1 Revision 1

Petrology and geochemistry of lunar granite 12032,366-19 and implications for lunar granite petrogenesis

5	Stephen M. Seddio ^{1,*} , Bradley L. Jolliff ¹ , Randy L. Korotev ¹ , and Ryan A. Zeigler ²
6	¹ Department of Earth and Planetary Sciences and the McDonnell Center for Space Sciences, Washington
7	University, St. Louis, MO 63130, U.S.A. ² Astromaterials and Exploration Science Directorate, NASA –
8	Johnson Space Center, mail code KT, 2101 NASA Pkwy, Houston, TX 77058, U.S.A.
9	
10	
11	ABSTRACT
12	Apollo 12 sample 12032,366-19 is a 21.3-mg granite fragment that is distinct
13	from any other lunar granite or felsite. It is composed of barian K-feldspar, quartz, sodic
14	plagioclase, hedenbergite, fayalite, and ilmenite, with trace amounts of zirconolite,
15	baddeleyite, apatite, and merrillite. The texture of 12032,366-19 is largely a micrographic
16	intergrowth predominantly of K-feldspar and quartz and, to a lesser extent, plagioclase
17	and quartz. Hedenbergite, fayalite, and ilmenite are present in minor but significant
18	quantities—6.0, 3.1, and 1.7 wt%, respectively—and are scattered throughout the
19	feldspar-quartz intergrowths. Trace amounts of Zr-bearing phases are found including
20	zirconolite (0.6 wt%) and baddeleyite (0.04 wt%). Incompatible trace-element
21	concentrations are high in 12032,366-19, particularly the high-field-strength elements,
22	e.g., Zr, Sm, and Th (1500, 25, and 61 μ g/g, respectively). The chondrite-normalized,

^{*} E-mail: sseddio@levee.wustl.edu

23	rare-earth-element concentrations form a "V-pattern" that is characteristic of other lunar
24	granitic material. Modeling 12032,366-19 as a derivative from a KREEP-like parent melt,
25	the composition and mineral assemblage can be obtained by extended fractional
26	crystallization combined with separation of the low-density minerals plus trapped melt
27	components prior to final solidification. However, this model cannot quantitatively
28	account for the relatively sodic composition of the plagioclase (An_{34-50}) and requires that
29	the starting melt has Na_2O of $1.2 - 1.4$ wt%, which is higher than most KREEP
30	compositions. Formation of this assemblage by silicate-liquid immiscibility is neither
31	required nor indicated by petrogenetic modeling.
32	
33	Keywords: granite, Moon, zirconolite, apatite, felsite, Apollo 12
34	
35	INTRODUCTION
36	There are about twenty known lunar granites (Appendix 1) including "large"
37	individual samples (e.g., Apollo 12 sample 12013, 82 g) and clasts within breccias (e.g.,
38	14321,1027, 1.8 g). Most lunar granites are fine-grained; sample 15405,12 is the coarsest
39	with >1-mm mineral grains (Ryder 1976). Lunar granites characteristically contain
40	intergrowths of K-feldspar and silica. Plagioclase is also common and may be intergrown
41	with silica as well. Lunar granites are diverse in the presence, abundance, and
42	compositions of pyroxene and olivine (typically fayalite), and contain nominally
43	anhydrous minerals with the exception of apatite. Most lunar granites have been severely
44	affected by meteorite impacts in that they have been partially melted or brecciated, have

10	we de l'économie de la constructione a la construction de la const
46	metal from meteorite impactors. We describe here a small granite fragment, designated
47	12032,366-19, separated from Apollo 12 regolith sample 12032. This granite rock
48	fragment is petrographically, mineralogically, and compositionally distinct from any
49	previously characterized lunar granite and is largely unaffected by processes associated
50	with meteorite impacts, i.e., it is monomict and unbrecciated.
51	SAMPLES AND EXPERIMENTAL PROCEDURE
52	Sample 12032 is one of several regolith bulk soil samples collected on the Apollo
53	12 mission. Subsample 366 consists of forty-one 2-4 mm grain-size lithic fragments
54	allocated for the studies of Barra et al. (2006) and Korotev et al. (2011) along with 317
55	lithic fragments from other Apollo 12 regolith samples. The subject of this paper is the
56	19th fragment in the subset, designated 12032,366-19 (Fig. 1). We examined all 358
57	fragments under a binocular microscope and analyzed each one individually for
58	concentrations of 26 chemical elements by INAA (instrumental neutron activation
59	analysis; Korotev et al. 2011). Eight fragments were found to be granitic in composition,
60	with 12032,366-19 being the largest at 21.3 mg. INAA results for 12032,366-19 are
61	reported in Table 1. Results for 12001,912-02 (9.2 mg) and 12032,366-07 (15.7 mg) are
62	reported in Barra et al. (2006). Compositional results for the other five fragments (2.7-
63	7.5 mg) are reported in Appendix 1. (INAA data for all 366 fragments are presented in
64	the electronic annex of Korotev et al. 2011.)
65	After INAA, which is effectively nondestructive, we mounted and polished the
66	sample in a petrographic thick section for EPMA (electron-probe microanalysis). The
67	texture and mineral assemblage were characterized by high-resolution BSE (back-

68 scattered electron) imaging and X-ray map analysis using the 5-wavelength-spectrometer

69	JEOL 8200 electron microprobe at Washington University, which includes a high-
70	intensity LIFH/PETH H-type spectrometer and an EDS (energy-dispersive spectrometer)
71	with an SDD (silicon-drift detector). Images and maps were generated at an accelerating
72	voltage of 15 kV and a probe current of 25 nA (50 nA for X-ray maps), except as
73	indicated below. We used a combination of WDS (wavelength-dispersive spectrometers)
74	and the SDD EDS to generate X-ray maps.
75	Quantitative mineral compositions were determined by WDS EPMA using the
76	Probe for EPMA software developed by Probe Software, Inc. In addition, we used the
77	Probe for EPMA software for data correction including peak interference corrections
78	(e.g., Th m β on U m α ; and Fe L α_1 on F K α). Nominal analytical conditions for typical
79	mineral phases (feldspar, silica, pyroxene, fayalite, ilmenite, and glass) were 15 kV
80	accelerating voltage and 25 nA probe current, with beam diameters ranging from 1 to 10
81	μ m. Analytical standards included synthetic and natural silicate, oxide, and REE glass
82	standards of Drake and Weill (1972) and Carpenter et al. (2002) for primary calibration,
83	and these were checked against secondary standards.
84	Typically, elements were measured using the K α lines and counted on peak for 40
85	seconds (Si, Ti, Al, Cr, Fe, Mn, Mg, Na), except for elements analyzed using the high-
86	intensity spectrometer (Ca, K, and P were counted for 20 seconds, and Ba, using the $L\alpha$
87	line, was counted for 120 seconds). In addition to these elements, analyses of Zr-rich
88	minerals included an expanded element list as follows: V (K α ; 20 seconds); Zr (L α ; 60
89	seconds); La, Ce, Nd, and Yb (L α ; 120 seconds each); Hf, Ta, and Pb (M α ; 180 seconds
90	each); Y and Nb (L α ; 220 seconds each); and U and Th (M α ; 240 seconds each). This

91 protocol led to detection limits for most minor and trace elements in the 0.01 to 0.04 wt%

92 range (100 to 400 μ g/g).

93	When analyzing phosphates, elements measured using the K α lines were counted
94	on peak for 20 seconds (Ca), 25 seconds (Na), 30 seconds (Mn, Fe), 35 seconds (Al), 40
95	seconds (Mg, Si, and P), 45 seconds (Cl), and 130 seconds (F); elements measured using
96	the L α lines were counted on peak for 30 seconds (La, Ce, Gd, Nd, and Yb; all but Ce
97	were analyzed using the H-type spectrometer) and 45 seconds (Y). We used the Probe for
98	EPMA software to correct for the interference of Fe L α_1 and Ce M ζ on F K α and to apply
99	a non-linear (polynomial) background correction for F (and Si). The F X-ray count-rates,
100	which were analyzed on a layered-dispersive element (LDE1) crystal, were found to vary
101	with positive linear time dependence (Fig. 2; Stormer et al. 1993). Such variations were
102	accounted for by the time-dependent intensity correction of the Probe for EPMA
103	software, which we used to project the F X-ray count-rates back to time zero using a
104	linear extrapolation to determine the intensity (e.g., McCubbin et al. 2010). In our
105	analyses of the REEs, we applied the following the interference corrections using the
106	Probe for EPMA software: Nd Ll on La L α_1 ; La L γ_3 , Ce L γ_1 , and Nd L β_2 on Gd L α_1 ; and
107	Ce $L\beta_1$ on Nd $L\alpha_1$.
108	We used a modal recombination technique that we designate CMR (constrained
109	modal recombination; Tables 1 and 2) to estimate the bulk concentration of elements for
110	which concentration data were not obtained by INAA. The model was constrained to fit

