. The positive anomaly

southeast of the line in the middle of the figure is caused by gabbros in Mesoproterozoic basement

extending southeast beneath the unconformity.

**Figure 2** (a) High-resolution reflected-light photomicrograph of polished sample. Hematite host is

r40 light-gray. Black spinel lamellae are parallel to (001) of the host. Dark gray blades or rods of rutile

are at angles of  $60^{\circ}$  or greater to the spinel. Very thin gray lamellae parallel to (001) of the host

4/9

|     | 29                                                                                                               |
|-----|------------------------------------------------------------------------------------------------------------------|
| 742 | have been identified as ferroan-geikielite. (b) Close-up reflected-light image of spinel and tiny                |
| 743 | ferroan geikelite plates parallel to (001) of the titanohematite host and blades or rods of rutile               |
| 744 | formed as attachments to the spinel plates.                                                                      |
| 745 | Figure 3 Plot of EMP and TEM analyses. Vertical axis is 2Ti /(2Ti+ R <sup>3+</sup> ), providing the total        |
| 746 | fraction of "ilmenite-like" component, or, inversely, the hematite component. Horizontal axis Mg                 |
| 747 | $/[(R^{2+})+(R^{3+}/2)]$ gives the absolute value of the MgTiO <sub>3</sub> giekielite end member component. EMP |
| 748 | trend of Mg-rich titanohematite analyses extrapolates toward a geikielite 0.90 composition.                      |
| 749 | Geikielite TEM analyses are more scattered due to analytical difficulties, but center at geikielite              |
| 750 | 0.70, controlling the TEM Tie Line. Outline shows composition range of Figure 4.                                 |
| 751 | Figure 4 Analyses in the hematite-rich part of Figure 4, extending to "ilm" 0.2 and "geikielite" 0.2             |
| 752 | (see text for discussion). Analyses of vein hematite of Figure 5 are plotted with exaggerated scale              |
| 753 | in the extreme hematite-rich corner of the diagram, extending to "ilmenite" 0.01, geikielite 0.01.               |
| 754 | Maximum "ilmenite" component of any vein hematite is 0.002.                                                      |
| 755 | Figure 5 EBS image showing a small part of a clean cross-cutting secondary vein of Ti-free                       |
| 756 | hematite about 200 $\mu$ m thick, lined with plates of magnesian chlorite parallel to (001) of the host          |
| 757 | titanohematite.                                                                                                  |
| 758 | Figure 6 Bright-field TEM image of a spinel blade and two rutile blades within host titanohematite.              |
| 759 | The rutile blade to the right appears to show a typical knee of rutile. However, extended study                  |
| 760 | shows that the two orientations are rutile blades lying within two lattice planes of hematite parallel           |
| 761 | to $c$ and at angles of ~69° to $a2$ of hematite. The apparent angles in the foil measured against $a2$ in       |
| 762 | Figure 7 are 68° (to left) and 73° (to right) indicating the TEM foil is not tipped exactly parallel to          |
| 763 | <i>a2</i> .                                                                                                      |
| 764 | Figure 7 Selected area electron diffraction patterns of titanohematite (left) and rutile (right) are             |
| 765 | shown in an orientation such that directions are identical. The zone axis for titanohematite is [211],           |

the one for rutile is [0 - 1 1]. The hematite *a2* axis for measuring interface angles is  $[-1 2 0]^*$ .

4/9

30

767 Figure 8 Lattice orientations of rutile and titanohematite as determined from the selected area 768 diffraction patterns in Figures 6 and 7. 769 Figure 9 High-resolution TEM image of the interface between titanohematite and rutile. The image 770 is taken in the orientation as shown in Figs. 6 and 7. The trace of the rutile-hematite interface in 771 this view lies at  $75^{\circ}$  to *a2* of hematite (see text discussion), also rutile interface to the right in 772 Figure 6), and is also inclined at a high angle to the image plane. The lattice planes in rutile are not at  $90^{\circ}$  to each other, as required by tetragonal symmetry, but at  $92^{\circ}$ , resulting from sinistral shear (in 773 774 this view) caused by stretching of rutile along its interface with hematite (see text). 775 Figure 10 The orientation of a spinel lamella (green) parallel to titanohematite (001) in relation to the approximate plane of the TEM foil (magenta) of Figure 6. Here, the foil is positioned about  $32^{\circ}$ 776 777 (rotated approximately about *a2* of hematite) and shows the trace of the spinel lamella (shaded 778 green) in the plane of the foil. The foil is in good position to look along the zones axes in Figure 7. 779 The foil could not be rotated enough to bring the hematite *c*-axis parallel to the beam. 780 Figure 11 (a) View of titanohematite (black) and rutile (red) dimensional cells looking down c of 781 titanohematite. This shows the common titanohematite-rutile dimensional best-fit prism plane (purple) at 69° to  $a_2(x)$ . Note that a minimum strain position requires no rotation about c. A 2° 782 783 rotation of rutile about al (as in Figure 11 c,d) is not sufficient to cause significant change of rutile dimensions in this view. (b) Similar relations in a prism plane (red)  $69^{\circ}$  from hematite *a2* (x) in the 784 785 opposite direction, used in the cell model of Figure 12a. (c) View of titanohematite (black) and 786 rutile (red) cells within the prism plane in (a). The horizontal cell dimensions (x') are increased in 787 this view compared to the 'true' dimensions, but the vertical dimensions are not. A best-fit line (purple) is achieved in this plane by counterclockwise rotation of the rutile cell by 2° about the 788 789 common *a2-a1* (y) axis. Also shows the orientation of the common lattice plane (blue) changed 790 from  $57.63^{\circ}$  to  $58.9^{\circ}$  by the angle of the prism plane. (d) Similar view within the prism plane in (b) 791 with clockwise rotation of the rutile cell. These are the relations shown in Figure 12a.

