1 Revision 2

2 The spin state of iron in Fe³⁺-bearing Mg-perovskite and its crystal chemistry at

- 3 high pressure
- 4

5 I	[zumi	Mashino ^{1,*} ,	Eiji	Ohtani ^{1,2} ,	Naohisa	Hirao ³ ,	Takaya	Mitsui ⁴ ,	Ryo	Masuda ⁵ ,
-----	-------	--------------------------	------	-------------------------	---------	----------------------	--------	-----------------------	-----	-----------------------

6 Makoto Seto⁵, Takeshi Sakai^{1,6}, Suguru Takahashi¹, Satoshi Nakano⁷

 $\mathbf{7}$

- ⁸ ¹Department of Earth and Planetary Materials Science, Graduate School of Science,
- 9 Tohoku University, Sendai 980-8578, Japan.
- ¹⁰ ²V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy
- 11 of Sciences, Koptyuga Ave., 3, Novosibirsk, 630090, Russia
- ³ Japan Synchrotron Radiation Institute, Sayo, Hyogo 679-5198, Japan.
- ⁴Japan Atomic Energy Agency, Sayo, Hyogo 679-5148, Japan.
- ⁵Research Reactor Institute, Kyoto University, Kumatori, Sennan-gun, Osaka 590-0494,
- 15 Japan
- ⁶Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan.
- ⁷ National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044,
- 18 Japan.

20 Abstract

21	Valence, spin states and crystallographic sites of Fe in (Mg,Fe)SiO ₃ perovskite
22	were investigated using energy-domain ⁵⁷ Fe-synchrotron Mössbauer spectroscopy
23	and powder X-ray diffraction up to 86 GPa. The volumes of Fe ³⁺ -bearing
24	perovskite in this study are slightly smaller than those of Mg-endmember
25	perovskite. Our Mössbauer data suggest that Fe ³⁺ prefers A sites coupled with Mg
26	vacancies, which is consistent with previous data at ambient conditions. Fe ³⁺ in the
27	A site remains in a high spin state up to 86 GPa, and some fraction of the A site is
28	occupied by Fe ²⁺ at pressures above 30 GPa. Fe ²⁺ in the A sites is also in a high
29	spin state up to 86 GPa. The coupled substitution from Mg ²⁺ to a high spin state of
30	Fe ³⁺ and Mg ²⁺ vacancy would make the volume of perovskite smaller than that of
31	Mg-endmember perovskite. If the lower mantle is saturated in silica, perovskite
32	containing high spin Fe ³⁺ in A site has a higher density. Such silica oversaturated
33	regions could sink by the density difference.

34

35 Keywords: perovskite, ferric iron, spin state, Mössbauer spectroscopy, X-ray
 36 diffraction

38 Introduction

39	The Earth's lower mantle is composed mainly of iron-bearing magnesium silicate
40	perovskite (Pv, (Mg,Fe)SiO ₃) and ferropericlase (Fp, (Mg,Fe)O). The effects of iron in
41	these mantle materials are fundamental to understanding the deep mantle (e.g., Stixrude
42	et al., 1992). A spin transition in the lower mantle minerals can change several
43	important physical properties of the deep lower mantle regions, such as the thermal
44	conductivity and partitioning behavior between Mg and Fe (Badro et al., 2003; 2004).
45	Previous studies (e.g., McCammon, 1997) revealed that a large amount of ferric iron
46	Fe^{3+} , ca. ~50%, could exist in the lower mantle when aluminum is contained in Pv.
47	Ferric iron in Pv influences the electrical conductivity and controls the thermal
48	conductivity in the lower mantle (Xu et al., 1998; Goncharov et al., 2008; Keppler et al.,
49	2008).
50	By using nuclear forward scattering of synchrotron radiation, Catalli et al. (2010)
51	reported that the population of the LS state of ferric iron Fe^{3+} in octahedral sites

52 (hereafter B sites) of (Mg, Fe^{3+})SiO₃ gradually increases with pressure, and the spin 53 transition becomes complete at 50–60 GPa. Grocholski *et al.* (2009) found that Fe^{2+} 54 exists in two different environments, but both are likely HS along with Fe^{3+} in B sites

55	and possibly small amounts of LS Fe^{2+} and LS Fe^{3+} up to 65 GPa. In contrast, ferric iron
56	Fe^{3+} in dodecahedral sites (hereafter A sites) remains in the HS state under conditions
57	relevant to the lower mantle. Recently Lin et al. (2012) showed the HS to LS transition
58	of Fe^{3+} in the B sites in the range of 13–24 GPa in Al-free (Mg, Fe)SiO ₃ -Pv.
59	Additionally, some experimental studies have proposed that Fe ³⁺ undergoes the HS to
60	LS transition in Al-bearing Pv (Fujino et al., 2012; Catalli et al., 2011).
61	Computational studies have predicted that the LS state of Fe^{3+} in B sites of Pv is
62	stable at lower mantle pressures and the HS-LS transition of Fe ³⁺ in A sites occurs in the
63	range from 60 to 150 GPa (Zhang and Oganov, 2006; Stackhouse et al., 2007).
64	According to recent calculations using density functional theory and the Hubbard
65	parameter, Fe ³⁺ in the B site of Pv undergoes a crossover from HS to LS state at 50–60
66	GPa, and Fe ³⁺ in the A site remains in the HS state up to 150 GPa (Hsu <i>et al.</i> , 2012). In
67	Pv structures, $A^{2+}B^{4+}O_3$, the incorporation of trivalent ions (M^{3+}) occurs by two
68	mechanisms: $A^{2+} + B^{4+} = M^{3+} + M^{3+}$ and $B^{4+} = M^{3+} + 0.5V_0^{-2+} (V_0^{-2+}, oxygen vacancy)$
69	(Knight et al., 1994; Navrotsky, 1999; Navrotsky et al., 2003). Fe ³⁺ should occupy both
70	A and B sites in the Pv structure and these mechanisms must depend on other phases
71	buffering Pv (McCammon, 1998; Catalli et al., 2010; Hsu et al., 2011). McCammon
72	(1998) suggested that the coupled substitution could occur: $2^{B}Si^{4} + \leftrightarrow 2^{B}Fe^{3+} + V_{O}^{2+}at$