- 111 the oxides for which both microprobe and INAA concentrations were obtained (FeO,
- 112 CaO, BaO, Na₂O, K₂O, and ZrO₂). Phase abundances (Table 2) were determined using
- image analysis of a BSE mosaic and X-ray maps to essentially count all pixels in each

114 phase, which were then divided by the total number of pixels (background subtracted) to 115 obtain the area fraction which we assume is indicative of the volume fraction. The 116 volume fraction of each phase was multiplied by the density scaled to the composition of 117 each respective phase (Deer et al. 1976). Finally, we divided these individual values by 118 their sum to yield weight fractions. The bulk concentrations of each oxide were then 119 calculated by summing the oxide concentration of each phase (an average of the phase 120 compositions determined by electron microprobe) multiplied by the weight fraction of the 121 phase (see example for SiO_2 below).

$$[SiO_2]_{Bulk} = \sum_{\text{phase } n=1,2,3...} ([SiO_2]_n X(\text{weight fraction of phase } n))$$

122 The bulk composition obtained from INAA represents the entire 21.3 mg sample, 123 but the concentrations generated from the constrained modal recombination technique 124 represent only the specific plane of the section exposed by the polished mount and the 125 BSE image and X-ray maps of that section. To assure that our bulk major-element 126 composition was representative of the whole sample, we adjusted phase proportions from 127 those obtained from image analysis to best-fit the INAA data. For example, our polished 128 section of 12032,366-19 contains 6.2% plagioclase and 7.3% hedenbergite (area 129 percentages converted to weight percentages) leading to a bulk CaO concentration of 2.2 130 wt% for 12032,366-19 (based on the average compositions of plagioclase and 131 hedenbergite). INAA, however, yields a bulk CaO of 2.9 ± 0.2 wt%. In CMR, we 132 increase the plagioclase abundance to 19 wt%, and decrease the hedenbergite abundance 133 to 6.0 wt% (to fit both the INAA derived bulk CaO of 2.9 ± 0.2 wt% and FeO of $4.99 \pm$ 134 0.05 wt%). The CMR bulk CaO therefore is 3.04 wt%. This example is simplified since

135 CMR takes the CaO contribution of all present phases into account, not just plagioclase136 and hedenbergite.

137	The CMR error was calculated using the error from both EPMA and image
138	analysis. We applied counting statistics to the total number of pixels attributed to each
139	phase in the image and X-ray maps (Fig. 3,4). The final "% Error" values are the result of
140	propagating error through averaging the phase compositions, multiplying the average
141	compositions by the wt% of that phase, and summing those values for each oxide or
142	element. The trace-element compositions listed in the "EPMA" composition are from
143	zirconolite, baddeleyite, REE-rich apatite, RE-merrillite, and apatite. These phases
144	account for very small portions of the image, and their abundances were constrained to fit
145	the INAA data as closely as possible. Following the same procedures for error
146	propagation as with the major elements, the errors in the model associated with the trace
147	elements would be between 260 and 640%. The trace-element errors are high because the
148	trace elements are concentrated in trace minerals (e.g., zirconolite) which are represented
149	by a relatively small number of pixels in the image and X-ray maps resulting in high error
150	from counting statistics.
151	One irregular zirconolite grain (see descriptions in next section) yielded initial

compositional analyses with anomalously high SiO₂. We assume that the zirconolite grain
thickness might be such that the analyzed composition resulted from overlap of the
electron interaction volume with another mineral. To further investigate this composition,
we obtained three BSE images of the area at 5, 15, and 25 kV accelerating voltages (Fig.
5). We then modeled electron trajectories with Monte Carlo simulations using the Casino
program version 2.42 (Hovington et al. 1997). Simulations of 5000 electron trajectories

each were run at 5, 15, and 25 kV on models consisting of K-feldspar overlying
zirconolite and zirconolite overlying quartz. The thickness of the top layer was varied.
We constrained the thickness of the overlying phases by noting whether or not the
backscattered electrons interacted only with the top phase at the different accelerating
voltages. A detailed description of our process of determining the zirconolite composition
is in Appendix 2.

Following the method of Montel et al. (1996), we calculated the crystallization age of 12032,366-19 from our analyses of zirconolite. In doing so, we assumed that all Pb analyzed is radiogenic which appears valid since nonradiogenic Pb should not exist in zirconolite beyond trace concentrations because Pb does not fit in the crystal structure. Given that assumption,

$$Pb = \frac{Th}{232} \left(e^{\lambda^{232}t} - 1 \right) 208 + 0.9928 \frac{U}{238.04} \left(e^{\lambda^{238}t} - 1 \right) 206 + 0.0072 \frac{U}{238.04} \left(e^{\lambda^{235}t} - 1 \right) 207 \frac{U}{238.04} \left(e^{\lambda^{2$$

169 where Pb, Th, and U are in ppm and λ^{232} (4.9475×10⁻¹¹ yr⁻¹; Jaffey et al. 1971), λ^{235}

170 (9.8485×10⁻¹⁰ yr⁻¹; LeRoux and Glendenin 1963), and λ^{238} (1.55125×10⁻¹⁰ yr⁻¹; LeRoux

171 and Glendenin 1963) are the decay constants for Th²³², U²³⁵, and U²³⁸, respectively.

Solving for *t* yields the age of the analyzed grain along with the fraction of lead generatedfrom each parent element. We report the average crystallization age calculagted for each

174 zirconolite analysis and report the error as the 95% confidence interval.

We identified the silica phase as the polymorph quartz by Raman spectroscopic
analysis using a Hololab 5000-532 laser Raman spectrometer (Kaiser Optical Systems,
Inc.). The 532 nm line of a frequency-doubled Nd:YAG solid-state laser was used as the
excitation source. Analyses were done using a 20× long-working distance objective
(NA=0.4), which condenses the laser beam into a spot of 6 µm diameter on the sample,

9/4

180	with an average power of 11 mW. This objective also collects the back-scattered Raman
181	photons from the sample. These photons were sent through a multimode optical fiber to a
182	Raman spectrograph. A volume holographic grating spectrometer disperses the collected
183	Raman photons into a Raman Stokes shift range of 100 to 4300 cm ⁻¹ relative to the 532-
184	nm laser line, with a spectral resolution of $4-5 \text{ cm}^{-1}$. See Freeman et al. (2008) for more
185	analytical details.
186	
187	RESULTS
188	Petrography
189	Lunar sample 12032,366-19 is an unshocked, unbrecciated, fine-grained granite
190	fragment. It is composed predominantly of granophyric intergrowths of barian K-feldspar
191	$(An_{0.7-16}, Ab_{21-50}, Or_{33-78}, Cn_{0.4-3.9})$ and quartz (Figs. 3,4) that, according to modal analysis,
192	account for ~ 62 wt% of the sample, and to a lesser extent, a graphic intergrowths of
193	plagioclase (An ₃₄₋₅₀ , Ab ₄₉₋₆₅ , Or _{0.8-6.6} , Cn _{0.0-0.3}) and quartz (Table 2, Figs. 3,4) that account
194	for ~ 27 wt% of the sample. K-feldspar and silica intergrowths extend throughout the
195	entire sample, whereas intergrowths of plagioclase and silica occur on the scale of ~ 1
196	mm. The mafic phases are present in significant amounts (6.0 wt% hedenbergite and 3.1
197	wt% fayalite) compared to most other lunar granites (e.g., 12013 "Light;" 12033,507;
198	14161,7269; 14303,204; 14321,1027; 15405,12; and 73255,27,3; see Appendix 1 for
199	references) in which it is common for either pyroxene or olivine (or both) to be absent.
200	There are >20 hedenbergite grains and >30 fayalite grains exposed in our polished
201	section of 12032,366-19.