4/9

31

| 792                                                                                                                                                                    | Figure 12 (a) Three-dimensional array of synthetic rhombohedral cells of titanohematite used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 793                                                                                                                                                                    | locate a best dimensional fit orientation of elongate rutile blades. Positions of rutile lattice points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 794                                                                                                                                                                    | were tracked numerically. With respect to titanohematite, the dimensional best-fit plane (medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 795                                                                                                                                                                    | red lines) is parallel to $c$ (a prism plane) and at an angle of 69° to $a_2$ , and the blade long axis (thick                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 796                                                                                                                                                                    | red line) is on a best-fit line at an angle of $63^{\circ}$ to the titanohematite (001) basal plane. The rutile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 797                                                                                                                                                                    | lattice (not shown here) is rotated 2° clockwise in the best-fit plane to reach the best-fit line. Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 798                                                                                                                                                                    | lines show the orientation of the common lattice plane, in this case hematite (102) (see Figure 8).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 799                                                                                                                                                                    | (b) Outline of the same three-dimensional array of titanohematite as in (a) illustrating two possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 800                                                                                                                                                                    | best-fit planes within the array and two possible best-fit lines in each plane. Arrows indicate the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 801                                                                                                                                                                    | clockwise or counterclockwise directions by which rutile lattices are rotated about the common $a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 802                                                                                                                                                                    | axes (y) to accommodate best-fit. To right (red) is the blade axis modeled in Figure 12a. To left is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 803                                                                                                                                                                    | the actual blade axis (also red) observed in TEM in Figures 6,7,8, with corresponding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 804                                                                                                                                                                    | counterclockwise rotation. In both (a) and (b) anchor points, where titanohematite and rutile lattice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 805                                                                                                                                                                    | points correspond exactly, are at the bottom of the model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 805<br>806                                                                                                                                                             | points correspond exactly, are at the bottom of the model.<br><b>Figure 13</b> (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 805<br>806<br>807                                                                                                                                                      | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 805<br>806<br>807<br>808                                                                                                                                               | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 805<br>806<br>807<br>808<br>809                                                                                                                                        | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two such lines in each prism plane, thus giving twelve possible orientations. That number could be</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 805<br>806<br>807<br>808<br>809<br>810                                                                                                                                 | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an</li> <li>angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line</li> <li>in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two</li> <li>such lines in each prism plane, thus giving twelve possible orientations. That number could be</li> <li>reduced based on interface details not explored in the simplified model. Also the number of blades</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>805</li> <li>806</li> <li>807</li> <li>808</li> <li>809</li> <li>810</li> <li>811</li> </ul>                                                                  | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an</li> <li>angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line</li> <li>in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two</li> <li>such lines in each prism plane, thus giving twelve possible orientations. That number could be</li> <li>reduced based on interface details not explored in the simplified model. Also the number of blades</li> <li>visible near given surfaces may be greatly reduced compared to the total number present.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>805</li> <li>806</li> <li>807</li> <li>808</li> <li>809</li> <li>810</li> <li>811</li> <li>812</li> </ul>                                                     | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an</li> <li>angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line</li> <li>in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two</li> <li>such lines in each prism plane, thus giving twelve possible orientations. That number could be</li> <li>reduced based on interface details not explored in the simplified model. Also the number of blades</li> <li>visible near given surfaces may be greatly reduced compared to the total number present.</li> <li>Figure 14 (a) Chemography of the retrograde metamorphic reaction ferri-ilmenite +</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>805</li> <li>806</li> <li>807</li> <li>808</li> <li>809</li> <li>810</li> <li>811</li> <li>812</li> <li>813</li> </ul>                                        | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two such lines in each prism plane, thus giving twelve possible orientations. That number could be reduced based on interface details not explored in the simplified model. Also the number of blades visible near given surfaces may be greatly reduced compared to the total number present.</li> <li>Figure 14 (a) Chemography of the retrograde metamorphic reaction ferri-ilmenite + titanomagnetite = magnetite + rutile as expressed by cation proportions of Fe<sup>2+</sup>, Fe<sup>3+</sup>, and Ti<sup>4+</sup>. (b)</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>805</li> <li>806</li> <li>807</li> <li>808</li> <li>809</li> <li>810</li> <li>811</li> <li>812</li> <li>813</li> <li>814</li> </ul>                           | <ul> <li>points correspond exactly, are at the bottom of the model.</li> <li>Figure 13 (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an angle of 69° to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two such lines in each prism plane, thus giving twelve possible orientations. That number could be reduced based on interface details not explored in the simplified model. Also the number of blades visible near given surfaces may be greatly reduced compared to the total number present.</li> <li>Figure 14 (a) Chemography of the retrograde metamorphic reaction ferri-ilmenite + titanomagnetite = magnetite + rutile as expressed by cation proportions of Fe<sup>2+</sup>, Fe<sup>3+</sup>, and Ti<sup>4+</sup>. (b) Chemography similar to Figure 14a in a wider chemical system, with Mg, Zn, and Ni added to the</li> </ul>                                                                                                                                                                                                                                                     |
| <ul> <li>805</li> <li>806</li> <li>807</li> <li>808</li> <li>809</li> <li>810</li> <li>811</li> <li>812</li> <li>813</li> <li>814</li> <li>815</li> </ul>              | points correspond exactly, are at the bottom of the model.<br><b>Figure 13</b> (a) Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an<br>angle of $69^{\circ}$ to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line<br>in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two<br>such lines in each prism plane, thus giving twelve possible orientations. That number could be<br>reduced based on interface details not explored in the simplified model. Also the number of blades<br>visible near given surfaces may be greatly reduced compared to the total number present.<br><b>Figure 14</b> (a) Chemography of the retrograde metamorphic reaction ferri-ilmenite +<br>titanomagnetite = magnetite + rutile as expressed by cation proportions of $Fe^{2+}$ , $Fe^{3+}$ , and $Ti^{4+}$ . (b)<br>Chemography similar to Figure 14a in a wider chemical system, with Mg, Zn, and Ni added to the<br>$Fe^{2+}$ apex, and Al, $V^{3+}$ and Cr added to the $Fe^{3+}$ apex, allowing consideration of the reaction                                                                                                                                         |
| <ul> <li>805</li> <li>806</li> <li>807</li> <li>808</li> <li>809</li> <li>810</li> <li>811</li> <li>812</li> <li>813</li> <li>814</li> <li>815</li> <li>816</li> </ul> | points correspond exactly, are at the bottom of the model.<br><b>Figure 13 (a)</b> Positions of six prism best-fit planes for rutile in hematite. Each is oriented at an<br>angle of $69^{\circ}$ to one of the <i>a</i> axes. (b) Positions of three rutile blades oriented along one best fit line<br>in each of the three planes in (a). Based on the synthetic lattices (Figure 12b), there might be two<br>such lines in each prism plane, thus giving twelve possible orientations. That number could be<br>reduced based on interface details not explored in the simplified model. Also the number of blades<br>visible near given surfaces may be greatly reduced compared to the total number present.<br><b>Figure 14 (a)</b> Chemography of the retrograde metamorphic reaction ferri-ilmenite +<br>titanomagnetite = magnetite + rutile as expressed by cation proportions of Fe <sup>2+</sup> , Fe <sup>3+</sup> , and Ti <sup>4+</sup> . (b)<br>Chemography similar to Figure 14a in a wider chemical system, with Mg, Zn, and Ni added to the<br>Fe <sup>2+</sup> apex, and Al, V <sup>3+</sup> and Cr added to the Fe <sup>3+</sup> apex, allowing consideration of the reaction<br>aluminous magnesian titanohematite = magnesian spinel + ferrian rutile + Al-poor magnesian |

32

4/9

- 818 Figure 15 Derived compositions (omitting V<sub>2</sub>O<sub>3</sub>) in a rhombohedral oxide tetrahedron providing
- 819 insights into the exsolution sequence during cooling of original aluminous magnesian

titanohematite from peak amphibolite-facies conditions to the final intergrowth of magnesian

spinel, ferrian rutile, and ferroan geikielite in a magnesian titanohematite host.

Figure 16  $M_s(T)$  and  $M_{rs}(T)$  from a MOD-24 sample providing evidence for the Néel temperature

823 of the titanohematite host. There is a clear magnetic phase transition at 600°C (873 K) coincident

824 with the onset of acquisition of remanent magnetization.

825 Figure 17 Magnetic hysteresis measurements used to identify material behavior. No paramagnetic

826 correction was made. (a) Hysteresis loop measured at 300 K (room T). The loop is symmetric and

827 indicates a single ferromagnetic material with relatively weak coercivity. (b) Hysteresis loop

828 measured on the same sample at 10 K. There is a significant negative hysteresis shift of -40 mT

829 which is similar in character to negative shifts observed at very low T in other samples where there

830 is magnetic interaction across interfaces between titanohematite and ilmenite lamellae. The bulk

coercivity (290 mT) is large, and the loop remains open to nearly 1.1T. Shaded profiles show

832 hysteresis differences. Both measurements were made in a maximum field of 1.5 T.

**Figure 18** Results of a warming experiment measured in zero field after cooling in a field of 1.5 T

to 8 K. With warming from 8 K, the curve shows an initial steep drop in magnetization up to 20-25

K. Above 25 K the negative exchange bias shown in Figure 17b is no longer evident. The plateau

edge at ~40 K corresponds in other samples to the conditions where ilmenite magnetization starts to

837 decline during warming.



Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld



## Fig. 2









## Fig. 5



## Figs. 6, 7

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2014.4711





# Fig. 9





Fig. 11











Fig. 15



Fig. 16



Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld



Fig. 18

|             | Point        | 1         | 2        | 3        | 4        |             | Point              | 7       | 6       |
|-------------|--------------|-----------|----------|----------|----------|-------------|--------------------|---------|---------|
|             | Nb2O5 a      | 0.019     | 0.007    | 0.032    | 0.019    |             | SiO2               | 0.022   | 0.04    |
|             | SiO2         |           | 0.02     | 0.005    | 0.025    |             | TiO2               | 81.288  | 80.486  |
|             | TiO2         | 0.115     | 0.113    | 0.174    | 0.137    |             | Al2O3              |         | 0.032   |
| Wt.%        | Al2O3        | 69.515    | 69.743   | 69.501   | 69.473   | Wt.% Oxides | Fe2O3              | 15.954  | 15.219  |
| Oxides      | Cr2O3        | 0.156     | 0.172    | 0.104    | 0.106    |             | Fe Tot (FeO)       | 14.356  | 13.694  |
|             | V2O3         | 0.025     | 0.008    | 0.016    | 0.022    |             | MnO                | 0.032   | 0.047   |
|             | Fe Tot (FeO) | 4.266     | 4.403    | 4.186    | 4.462    |             | MgO                | 0.248   | 0.218   |
|             | MnO          | 0.028     | 0.002    |          |          |             | ZnO                | 0.029   | 0.097   |
|             | MgO          | 28.111    | 28.154   | 28.157   | 28.298   |             | Ta2O5              | 0.078   | 0.004   |
|             | ZnO          | 0.028     | 0.056    | 0.045    |          |             | V2O3               | 2.207   | 2.205   |
|             | NiO          | 0.059     | 0.058    | 0.029    | 0.052    |             | Total              | 98.26   | 96.823  |
|             | Total        | b 102,322 | 102.736  | 102.249  | 102.594  |             | Corr.Total         | 99.858  | 98.348  |
|             | Si           | 0.0000    | 0.0005   | 0.0001   | 0.0006   |             | Si                 | 0.0003  | 0.0006  |
|             | Ti           | 0.0020    | 0.0020   | 0.0031   | 0.0024   |             | Ti                 | 0.8814  | 0.8831  |
|             | Al           | 1.9244    | 1.9238   | 1.9248   | 1.9181   |             | Al                 | 0.0000  | 0.0006  |
|             | Cr           | 0.0029    | 0.0032   | 0.0019   | 0.0020   |             | V                  | 0.0255  | 0.0258  |
|             | V            | 0.0005    | 0.0002   | 0.0003   | 0.0004   | Cats/1      | Fe3+               | 0.0866  | 0.0836  |
| Cats/3      | Fe3+         | 0.0681    | 0.0680   | 0.0666   | 0.0735   |             | Mg                 | 0.0053  | 0.0047  |
|             | Mg           | 0.9842    | 0.9821   | 0.9862   | 0.9881   |             | Mn                 | 0.0004  | 0.0006  |
|             | Ni           | 0.0011    | 0.0011   | 0.0005   | 0.0010   |             | Zn                 | 0.0003  | 0.0010  |
|             | Fe2+         | 0.0157    | 0.0182   | 0.0157   | 0.0139   |             | Та                 | 0.0002  | 0.0000  |
|             | Mn           | 0.0006    | 0.0000   | 0.0000   | 0.0000   |             | Sum                | 1.0000  | 1.0000  |
|             | Zn           | 0.0005    | 0.0010   | 0.0008   | 0.0000   |             |                    |         |         |
|             | Sum          | 3.0000    | 3.0000   | 3.0000   | 3.0000   |             | Ox/1Cats           | 1.9380  | 1.9387  |
|             |              |           |          |          |          |             | 2-0x               | 0.0620  | 0.0613  |
|             | Ox/3Cats     | 3.9659    | 3.9660   | 3.9667   | 3.9633   |             | H20                | 0.0620  | 0.0613  |
|             | 4-0x         | 0.0341    | 0.0340   | 0.0333   | 0.0367   |             | ОН                 | 0.1240  | 0.1226  |
|             | Fe3+         | 0.0681    | 0.0680   | 0.0666   | 0.0735   |             |                    | 0 0000  | 0 0000  |
|             | Fe2+         | 0.0157    | 0.0182   | 0.015/   | 0.0139   |             | R5+                | 0.0002  | 0.0000  |
|             | Fe3+/Felot   | 0.8129    | 0.7886   | 0.8094   | 0.8407   | Cation      | R4+                | 0.881/  | 0.8837  |
|             | F 20:04      |           | 0.0460   | 0.0117   | 0.0506   | Summary     | R3+                | 0.1121  | 0.1099  |
|             | Fe25104      | 0.0000    | 0.0468   | 0.0117   | 0.0586   |             | R2+                | 0.0060  | 0.0064  |
| Deverse     | Fe21104      | 0.2031    | 0.1989   | 0.3075   | 0.2414   |             | H1+<br>TabalChawaa | 0.1240  | 0.1226  |
| Percentages | FeCr204      | 0.1449    | 0.1591   | 0.0966   | 0.0982   |             | TotalCharge        | 4.0000  | 4.0000  |
| or End      | Fev204       | 0.0235    | 0.0075   | 0.0151   | 0.0207   |             | 6:00               | 0.000   | 0.050   |
| Members     | FeFe204      | 3.4061    | 3.3982   | 3.3291   | 3.6/44   | Deveeteere  | 5102               | 0.032   | 0.058   |
|             | Sum          | 3.///6    | 3.8105   | 3.7600   | 4.0931   | of End      | a MgTaO2           | 0.023   | 0.001   |
|             | MgAl2O4      | 98.4195   | 98.2142  | 98.6184  | 98.8090  | Members     | Al0(OH)            | 0.000   | 0.055   |
|             | FeAl2O4 c    | -2.4128   | -2.2346  | -2.5113  | -3.0001  |             | VO(OH)             | 2.551   | 2.580   |
|             | NiAl2O4      | 0.1115    | 0.1092   | 0.0548   | 0.0980   |             | Fe3+O(OH)          | 8.656   | 8.355   |
|             | MnAl2O4      | 0.0557    | 0.0040   | 0.0000   | 0.0000   |             | Mg(OH)2            | 0.525   | 0.474   |
|             | ZnAl2O4      | 0.0486    | 0.0968   | 0.0781   | 0.0000   |             | Mn(OH)2            | 0.039   | 0.058   |
|             | Sum          | 96.2224   | 96.1895  | 96.2400  | 95.9069  |             | Zn(OH)2            | 0.031   | 0.105   |
|             |              |           |          |          |          |             | Sum                | 100.000 | 100.000 |
|             | Total        | 100.0000  | 100.0000 | 100.0000 | 100.0000 |             |                    |         |         |