73	lower f_{O2} using a Re capsule whereas ${}^{A}Mg^{2+} + {}^{B}Si^{4+} \leftrightarrow {}^{A}Fe^{3+} + {}^{B}Fe^{3+}$ at higher f_{O2} using
74	a Fe capsule. The charge-coupled substitution mechanism makes it hard to understand
75	the behavior of Fe^{3+} in Pv. Based on NFS measurements in the time domain, Catalli <i>et</i>
76	al. (2010) suggested that Fe^{3+} in Al-free Pv occupies both the A and B sites equally at
77	high pressure and ambient temperature.
78	The behavior of Fe ³⁺ in Pv is complex because it can occupy two nonequivalent
79	sites in the crystal lattice. Thus, we conducted high-pressure energy-domain synchrotron
80	⁵⁷ Fe-Mössbauer spectroscopy and <i>in situ</i> powder X-ray diffraction experiments (XRD)
81	of Fe ³⁺ -bearing Pv using a diamond anvil cell (DAC) to investigate the coordination
82	sites that Fe ³⁺ occupies in Al-free (Mg,Fe)SiO ₃ -Pv, and to clarify the spin state of iron
83	and the effects of the HS-LS transition of iron on the pressure-volume $(P-V)$
84	relationship.

86 Experimental Methods

⁵⁷Fe -enriched enstatite gel, as a starting material, was synthesized from tetraethyl orthosilicate $(C_2H_5O)_4$ Si, magnesium nitrate Mg(NO₃)₂·6H₂O, and powdered ⁵⁷Fe metal (96.63% enriched in ⁵⁷Fe) by a sol-gel method. The enstatite gel was heated in a gas furnace with CO₂ gas at 700 °C. The composition (Mg_{0.91},Fe_{0.09})SiO₃ was examined

91	using a scanning electron microscope with energy dispersive spectroscopy (Table 1). To
92	prevent formation of other Fe-bearing phases, the amount of SiO ₂ component exceeds
93	that of the stoichiometry. The Fe^{3+} content ($Fe^{3+}/\Sigma Fe$) in the enstatite gel was measured
94	by conventional ⁵⁷ Fe-Mössbauer spectroscopy.

95	A symmetric-type DAC with a culet size of 130, 250, and 300 μ m was used to
96	generate high pressure. The enstatite gel with a thickness of 10 μm was coated on both
97	sides with gold in \sim 300 nm thick. Gold serves as a pressure marker and a laser absorber
98	in order to anneal the sample homogeneously and stably. The sample was loaded into a
99	hole with 40–130 μm in diameter, drilled in a pre-indented Re gasket with 40 μm
100	thickness. Neon was loaded into the DAC using a high-pressure gas-loading system
101	(Takemura et al., 2001) and was used as a pressure medium and a pressure marker. The
102	sample was placed on ruby chips, a few micrometers across, to avoid direct contact with
103	the anvil culet. The deposited gold is also used to prevent ruby and the sample from
104	reacting. The silicate Pv phase was synthesized from the enstatite gel at 30-40 GPa and
105	1800 K for 15 min through a double-sided laser heating technique using fiber lasers
106	with a laser spot size of about 40 μ m, and was confirmed by XRD.
107	The XRD experiments at high pressure were carried out using an angle-dispersive

108 method at beamline BL10XU of SPring-8 (Ohishi et al., 2008). A monochromatic X-ray

109	beam with wavelength of 0.4114 Å was focused down to 10 μm using the focusing
110	optics of compound refractive lenses. XRD spectra were collected on an imaging plate
111	with an exposure time of 3-5 min. Collected two-dimensional XRD patterns were
112	analyzed using softwares, IPAnalyzer and PDIndexer (http://www2.kobe-u.ac.jp/~seto/)
113	(Seto <i>et al.</i> , 2008).
114	Pressure was determined using the equation of state (EOS) of gold (Tsuchiya,
115	2003). Volumes of gold were calculated using the diffraction peaks of (111) and (002).
116	In Run# Pv1006, however, the intensity of gold was not enough and the diffraction
117	peaks could not be used for pressure determination. In this case, pressure was
118	determined using the equation of state (EOS) of neon (Fei et al., 2007) and normalized
119	pressure to Au scale from Ne scale. Volumes of neon were calculated using the
120	diffraction peaks of (111), (002), and (022). In the experimental run for Mössbauer
121	measurements of "cold-compression Pv" which was not annealed after Pv synthesis,
122	ruby was used as a pressure standard by measuring several points around the central
123	area of the sample (Dewaele et al., 2004). Experimental details are summarized in Table
124	2.