202	Potassium feldspar. Compositions of K-feldspar (Fig. 6; Table 3) are similar,
203	from spot to spot and as reflected in the potassium X-ray image, with two exceptions. (1)
204	In several instances, large subhedral grains (as large as $440 \times 100 \ \mu m$) of K-feldspar lack
205	quartz intergrowths (Figs. 3,4) and are zoned. The cores of these grains have a higher
206	Na/K (e.g., An ₁₅ , Ab ₅₀ , Or ₃₃ , Cn _{1.9}) than their rims, which have Na/K similar to the rest of
207	the K-feldspar in the sample (e.g., An _{1.6} , Ab ₂₈ , Or ₆₇ , Cn _{3.0} ; Fig. 4). (2) The K-feldspar
208	("Kfs*" of Table 3) that is part of a subrounded inclusion inside one of the three "large"
209	(see below) pyroxene grains has among the lowest Na/K in the fragment
210	$(An_1, Ab_{21}, Or_{78}, Cn_{0.5})$. Moreover, in the K-feldspar in the inclusion, the abundance of the
211	Cn (celsian, Ba-feldspar) component is only 0.5%, whereas the other analyzed K-feldspar
212	compositions have Cn values of 1.6 to 3.9% (0.91 to 1.90 wt% BaO). The "Kfs*"
213	analyses also have the highest FeO content (0.44 to 0.49 wt%) of the analyzed K-feldspar
214	grains but not by a large amount (the other analyses range from <0.05 to 0.34 wt%).
215	Plagioclase. Plagioclase is not zoned and is unusually sodic for a lunar rock
216	(An _{33.5-50.2} , Fig. 6). In fact, the albite contents of the plagioclase are the highest of which
217	we are aware in any lunar sample. This high albite content is not totally unprecedented
218	though: Warren et al. (1987) reported zoned plagioclase with rims of $An_{35.5}$ in felsite
219	12033,507. The FeO content of the plagioclase ranges from 0.14 to 0.33 wt% with an
220	average concentration of 0.21 wt %. These values are consistent with FeO concentrations
221	reported for plagioclase in other lunar granites (e.g. Warren et al. 1987; Jolliff 1991).
222	From our thick section, we are unable to determine whether the plagioclase is crystalline
223	or maskelynite.

10

9/4

224	Quartz. The SiO_2 phase is identified as quartz on the basis of Raman
225	spectroscopy (Fig. 8). Its texture is fractured in a hackled pattern (e.g., Jolliff et al. 1999),
226	suggesting that it may have inverted from cristobalite. Quartz analyses with the electron
227	microprobe give minor-oxide concentrations (Table 3), including Al ₂ O ₃ (0.21 wt%), FeO
228	(0.21 wt%), TiO ₂ (0.05 wt%), and K ₂ O (0.02 wt%).
229	Hedenbergite. All analyzed pyroxene grains in 12032,366-19 are hedenbergite
230	(En _{4.6-6.2} , Fs ₅₁₋₅₂ , Wo ₄₃₋₄₄). In the probe mount, there are three relatively large grains: an
231	elongate grain (670 \times 56 µm; Figs. 3,4,7a) that terminates at the edge of the sample, a 196
232	\times 134 μm grain with a sub-rounded inclusion (diameter = 58 $\mu m;$ Figs. 3,4), and a 425 \times
233	112 μ m grain (Figs. 3,4). The shape of the inclusion-bearing hedenbergite grain is similar
234	to a hopper crystal (Fig. 3). There are >20 other, smaller grains of hedenbergite in the
235	section. The pyroxene grains are subhedral with irregular boundaries and in some cases
236	are serrated. Six spot analyses of hedenbergite yielded minor concentrations of TiO_2
237	$(0.69-1.28 \text{ wt\%}), \text{Al}_2\text{O}_3 (0.53-0.84 \text{ wt\%}), \text{MnO} (0.33-0.38 \text{ wt\%}), \text{and Na}_2\text{O} (0.07-0.14 \text{ wt\%})$
238	wt%) which are common concentrations for pyroxenes in other lunar granites (Quick et
239	al. 1977; Warren et al. 1987; Jolliff 1991). Careful examination of the 12032,366-19 Mg
240	X-ray map indicates that the larger pyroxene grains are slightly richer in Mg (up to 2 wt%
241	MgO) at the cores.
242	Fayalite. In 12032,366-19, the fayalite (Fa _{97.3}) grains are small (average grain
243	size: $130 \times 50 \ \mu$ m), and subhedral to anhedral with typically equant morphologies. The

- fayalite contains ~1 wt% MgO and small amounts of MnO (0.79–0.86 wt%), CaO (0.11–
- 245 0.24 wt%), TiO₂ (<0.05–0.19 wt%), and P₂O₅ (0.06–0.07 wt%). These concentrations are

248	Ilmenite. Ilmenite grains tend to be elongate (aspect ratio average: 13.5, range:
249	5.9 to 27; Fig. 7b,7c) but not to the extent of some of the zirconolite grains (see below).
250	Ilmenite is commonly found along the boundaries of pyroxene and olivine and is
251	typically subhedral to anhedral. Ilmenite and baddeleyite are the only minerals in the
252	sample that exhibit a preference for occurring adjacent to another mineral. Ilmenite grains
253	contain only 0.12 wt% MgO, lower than the MgO range observed in the ilmenite of
254	12013 felsic material (1.76–2.01 wt%, Quick et al. 1981). The Nb ₂ O ₅ concentration is
255	0.97 wt%, whereas V_2O_5 is below the detection limit (<0.017 wt%). Both of these
256	concentrations are similar to those of ilmenite in the granitic phase of 12013 (Quick et al.
257	1981).
258	Baddeleyite. In 12032,366-19, baddeleyite is always found in association with
259	ilmenite, and its analyses reveal concentrations of HfO_2 of 2.8 wt% and measureable FeO
260	(1.1 wt%), TiO ₂ (0.8 wt%), and Nb ₂ O ₅ (0.5 wt%). The largest baddeleyite grain is
261	euhedral, 24.7 x 16.8 μ m, and is highlighted in Figure 7a.

262 **Zirconolite.** Zirconolite occurs in two forms in 12032,366-19. The first consists 263 of fine-grained, elongate "strings" (finely elongate green phase in Fig. 4b; diagonal, 264 bright phase in Fig. 7b; and gray arrow in Fig. 7c) scattered throughout the section. These 265 elongate grains are typically ~65 μ m long and ~3 μ m wide. There is only one occurrence 266 of the second form in the studied slice of 12032,366-19. It is coarser (0.1 mm long, 0.04 267 mm wide) than any occurrence of the elongate form and has an irregular shape (green 268 phase at top of Fig. 4b, false-colored X-ray image).

269	Zirconolite is a fairly common accessory mineral in evolved lunar rocks that has
270	the general formula (Ca,REE)Zr(Ti,Nb,Ta) ₂ O ₇ . In 12032,366-19, its composition (Table
271	4) is similar to compositions reported by Wark et al. (1973) and Rasmussen et al. (2008)
272	in some lunar mare basalts and breccias (Table 4); however, the composition obtained by
273	Haines et al. (1971) for zirconolite in the 12013 granitic breccia has 12.8 wt% less ZrO_2
274	than that in 12032,366-19. Several of our zirconolite analyses on elongate grains imply
275	significant concentrations of SiO ₂ ; however, we conclude that these results are an artifact
276	of electron beam volume overlap because the zirconolite grains are so thin. Our best
277	analysis indicates that the zirconolite contains <0.008 wt% SiO ₂ .
278	We measured concentrations of the four REEs present in the highest
279	concentrations (La, Ce, Nd, and Yb) and Y in our zirconolite analyses (Fig. 9), but many
280	of the analyses resulted in low totals. The REE ³⁺ concentrations of the zirconolite
281	analyses with the lowest SiO_2 concentrations were interpolated to form a smooth,
282	chondrite-normalized pattern with the measured REE concentrations (Fig. 9). We also
283	assume that the Y concentration, normalized to chondrites, plots at a point halfway
284	between normalized Ho and Er concentrations (Korotev 1996). The full REE component
285	was then used to calculate the structural formula of the 12032,366-19 zirconolite (Table
286	4b). The normalized REE pattern is HREE-rich (Fig. 9) unlike the pattern of REE in the
287	mare basalt occurrence reported by Rasmussen et al. (2008). Oxide sums, including the
288	REE, for the four analyses with lowest silica range from 97.4% to 98.7% (Table 4a).
289	Zirconolite analyses were normalized on the basis of 7 oxygen atoms using the
290	structural formula, $(\mathbf{M}_{I})^{2+}(\mathbf{M}_{II})^{4+}(\mathbf{M}_{III})^{4+}_{2}\mathbf{O}_{7}$, following the methods of Wark et al.
291	(1973) as described in the experimental procedure section. The results are listed in Table

292	4b. Four zirconolite analyses included PbO data (Table 4a). Using Th, U, and Pb
293	concentrations, we calculated a crystallization age of 3.9 ± 0.3 Ga (error is a 95%
294	confidence interval).