Table 1. EMP analyses, cation formulae, and end-member percentages of spinel (left) and rutile (right)

Note: Wt% analyses in italics are below MDL (see Table 1A). Of four analyses substantially of rutile, only two werefree from effects of overlap with titanohematite. Analysis 6 shows a low analytical sum, but is otherwise similarto the superior analysis 7.

Note: Wt% values in italics are below MDL (see Table 1A) a Analyzed Nb2O5 not used in analytical sums nor formulations.

b Extremely high analytical sums for spinels seem to be quite routine in several laboratories, This is probably related to Al standardization, but the exact cause is not known.

c Negative values indicate not enough R2+ to accomodate Al3+. Probably consequence of excessive Al2O3.

a Formula Mg 0.333 Ta 0.6667 O2

 Table 1A Instrument, instrument conditions and standards for electron probe analyses.

Electron probe micro-analysis (EPMA) was done using the Cameca SX50 at the University of Massachusetts. This is a five wavelength-dispersive spectrometer instrument, automated via Cameca's SXRayN50 software (Sun-Unix platform). Analysis was performed using a 15kV, 20nA focused beam. Count times were 20 seconds for all elements. Corrections for differential matrix effects were done using the PAP routine (Pouchou and Pichoir, 1984). Detection limits were calculated using the method of Ancey (1978). Analyzing monochromators, standards and minimum detectability limits (MDL) are summarized in the table below.

|         |      |      |                               | Atomic | Unide  |
|---------|------|------|-------------------------------|--------|--------|
| element | line | xtal | Std                           | MDL    | MDL    |
| К       | Ка   | PET  | sanidine (P-28)               | 0.0234 | 0.0282 |
| Si      | Ка   | ТАР  | pg721 (kiglapait labradorite) | 0.0208 | 0.0445 |
| Al      | Ка   | ТАР  | albite (P103-Amelia)          | 0.0315 | 0.0595 |
| Ti      | Ка   | PET  | tio2 (P530-synthetic)         | 0.0281 | 0.0469 |
| V       | Ка   | PET  | V                             | 0.0340 | 0.0500 |
| Fe      | Ка   | LIF  | fayalite-rockport             | 0.0917 | 0.1180 |
| Mn      | Ка   | LIF  | rhodonite AMNH 41522          | 0.0666 | 0.0860 |
| Cr      | Ка   | LIF  | 52-nl11 (chromite-Stillwater) | 0.0546 | 0.0798 |
| Zn      | Ка   | LIF  | ZnO (P471)                    | 0.1647 | 0.2050 |
| Ca      | Ка   | PET  | pg721 (kiglapait labradorite) | 0.0243 | 0.0340 |
| S       | Ка   | PET  | Pyrite-MAC                    | 0.0310 |        |
| Mg      | Ка   | ТАР  | crcats (diopside-synthetic)   | 0.0706 | 0.1171 |
| Ni      | Ка   | LIF  | nio (synthetic)               | 0.0709 | 0.0902 |
| Nb      | La   | PET  | Nb                            | 0.1282 | 0.1834 |
| Та      | La   | LIF  | Та                            | 0.3308 | 0.4039 |