Energy-domain SMS was carried out at BL11XU of SPring-8 (Mitsui *et al.*,
2009). The focused X-rays from a broadband SR source are ultra-finely monochromated

127	to a bandwidth of neV order by a pure nuclear Bragg reflection (333) of a 57 FeBO ₃
128	single crystal. Mössbauer spectra were obtained using a NaI scintillation detector, and
129	were typically collected for 6 h. Mössbauer spectra were fitted to the
130	Lorentzian-squared line shape for synchrotron source (equal quadrupole component
131	widths and areas) using the available fitting program MossA (Prescher et al., 2012).
132	

133 Result and Discussion

143

134 In situ powder x-ray diffraction

According to conventional ⁵⁷Fe-Mössbauer spectroscopy with a radioactive isotope 135source, iron in the enstatite gel was found to be present as follow (Table 3); two 136 doublets with quadrupole splitting (QS) = 1.543(7) and isomer shift (IS) = 0.255(3), and 137 QS = 0.877(5) and IS = 0.341(3) mm/s can be associated with Fe³⁺, whereas one 138 doublet with an extremely high QS = 2.524(9) and IS = 0.454(4) mm/s can be assigned 139 to Fe^{2+} (e.g., Dyer, 1985; McCammon, 2004). The Fe^{3+} content ($Fe^{3+}/\Sigma Fe$) in the 140 141enstatite gel is around 90%. We measured the volume of Fe³⁺-bearing Pv synthesized from the gel starting 142

material up to 86 GPa at ambient temperature using *in situ* powder XRD, except for

144 Run# Pv1008. We also observed weak diffraction lines from stishovite (St) or

145	CaCl ₂ -type SiO ₂ . Synthesis of the Pv phase was confirmed after heating at 1800 K. We
146	confirmed the diffraction patterns from the orthorhombic Pv structure (space group:
147	Pbnm) with those of Au and Ne, as shown in Fig. 1. We again observed weak
148	diffraction lines from St and CaCl ₂ -type SiO ₂ (Fig. 1). No diffraction lines from other
149	Fe-bearing minerals, including Fe ₃ O ₄ , Fe ₂ O ₃ , metallic Fe and Fp, were identified. The
150	bulk starting composition exceeds that of the enstatite stoichiometry; $Si/(Mg+Fe) = 1.05$
151	for atomic %.
152	The volumes and unit cell parameters of Fe^{3+} -bearing Pv and St or the CaCl ₂ -type
153	SiO_2 for each run are provided in Table 4. In total, 16 diffraction lines for Fe^{3+} -bearing
154	Pv and 5 diffraction lines for St or the CaCl ₂ -type SiO_2 were typically used to constrain
155	the volumes and unit cell parameters. We fit the measured $P-V$ data to a second-order
156	Birch–Murnaghan (B–M) EOS (for a fixed pressure-derivative K'_0 of 4.0), based on the
157	Au scales by Tsuchiya (2003). Fitting all of the $P-V$ data of St, we obtained a bulk
158	modulus of $K_0 = 294(6)$ GPa with $V_0 = 46.79(10)$ Å ³ . The obtained K_0 and V_0 shows in
159	good agreement with previous studies (e.g., Nishihara et al., 2005; Wang et al., 2012).
160	The obtained parameters of Fe^{3+} -bearing Pv can be reliably extracted from the data of
161	St.

From the P-V relationships of Fe³⁺-bearing Pv, there is no discontinuous change in 162

163	the trend of volumes and unit cell parameters with pressure by annealing at 1800 K (Fig.
164	2). We also fit the measured $P-V$ data of Fe ³⁺ -bearing Pv to a second-order B–M EOS,
165	based on the Au scales by Tsuchiya (2003). To compare the volumes of all data,
166	pressures of Run# Pv1006 were normalized to the Au scale from the Ne scale (Fig. 2).
167	Fitting all of the $P-V$ data conducted after annealing between 31 and 86 GPa to the
168	B–M EOS, we obtained a bulk modulus of $K_0 = 265\pm 6$ GPa with $V_0 = 161.43\pm 0.44$ Å ³ .
169	Compared with the volumes of Mg-endmember and Fe^{2+} -bearing Pv,
170	$(Mg_{0.91}Fe^{2+}_{0.09})SiO_3$ measured by Lundin <i>et al.</i> (2008), those of Fe ³⁺ -bearing Pv in this
171	study are slightly smaller than both Mg-endmember Pv and Fe^{2+} -bearing Pv (Table 5).
172	The K_0 of Fe ³⁺ -bearing Pv matches well, within the uncertainty, with Mg-endmember
173	Pv using the same Au scale. The volumes of Fe^{3+} -bearing Pv measured by Catalli <i>et al</i> .
174	(2010) are higher than those of Fe^{3+} -bearing Pv in this study. This volume decrease
175	could be caused by the presence of Mg^{2+} vacancies in the synthesized Fe ³⁺ -bearing Pv.
176	When Fe^{3+} in the A site is accommodated by Mg^{2+} vacancies, the unit cell volumes of
177	Fe ³⁺ -bearing Pv could become smaller than Mg-endmember Pv. Detailed discussions on
178	the substitution mechanism in Pv are below.

180 Energy-domain synchrotron Mössbauer spectroscopy

181	The unit cell volumes of Fe^{3+} -bearing Pv are slightly smaller than those of
182	Mg-endmember Pv. Our Mössbauer data suggest that Fe ³⁺ prefers A sites coupled with
183	Mg vacancies, which is consistent with previous data at ambient conditions (Hummer
184	and Fei, 2012). The coupled substitution could make the volume of Pv smaller than that
185	of Mg-endmember Pv.
186	Energy-domain SMS was performed on all runs. Mössbauer spectra of
187	Fe^{3+} -bearing Pv could be fitted to three doublets, all with positive IS relative to a α - ^{57}Fe
188	metal and QS. Three-doublet model was proposed in order to explain distortion of the
189	dodecahedra (Fei et al., 1994; Hummer and Fei, 2012). We suggest that a similar

- 190 phenomenon occurs for Fe^{3+} in this study and also adopt the model. The experimental
- 191 spectra and three component fits are shown in Fig. 3. The hyperfine parameters from
- 192 fitting of data are also shown in Fig. 4 (Table 6).
- The IS depends on the band distance, so a low IS value implies a short band distance. The IS values of Site 2 and Site 3 indicate to the HS state of Fe^{3+} , based on those of rock-forming minerals (e.g., McCammon *et al.*, 2004).
- Among the three doublets, the hyperfine parameters for Site 1 are larger than those
- 197 of the other sites. Catalli et al. (2010) measured the time-domain SMS, XES, and XRD
- 198 of $(Mg,Fe^{3+})(Fe^{3+},Si)O_3Pv$, and suggested that Fe^{3+} occupies the A and B sites equally.