295	Phosphates. Phosphates are rare in 12032,366-19, as they are in most granitic
296	lunar samples (Warren et al. 1983c), and account for <0.3 vol% of 12032,366-19, on the
297	basis of image analysis of a P X-ray map of the sample. Quantitative analyses reveal that
298	three phosphate phases are present in 12032,366-19—apatite, REE-rich apatite, and RE-
299	merrillite—all of which are anhedral to subhedral. Of the apatite grains we have
300	measured, the compositions fall into a high-REE group (we refer to these compositions as
301	"REE-rich apatite") and a low-REE group (we refer to these compositions as "apatite");
302	they do not form a continuum of REE concentrations. Because the phosphate grain sizes
303	are small, commonly $<5 \ \mu$ m, we disregarded analyses that indicate overlap of the electron
304	beam interaction volume with an adjacent phase (e.g., ${\sim}1$ wt% Al_2O_3 from feldspar or ${\sim}5$
305	wt% SiO ₂ from quartz). We measured concentrations of five REEs (La, Ce, Nd, Gd, and
306	Yb) and Y in our phosphate analyses (Fig. 9). La, Ce, Nd, and Y were above detection
307	limits in analyses of all three phosphates; Gd and Yb are above detection limits in
308	merrillite with 15–22% and 23–32% error, respectively, and are above detection limits in
309	about half of the REE-rich apatite analyses with 24–52% and 25–47% error, respectively.
310	The (low REE) apatite analyses have Gd and Yb below detection limits. On a chondrite-
311	normalized plot (Fig. 9), the analyzed LREE form a negative slope that is similar for the
312	three phosphates. In merrillite, the analyzed HREEs have an approximately flat slope. We
313	used the slopes of the merrillite REEs to interpolate the unanalyzed REE^{3+}
314	concentrations. Though Gd and Yb were commonly below detection limits in the apatites,

315	Y (and Gd and Yb when detectable) indicates that the apatite and REE-rich apatite have
316	chondrite-normalized REE patterns that mimic the pattern of merrillite. We interpolated
317	the concentrations of REE^{3+} in apatite that were either not analyzed or that were found to
318	be below our detection limits using the chondrite-normalized REE pattern of merrillite
319	scaled to the concentrations detected for the LREE and Y.
320	The largest grain of apatite in 12032,366-19 is 25 \times 15 μm and is adjacent to an
321	elongate zirconolite grain and quartz. In apatite, the (F, Cl, OH) site is occupied by 0.30-
322	0.56 F and 0.17–0.23 Cl apfu (atoms per formula unit), and sums range from 0.47 to 0.78
323	leaving open the possibility for a missing component, possibly OH (McCubbin et al.
324	2010). The apatite analyses contain 1.91–2.09 wt% SiO ₂ (0.16 to 0.18 apfu) which is
325	more than enough to provide a charge balance for the 1.25–1.36 wt% (REE,Y) ₂ O ₃ (0.04-
326	0.05 apfu). We suspect that the excess SiO_2 was contributed to the analyses by secondary
327	fluorescence of Si in adjacent quartz.
328	The REE-rich apatite ("RE-Ap" in Table 3, Fig. 2) contains an average of 7.2±0.4
329	wt% REE ₂ O ₃ (error is 1 σ). The largest occurrence of REE-rich apatite is elongate, 44 × 6
330	μm (Fig. 7d), but it has been fractured into segments typically with dimensions of ${\sim}5~\mu m$
331	or less. It contains an average of 3.2 ± 0.2 wt% SiO ₂ (error is 1σ), which corresponds to
332	0.29 apfu per 25 negative charges and provides charge-balance for the REEs and Y (0.31
333	apfu). F and Cl are also present at 0.96 ± 0.11 and 1.32 ± 0.06 wt% (0.28 and 0.21 apfu),
334	respectively (errors are one σ) which, based on apatite stoichiometry, only occupies 42-
335	54% of the (F, Cl, OH) site, leaving open the possibility that this grain contains
336	significant OH.

337	RE-merrillite is the third phosphate present in 12032,366-19. Concentrations of F
338	and Cl are below detection limits (<0.02 and <0.01 wt%, respectively). Only one grain
339	was large enough (15 \times 5 $\mu m)$ to provide a good analysis, and it contains 5.24 wt% FeO,
340	0.59 wt% MgO, and 15.1 wt% (REE+Y) ₂ O ₃ . On the basis of our electron microprobe
341	analyses, the REE-rich apatite has a similar chondrite-normalized REE pattern (Fig. 9) to
342	that of the RE-merrillite but is about an order of magnitude lower in concentration.
343	Glass Inclusions. We observed inclusions of glass and two crystalline inclusions
344	in pyroxene in 12032,366-19. The inclusions are rounded and located at or near the center
345	of the pyroxene grains. All of the inclusions are glass except for the largest (diameter of
346	58 μ m), which has crystallized to an assemblage of K-feldspar, plagioclase, and quartz,
347	and another, which has crystallized into K-feldspar and quartz. One of the largest glass
348	inclusions has a composition with significantly higher SiO_2 than the bulk sample (e.g.,
349	78.3 vs. 70.1 wt% SiO ₂ , Table 3). The bulk composition of the largest crystalline
350	inclusion has 70.6 wt% SiO ₂ ; this was calculated using a modal recombination technique
351	that assumed the inclusion-hedenbergite boundary was originally smooth, like all other
352	inclusion-hedenbergite boundaries in the section, until the inclusion crystallized
353	additional hedenbergite onto the boundary. The hedenbergite within the assumed
354	boundary is included in the modal recombination.
355	Bulk composition
356	The bulk composition of 12032,366-19 as estimated from CMR and determined
357	by INAA are listed in Table 1. The phase abundances derived from both the image

- analysis and the modal recombination are listed in Table 2. Notable major oxide
- 359 concentrations obtained from INAA include: 4.99 wt% FeO (Fig. 10), 2.10 wt% Na₂O,

360	and 4.8 wt% K_2O (Table 1). Only four reported lunar granitic compositions have lower
361	bulk FeO (12023,147-10; 14321,1027; 73215,43,3; 73255,27,2; Appendix 1). Samples
362	14321,1027 (149 mg); 73215,43,3 (20 mg); and 73255,27,3 (2 mg) are granitic clasts and
363	have the lowest bulk FeO (2.3, 3.0, and 3.1 wt%, respectively; references are in Appendix
364	1). Sample 12023,147-10 (2.67 mg) is an igneous fragment with no evidence of
365	brecciation. It contains 3.1 wt% FeO. Clast 14303,204 (70 mg) has a bulk FeO
366	concentration of 5.6 wt% (Warren et al. 1983c), which is the most similar to that of
367	12032,366-19. Sample 15434,10 (27 mg), which has an igneous texture, has the highest
368	bulk FeO (19 wt%) of any sample identified as lunar granite (identified as such from thin
369	section 15434,10,136; Ryder and Martinez 1991)—likely a sampling issue from the
370	coarseness of the texture compared to the size of the 39 mg chip analyzed by INAA
371	(Ryder and Martinez 1991). The remaining eighteen samples listed in Appendix 1 have
372	bulk compositions that range from 6.0 to 14 wt% FeO and have been identified as
373	granitic lunar samples. High bulk FeO is likely a result of other lithologies being mixed
374	with granitic lithologies during the formation of granitic breccias (e.g., 12013—6 to 14
375	wt% FeO—is a breccia consisting of a mixture of granitic and basaltic lithologies, Quick
376	et al. 1981; samples 14001,28.2, 14001,28.3, and 14001,28.4—9.1 to 12.2 wt% FeO—
377	consist of clasts of granitic breccia in a ferropyroxenitic glass, Morris et al. 1990). The
378	bulk Na ₂ O (2.10 wt%) of 12032,366-19 is the highest of any lunar sample of which we
379	are aware. The second most sodic lunar granitic composition is that of breccia 14001,28.4
380	(1.90 wt%, Morris et al. 1990), and others have bulk Na_2O as low as 0.19 wt% (breccia
381	73215,43,3).

382	Compared to high-K KREEP (Warren 1989), Ba, Rb, Cs, Yb, Lu, Ta, W, Th, and
383	U concentrations are high in 12032,366-19 (Fig. 11), whereas the LREE are lower by a
384	factor of ~0.6. Iridium and Au are below INAA detection limits (<1.3 ppb and <5 ppb,
385	respectively), consistent with an unbrecciated rock unaffected by meteoritic
386	contamination. REE abundances and relative concentrations are unlike typical Apollo 12
387	mare and nonmare materials, including KREEP, but are similar to other granites and
388	felsites, exhibiting a characteristically V-shaped chondrite-normalized REE pattern (e.g.,
389	Blanchard and Budahn 1979; Jolliff 1991; Fig. 12). In 12032,366-19, the LREE-rich RE-
390	merrillite and REE-rich apatite and the HREE-rich zirconolite (Fig. 9) are the most likely
391	main contributors to the V-shaped chondrite-normalized REE pattern.
392	DISCUSSION
393	Granites are one of the rarest lithologies in the Apollo collection, implying that
394	rocks of granitic composition make up only a small fraction of the lunar crust. However,
395	granitic samples are relatively more common among the nonmare components at Apollo
396	12 (five have been characterized thus far) compared to the other Apollo sites presumably
397	because the site is located in the Procellarum KREEP Terrane (Jolliff et al. 2000), which
398	has the highest abundances of K, Th, and U on the lunar surface (Lawrence et al. 1998).
399	Given the high concentrations of those elements in granite, it logically follows that the
400	source of most of the lunar granitic material would be in this terrane as well. The Apollo
401	14 and Apollo 15 sites also lie within this terrane, and both have yielded several granitic
402	samples (Ryder 1976; Warren et al. 1983c; Jolliff 1991; Ryder and Martinez 1991)
403	whereas we are aware of no granite clasts in the Apollo 16 collection. Moreover, silicic
404	surface compositions associated with some of the "red spots" such as the Gruithuisen

405 domes, Mairan domes, and Hansteen Alpha (Hawke et al. 2003; Wilson and Head 2003;

406 Glotch et al. 2010), most of which are now known to be silica-rich (Glotch et al. 2010),

407 occur within this terrane.