Atomic Ovido

|          | Traverse     | 1       | 1       | 1       | 1         | 1         | 1       | 1       | 1         | 1       | 1         | 1       | 1         | 1       |                                        | Traverse     | 1       | 1       | 1       | 5       | 5         | 5       |
|----------|--------------|---------|---------|---------|-----------|-----------|---------|---------|-----------|---------|-----------|---------|-----------|---------|----------------------------------------|--------------|---------|---------|---------|---------|-----------|---------|
|          | Point        | 1       | 2       | 3       | 4         | 6         | 12      | 13      | 14        | 15      | 18        | 24      | 26        | 31      |                                        | Point        | 34      | 36      | 37      | 1       | 13        | 16      |
|          |              |         |         |         |           |           |         |         |           |         |           |         |           |         |                                        |              |         |         |         |         |           |         |
|          | SiO2         |         |         |         |           |           |         | 0.009   |           |         |           | 0.006   |           | 0.026   |                                        | SiO2         | 0.004   | 0.025   |         |         | 0.011     | 0.019   |
|          | TiO2         | 4.124   | 5.6230  | 3.939   | 3.872     | 6.218     | 4.566   | 4.049   | 4.008     | 5.735   | 6.299     | 4.062   | 4.014     | 5.845   |                                        | TiO2         | 5.012   | 4.43    | 4.117   | 4.726   | 5.484     | 4.303   |
|          | Al2O3        | 0.198   | 0.1900  | 0.215   | 0.243     | 0.226     | 0.189   | 0.186   | 0.164     | 0.168   | 0.168     | 0.167   | 0.153     | 0.232   |                                        | AI2O3        | 0.185   | 0.209   | 0.194   | 0.106   | 0.83      | 0.132   |
| Wt%      | Cr2O3        | 0.145   | 0.1430  | 0.139   | 0.107     | 0.161     | 0.15    | 0.212   | 0.185     | 0.141   | 0.126     | 0.111   | 0.127     | 0.113   | Wt%                                    | Cr2O3        | 0.128   | 0.12    | 0.16    | 0.055   | 0.051     | 0.077   |
| Oxides   | V2O3         | 0.122   | 0.1480  | 0.141   | 0.12      | 0.175     | 0.131   | 0.163   | 0.143     | 0.17    | 0.187     | 0.144   | 0.152     | 0.178   | Oxides                                 | V203         | 0.172   | 0.132   | 0.143   | 0.164   | 0.15      | 0.155   |
|          | a Nb2O5      | 0.016   |         |         |           | 0.006     | 0.011   |         | 0.039     |         |           | 0.039   |           | 0.027   |                                        | a Nb2O5      |         |         | 0.066   |         | 0.002     |         |
|          | a Ta2O5      | 0.196   | 0.2190  | 0.326   | 0.298     | 0.176     | 0.269   | 0.635   | 0.204     | 0.427   | 0.067     | 0.355   | 0.319     | 0.284   |                                        | a Ta2O5      | 0.377   | 0.269   | 0.312   | 0.086   |           |         |
|          | Fe2O3        | 92.460  | 88.9059 | 92.150  | 91.102    | 87.927    | 90.983  | 91.896  | 91.678    | 89.565  | 88.112    | 91.271  | 91.825    | 88.876  |                                        | Fe2O3        | 90.310  | 90.655  | 91.128  | 91.254  | 89.962    | 91.975  |
|          | Fe Tot (FeO) | 86.225  | 83.0790 | 85.843  | 85.042    | 81.696    | 84.412  | 85.715  | 85.651    | 83.125  | 81.644    | 84.738  | 85.313    | 82.403  |                                        | Fe Tot (FeO) | 84.519  | 83.964  | 85.067  | 85.178  | 83.387    | 85.55   |
|          | FeO          | 3.028   | 3.0805  | 2.926   | 3.068     | 2.578     | 2.545   | 3.026   | 3.158     | 2.533   | 2.359     | 2.611   | 2.687     | 2.431   |                                        | FeO          | 3.257   | 2.392   | 3.069   | 3.067   | 2.438     | 2.790   |
|          | MnO          | 0.019   | 0.0420  | 0.042   |           | 0.016     | 0.033   |         |           | 0.012   |           | 0.042   | 0.004     | 0.021   |                                        | MnO          | 0.023   | 0.023   | 0.048   |         |           | 0.012   |
|          | MgO          | 0.45    | 1.1630  | 0.435   | 0.339     | 1./36     | 0.962   | 0.569   | 0.329     | 1.621   | 1.8/      | 0./1/   | 0.614     | 1.706   |                                        | MgO          | 0.822   | 0.995   | 0.482   | 0.668   | 1.394     | 0.568   |
|          | CaO          | 0.003   |         | 0.011   | 0.003     | 0.008     |         | 0.019   | 0.027     |         | 0.046     | 0.001   | 0.016     | 0.006   |                                        | CaO          | 0.009   |         |         | 0.05    | 0.005     | 0.002   |
|          |              | 01 400  | 0.0030  | 0.011   | 00.004    | 0.014     | 00 700  | 01 557  | 00 75     | 01 200  | 0.016     | 00 202  | 0.011     | 00.041  |                                        | NIO          | 01 251  | 00 1 67 | 00 500  | 0.05    | 0.025     | 0.078   |
|          | l otal       | 91.498  | 90.610  | 91.091  | 90.024    | 90.432    | 90.723  | 91.55/  | 90.75     | 91.399  | 00 205    | 90.382  | 90.723    | 90.841  |                                        | I otal       | 91.251  | 90.167  | 90.589  | 91.033  | 91.334    | 90.896  |
|          | Corr. I otal | 100.762 | 99.517  | 100.323 | 99.151    | 99.241    | 99.838  | 100.764 | 99.935    | 100.372 | 99.205    | 99.526  | 99.923    | 99.745  |                                        | Corr. I otal | 100.299 | 99.250  | 99.719  | 100.176 | 100.347   | 100.111 |
|          |              |         |         |         |           |           |         |         |           |         |           |         |           |         |                                        |              |         |         |         |         |           |         |
|          | Si           | 0.0000  | 0.0000  | 0.0000  | 0.0000    | 0.0000    | 0.0000  | 0.0002  | 0.0000    | 0.0000  | 0.0000    | 0.0002  | 0.0000    | 0.0007  |                                        | Si           | 0.0001  | 0.0007  | 0.0000  | 0.0000  | 0.0003    | 0.0005  |
|          | Ti           | 0.0812  | 0.1113  | 0.0779  | 0.0776    | 0.1227    | 0.0903  | 0.0798  | 0.0796    | 0.1123  | 0.1242    | 0.0809  | 0.0796    | 0.1149  |                                        | Ti           | 0.0988  | 0.0881  | 0.0819  | 0.0933  | 0.1070    | 0.0851  |
| /-       | Al           | 0.0061  | 0.0059  | 0.0067  | 0.0076    | 0.0070    | 0.0059  | 0.0057  | 0.0051    | 0.0052  | 0.0052    | 0.0052  | 0.0048    | 0.0071  |                                        | AI           | 0.0057  | 0.0065  | 0.0061  | 0.0033  | 0.0254    | 0.0041  |
| Cats/2   | Cr           | 0.0030  | 0.0030  | 0.0029  | 0.0023    | 0.0033    | 0.0031  | 0.0044  | 0.0039    | 0.0029  | 0.0026    | 0.0023  | 0.0026    | 0.0023  | Cats/2                                 | Cr           | 0.0027  | 0.0025  | 0.0033  | 0.0011  | 0.0010    | 0.0016  |
|          | V3+          | 0.0026  | 0.0031  | 0.0030  | 0.0026    | 0.0037    | 0.0028  | 0.0034  | 0.0030    | 0.0035  | 0.0039    | 0.0031  | 0.0032    | 0.0037  |                                        | V3+          | 0.0036  | 0.0028  | 0.0030  | 0.0035  | 0.0031    | 0.0033  |
|          | Nb5+         | 0.0002  | 0.0000  | 0.0000  | 0.0000    | 0.0001    | 0.0001  | 0.0000  | 0.0005    | 0.0000  | 0.0000    | 0.0005  | 0.0000    | 0.0003  |                                        | Nb5+         | 0.0000  | 0.0000  | 0.0008  | 0.0000  | 0.0000    | 0.0000  |
|          | 1a5+         | 0.0014  | 0.0016  | 0.0023  | 0.0022    | 0.0013    | 0.0019  | 0.0045  | 0.0015    | 0.0030  | 0.0005    | 0.0026  | 0.0023    | 0.0020  |                                        | 1a5+         | 0.0027  | 0.0019  | 0.0022  | 0.0006  | 0.0000    | 0.0000  |
|          | Fe3+         | 1.8212  | 1./60/  | 1.8246  | 1.8260    | 1./366    | 1.8014  | 1.812/  | 1.8229    | 1./548  | 1./384    | 1.8183  | 1.8232    | 1.7486  |                                        | Fe3+         | 1.7821  | 1.8048  | 1.8146  | 1.8036  | 1./559    | 1.8199  |
|          | Felot        | 1.88/5  | 1.8285  | 1.8890  | 1.8943    | 1./932    | 1.85/4  | 1.8/91  | 1.8927    | 1.8099  | 1./902    | 1.8/61  | 1.8825    | 1.8017  |                                        | Felot        | 1.8535  | 1.85//  | 1.8825  | 1.8/10  | 1.8088    | 1.8812  |
|          | Fe2+         | 0.0663  | 0.0678  | 0.0644  | 0.0683    | 0.0566    | 0.0560  | 0.0663  | 0.0698    | 0.0552  | 0.051/    | 0.05/8  | 0.0593    | 0.0532  |                                        | Fe2+         | 0.0714  | 0.0529  | 0.06/9  | 0.0674  | 0.0529    | 0.0614  |