199	They also indicated that Fe^{3+} at B site undergoes a HS to LS transition at 50–60 GPa,
200	while Fe^{3+} at A site remains in HS up to at least 135 GPa. In this study, however, Site 1
201	has QS values from 2.79 to 4.13 mm/s and IS values from 0.93 to 1.10 mm/s. The IS of
202	Site 1 is typically 1.0 mm/s. The IS value of Site 1 has characteristics of Fe^{2+} , and the
203	high QS value (>3.5 mm/s) also refers to HS of Fe^{2+} in the A site based on Grocholski
204	et al. (2009) and Lin et al. (2012). Therefore, Site 1 is identified as HS of Fe^{2+} in the A
205	site of Pv. Site 3 has hyperfine parameters characteristic of HS of Fe^{3+} in the distorted
206	dodecahedral site (A site) and Site 2 also has hyperfine parameters characteristic of HS
207	of Fe ³⁺ in the A site. This is in good agreement with the experimental study of Hummer
208	and Fei (2012). They suggested that Fe^{3+} substitution causes a population of distorted
209	dodecahedral sites based on the behavior of Fe^{2+} in the A sites of Pv observed by Fei <i>et</i>
210	al. (1994) and McCammon et al. (2004). They also proposed that when the Fe^{3+}
211	concentration becomes higher (e.g., 7.4 mol %), Fe^{3+} in the A sites is accommodated by
212	Mg^{2+} vacancies $(3^AMg^{2+} \rightarrow 2^AFe^{3+} + V_{cation})$. These mechanisms could have occurred in
213	this study. Our data suggest that Fe^{3+} prefers A sites coupled with Mg vacancies
214	because of high Fe ³⁺ concentrations and Fe ³⁺ in A sites remains in the HS state up to 86
215	GPa. We also observed some Fe^{2+} atoms are accommodated in A sites and remain in the
216	HS state above 30 GPa, perhaps some reducing reactions in the sample might have

217	occurred in DAC by annealing. On the other hand, there is no change in either spin state
218	or oxidation state of cold-compression Pv. By annealing, the amount of Fe^{3+} in the
219	distorted A sites seems to increase with pressure above 40 GPa. In contrast, that of Fe^{3+}
220	in A sites decreases above 40 GPa (Fig. 4(c)). These parameters are different between
221	the sample with annealing and the cold-compression sample. This means that it is
222	important to realize the effect of temperature for the discussion of the spin state of iron
223	in the mantle, which is also indicated by previous studies (Grocholski et al., 2009;
224	Fujino <i>et al.</i> , 2012). We observed no evidence for the existence of Fe^{3+} in the B sites of
225	Pv, which had been indicated by Catalli et al. (2011). There is no change in the spin
226	state of cold-compression Pv in the pressure range studied in this work. These results
227	indicate that the spin state of iron in A sites of Pv does not change and remains as a HS
228	state below 85 GPa in the sample with annealing and cold-compression.
229	The crystal ionic radii of Mg, Si, Fe^{2+} , and Fe^{3+} are 1.03 Å (Mg ²⁺ in A site), 0.54 Å
230	(Si ⁴⁺ in B site), 1.06 Å (HS/Fe ²⁺ in A site), 0.92 Å (HS/Fe ³⁺ in A site), 0.79 Å (HS/Fe ³⁺
231	in B site), and 0.69 Å (LS/Fe ³⁺ in B site), respectively (Shannon, 1976; Kudoh et al.,
232	1990). Hummer and Fei (2012) suggested that the relative doublet abundances of Fe^{3+} in
233	B sites is 50% and the substitution of Fe ³⁺ in B site (0.79 Å) for Si ⁴⁺ in B site (0.54 Å) is
234	a much larger increase in site radius than that of Fe^{2+} in A site (1.06 Å) for Mg^{2+} in A

235	site (1.03 Å). Thus, the presence of Fe^{3+} in a B site increases the unit cell volume
236	substantially compared to that of the pure structure. In this study, the relative doublet
237	abundances of Site 2 + Site 3, the HS of Fe^{3+} in A site, is over 66%. The HS crystal
238	ionic radius of Fe^{3+} in A sites (0.92 Å) is smaller than Mg^{2+} in A sites (1.03 Å), while
239	the HS crystal ionic radius of Fe^{2+} in A sites (1.06 Å) is larger than Mg^{2+} in A sites.
240	When Fe^{3+} in the A sites is accommodated by Mg^{2+} vacancies, the unit cell volumes of
241	Fe ³⁺ -bearing Pv could become slightly smaller than Mg-endmember Pv. The content of
242	Fe in A site has a linear relation with the volumes of Fe^{3+} -bearing Pv (Hemley and
243	Cohen, 1992; Hummer and Fei, 2012). When the composition is $(Mg_{0.9}, Fe_{0.1})SiO_3$ in
244	Kudoh <i>et al.</i> (1990), the influence of Fe^{2+} and Fe^{3+} to the volume of Pv are +0.62 Å ³
245	and -2.27 Å ³ , respectively. In the case of Run# Pv1006 at 41.4 GPa, the relative doublet
246	abundances of $Fe^{2+}:Fe^{3+}$ is 34:66. Taking into account of the composition of
247	$(Mg_{0.91},Fe_{0.09})SiO_3$ in this study, the volume changes by Fe^{2+} and Fe^{3+} are +0.62
248	Å ³ *(0.09/0.1)*34 % \approx +0.19 Å ³ , -2.27 A ³ *(0.09/0.1)*66 % \approx -1.35 Å ³ , respectively.
249	Therefore, Fe^{2+} and Fe^{3+} in A sites induce a <u>unit cell volume</u> reduction of roughly -1.16
250	Å ³ . This reduction is in good agreement with the decreased volumes of Fe^{3+} -bearing Pv
251	by XRD.