408 **12032,366-19 compared to other lunar granites**

409 Granite 12032,366-19 is of lunar origin. It is not a terrestrial contaminant or a

410 piece of Earth blasted to the Moon (Chapman 2002). It contains no petrographic

411 indication of hydrous alteration of any minerals (e.g., serpentinization of fayalite,

412 sericitization of plagioclase). Micas and amphiboles are absent in 12032,366-19 (and

413 other lunar samples) but are common in terrestrial granites.

414 Sample 12032,366-19 is unique among lunar samples. It contains no impact-

415 generated glass or brecciated material, unlike many other lunar granites (Rutherford et al.

416 1976; Warren et al. 1983c; Morris et al. 1990; Jolliff 1991). The graphic intergrowth of

417 K-feldspar and silica, commonly described as a granophyre, dominates most of the lunar

418 granitic samples (e.g., 12013); however, significant amounts of plagioclase-silica

419 intergrowths are far less common among reported samples. It is also common for lunar

420 granites to contain shock-melted glass, but 12032,366-19 contains none. It is noteworthy

421 that only a quarter or so of known lunar granites have pyroxene in abundances large

422 enough to analyze, and the Mg' (mol% Mg/[Mg+Fe]) of the pyroxene in 12032,366-19,

423 essentially endmember hedenbergite, is significantly lower than those of other lunar

424 granites (Fig. 13).

Perhaps because all samples are exceedingly small by terrestrial sampling and
analysis standards, a wide distribution in bulk compositions characterizes rocks (and
assemblages) that have been classified as lunar granites or felsites. Appendix 1 includes

428	several granitic bulk compositions for comparison with 12032,366-19. The 12032,366-19
429	REE concentrations are most similar (of those to which it has been compared thus far) to
430	those of 12001,912-02; 12013,10,28; 12023,147-10; and 12033,517, all from Apollo 12.
431	12032,366-19 contains the second highest concentration of BaO (0.68 wt%) of which we
432	are aware in a lunar sample (the highest is in sample 12032,366-07, another lithic
433	fragment of granitic composition). The most striking difference between 12032,366-19
434	and other lunar granites is that its Na_2O/K_2O is higher by a factor of 2–5—a characteristic
435	reflected by both the abundance and sodic nature of its plagioclase. To our knowledge,
436	the texture and mineral assemblage of this sample is unique among studied lunar samples.
437	Lunar granites (pristine or otherwise) have U-Pb crystallization ages between 3.88
438	and 4.32 Ga (from zircon analyses; Meyer et al. 1996). Our calculation of a
439	crystallization age of 3.87 ± 0.28 Ga for sample 12032,366-19 is consistent with this
440	range.
441	Pristinity
442	Although 12032,366-19 was collected on the immediate surface of the Moon, it is
443	an unbrecciated sample with an igneous texture and contains no evidence of any admixed
444	meteoritic or regolith material. The bulk rock concentration of Ir is low, <1.3 ppb,
445	corresponding to <0.2% meteoritic material (H chondrite equivalent). Moreover, metallic
446	iron and troilite are absent. Metallic Fe, depending on Ni concentrations, would also
447	indicate a meteoritic source (Papike et al. 1991).
448	Shock-melted glass is a common occurrence in many lunar granitic samples (e.g.,
449	14303,204 is a felsite clast of which half is glass; Warren et al. 1983c). It is also common
450	for veins of impact glass to cut through portions of granitic samples (e.g., 12033,507;

9/4

451	Warren et al. 1987). The only glass in 12032,366-19 occurs as inclusions in hedenbergite
452	and does not appear to be of shock-melted origin (though the sample is a thick section
453	which precludes an assessment by transmitted light microscopy). These glass inclusions
454	are more likely to be melt that became trapped within an early forming crystal. The
455	granitic composition of the inclusion glass indicates that the hedenbergite was in
456	equilibrium with the granite melt. The texture of 12032,366-19 indicates that the rock
457	only experienced one episode of crystallization and has not experienced any re-melting
458	since.

459 $ZrO_2 - SiO_2$ phase boundary

460 In sample 12032,366-19, baddeleyite (monoclinic) is in physical contact with 461 quartz (Fig. 7a). The ZrO₂-SiO₂ phase diagram generated by Kaiser et al. 2008 indicates 462 that ZrO₂ (tetragonal) and SiO₂ (cristobalite) are only stable together between 1673°C 463 and 1687°C. At lower temperatures, the phases should react to form zircon. Baddelevite 464 and silica may have crystallized metastably. Alternatively, given that in 12032,366-19 465 baddeleyite always occurs in contact with ilmenite, it may have crystallized by the 466 diffusion of Zr out of ilmenite. Terrestrially, this process has been used to explain zircon 467 rims around ilmenite grains (e.g., Morisset and Scoates 2008). It may also be responsible 468 for the intimate intergrowth of zircon and ilmenite in the Apollo 12 high-Th impact melt 469 beccias (Liu et al. 2012). Although the diffusion of Zr out of ilmenite explains the co-470 occurrence of baddeleyite and ilmenite in 12032,366-19, it does not explain why baddeleyite, instead of zircon, crystallized in the presence of abundant SiO₂. 471

472 Petrogenesis

473	The following three methods of producing granitic compositions in the low- fO_2 ,
474	low-pressure conditions near the lunar surface have been suggested: (1) high SiO_2
475	achieved by fractional crystallization of an evolved parent such as KREEP basalt or
476	basaltic andesite glass (e.g., Longhi 1990); (2) high SiO ₂ achieved by SLI (silicate liquid
477	immiscibility; e.g., Hess et al. 1975; Rutherford et al. 1976; Neal and Taylor 1989; Jolliff
478	1991); and (3) partial melting of an enriched crustal protolith (e.g., KREEP basalt) by
479	basaltic underplating (e.g., Lawrence et al. 2005; Hagerty et al. 2006). SLI, which does
480	not occur without being preceded by extensive fractional crystallization, tends to form
481	very high SiO ₂ (68–80 wt%), low CaO (1–6.5 wt%), and low FeO (3–7.5 wt%)
482	compositions (Table 5; though SLI can produce compositions with ~ 61 wt% SiO ₂ at high
483	pressure (3 kbar), Holmberg and Rutherford 1994)—similar to the bulk composition of
484	12032,366-19 (Table 1). Process (3), coupled with upward enrichment of high-silica melt
485	is a common process on Earth, leading to the formation of bimodal volcanics, i.e., basalt
486	and rhyolite. We see this situation perhaps reflected in the lunar granitic breccia 12013.
487	In the same vein, on the Moon, we do not see intermediate compositions (with SiO_2
488	between 52 and 70 wt%) when there should be more of the intermediate silica materials
489	than high silica if (1) were the main process. We explore the methods of producing lunar
490	granitic material, considering their ability to produce lithologies like 12032,366-19.
491	12032,366-19 contains K-feldspar, quartz, alkali-rich plagioclase, Fe-pyroxene,
492	and Fe-olivine—a representative mineral assemblage consistent with late-stage fractional
493	crystallization. These phases have relatively low crystallization temperatures compared to
494	Mg-pyroxenes and Mg-olivine and indicate crystallization from a liquid that had already

495	exhausted most of its Mg and was therefore in the extreme late stages of fractionation.
496	The incompatible trace elements in 12032,366-19 are high compared to KREEP (Fig.
497	11). The concentrations of these elements in the liquid become higher as crystallization
498	continues, and it logically follows that 12032,366-19 crystallized from a liquid that was
499	at a late stage of fractional crystallization in order to explain such high concentrations of
500	incompatible elements. This indication of the late-stage nature of the parent melt is
501	consistent with the near absence of phosphates. Phosphorus is an incompatible element,
502	and phosphates tend to crystallize late in the fractional crystallization sequence (Hess and
503	Rutherford 1974, Hess et al. 1975, Warren et al. 1983c, Jolliff 1991, and Jolliff et al.
504	1999). Since phosphate in 12032,366-19 is present at only a trace level, the parent melt
505	may have crystallized phosphates as part of a residual assemblage that was presumably
506	segregated and left behind during gravity separation of the granitic mass, as hypothesized
507	by Jolliff (1991). Separation of minerals that concentrated the middle REE (merrillite and
508	apatite) explains the V-shaped REE pattern as a result of early phosphate crystallization,
509	which would impart a middle REE depletion relative to the LREE and HREE on
510	remaining residual melt. Alternatively, the parent melt may have had low P content
511	compared to KREEP basalt.
512	Petrogenetic modeling
513	The texture of 12032,366-19 shows no direct (relict) evidence of liquid
514	immiscibility—except, perhaps, the glass inclusions with ~78 wt% SiO ₂ within