|          | Mg           | 0.0176  | 0.0456  | 0.01/1  | 0.0135    | 0.0679    | 0.0377  | 0.0222  | 0.0130    | 0.0629  | 0.0731    | 0.0283  | 0.0241    | 0.0665  |                                        | Mg           | 0.0321  | 0.0392  | 0.0190  | 0.0262  | 0.0539    | 0.0223  |
|          | l™in<br>C=   | 0.0004  | 0.0009  | 0.0009  | 0.0000    | 0.0004    | 0.0007  | 0.0000  | 0.0000    | 0.0003  | 0.0000    | 0.0009  | 0.0001    | 0.0005  |                                        | MIN          | 0.0005  | 0.0005  | 0.0011  | 0.0000  | 0.0000    | 0.0003  |
|          | Ca           | 0.0001  | 0.0000  | 0.0000  | 0.0001    | 0.0002    | 0.0000  | 0.0005  | 0.0008    | 0.0000  | 0.0000    | 0.0000  | 0.0005    | 0.0002  |                                        |              | 0.0003  | 0.0000  | 0.0000  | 0.0000  |           | 0.0001  |
|          | INI<br>Sum   | 0.0000  | 2,0001  | 0.0002  |           | 0.0003    | 0.0000  | 0.0000  |           | 0.0000  | 2,0003    | 0.0000  | 2 00002   | 0.0000  |                                        | INI<br>Sum   | 0.0000  |         |         | 2,0001  |           | 0.0010  |
|          | Sum Eo Tot   | 2.0000  | 2.0000  | 2.0000  | 2.0000    | 2.0000    | 2.0000  | 2.0000  | 2.0000    | 2.0000  | 2.0000    | 2.0000  | 2.0000    | 2.0000  |                                        | Sum Eo Tot   | 2.0000  | 2.0000  | 2.0000  | 2.0000  | 2.0000    | 2.0000  |
|          | Sumre for    | 2.0000  | 2.0000  | 2.0000  | 2.0000    | 2.0000    | 2.0000  | 2.0000  | 2.0000    | 2.0000  | 2.0000    | 2.0000  | 2.0000    | 2.0000  |                                        | Sumre for    | 2.0000  | 2.0000  | 2.0000  | 2.0000  | 2.0000    | 2.0000  |
|          | Ov/2Cata     | 2 0004  | 2 1106  |         | 2 0 2 2 0 | 2 1 2 1 7 | 2 0002  | 2 0026  | 2 0005    | 2 1226  | 2 1 2 0 0 | 2 0000  | 2 0004    |         |                                        | Ov/2Cata     | 2 1000  | 2 0076  | 2 0027  | 2 0002  | 2 1 2 2 1 | 2 0001  |
|          | Ox/2Cats     | 2.0894  | 2.1196  | 2.0877  | 2.08/0    | 2.1317    | 2.0993  | 2.0936  | 2.0885    | 2.1226  | 2.1308    | 2.0909  | 2.0884    | 2.1257  |                                        | Ox/2Cats     | 2.1090  | 2.0976  | 2.0927  | 2.0982  | 2.1221    | 2.0901  |
|          | 3-UX         | 0.9106  | 0.8804  | 0.9123  | 1.9130    | 0.8683    | 0.9007  | 0.9064  | 1 0 2 2 0 | 1 7540  | 0.8692    | 1 0102  | 1 0 2 2 2 | 0.8743  |                                        | 3-0x         | 0.8910  | 1 0040  | 0.9073  | 0.9018  | 0.8//9    | 1 0100  |
|          | Fe3+         | 1.8212  | 1./60/  | 1.8240  | 1.8260    | 1./300    |         | 1.812/  | 1.8229    | 1./548  | 1./384    | 1.8183  | 1.8232    | 1.7480  |                                        | Fe3+         | 1.7821  | 1.8048  | 1.8140  | 1.8030  | 1./559    | 1.8199  |
|          |              | 0.0663  | 0.0678  | 0.0644  | 0.0003    | 0.0566    | 0.0560  | 0.0663  | 0.0098    | 0.0552  | 0.0517    | 0.0578  | 0.0593    | 0.0532  |                                        |              | 0.0714  | 0.0529  | 0.0679  | 0.0674  | 0.0529    | 0.0014  |
|          | res+/relot   | 0.9649  | 0.9629  | 0.9659  | 0.9039    | 0.9684    | 0.9699  | 0.9647  | 0.9631    | 0.9695  | 0.9711    | 0.9692  | 0.9685    | 0.9705  |                                        | res+/relot   | 0.9015  | 0.9715  | 0.9039  | 0.9640  | 0.9708    | 0.9674  |
|          | FeSiO3       | 0.0000  | 0.0000  | 0.0000  | 0.0000    | 0.0000    | 0.0000  | 0.0236  | 0.0000    | 0.0000  | 0.0000    | 0.0159  | 0.0000    | 0.0680  |                                        | FeSiO3       | 0.0105  | 0.0661  | 0.0000  | 0.0000  | 0.0285    | 0.0500  |
|          | b FeNbO3     | 0.0284  | 0.0000  | 0.0000  | 0.0000    | 0.0107    | 0.0196  | 0.0000  | 0.0699    | 0.0000  | 0.0000    | 0.0700  | 0.0000    | 0.0479  |                                        | b FeNbO3     | 0.0000  | 0.0000  | 0.1184  | 0.0000  | 0.0035    | 0.0000  |
|          | c FeTaO3     | 0.2093  | 0.2351  | 0.3499  | 0.3238    | 0.1884    | 0.2887  | 0.6790  | 0.2199    | 0.4535  | 0.0717    | 0.3834  | 0.3433    | 0.3029  |                                        | c FeTaO3     | 0.4033  | 0.2903  | 0.3368  | 0.0921  | 0.0000    | 0.0000  |
|          | FeTiO3       | 6.3116  | 6.4666  | 5.9713  | 6.4012    | 5.3937    | 5.1882  | 5.7053  | 6.5920    | 4.9116  | 5.0780    | 5.1606  | 5.4724    | 4.7805  |                                        | FeTiO3       | 6.5943  | 4.8384  | 6.1840  | 6.6138  | 5.2553    | 6.0851  |
| End      | MgTiO3       | 1.7557  | 4.5621  | 1.7060  | 1.3458    | 6.7911    | 3.7727  | 2.2232  | 1.2958    | 6.2905  | 7.3079    | 2.8293  | 2.4147    | 6.6482  | End                                    | MgTiO3       | 3.2128  | 3.9236  | 1.9011  | 2.6151  | 5.3892    | 2.2261  |
| Members  | MnTiO3       | 0.0421  | 0.0936  | 0.0936  | 0.0000    | 0.0356    | 0.0735  | 0.0000  | 0.0000    | 0.0265  | 0.0000    | 0.0942  | 0.0089    | 0.0465  | Members                                | MnTiO3       | 0.0511  | 0.0515  | 0.1076  | 0.0000  | 0.0000    | 0.0267  |
|          | CaTiO3       | 0.0084  | 0.0000  | 0.0000  | 0.0086    | 0.0225    | 0.0000  | 0.0534  | 0.0764    | 0.0000  | 0.0000    | 0.0028  | 0.0452    | 0.0168  |                                        | CaTiO3       | 0.0253  | 0.0000  | 0.0000  | 0.0000  | 0.0000    | 0.0056  |
|          | NiTiO3       | 0.0000  | 0.0063  | 0.0233  | 0.0000    | 0.0296    | 0.0000  | 0.0000  | 0.0000    | 0.0000  | 0.0337    | 0.0000  | 0.0233    | 0.0000  |                                        | NiTiO3       | 0.0000  | 0.0000  | 0.0000  | 0.1056  | 0.0522    | 0.1649  |
|          | Sum          | 8.3555  | 11.3638 | 8.1441  | 8.0794    | 12.4715   | 9.3428  | 8.6844  | 8.2540    | 11.6821 | 12.4913   | 8.5562  | 8.3080    | 11.9107 |                                        | Sum          | 10.2973 | 9.1699  | 8.6479  | 9.4267  | 10.7287   | 8.5585  |
|          |              |         |         |         |           |           |         |         |           |         |           |         |           |         |                                        |              |         |         |         |         |           |         |
|          | Fe2O3        | 91.0610 | 88.0366 | 91.2293 | 91.2984   | 86.8278   | 90.0700 | 90.6373 | 91.1459   | 87.7376 | 86.9220   | 90.9143 | 91.1609   | 87.4285 |                                        | Fe2O3        | 89.1033 | 90.2387 | 90.7306 | 90.1794 | 87.7944   | 90.9935 |
|          | Cr203        | 0.1500  | 0.1488  | 0.1446  | 0.1127    | 0.1670    | 0.1560  | 0.2197  | 0.1932    | 0.1451  | 0.1306    | 0.1162  | 0.1325    | 0.1168  |                                        | Cr2O3        | 0.1327  | 0.1255  | 0.1674  | 0.0571  | 0.0523    | 0.0800  |
|          | V2O3         | 0.1280  | 0.1561  | 0.1487  | 0.1281    | 0.1841    | 0.1382  | 0.1713  | 0.1515    | 0.1774  | 0.1965    | 0.1528  | 0.1608    | 0.1866  |                                        | V2O3         | 0.1808  | 0.1400  | 0.1517  | 0.1727  | 0.1560    | 0.1634  |
|          | AI2O3        | 0.3054  | 0.2947  | 0.3334  | 0.3814    | 0.3495    | 0.2930  | 0.2873  | 0.2554    | 0.2578  | 0.2596    | 0.2605  | 0.2379    | 0.3574  |                                        | AI2O3        | 0.2859  | 0.3258  | 0.3025  | 0.1641  | 1.2686    | 0.2045  |
|          | Sum          | 91.6445 | 88.6362 | 91.8559 | 91.9206   | 87.5285   | 90.6572 | 91.3156 | 91.7460   | 88.3179 | 87.5087   | 91.4438 | 91.6920   | 88.0893 |                                        | Sum          | 89.7027 | 90.8301 | 91.3521 | 90.5733 | 89.2713   | 91.4415 |
|          | Total        | 100     | 100     | 100     | 100       | 100       | 100     | 100     | 100       | 100     | 100       | 100     | 100       | 100     |                                        | Total        | 100     | 100     | 100     | 100     | 100       | 100     |
|          | 2Ti/*        | 0.0836  | 0.1136  | 0.0814  | 0.0808    | 0.1247    | 0.0934  | 0.0866  | 0.0825    | 0.1168  | 0.1249    | 0.0854  | 0.0831    | 0.1185  |                                        | 2Ti/*        | 0.1029  | 0.0911  | 0.0865  | 0.0943  | 0.1070    | 0.0851  |
|          | ,<br>Cr/*    | 0.0015  | 0.0015  | 0.0014  | 0.0011    | 0.0017    | 0.0016  | 0.0022  | 0.0019    | 0.0015  | 0.0013    | 0.0012  | 0.0013    | 0.0012  |                                        | ,<br>Cr/*    | 0.0013  | 0.0013  | 0.0017  | 0.0006  | 0.0005    | 0.0008  |
| Plottina | V/*          | 0.0026  | 0.0031  | 0.0030  | 0.0026    | 0.0037    | 0.0028  | 0.0034  | 0.0030    | 0.0035  | 0.0039    | 0.0031  | 0.0032    | 0.0037  | Plottina                               | ,<br>V/*     | 0.0036  | 0.0028  | 0.0030  | 0.0035  | 0.0031    | 0.0033  |
|          |              |         |         |         |           |           |         |         |           |         |           |         |           |         | ······································ | ,            |         |         |         |         |           |         |