253 Implications

254	The Earth's mantle contains both ferric and ferrous iron. In the bulk mantle, Fe_2O_3
255	concentrations are estimated to be low in the upper mantle and transition zone, but high
256	in the lower mantle (McCammon, 1997; 2005). Frost et al. (2004) showed that Fe ³⁺
257	must form in the lower mantle by the disproportionation of Fe^{2+} to Fe^{3+} and metallic Fe.
258	For Al-free $Mg_{0.94}Fe_{0.06}SiO_3Pv$, the amount of Fe^{3+} is found to be 16 \pm 3 %
259	(McCammon, 1998). Hummer and Fei (2012) proposed that when Si > Mg, excess
260	Fe^{3+} in A site is accommodated by Mg^{2+} vacancies $(3^AMg^{2+} \rightarrow 2^AFe^{3+} + V_{cation})$ at
261	ambient condition. Our data also suggest that Fe ³⁺ prefers A sites coupled with Mg
262	vacancies in excess of Si.
263	We suggest that Fe ³⁺ in perovskite prefers A sites coupled with Mg vacancies

because of high Fe^{3+} concentrations if the lower mantle is saturated in silica. Fe^{3+} in A sites remains in the HS state up to 86 GPa. Fe^{2+} can also be accommodated in A sites and the Fe^{2+} ions in A sites are in the HS state to the same pressure. We compared the bulk moduli of perovskites with different compositions using the EOS fitting results (Table 5). The zero pressure volume and bulk modulus of Fe^{3+} -Pv are very close to those of Mg-Pv (Lundin *et al.*, 2008) and the spin transition of iron does not occur in our composition. Thus, the small volume and high spin state of iron in perovskite observed in this work provides important implications for the physical properties in the lower mantle, i.e., if the lower mantle is saturated in silica, Pv containing Fe^{3+} in A site has a higher density and could contribute to the seismic velocity. Such silica oversaturated regions could sink in the lower mantle by the density difference.

275

276 Acknowledgements

277We thank Prof. M. Akasaka at Shimane University for Mössbauer spectroscopy 278measurement of starting materials and Prof. K. Fujino at Ehime University for useful discussions. We also thank Drs. S.Kamada, T.Sakamaki, M.Hamada, I.Ohira, 279280N.Nishitani, T.Sakairi, and M.Murakami of Tohoku University for their technical 281assistance and useful discussions. We also thank Dr. B. Mysen of Carnegie Institution of 282Washington for useful discussion for improving this manuscript. The synchrotron 283 radiation Mössbauer spectroscopy measurements were performed at BL11XU in 284SPring-8 and the compression experiments were performed at BL10XU in SPring-8. This work was supported by JSPS KAKENHI Grant Numbers 18104009 and 22000002 285286awarded to E.O. This work was also partly supported by the Ministry of education and 287science of Russian Federation, project No 14.B25.31.0032 awarded to E.O. This work was conducted as part of the Global Center of Excellence program of Tohoku University 288

289 "Global Education and Research Center for Earth and Planetary Dynamics".

291 References

- 292 Badro, J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V.V., Vankó, G., and Monaco,
- G. (2003) Iron partitioning in Earth's mantle: toward a deep lower mantle
 discontinuity. *Science*, 300, 789–791.

- Badro, J., Rueff, J.-P., Vankó, G., Monaco, G., Fiquet, G., and Guyot, F. (2004)
- Electronic transitions in perovskite: possible nonconvecting layers in the lower
 mantle. *Science*, 305, 383–386.
- 299
- 300 Catalli, K., Shim, S.-H., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P., Xiao, Y.,
- Liu, H., Cynn, H., and Evans, W.J. (2010) Spin state of ferric iron in MgSiO₃
- perovskite and its effect on elastic properties. *Earth and Planetary Science Letters*,
 289, 68–75.
- 304
- 305 Catalli, K., Shim, S.-H, Dera, P., Prakapenka, V.B., Zhao, J., Sturhahn, W., Chow, P.,
- Xiao, Y., Cynn, H., and Evans, W.J. (2011) Effects of the Fe³⁺ spin transition on
- 307 the properties of aluminous perovskite—New insights for lower-mantle seismic

308	heterogeneities. Earth and Planetary Science Letters, 310, 293-302.
309	
310	Dewaele, A., Loubeyre, P., and Mezouar, M. (2004) Equations of state of six metals
311	above 94 GPa. Physical Review B, 70, 094112.
312	
313	Dyar, M.D. (1985) A review of Mössbauer data on inorganic glasses: the effects of
314	composition on iron valency and coordination. American mineralogist, 70,
315	304–316.
316	
317	Fei, Y., Virgo, D., Mysen, B.O., Wang, Y., and Mao, H.K. (1994) Temperature-
318	dependent electron delocalization in (Mg,Fe)SiO3 perovskite. American
319	Mineralogist, 79, 826–837.
320	
321	Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007)
322	Toward an internally consistent pressure scale. Proceedings of the National
323	Academy of Sciences of the United States of America, 104, 9182–39186.
324	
325	Fujino, K., Nishio-Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., Irifune, T.,