515 hedenbergite (see below)—such as that seen in sample 14161,373 (a mafic assemblage

- 516 containing rounded segregations of K-feldspar and SiO₂; Jolliff 1991, Jolliff et al. 1999).
- 517 We tested whether the bulk composition could be achieved simply by fractional

518	crystallization of a melt with a KREEP-like composition. We selected KREEP basalt
519	(KB) 15434,18,199-A (composition compiled by Papike et al. 1998) and basaltic andesite
520	glass (BAG) of Zeigler et al. (2006) as compositions to represent potential parent melts
521	because both compositions (Table 5) represent alkali-rich melts that could plausibly have
522	fractionally crystallized to produce felsic final assemblages. Compared to the KB
523	composition, the BAG composition has higher Fe/Mg (2.8 vs. 1.4) and lower Al_2O_3 (12.9
524	vs. 15.2 wt%), but the SiO ₂ contents are similar (BAG: 52.5 wt%; KB: 52.8 wt%). The
525	compositions were modeled using MAGFOX (Longhi 1991) by extended fractional
526	crystallization reaching 89.4 wt% crystallized (for KB) and 85.4 wt% crystallized (for
527	BAG). The paths followed by the residual liquids for KB and BAG and the phases
528	crystallizing at each stage of melt evolution are described in detail in Appendix 3 and
529	depicted in Appendix Figure 1 of Appendix 3. The compositions, temperatures, and
530	viscosities of the KB and BAG residual liquids at \sim 25 wt% crystallization intervals are
531	given in Table 6. In order to compare the residual melt compositions and crystallizing
532	phases generated by our fractional crystallization modeling with the results of
533	experimental fractional crystallization of KREEP basalt 15386 (Holmberg and
534	Rutherford 1994), we modeled the fractional crystallization of KREEP basalt 15386
535	(results in Appendix 3).
536	Both the KB and BAG crystallization models have several shortcomings. Neither
537	KB nor BAG produce, upon fractional crystallization, residual melt compositions as rich
538	in SiO ₂ (57.5 wt% and 55.1 wt%, respectively; Fig. 14 and Appendix Figure 1 of
539	Appendix 3) as observed in the granite (70.1 wt%)%), at least not at a stage when there is

540 enough liquid left for plausible separation of melt from crystals. Low oxygen fugacity

541	relevant to the lunar system prevents crystallization of magnetite, which in terrestrial
542	liquid compositions occurs early and halts the FeO-enrichment trend, and causes the SiO_2
543	concentration of residual melt to increase to produce rhyolitic liquid compositions (e.g.,
544	Hess et al., 1975). Under lunar fO_2 and low water content, FeO-rich residual melts would
545	typically reach the field of silicate-liquid immiscibility prior to onset of Fe-Ti oxide
546	crystallization. Both models drive TiO_2 to very low levels by the 80–85% solidification
547	stage (this may be an artifact of the model), yet in 12032,366-19, ilmenite is present and
548	the bulk TiO_2 is 1.07 wt%. FeO concentrations in the model residual melts at this point
549	are 12.3 wt% (KB) and 15.3 wt% (BAG), which is roughly three times that of 12032,366-
550	19 (4.98 wt%). K ₂ O in 12032,366-19 (4.58 wt%) is similar to that predicted by the
551	models (5.0 wt%, KB and 3.9 wt%, BAG). KB and BAG produce P_2O_5 of 2.9 wt% (KB)
552	and 3.4 wt% (BAG) while that of 12032,366-19 is only 0.052 wt%. Also, the anorthite
553	contents of KB (An _{62.6}) and BAG (An _{62.5}) are higher than that of 12032,366-19 (An _{34.9}).
554	Most importantly, K-feldspar does not saturate in either the KB or BAG models. The
555	crystallizing mineral assemblages at the 80-85% solidification stage of the KB and BAG
556	models would be tonalitic based on QAPF classification (Appendix Figure 1 of Appendix
557	3); however, if the normative K-feldspar from the residual liquid is included in the
558	classification, the mineral assemblage for both models is that of quartz monzonite with
559	bulk SiO ₂ of \sim 50 wt%.

560 Silicate liquid immiscibility

561 As noted above, a key failure of extended fractional crystallization is that it does 562 not generate SiO₂ concentrations in residual melts as high as observed in the granite (\sim 70 563 wt%) while there is still a significant proportion of residual melt. Moreover the process of

564	extended fractional crystallization should produce intermediate evolved compositions in
565	greater volumes than granite, yet such compositions are not observed on the Moon. In
566	fact, evolved lunar rock compositions generally have bimodal distributions with respect
567	to silica content (Hess et al. 1975; Rutherford et al. 1976). Also, the absence of
568	intermediate lunar lithologies, something akin to terrestrial granodiorite (or dacite), which
569	would be produced as a melt progressed from crystallizing mafic rocks to felsic rocks
570	implies that another process may have occurred (Rutherford et al. 1976).
571	Silicate liquid immiscibility has long been suggested as a process responsible for
572	the production of lunar granites while at the same time accounting for the absence of
573	intermediate lithologies (e.g., Hess et al. 1975; Rutherford et al. 1976; Neal and Taylor
574	1989; Jolliff 1991). SLI is a process that can occur as a melt undergoes fractional
575	crystallization. As crystallization proceeds and melt becomes progressively richer in Si,
576	Fe, and incompatible elements, the melt can ultimately reach a composition that unmixes
577	when the melt enters the field of SLI (Fig. 14). This process has been observed in the
578	laboratory (Hess et al. 1975, Rutherford et al. 1976) and in nature (e.g., Skaergaard,
579	Jakobsen et al. 2005; Bushveld, Lee 1979). One of the liquids is Fe-rich and incorporates
580	the REE- and P-rich fraction of KREEP, which, if it separates physically from the felsic
581	fraction, crystallizes as monzogabbro or monzodiorite. The complementary liquid is rich
582	in Si and K, and if it separates physically from the Fe-rich liquid, would crystallize to a
583	felsic or granitic assemblage (Rutherford et al. 1976; Taylor et al. 1980; Jolliff 1991;
584	Table 5).
585	SLI could feasibly be combined with the fractional crystallization model to

586 explain the bulk composition of 12032,366-19 in the following way: a parent melt of

587	composition similar to BAG or KB undergoes extensive fractional crystallization until it
588	reaches a point where SLI occurs (Fig. 14). As the melt unmixes into two liquids, the
589	denser, Fe-rich liquid remains with the crystallizing (gabbroic) assemblage, and the
590	lower-density felsic liquid rises and separates from the gabbroic fraction. Finally, the
591	granitic liquid continues to crystallize producing the bulk composition of 12032,366-19.
592	However, in our models, as the KB composition crystallizes, it does not pass into the
593	field of SLI, and BAG only grazes the boundary of the field before trending away from it
594	(Fig. 14). This leads us to search for other possibilities to explain the petrogenesis of
595	12032,366-19 and to consider the possibility that we do not have the right starting
596	composition. We acknowledge that the boundaries of field of immiscibility drawn by
597	Roedder (1951; Fig. 14) are probably only an estimation of where the field actually is.
598	The modeling of KREEP basalt 15386 suggests that the residual liquid passes close to the
599	field of immiscibility without entering it similar to the KB model (Fig. 14); whereas the
600	experimental work of Holmberg and Rutherford (1994) did result in SLI after \sim 70%
601	crystallization implying that though KB does not enter the SLI field of Roedder (1951),
602	experimental fractional crystallization of the KB composition may result in immiscible
603	liquids.
604	Although SLI has been observed to occur on a small (micro) scale in lunar rocks,
605	including mare basalts (Roedder and Weiblen 1970; Roedder and Weiblen 1971; Roedder
606	and Weiblen 1972) and monzogabbro (Jolliff 1991), it is not clear that SLI could or did
607	occur on a scale large enough to produce some of the large silicic volcanic constructs on

609 et al. 2010). Partial melting produced by basaltic "underplating" has been suggested as an

608

27

the Moon such as the Gruithuisen domes, the Mairan domes, and Hansteen Alpha (Glotch