Table 2. EMP analyses of titanohematite, cation formulae, end-member calculations and plotting ratios.

## Table 3 (continued). EMP analyses of titanohematite, cation formulae, end-member cale

| Ratios | Al/*<br>Mg/# | 0.0031<br>0.0175 | 0.0029<br>0.0456 | 0.0033<br>0.0170 | 0.0038<br>0.0134 | 0.0035<br>0.0679 | 0.0029<br>0.0377 | 0.0029<br>0.0222 | 0.0026<br>0.0129 | 0.0026<br>0.0628 | 0.0026<br>0.0731 | 0.0026<br>0.0282 | 0.0024<br>0.0241 | 0.0036<br>0.0664 | Ratios | Al/*<br>Mg/#  | 0.0029<br>0.0321 | 0.0033<br>0.0392 | 0.0030<br>0.0190 | 0.0016<br>0.0261 | 0.0127<br>0.0539 | 0.0020<br>0.0223 |
|--------|--------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|---------------|------------------|------------------|------------------|------------------|------------------|------------------|
| ,      | *=2Ti+R3+    | 2.0000           | 2.0000           | 2.0000           | 2.0000           | 2.0000           | 2.0000           | 1.9995           | 2.0000           | 2.0000           | 2.0000           | 1.9997           | 2.0000           | 1.9986           |        | *=2Ti+R3+     | 1.9998           | 1.9987           | 2.0000           | 2.0000           | 1.9994           | 1.9990           |
| #=     | R2++(R3+/2)  | 1.0008           | 1.0008           | 1.0012           | 1.0011           | 1.0007           | 1.0010           | 1.0023           | 1.0010           | 1.0015           | 1.0002           | 1.0015           | 1.0011           | 1.0012           |        | #=R2++(R3+/2] | 1.0013           | 1.0010           | 1.0015           | 1.0003           | 1.0000           | 1.0000           |

Note: Wt% analyses in italics are below MDL (see Table 1A). a Nb and Ta analyses, made due to presence of rutile, are suspect. Greater abundance of Ta than Nb is contrary to most occurences. b 4/3 Fe2+ 2/3 Nb5+ O3 c 4/3 Fe2+ 2/3 Ta5+ O3

b 4/3 Fe2+ 2/3 Nb5+ O3

## c 4/3 Fe2+ 2/3 Ta5+ O3

### culations and plotting ratios.

| 5<br>20                                                                                                    | 5<br>21                                                                                                    | Traverse<br>Point                                                       | 6<br>1                                                                                           |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 0.031<br>4.648<br>0.115<br>0.115<br>0.159                                                                  | 0.014<br>4.162<br>0.082<br>0.097<br>0.113                                                                  | SiO2<br>TiO2<br>Al2O3<br>Cr2O3<br>V2O3<br>a Nb2O5                       | 6.772<br>0.139<br>0.08<br>0.146<br>0.016                                                         |
| <i>0.035</i><br>90.773<br>84.729<br>3.051                                                                  | 91.854<br>85.57<br>2.919                                                                                   | Fe2O3<br>Fe Tot (FeO)<br>FeO<br>MnO                                     | 88.601<br>82.192<br>2.468                                                                        |
| 0.662                                                                                                      | <i>0.002</i><br>0.433                                                                                      | MgO<br>CaO                                                              | 2.04                                                                                             |
| <i>0.009</i><br>90.503                                                                                     | <i>0.069</i><br>90.542                                                                                     | NiO<br>ZnO<br>Total                                                     | <i>0.003</i><br>91.388                                                                           |
| 99.597                                                                                                     | 99.745                                                                                                     | Corr.Total                                                              | 100.265                                                                                          |
| 0.0008<br>0.0923<br>0.0036<br>0.0024<br>0.0034<br>0.0000<br>0.0003<br>1.8037<br>1.8710<br>0.0674<br>0.0261 | 0.0004<br>0.0827<br>0.0026<br>0.0020<br>0.0024<br>0.0000<br>0.0000<br>1.8268<br>1.8914<br>0.0645<br>0.0171 | Si<br>Ti<br>Al<br>Cr<br>V<br>Nb5+<br>Fe3+<br>Fe Tot<br>Fe2+<br>Mg<br>Mn | 0.0000<br>0.1319<br>0.0042<br>0.0016<br>0.0030<br>0.0002<br>1.7267<br>1.7802<br>0.0535<br>0.0787 |
| 0.0000<br>0.0000<br>0.0002<br>2.0000                                                                       | 0.0000<br>0.0000<br>0.0015<br>2.0000                                                                       | Ca<br>Ni<br>Zn<br>Sum                                                   | 0.0001                                                                                           |
| 2.0000                                                                                                     | 2.0000                                                                                                     | Sum FeTot                                                               | 2.0000                                                                                           |
| 2.0982<br>0.9018<br>1.8037<br>0.0674<br>0.9640                                                             | 2.0866<br>0.9134<br>1.8268<br>0.0645<br>0.9659                                                             | Ox/2Cats<br>3-Ox<br>Fe3+<br>Fe2+<br>Fe3+/FeTot                          | 2.1366<br>0.8634<br>1.7267<br>0.0535<br>0.9700                                                   |
| 0.0819<br>0.0000<br>0.0377<br>6.6050<br>2.6055<br>0.0000                                                   | 0.0370<br>0.0000<br>0.0000<br>6.4153<br>1.7058<br>0.0045                                                   | FeSiO3<br>b FeNbO3<br>FeTiO3<br>MgTiO3<br>MnTiO3<br>CaTiO3              | 0.0000<br>0.0281<br>5.3081<br>7.8749                                                             |
| 0.0000<br>0.0191<br>9.3491                                                                                 | 0.0000<br>0.1467<br>8.3092                                                                                 | ZnTiO3<br>NiTiO3<br>Sum                                                 | 0.0000<br>0.0062<br>13.2173                                                                      |
| 90.1836<br>0.1200<br>0.1683<br>0.1789<br>90.6509<br>100                                                    | 91.3420<br>0.1013<br>0.1197<br>0.1277<br>91.6908<br>100                                                    | Fe2O3<br>Cr2O3<br>V2O3<br>Al2O3<br>Sum<br>Total                         | 86.3370<br>0.0819<br>0.1516<br>0.2121<br>86.7827<br>100                                          |
| 0.0927<br>0.0012<br>0.0034                                                                                 | 0.0828<br>0.0010<br>0.0024                                                                                 | 2Ti/*<br>Cr/*<br>V/*                                                    | 0.1322<br>0.0008<br>0.0030                                                                       |

| 0.0018 | 0.0013 Al/*          | 0.0021 | 0.0019 | 0.0016 |
|--------|----------------------|--------|--------|--------|
| 0.0261 | 0.0171 Mg/#          | 0.0787 | 0.0678 | 0.0286 |
| 1.9984 | 1.9993 *=2Ti+R3+     | 2.0000 | 2.0006 | 2.0007 |
| 1.0001 | 1.0000 #=R2++(R3+/2) | 1.0001 | 1.0004 | 1.0000 |

|                   | Point        | 5        | 8       | 12       | 13       | 17       | 18      | 20      | 22       |
|-------------------|--------------|----------|---------|----------|----------|----------|---------|---------|----------|
| Feb. 6-8,         | 0            | 60.00    | 60.01   | 60.00    | 60.00    | 60.00    | 60.00   | 60.00   | 60.00    |
| 2007              | Ti           | 1.36     | 1.28    | 1.22     | 1.52     | 1.37     | 1.59    | 1.22    | 1.42     |
|                   | Cr           | 0.03     | 0.05    | 0.02     | 0.04     | 0.05     | 0.03    | 0.03    | 0.04     |
| Atom %            | Mg           | 0.36     | 0.41    | 0.52     | 0.57     | 0.93     | 0.71    | 0.69    | 0.58     |
|                   | Fe           | 38.25    | 38.26   | 38.24    | 37.87    | 37.65    | 37.66   | 38.05   | 37.97    |
|                   | Total        | 100.00   | 100.01  | 100.00   | 100.00   | 100.00   | 99.99   | 99.99   | 100.01   |
|                   | Ti           | 0.0680   | 0.0640  | 0.0610   | 0.0760   | 0.0685   | 0.0795  | 0.0610  | 0.0710   |
|                   | Cr           | 0.0015   | 0.0025  | 0.0010   | 0.0020   | 0.0025   | 0.0015  | 0.0015  | 0.0020   |
|                   | Fe3+         | 1.8625   | 1.8692  | 1.8770   | 1.8460   | 1.8605   | 1.8390  | 1.8760  | 1.8565   |
| Cations/2         | Mg           | 0.0180   | 0.0205  | 0.0260   | 0.0285   | 0.0465   | 0.0355  | 0.0345  | 0.0290   |
|                   | (Fe Total)   | 1.9125   | 1.9127  | 1.9120   | 1.8935   | 1.8825   | 1.8830  | 1.9025  | 1.8985   |
|                   | Fe2+         | 0.0500   | 0.0435  | 0.0350   | 0.0475   | 0.0220   | 0.0440  | 0.0265  | 0.0420   |
|                   | (Total Cats) | 2.0000   | 1.9997  | 2.0000   | 2.0000   | 2.0000   | 1.9995  | 1.9995  | 2.0005   |
|                   | Total Cats   | 2.0000   | 1.9997  | 2.0000   | 2.0000   | 2.0000   | 1.9995  | 1.9995  | 2.0005   |
|                   | Total Ox a   | 2.0688   | 2.0649  | 2.0615   | 2.0770   | 2.0698   | 2.0798  | 2.0613  | 2.0725   |
|                   | TotalFe3+ b  | 1.8625   | 1.8692  | 1.8770   | 1.8460   | 1.8605   | 1.8390  | 1.8760  | 1.8565   |
|                   | MgTiO3       | 1.8000   | 2.0497  | 2.6000   | 2.8500   | 4.6500   | 3.5500  | 3.4500  | 2.9000   |
| Percentages       | FeTiO3       | 5.0000   | 4.3493  | 3.5000   | 4.7500   | 2.2000   | 4.4000  | 2.6500  | 4.2000   |
| of End<br>Members | Sum          | 6.8000   | 6.3989  | 6.1000   | 7.6000   | 6.8500   | 7.9500  | 6.1000  | 7.1000   |
| Tiembero          | Fe2O3        | 93.1250  | 93.4594 | 93.8500  | 92.3000  | 93.0250  | 91.9500 | 93.8000 | 92.8250  |
|                   | Cr2O3        | 0.0750   | 0.1250  | 0.0500   | 0.1000   | 0.1250   | 0.0750  | 0.0750  | 0.1000   |
|                   | Sum          | 93.2000  | 93.5844 | 93.9000  | 92.4000  | 93.1500  | 92.0250 | 93.8750 | 92.9250  |
|                   | Total        | 100.0000 | 99.9833 | 100.0000 | 100.0000 | 100.0000 | 99.9750 | 99.9750 | 100.0250 |
| Plotting          | 2Ti/*        | 0.0680   | 0.0640  | 0.0610   | 0.0760   | 0.0685   | 0.0795  | 0.0610  | 0.0710   |
| Ratios            | Cr/*         | 0.0008   | 0.0013  | 0.0005   | 0.0010   | 0.0013   | 0.0008  | 0.0008  | 0.0010   |
|                   | Mg/#         | 0.0180   | 0.0205  | 0.0260   | 0.0285   | 0.0465   | 0.0355  | 0.0345  | 0.0290   |
|                   | *=2Ti+R3+    | 2.0000   | 1.9997  | 2.0000   | 2.0000   | 2.0000   | 1.9995  | 1.9995  | 2.0005   |
|                   | #=R2+R3/2    | 1.0000   | 0.9998  | 1.0000   | 1.0000   | 1.0000   | 0.9998  | 0.9998  | 1.0003   |
|                   | Fe3+/FeTot   | 0.97386  | 0.97726 | 0.98169  | 0.97491  | 0.98831  | 0.97663 | 0.98607 | 0.97788  |