326	Ishii, H., Hiraoka, N., Cai, Y., and Tsue, KD.(2012) Spin transition of ferric iron
327	in Al-bearing Mg perovskite up to 200 GPa and its implication for the lower
328	mantle. Earth and Planetary Science Letters, 317-318, 407-412.
329	
330	Goncharov, A.F., Haugen, B.D., Struzhkin, V.V., Beck, P., and Jacobsen, S.D. (2008)
331	Radiative conductivity in the Earth's lower mantle. <i>Nature</i> , 456, 231–234.
332	
333	Grocholski, B., S. H. Shim, W. Sturhahn, J. Zhao, Y. Xiao, and P. C. Chow (2009) Spin
334	and valence states of iron in (Mg _{0.8} Fe _{0.2})SiO ₃ perovskite. Geophysical Research
335	Letters, 36, L24303.
336	
337	Hemley, R.J. and Cohen, R.E. (1992) Silicate Perovskite. Annual Review of Earth and
338	Planetary Sciences, 20, 553–600.
339	
340	Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-State
341	Crossover and Hyperfine Interactions of Ferric Iron in MgSiO ₃ Perovskite.
342	Physical Review Letters, 106, 118501.
343	

344	Hsu, H., Yu, Y. G., and Wentzcovitch, R.M. (2012) Spin crossover of iron in aluminous
345	MgSiO ₃ perovskite and post-perovskite. Earth and Planetary Science Letters,
346	359–360, 34–39.
347	
348	Hummer, D.R. and Fei, Y. (2012) Synthesis and crystal chemistry of Fe ³⁺ -bearing
349	(Mg,Fe ³⁺)(Si,Fe ³⁺)O ₃ perovskite. American Mineralogist, 97, 1915–1921.
350	
351	Keppler, H., Dubrovinsky, L.S., Narygina, O., and Kantor, I. (2008) Optical absorption
352	and radiative conductivity of silicate perovskite to 125gigapascals. Science, 322,
353	1529–1532.
354	
355	Knight, K.S. and Bonanos, N.J. (1994) Space Group and Lattice Constants for Barium
356	Cerate and Minor Corrections to the Crystal Structures of $BaCe_{0.9}Y_{0.1}O_{2.95}$ and
357	BaCe _{0.9} Gd _{0.1} O _{2.95} . Journal of Materials Chemistry, 4, 899–90.
358	
359	Kudoh, Y., Prewitt, C.T., Finger, L.W., Darovskikh, A., and Ito, E. (1990) Effect of iron
360	on the crystal structure of (Mg,Fe)SiO3 perovskite. Geophysical Research Letters,
361	17, 1481–1484.

363	Lin, JF., Alp, E.E., Mao, Z., Inoue, T., McCammon, C., Xiao, Y., and Chow, J. (2012)
364	Electronic spin states of ferric and ferrous iron in the lower-mantle silicate
365	perovskite. American Mineralogist, 97, 592–597.
366	
367	Lundin, S., Catalli, K., Santillán, J., Shima, SH., Prakapenkab, V.B., Kunzc, M., and
368	Meng, Y. (2008) Effect of Fe on the equation of state of mantle silicate perovskite
369	over 1 Mbar. Physics of the Earth and Planetary Interiors, 168, 97–102.
370	
371	McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle.
372	Nature, 387, 694–696.
373	
374	McCammon, C. (1998) The crystal chemistry of ferric iron in $Fe_{0.05}Mg_{0.95}SiO_3$
375	perovskite as determined by Mössbauer spectroscopy in the temperature range
376	80–293 K. Physics and Chemistry of Minerals, 25, 292–300.
377	
378	McCammon, C. (2004) Mössbauer spectroscopy: applications. In Spectroscopic
379	Methods in Mineralogy (A. Beran & E. Libowitzky, eds.) EMU Notes in

380 *Mineralogy*, 6, 369–398.

381

382	McCammon	C	(2.005)) The	paradox	of mantle	e redox	Science	308	807-808
004	wice annuon,	\mathbf{C} .	(2005)	, 110	paradox	or manue	c icuor.	Derence	, 500,	007 000.

383

., Sakaki, K., and
auer spectrometer
ure studies with a

diamond anvil cell. *Journal of Synchrotron Radiation*, 16, 723–729.

388

389 Navrotsky, A. (1999) A lesson from ceramics. *Science*, 284, 1788–1789.

390

391 Navrotsky, A., Schoenitz, M., Kojitani, H., Xu, H.W., Zhang, J.Z., Weidner, D.J., and

Jeanloz, R. (2003) Aluminum in magnesium silicate perovskite: formation, structure, and energetics of magnesium-rich defect solid solutions. *Journal of*

- 394 Geophysical Research, 108(B7), 2330.
- 395
- 396 Nishihara, Y., Nakayama, K., Takahashi, E., Iguchi, T., and Funakoshi, K. (2005)
- P-V-T equation of state of stishovite to the mantle transition zone conditions.

398 *Physics and Chemistry of Minerals*, 31, 660–670.

399

400	Ohishi, Y., Hirao, N., Sata, N., Hirose, K., and Takata, M. (2008) Highly intense
401	monochromatic X-ray diffraction facility for high-pressure research at SPring-8.
402	High Pressure Research, 28, 163–173.
403	
404	Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for
405	analyzing energy-domain Mössbauer spectra from conventional and synchrotron
406	sources. Journal of Applied Crystallography, 45, 329-331.
407	
408	Seto, Y., Hamane, D., Nagai, T. and Fujino, K. (2008) Fate of carbonates within
409	oceanic plates subducted to the lower mantle, and a possible mechanism of
410	diamond formation. Physics and Chemistry of Minerals, 35, 223.
411	
412	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of inter

- 413 atomic distances in halides and chalcogenides. *ActaCrystallographica Section A:*
- 414 *Foundations of Crystallography*, 32, 751–767.