610	alternative process that could produce significant amounts of granitic material (Lawrence
611	et al. 2005; Hagerty et al. 2006). This process involves the injection of basaltic magma
612	into the lunar crust and partial melting of the overlying crustal material, which then
613	intrudes to a shallow level, forming granite, or extrudes onto the surface as a large
614	volume of rhyolitic material without producing intermediate lithologies. The efficacy of
615	this process depends on the composition of the crust at the point of intrusion of basaltic
616	melt and on the rheology and transport of the silica-rich material upward from the zone
617	where it is formed. If the crust was anorthositic, it is unlikely that basaltic underplating
618	would lead to a significant amount of melting because of the high melting point of
619	anorthosite. If, however, basaltic melt intruded into a crust of KREEP-basalt or similar
620	composition, which has a melting point around 1000° C (Holmberg and Rutherford
621	1994), and if the crust in this region was already hot, then partial melting would have
622	been much more likely and more volumetrically significant. A lithology like 12032,366-
623	19 could be produced from \sim 10-15% partial melting of a KREEP basalt.
624	The glass inclusions with ~78 wt% SiO_2 within hedenbergite could be explained
625	as a product of local SLI. A liquid with the composition of the glass inclusion combined
626	with a relatively small amount of hedenbergite and a liquid with the composition of
627	hedenbergite combined with the glass inclusion would be complementary liquids
628	consistent with the miscibility gap of Roedder (1951). However, The glass inclusion
629	composition could also be the result of the crystallization of hedenbergite from an
630	inclusion with the bulk composition of 12032,366-19 onto the inner walls of the host
631	hedenbergite grain. A third explanation appeals to the vagaries of late stage fractional
632	crystallization.

633 Gravity separation of phases

634	If we take the mineral compositions that are in equilibrium with the KREEP
635	basalt and BAG residual melts at the latest stages of fractional crystallization as modeled
636	above and adjust the proportions by increasing the low-density phases relative to the
637	high-density phases, as might occur during gravity-induced separation or flow
638	differentiation, we can achieve the compositions of the pristine granites without
639	appealing to SLI (Fig. 15; Columns 10 and 11, Table 7). For this gravity separation
640	model, we add the K-feldspar from calculating the normative mineralogy of the residual
641	liquid at the final stages of the KB and BAG models to the mineral assemblages predicted
642	by the KB and BAG models. To obtain the pristine granite compositions, the
643	concentrations of K-feldspar and quartz modeled above must be increased by factors of
644	1.3 to 1.5 and 4.0 to 4.2, respectively. Accompanying the increased K-feldspar and quartz
645	is a depletion of mafic silicates and phosphates owing to density differentiation or
646	separation. An exception for 12032,366-19 is its high Na ₂ O, which requires a more sodic
647	plagioclase and an additional 0.3-0.5 wt% Na ₂ O content in either the KB or BAG starting
648	melt composition in order for the crystallizing plagioclase to have $\sim An_{33.5}$ to match that
649	contained in the sample.
650	The obvious problem for this model is how to separate phases after a high degree
651	of crystallization and at relatively high silica contents when the viscosity of the system is
652	very high. The viscosities of the residual liquids of the KB and BAG models, calculated
653	using the KWare Magma program (Ken Wohletz, Version 2.49.0126) and the methods of
654	Shaw (1972) and Bottinga and Weill (1972), become as high as ~67000 and ~3500 Pa·s,

respectively, at the end stages of the KB and BAG models. Separation of phases is also a

656	problem in the case of the two liquids produced by SLI because the Si-rich phase
657	similarly has a very high viscosity. Separation of the mafic and felsic phases in the lunar
658	magmatic environment was not assisted by tectonic forces and processes involving
659	significant concentrations of magmatic water as it is in terrestrial environments. The
660	high-viscosity, silica-rich phase does not need to flow, it simply needs to rise through the
661	much lower-viscosity mafic residual melt. Perhaps crustal movements related to large
662	impacts that occurred during the time of upper-crustal magmatism played a role in the
663	segregation of these phases, for example, movement along faults or uplifts associated
664	with basin ring formation, or movement related to isostatic adjustments following an
665	impact and associated flow segregation.
666	Equilibrium crystallization and SLI

667 Given that the fractional crystallization of KB and BAG produces residual liquid

668 compositional trajectories that do not intersect or barely intersect the field of SLI (Fig.

669 14), we investigated what effect equilibrium crystallization would have on KB.

670 Crystallization modeling done using the MAGPOX program (Longhi 1991) indicates that

a liquid with the initial composition of KB is driven into the field of SLI (Roedder 1951)

after 56 wt% of crystallization in equilibrium with the crystallizing solids. Granitic

673 compositions could be produced from the crystallization of a liquid of KB composition if

the first 50% of crystallization occurred in equilibrium with the solids. If the immiscible

675 liquids were physically separated, then the silicic liquid would solidify to produce a rock

676 with \sim 70 wt% bulk SiO₂ (terrestrial examples include the silicic immiscible liquid

677 compositions in Table 5).

678	IMPLICATIONS
679	Remote sensing data, Earth-based (near-IR reflectance spectra) and orbital
680	(images from Clementine and LRO; spectra from Lunar Prospector gamma-ray
681	spectrometer and LRO Diviner radiometer), have provided evidence for regions of silicic
682	volcanism on the Moon. Sample 12032,366-19 (an igneous rock rich with K-feldspar,
683	quartz, and plagioclase, along with near Fe end-member mafic minerals) is a candidate to
684	be among the lunar samples most similar to the rocks that compose some of the lunar
685	"red spots." Glotch et al. (2010) identified several of the red spots as regions of high-SiO $_2$
686	content from the Christiansen Feature in the LRO Diviner data. Perhaps the 12032,366-
687	19 mineralogy is relevant to interpreting some of the features seen at the silicic volcanic
688	complex that lies at the center of the Compton-Belkovich Th-anomaly (Jolliff et al.
689	2011), which has been modeled to have a Th concentration of 40-55 ppm (Lawrence et
690	al. 2003). This concentration is similar to that for the bulk sample of 12032,366-19 (60.6
691	ppm) as well as other lunar granites (Appendix 1).
692	ACKNOWLEDGEMENTS
693	We thank Paul Carpenter for his assistance with trace element analysis on the
694	electron microprobe and insight into Zr-Ti phases. We thank Alian Wang and Weigang
695	Kong for Raman spectroscopic measurements. We are grateful to G. Jeffrey Taylor and
696	Malcolm J. Rutherford for their insightful reviews of this paper. This work was funded by
697	NASA grant NNG04GG10G (RLK).
698	References Cited
699	Anders E. and Grevesse N. (1989) Abundances of the elements: meteoritic and solar.
700	Geochimica et Cosmochimica Acta, 53, 197-214.

701	Barra, F., Swindle, T.D., Korotev, R.L., Jolliff, B.L., Zeigler, R.A., and Olson, E. (2006)
702	⁴⁰ Ar- ³⁹ Ar dating on Apollo 12 regolith: Implications on the age of Copernicus and
703	the source of non-mare materials. Geochimica et Cosmochimica Acta, 70, 6016-
704	6031.
705	Blanchard, D.P., J.W. Jacobs, and J.C. Brannon (1977) Chemistry of ANT-suite and
706	felsite clasts from the consortium breccia 73215 and of gabbroic anorthosite
707	79215. Procedings of the 8th Lunar and Planetary Science Conference, 2507-
708	2524.
709	Blanchard, D.P. and J.R. Budahn (1979) Remnants from the ancient lunar crust: clasts
710	from consortium breccia 73255. Proceedings of the 10th Lunar and Planetary
711	Science Conference, 803-816.
712	Bottinga, Y.A. and Weill, D.F. (1972) The viscosity of magmatic silicate liquids: a model
713	for calculation. American Journal of Science, 272, 438-473.
714	Brown, G.M., Emeleus, C.H., Holland, J.G., and Phillips, R. (1970) Mineralogical,
715	Chemical and petrological features of Apollo 11 rocks and their relationship to
716	igneous processes. Proceedings of the Apollo 11 Lunar Science Conference, 195-
717	219.
718	Carpenter, P., Counce, D., Kluk, E., and Nabelek, C. (2002) Characterization of Corning
719	EPMA Standard Glasses 95IRV, 95IRW, and 95IRX. Journal of Research of the
720	National Institute of Standards and Technology, 107, 703-718.
721	Chapman, C.R. (2002) Earth's lunar attic. Nature, 419, 791-794.
722	Deer, W.A., Howie, R.A., and Zussman, J. (1976) An Introduction to the Rock Forming
723	Minerals. Longman Group Limited, London.