Table 3. TEM-EDX analyses, cation formulae, percentages of end members, and plotting ratios of titanohematite.

a = Total oxygen associated with each cation with Fe as FeO. b 2 (3-Total Ox)

|                     | Point            | 1       | 2         | 3       | 4       | 5       | 12      | 13      | 14      | 15      | 16      | 21      | 23      |
|---------------------|------------------|---------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Feb.6-8,            | 0                | 60.00   | 60.00     | 60.00   | 60.00   | 60.00   | 60.00   | 60.00   | 60.00   | 60.00   | 60.00   | 60.00   | 60.00   |
| 2007                | Ti               | 19.04   | 19.48     | 19.77   | 20.13   | 20.96   | 19.36   | 19.53   | 21.27   | 20.72   | 20.05   | 20.48   | 20.73   |
|                     | Cr               | 0.03    | 0.00      | 0.03    | 0.02    | 0.03    | 0.08    | 0.00    | 0.03    | 0.00    | 0.04    | 0.02    | 0.00    |
|                     | Ni               | 0.03    | 0.00      | 0.00    | 0.01    | 0.03    | 0.00    | 0.04    | 0.02    | 0.01    | 0.04    | 0.02    | 0.00    |
| Atom %              | Mg               | 13.75   | 14.90     | 14.32   | 14.42   | 13.61   | 15.03   | 13.50   | 13.62   | 14.42   | 14.23   | 12.30   | 13.45   |
|                     | Fe               | 7.15    | 5.55      | 5.84    | 5.35    | 5.35    | 5.50    | 6.91    | 5.07    | 4.83    | 5.62    | 7.15    | 5.79    |
|                     | Mn               | 0.00    | 0.07      | 0.04    | 0.06    | 0.04    | 0.03    | 0.03    | 0.00    | 0.02    | 0.01    | 0.03    | 0.02    |
|                     | Total            | 100.00  | 100.00    | 100.00  | 100.00  | 100.00  | 100.00  | 100.00  | 100.00  | 100.00  | 100.00  | 100.00  | 100.00  |
|                     | Ti               | 0.952   | 0.974     | 0.989   | 1.007   | 1.048   | 0.968   | 0.977   | 1.064   | 1.036   | 1.003   | 1.024   | 1.037   |
| Cations/2           | Cr               | 0.002   | 0.000     | 0.002   | 0.001   | 0.002   | 0.004   | 0.000   | 0.002   | 0.000   | 0.002   | 0.001   | 0.000   |
|                     | Ni               | 0.002   | 0.000     | 0.000   | 0.001   | 0.002   | 0.000   | 0.002   | 0.001   | 0.001   | 0.002   | 0.001   | 0.000   |
|                     | Fe3+             | 0.095   | 0.052     | 0.022   | -0.015  | -0.096  | 0.060   | 0.047   | -0.128  | -0.072  | -0.008  | -0.049  | -0.073  |
|                     | Mg               | 0.688   | 0.745     | 0.716   | 0.721   | 0.681   | 0.752   | 0.675   | 0.681   | 0.721   | 0.712   | 0.615   | 0.673   |
|                     | (Fe Total)       | 0.358   | 0.278     | 0.292   | 0.268   | 0.268   | 0.275   | 0.346   | 0.254   | 0.242   | 0.281   | 0.358   | 0.290   |
|                     | Fe2+             | 0.263   | 0.225     | 0.270   | 0.282   | 0.364   | 0.215   | 0.298   | 0.382   | 0.314   | 0.289   | 0.407   | 0.363   |
|                     | Mn               | 0.000   | 0.004     | 0.002   | 0.003   | 0.002   | 0.002   | 0.002   | 0.000   | 0.001   | 0.001   | 0.002   | 0.001   |
|                     | (Total Cats)     | 2.000   | 2.000     | 2.000   | 2.000   | 2.001   | 2.000   | 2.001   | 2.001   | 2.000   | 2.000   | 2.000   | 2.000   |
|                     | Total Cats       | 2.000   | 2.000     | 2.000   | 2.000   | 2.001   | 2.000   | 2.001   | 2.001   | 2.000   | 2.000   | 2.000   | 2.000   |
|                     | Total Ox a       | 2.953   | 2.974     | 2.989   | 3.007   | 3.050   | 2.970   | 2.977   | 3.065   | 3.036   | 3.003   | 3.025   | 3.036   |
|                     | Total Fe3+ b     | 0.095   | 0.052     | 0.022   | -0.015  | -0.096  | 0.060   | 0.047   | -0.128  | -0.072  | -0.008  | -0.049  | -0.073  |
|                     | NiTiO3           | 0.150   | 0.000     | 0.000   | 0.050   | 0.150   | 0.000   | 0.200   | 0.100   | 0.050   | 0.200   | 0.100   | 0.000   |
|                     | MgTiO3           | 68.750  | 74.500    | 71.600  | 72.100  | 68.050  | 75.150  | 67.500  | 68.100  | 72.100  | 71.150  | 61.500  | 67.250  |
|                     | FeTiO3           | 26.300  | 22.550    | 27.050  | 28.200  | 36.400  | 21.500  | 29.800  | 38.150  | 31.350  | 28.850  | 40.650  | 36.300  |
|                     | MnTiO3           | 0.000   | 0.350     | 0.200   | 0.300   | 0.200   | 0.150   | 0.150   | 0.000   | 0.100   | 0.050   | 0.150   | 0.100   |
| % of End<br>Members | Sum              | 95.200  | 97.400    | 98.850  | 100.650 | 104.800 | 96.800  | 97.650  | 106.350 | 103.600 | 100.250 | 102.400 | 103.650 |
|                     | Fe2O3            | 4.725   | 2.600     | 1.075   | -0.725  | -4.825  | 3.000   | 2.375   | -6.400  | -3.600  | -0.375  | -2.450  | -3.675  |
|                     | Cr203            | 0.075   | 0.000     | 0.075   | 0.050   | 0.075   | 0.200   | 0.000   | 0.075   | 0.000   | 0.100   | 0.050   | 0.000   |
|                     | Sum              | 4.800   | 2.600     | 1.150   | -0.675  | -4.750  | 3.200   | 2.375   | -6.325  | -3.600  | -0.275  | -2.400  | -3.675  |
|                     | Total            | 100.000 | 100.000   | 100.000 | 99.975  | 100.050 | 100.000 | 100.025 | 100.025 | 100.000 | 99.975  | 100.000 | 99.975  |
| Plotting            | 2Ti/*            | 0.952   | 0.974     | 0.989   | 1.007   | 1.047   | 0.968   | 0.976   | 1.063   | 1.036   | 1.003   | 1.024   | 1.037   |
| Ratios              | Cr/*             | 0.001   | 0.000     | 0.001   | 0.001   | 0.001   | 0.002   | 0.000   | 0.001   | 0.000   | 0.001   | 0.001   | 0.000   |
|                     | Mg/#             | 0.688   | 0.745     | 0.716   | 0.721   | 0.680   | 0.752   | 0.675   | 0.681   | 0.721   | 0.712   | 0.615   | 0.673   |
|                     | *=2Ti+R3+        | 2.000   | 2.000     | 2.000   | 2.000   | 2.001   | 2.000   | 2.001   | 2.001   | 2.000   | 2.000   | 2.000   | 2.000   |
|                     | #=R2++(R3+/2)    | 1.000   | 1.000     | 1.000   | 1.000   | 1.001   | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   | 1.000   |
|                     | a = Total oxygen |         | b 2 (3-To | tal Ox) |         |         |         |         |         |         |         |         |         |