416	Stackhouse, S., Brodolt, J. P., and Price, G. D. (2007) Electronic spin transitions in iron-
417	bearing MgSiO ₃ perovskite. Earth and Planetary Science Letters, 253, 282–290.
418	
419	Stixrude, L., Hemley, R. J., Fei, Y., and Mao, H.K.(1992) Thermoelasticity of Silicate
420	Perovskite and Magnesiowüstite and Stratification of the Earth's Mantle. Science,
421	257, 1099–1101.
422	
423	Takemura, K., Sahu, P.C., Yoshiyasu, K., and Yasuo, T. (2001) Versatile gas-loading
424	system for diamond-anvil cells. Review of Scientific Instruments, 72, 3873-3876.
425	
426	Tsuchiya, T. (2003) First-principles prediction of the P-V-T equation of state of gold
427	and the 660-km discontinuity in Earth's mantle. Journal of Geophysical Research,
428	108 (B7), 2462.
429	
430	Wang, F., Tange, Y., Irifune, T., and Funakoshi, K. (2012) P-V-T equation of state of
431	stishovite up to mid-lower. Journal of Geophysical Research, 117(B0), 6209.
432	
433	Xu, Y., McCammon, C., and Poe, B.T. (1998) The effect of alumina on the electrical

434 conductivity of silicate perovskite. *Science*, 282, 922–924.

435

- 436 Zhang, F. and Oganov, A.R. (2006) Valence state and spin transitions of iron in Earth's
- 437 mantle silicates. *Earth and Planetary Science Letters*, 249, 436–443.

440 **Figure caption**

441

442	Figure 1:	XRD	pattern	of Fe ³⁺	-bearing	Pv s	ynthesized	from	gel starting	material	at 33
	-										

443 <u>GPa and 1800 K (Run# Pv1006)</u>. This powder pattern is typical of all samples. Intensity

444 was normalized by that of Pv(112).

Figure 2: (a) Measured volume of Fe^{3+} -bearing Pv in this study (black circles; 445446 Run#Pv1006, open circles; Run# Pv0606) and compression curves of Mg-end member Pv, Fe²⁺-bearing Pv, and Fe³⁺-bearing Pv. The solid line is the fit to the second order 447 B-M EOS for Fe³⁺-bearing Pv in this study. The dotted line is the EOS of Mg-end 448 member Pv and the dashed line is the EOS of Fe^{2+} -bearing Pv (Lundin *et al.*, 2008). (b) 449 Unit cell parameters of Fe³⁺-bearing Pv in this study (black circles; a axis of 450Run#Pv1006, open circles; a-axis of Run#Pv0606, black triangles; b-axis of 451452Run#Pv1006, open triangles; b-axis of Run#Pv0606, black squares; c-axis of Run#Pv1006, open squares; c-axis of Run#Pv0606). Pressure was determined using the 453Au pressure scale by Tsuchiya (2003). 454**Figure 3:** The synchrotron Mössbauer spectra of Fe^{3+} -bearing Pv at high pressures; (a) 455456with annealing; Run#Pv1006 (85 GPa) and (b) cold-compression; Run#Pv1008 (33

457 <u>GPa). The spectrum was fitted with a three-doublet model, two assigned to Fe^{3+} in the</u>

4/9

458 <u>A site and one to Fe^{2+} in the A site.</u>

459	Figure 4: Mössbauer parameters of Fe ³⁺ in Fe ³⁺ –bearing Pv. Black triangles; Site 1,
460	blue squares Site 2, red circles; Site3. Site 1 can be assigned to Fe^{2+} in A site of
461	perovskite, Site 2 to Fe^{3+} in A site, and Site 3 to Fe^{3+} in distorted A site in perovskite. (a)
462	isomer shifts, (b) quadrupole splitting, (c) percent weightings, (d) FWHM of Site 1, Site
463	2, and Site 3 for Run# Pv1006 with annealing. Pressure was determined using the EOS
464	of Au (Tsuchiya, 2003).

Table 1 M	icroprobe composition of 57Fe-enriched enstatite gel	
Elements	Weight % Atomic %	

Elements	Weight %	Atomic %
SiO ₂	59.3(4)	51.2(4)
MgO	34.5(3)	44.5(4)
Fe ₂ O ₃	6.1(1)	4.4(1)
Al_2O_3	-	-
total	100	100

 Table 2 The experimental details.

RUN#	Pressure scale	annealing	experiments
Pv1006	Ne(Fei2007)	with annealing	XRD & SMS
Pv0606	Au(Tsuchiya2003) and Ne(Fei2007)	with annealing	XRD
Pv1008	Ruby luminescence(Dewaele2008)	cold-compressi	SMS

Quadrupole splittings (mm/s)	Isomer shifts (mm/s)	FWHM (mm/s)	Weight (%)
1.543(7)	0.255(3)	0.706(15)	47.5(8)
0.877(5)	0.341(3)	0.598(8)	43.17(6)

Table 3 Mössbauer parameters of ⁵⁷Fe-enriched enstatite gel

 2.524(9)
 0.454(4)
 0.459(17)
 9.4(2)

 The uncertainties are given in parenthesis at the 90% confidence level for the last reported significant digit(s).

Table 4 Pressure-Volume relations of Fe^{3+} -bearing Pv and St (or CaCl₂-type SiO₂).

RUN #	annealing ex	operiments	P (GPa) using Ne scale (Fei2007)	P (GPa) using Au scale (Tsuchiya2003)	Fe ³⁺ - bearing Pv a (Å) V (Å ³)	b (Å)	c (Å)	St (or CaCl ₂ - type SiO ₂) V (Å ³)	a (Å)	b (Å)
Pv0606	with annealing X	RD	30.79(8)	31.41(3)	146.27(18) 4.603(2)	4.780(2)	6.649(2)	42.82(5)	4.038(1)	4.038(1)
			36.15(4)	37.30(1)	144.61(15) 4.581(2)	4.764(2)	6.626(2)	42.29(7)	4.025(1)	4.025(1)
			40.56(1)	41.74(2)	142.81(19) 4.561(2)	4.749(2)	6.594(2)	41.84(6)	4.011(1)	4.011(1)
			43.06(6)	44.00(4)	142.07(15) 4.556(2)	4.741(2)	6.578(2)	41.55(9)	4.001(1)	4.001(1)
			46.66(10)	47.53(2)	140.66(24) 4.537(2)	4.730(2)	6.555(3)	41.26(1)	3.994(0)	3.994(0)
			50.23(2)	50.35(2)	139.60(23) 4.519(2)	4.721(2)	6.543(3)	40.99(8)	3.986(1)	3.986(1)
			52.48(13)	53.30(2)	138.92(16) 4.513(2)	4.711(2)	6.534(2)	40.76(12)	3.975(2)	3.975(2)
			55.47(11)	56.19(2)	138.05(9) 4.503(1)	4.705(1)	6.516(1)	40.57(11)	3.969(2)	3.969(2)
			57.83(11)	58.79(1)	137.37(16) 4.495(1)	4.699(2)	6.504(2)	40.37(11)	3.961(2)	3.961(2)
			61.20(10)	62.10(2)	136.38(11) 4.483(1)	4.690(1)	6.487(1)	40.14(3)	3.954(0)	3.954(0)
Pv1006	with annealing X	RD & SMS	34.06(6)	34.94(64)*	145.35(11) 4.592(1)	4.771(1)	6.634(1)	42.42(9)	4.032(1)	4.032(1)
			41.40(10)	42.25(69)*	143.10(13) 4.566(1)	4.749(1)	6.599(2)	41.75(17)	4.010(2)	4.010(2)
			64.71(10)	65.47(87)*	135.79(18) 4.474(2)	4.678(2)	6.489(3)	39.61(7)	3.998(2)	3.887(1)
			75.67(17)	76.38(98)*	132.90(27) 4.438(3)	4.648(3)	6.442(4)	38.90(37)	3.958(8)	3.865(8)
			84.85(22)	85.53(99)*	130.90(16) 4.406(2)	4.633(2)	6.412(2)	37.68(46)	3.888(9)	3.815(4)

*Normalized pressure to Au scale from Ne scale

Numbers in parentheses are standard deviation uncertainties in the last digit(s)

c (Å)

2.625(1)	-
2.611(1)	
2.601(1)	
2.596(2)	
2.587(0)	
2.580(1)	
2.580(2)	
2.576(1)	
2.573(2)	
2.567(1)	
2.609(2)	
2.596(3)	
2.549(1)	
2.543(3)	
2.540(9)	

 Table 5 The equation of state parameters.

Composition	V_{0}	K_{0}	<i>K</i> ′ ₀ I	Ref.
Mg-end member Pv	162.3	261(1)	4.0 (fixed) I	Lundin et al. (2008)
Fe ²⁺ -bearing Pv	163.3(3)	259(1)	4.0 (fixed) I	Lundin et al. (2008)
Fe ³⁺ -bearing Pv	161.5(4)	264(6)	4.0 (fixed)	This study

Numbers in parentheses are standard deviation uncertainties in the last digit.

RUN #	annealing experim	ents P (GPa)		Quadrupol splittings (mm/s)	e Isomer shifts (mm/s)	FWHM (mm/s)	Percent weightings (%)
Pv1006	with annealing XRD &	SMS 34.1(1)	Site 1	2.79(19)	0.95(9)	0.83(6)	18(4)
			Site 2	0.38(3)	0.25(2)	0.26(6)	78(5)
			Site 3	1.50(16)	0.48(8)	0.62(2)	4(3)
		41.4(1)	Site 1	3.23(22)	1.04(2)	1.21(13)	34(12)
		(1)	Site 2	0.48(5)	0.52(2)	1.07(68)	16(22)
			Site 3	1.55(5)	0.54(1)	2.00(41)	50(20)
		64.7(1)	Site 1	3.98(9)	0.96(5)	1.15(6)	29(7)
			Site 2	0.58(8)	0.42(2)	0.99(24)	19(13)
			Site 3	1.27(19)	0.35(8)	1.83(15)	52(12)
		75.7(2)	Site 1	4.10(10)	0.98(6)	1.13(4)	31(10)
			Site 2	0.60(9)	0.38(2)	1.18(44)	29(20)
			Site 3	1.43(20)	0.32(2)	1.77(15)	40(18)
		84.9(2)	Site 1	4.13(9)	1.03(5)	1.06(4)	27(4)
			Site 2	0.77(9)	0.39(4)	1.23(12)	42(7)
			Site 3	2.00(17)	0.35(2)	2.08(27)	31(8)
Pv1008	cold-compressi SMS	33.3(2)	Site 1	2.79(19)	0.95(9)	0.83(6)	18(4)
	-		Site 2	0.38(3)	0.25(2)	0.26(6)	78(5)
			Site 3	1.50(16)	0.48(8)	0.62(2)	4(3)
		37.6(6)	Site 1	2.90(24)	0.95(2)	0.84(7)	16(5)
			Site 2	0.40(4)	0.24(2)	0.19(5)	81(5)
			Site 3	1.51(13)	0.45(6)	0.67(2)	3(3)

Table 6 Mössbauer parameters of Fe^{3+} -bearing Pv

39.9(7)	Site 1	2.94(35)	1.10(9)	1.11(16)	13(7)
	Site 2	0.41(5)	0.21(2)	0.19(12)	86(8)
	Site 3	1.51(31)	0.33(5)	0.72(3)	1(4)
46.8(2)	Site 1	3.08(31)	0.93(7)	0.71(9)	11(5)
	Site 2	0.41(4)	0.18(2)	0.59(3)	85(10)
	Site 3	1.56(67)	0.35(4)	0.66(2)	4(10)
63.8(8)	Site 1	3.20(42)	1.05(9)	1.30(13)	20(7)
	Site 2	0.37(6)	0.14(2)	0.19(7)	78(7)
	Site 3	1.64(19)	0.33(9)	0.69(3)	2(3)

The uncertainties are given in parenthesis at the 90% confidence level for the last reported significant digit(s).