Table 4. TEM-EDX analyses, cation formulae, percentages of end members, and plotting ratios of ferroan geikielite.

|        | Point        | 2       | 3       | 5       | 7       | 9       | 10     | 2      |
|--------|--------------|---------|---------|---------|---------|---------|--------|--------|
|        | SiO2         |         | 0.004   | 0.004   |         |         | 0.017  | 0.011  |
|        | TiO2         |         |         | 0.028   |         | 0.002   | 0.086  | 0.04   |
|        | Al2O3        |         |         | 0.058   | 0.022   |         | 0.023  | 0.025  |
| Wt%    | Cr2O3        | 0.012   | 0.014   |         |         | 0.012   |        | 0.035  |
| Oxides | V2O3         | 0.052   | 0.044   | 0.137   | 0.054   | 0.075   | 0.116  | 0.256  |
|        | Fe Tot (FeO) | 90.028  | 90.037  | 90.047  | 89.898  | 90.089  | 89.602 | 89.876 |
|        | MnO          | 0.021   | 0.07    | 0.023   | 0.006   | 0.016   | 0.019  |        |
|        | MgO          | 0.065   | 0.011   | 0.011   |         | 0.034   | 0.011  |        |
|        | CaO          | 0.013   | 0.01    | 0.033   | 0.015   | 0.01    | 0.017  |        |
|        | ZnO          |         |         |         |         | 0.11    |        |        |
|        | NiO          |         |         | 0.011   | 0.042   | 0.003   | 0.016  | 0.008  |
|        | Total        | 90.191  | 90.19   | 90.352  | 90.037  | 90.351  | 89.907 | 90.251 |
|        | Si           | 0.0000  | 0.0001  | 0.0001  | 0.0000  | 0.0000  | 0.0005 | 0.0003 |
|        | Ti           | 0.0000  | 0.0000  | 0.0006  | 0.0000  | 0.0000  | 0.0017 | 0.0008 |
|        | Al           | 0.0000  | 0.0000  | 0.0018  | 0.0007  | 0.0000  | 0.0007 | 0.0008 |
| Cats/2 | Cr           | 0.0003  | 0.0003  | 0.0000  | 0.0000  | 0.0003  | 0.0000 | 0.0007 |
| ,      | V            | 0.0011  | 0.0009  | 0.0029  | 0.0011  | 0.0016  | 0.0025 | 0.0054 |
|        | Fe3+         | 1.9986  | 1.9986  | 1.9940  | 1.9982  | 1.9981  | 1.9925 | 1.9909 |
|        | Mg           | 0.0026  | 0.0004  | 0.0004  | 0.0000  | 0.0013  | 0.0004 | 0.0000 |
|        | Zn           | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0021  | 0.0000 | 0.0000 |
|        | Fe2+         | -0.0034 | -0.0022 | -0.0015 | -0.0015 | -0.0042 | 0.0005 | 0.0009 |
|        | Mn           | 0.0005  | 0.0016  | 0.0005  | 0.0001  | 0.0004  | 0.0004 | 0.0000 |
|        | Ca           | 0.0004  | 0.0003  | 0.0009  | 0.0004  | 0.0003  | 0.0005 | 0.0000 |
|        | Ni           | 0.0000  | 0.0000  | 0.0002  | 0.0009  | 0.0001  | 0.0003 | 0.0002 |
|        | Sum          | 2.0000  | 2.0000  | 2.0000  | 2.0000  | 2.0000  | 2.0000 | 2.0000 |
|        | Ox/2Cats     | 2.0007  | 2.0007  | 2.0030  | 2.0009  | 2.0010  | 2.0038 | 2.0046 |
|        | 3-0x         | 0.9993  | 0.9993  | 0.9970  | 0.9991  | 0.9990  | 0.9962 | 0.9954 |
|        | Fe3+         | 1.9986  | 1.9986  | 1.9940  | 1.9982  | 1.9981  | 1.9925 | 1.9909 |
|        | Fe2+         | -0.0034 | -0.0022 | -0.0015 | -0.0015 | -0.0042 | 0.0005 | 0.0009 |
|        | Fe3+/FeTot   | 1.0017  | 1.0011  | 1.0007  | 1.0007  | 1.0021  | 0.9998 | 0.9995 |
|        | NiTiO3       | 0.0000  | 0.0000  | 0.0234  | 0.0897  | 0.0064  | 0.0342 | 0.0170 |
|        | FeSiO3       | 0.0000  | 0.0106  | 0.0106  | 0.0000  | 0.0000  | 0.0452 | 0.0291 |
|        | MgTiO3       | 0.2567  | 0.0435  | 0.0434  | 0.0000  | 0.1341  | 0.0436 | 0.0000 |
|        | ZnTiO3       | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.2150  | 0.0000 | 0.0000 |
|        | FeTiO3       | -0.3408 | -0.2291 | -0.1562 | -0.1459 | -0.4157 | 0.0029 | 0.0627 |

Table 5. EMP analyses, structural formulae, end members, and plotting ratios for retrograde vein hematite.

| Percentages | MnTiO3 | 0.0471   | 0.1572   | 0.0515   | 0.0135   | 0.0359   | 0.0428   | 0.0000   |
|-------------|--------|----------|----------|----------|----------|----------|----------|----------|
| of End      | CaTiO3 | 0.0369   | 0.0284   | 0.0936   | 0.0427   | 0.0284   | 0.0484   | 0.0000   |
| Members     | Sum    | 0.0000   | 0.0106   | 0.0663   | 0.0000   | 0.0040   | 0.2172   | 0.1089   |
|             |        |          |          |          |          |          |          |          |
|             | Fe2O3  | 99.9322  | 99.9280  | 99.6980  | 99.9081  | 99.9039  | 99.6231  | 99.5435  |
|             | Cr2O3  | 0.0126   | 0.0147   | 0.0000   | 0.0000   | 0.0126   | 0.0000   | 0.0367   |
|             | V2O3   | 0.0552   | 0.0468   | 0.1453   | 0.0575   | 0.0796   | 0.1237   | 0.2720   |
|             | AI2O3  | 0.0000   | 0.0000   | 0.0904   | 0.0344   | 0.0000   | 0.0360   | 0.0390   |
|             | Sum    | 100.0000 | 99.9894  | 99.9337  | 100.0000 | 99.9960  | 99.7828  | 99.8911  |
|             | Total  | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 | 100.0000 |
|             |        |          |          |          |          |          |          |          |
|             | 2Ti/*  | 0.0000   | 0.0000   | 0.0006   | 0.0000   | 0.0000   | 0.0017   | 0.0008   |
| Plotting    | Cr/*   | 0.0001   | 0.0001   | 0.0000   | 0.0000   | 0.0001   | 0.0000   | 0.0004   |
| Ratios      | V/*    | 0.0011   | 0.0009   | 0.0029   | 0.0011   | 0.0016   | 0.0025   | 0.0054   |
|             | Al/*   | 0.0000   | 0.0000   | 0.0009   | 0.0003   | 0.0000   | 0.0004   | 0.0004   |
|             | Mg/#   | 0.0026   | 0.0004   | 0.0004   | 0.0000   | 0.0013   | 0.0004   | 0.0000   |
|             | *      | 2.0000   | 1.9998   | 1,9998   | 2.0000   | 2.0064   | 1,9991   | 1.9994   |
|             | #      | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   | 1.0000   |
|             |        |          |          |          |          |          |          |          |

Note: Wt% analyses in italics are below MDL (see Table 1A). \* =2Ti+R3+ # =R2+ +(R3+/2) Table 6. Lattice parameters and measured Néel temperatures of compositions close to X FeTiO3 = 0.84 and above.

|                                                                                                                                                                                                       | <b>a</b> (Å)                        | <b>c</b> (Å) | V(Å <sup>3</sup> ) | $T_N$                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------|--------------------|------------------------------|
| Synthetic end member<br>(Wechsler and Prewitt 1984)<br>X Ilm =1.00 X Hem = 0                                                                                                                          | 5.0884                              | 14.0855      | 315.84             | 57 K                         |
| Burton et al. 2008<br>Synthetic<br>X Ilm = 0.974, X Hem = 0.026                                                                                                                                       | 5.0869                              | 14.0667      | 315.23             | 43 K                         |
| Burton et al. 2008<br>Synthetic<br>X Ilm = 0.915, X Hem 0.085                                                                                                                                         | 5.0843                              | 14.0342      | 314.18             | 40 K                         |
| McEnroe et al. 2007b<br>Allard Lake Quebec, AL36b<br>X Ilm = 0.84, X Hem = 0.02,<br>X Geik = 0.14                                                                                                     | 5.0828                              | 14.0498      | 314.34             | 43 K                         |
| Robinson et al. 2006<br>Pramsknuten, Egersund, Norway<br>X Ilm = $0.743$ (incl. 0.005 MnTiO <sub>3</sub> )<br>X Hem = $0.045$ (incl. 0.0015 Cr <sub>2</sub> O <sub>3</sub> , 0.00<br>X Geik = $0.212$ | 020 V <sub>2</sub> O <sub>3</sub> ) |              |                    | ~40 K<br>41.3 K <sup>a</sup> |

<sup>a</sup> Brok et al. 2014 by single-crystal neutron diffraction.