- Dence, M.R., Douglas, J.A.V., Plant, A.G., and Traill, R.J. (1970) Petrology, mineralogy
- and deformation of Apollo 11 samples. Proceedings of the Apollo 11 Lunar
- 726 Science Conference, 315–340.
- 727 Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry,
- 728 crystallography, Raman and infrared spectroscopy of minerals. Program and
- Abstracts of the 19th General Meeting of the International Mineralogical
- Association in Kobe, Japan. 003-13.
- 731 Drake, M.J., and Weill, D.F. (1972) New rare earth element standards for electron

microprobe analysis, Chemical Geology, 10, 179-181.

733 Freeman, J.J., Wang, A., Kuebler, K.E, Haskin, L.A. (2008) Characterization of natural

734feldspar by Raman spectroscopy for future planetary exploration. Canadian

735 Mineralogist, 46, 1477–1500.

- 736 Glotch, T.D., Lucey, P.G., Bandfield, J.L., Greenhagen, B.T., Thomas, I.R., Elphic, R.C.,
- 737Bowles, N., Wyatt, M.B., Allen, C.C., Hanna, K.D., Paige, D.A. (2010) Highly
- silicic compositions on the Moon. Science, 329, 1510.
- Haines, E.L., Albee, A.L., Chodos, A.A., and Wasserburg, G.J. (1971) Uranium-bearing
- minerals of lunar rock 12013. Earth and Planetary Science Letters, 12, 145-154.
- 741 Hagerty, J.J., Lawrence, D.J., Hawke, B.R., Vaniman, D.T., Elphic, R.C., and Feldman,
- 742 W.C. (2006) Refined thorium abundances for lunar red spots: Implications for
- evolved, nonmare volcanism on the Moon. Journal of Geophysical Research, 111,
- 744 E06002.

- 745 Hawke, B.R., Lawrence, D.J., Blewett, D.T., Lucey, P.G., Smith, G.A., Spudis, P.D., and
- 746 Taylor, G.J. (2003), Hansteen Alpha: A volcanic construct in the lunar highlands,
- 747 Journal of Geophysical Research, 108, 5069.
- Hess, P.C. and Rutherford, M.J. (1974) Element fractionation between immiscible melts.
- Abstracts of the Lunar and Planetary Science Conference, 5, 328-330.
- Hess, P.C., Rutherford, M.J., Guillemette, R.N., Ryerson, F.J., and Tuchfeld, H.A. (1975)
- 751 Residual products of fractional crystallization of lunar magmas an experimental
- study. Proceedings of the 6^{th} Lunar Science Conference, 895-909.
- Holmberg, B. and Rutherford, M.J. (1994) An experimental study of KREEP basalt
- evolution. Abstracts of the 25th Lunar and Planetary Science Conference, 557.
- 755 Hovington, P., Drouin, D., and Gauvin, R. (1997) CASINO: A new Monte Carlo code in
- 756 C language for electron beam interaction—Part I: Description of the program.
- 757 Scanning,19, 1-14.
- Hubbard, N.J., P.W. Gast, and H. Wiesmann (1970) Rare earth alkaline and alkali metal
- and 87/86 Sr data for sub-samples of lunar sample 12013. Earth and Planetary
 Science Letters, 9, 181-184.
- 761 Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M. (1971)
- 762 Precision measurement of half-lives and specific activities of ²³⁵U and ²³⁸U.

763 Physical Review C: Nuclear Physics, 4, 1889-1906.

- Jakobsen, J.K., Veksler, I.V., Tegner, C., and Brooks, C.K. (2005) Immiscible iron- and
- silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion.
- 766 Geology, 33, 885-888.

767	Jarosewich, E., Nelen, J.A., and Norberg, J.A. (1980) Reference samples for electron
768	microprobe analysis. Geostandards Newsletter, 4, 43–47.
769	Jolliff, B.L. (1991) Fragments of quartz monzodiorite and felsite in Apollo 14 soil
770	particles. Proceedings of the 21 st Lunar and Planetary Science Conference, 101–
771	118.
772	Jolliff, B.L., Floss, C., McCallum, I.S., and Schwartz, J.M. (1999) Geochemistry,
773	petrology, and cooling history of 14161, 7373: A plutonic lunar sample with
774	textural evidence of granitic-fraction separation by silicate-liquid immiscibility.
775	American Mineralogist, 84, 821-837.
776	Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., and Wieczorek, M.A. (2000) Major
777	lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of
778	Geophysical Research: Planets, 105, 4197-4216.
779	Jolliff, B.L., Korotev, R.L., and Haskin, L.A. (1991) Geochemistry of 2-4-mm particles
780	from Apollo 14 soil (14161) and implications regarding igneous components and
781	soil-forming processes. Proceedings of the 21st Lunar and Planetary Science
782	Conference, 193–219.
783	Jolliff, B.L., Wiseman, S.A., Lawrence, S.J., Tran, T.N., Robinson, M.S., Sato, H.,
784	Hawke, B.R., Scholten, F., Oberst, J., Hiesinger, H., van der Bogert, C.H.,
785	Greenhagen, B.T., Glotch, T.D., and Paige, D.A. (2011) Non-mare silicic
786	volcanism on the lunar farside at Compton-Belkovich. Nature Geoscience, 4, 566-
787	571.
788	Kaiser, A., Lobert, M., and Telle, R. (2008) Thermal stability of zircon (ZrSiO ₄). Journal
789	of the European Ceramic Society, 28, 2199-2211.

- 790 Keil, K. and Prinz, M. (1971) Mineralogy and composition of Apollo 11 lunar samples. 791 Proceedings of the Second Lunar Science Conference, 319-341. 792 Keil, K., Bunch, T.E., and Prinz, M. (1970) Mineralogy and composition of Apollo 11 793 lunar samples. Proceedings of the Apollo 11 Lunar Science Conference, 561–598. 794 Korotev, R.L. (1996) A self-consistent compilation of elemental concentration data for 93 795 geochemical reference samples. Geostandards Newsletter, 20, 217-245. 796 Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Seddio, S.M., and Haskin, L.A. (2011) Apollo 797 12 revisited. Geochimica et Cosmochimica Acta, 75, 1540-1573. 798 Krasov, N.F. and Clocchiatti, R. (1979). Immiscibility in silicate melts and its possible 799 petrogenetic importance, as shown by study of melt inclusions. Transactions 800 (Doklady) of the USSR Academy of Sciences, 248, 92-95. 801 Lawrence, D.J., Hawke, B.R., Hagerty, J.J., Elphic, R.C., Feldman, W.C., Prettyman, 802 T.H., and Vaniman, D.T. (2005) Evidence for a high-Th, evolved lithology on the 803 Moon at Hansteen Alpha. Geophysical Research Letters, 32, L07201. 804 Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A.B., Elphic, R.C., 805 Maurice, S., and Thomsen, D.R. (1998) Global elemental maps of the moon: The 806 Lunar Prospector Gamma-Ray Spectrometer. Science, 281, 1484. 807 Laul, J.C. (1986) Chemistry of the Apollo 12 highland component. Proceedings of the 16th Lunar and Planetary Science Conference, D251–D261. 808 809 Lee, C.A. (1979) Spheroidal pyroxenite aggregates in the Bushveld Complex — a special
- 810 case of silicate liquid immiscibility. Earth and Planetary Science Letters, 44, 295-
- 811 310.
- 812 LeRoux, L.J. and Glendenin, L.E. (1963) Half-life of ²³²Th. Proceedings of the National
- 813 Meeting on Nuclear Energy, Pretoria, South Africa, 83-94.
- Liu, D., Jolliff, B.L., Zeigler, R.A., Korotev, R.L., Wan, Y., Xie, H., Zhang, Y., Dong,
- 815 C., and Wang, W. (2012) Comparative zircon U-Pb geochronology of impact melt
- 816 breccias from Apollo 12 and lunar meteorite SaU 169, and the age of the Imbrium
- 817 impact. Earth and Planetary Science Letters, 319-320, 277-286.
- 818 Longhi, J. (1990) Silicate liquid immiscibility in isothermal crystallization experiments.
- 819 Proceedings of the 20th Lunar and Planetary Science Conference, 13-24.
- 820 Longhi, J. (1991) Comparative liquidus equilibria of hypersthene-normative basalts at
- 821 low pressure. American Mineralogist, 76, 785-800.
- 822 Marvin, U.B., Wood, J. A., Taylor, G. J., Reid Jr., J. B., Powell, B. N., Dickey Jr., J. S.,
- and Bower, J. F. (1971) Relative proportions and probable sources of rock
- fragments in the Apollo 12 soil samples. Proceedings of the Second LunarScience Conference, 679-699.
- 826 McCubbin, F.M., Steele, A., Nekvasil, H., Schnieders, A., Rose, T., Fries, M., Carpenter,
- 827 P.K., and Jolliff, B.L. (2010) Detection of structurally bound hydroxyl in
- fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS. American
- 829 Mineralogist, 95, 1141-1150.
- 830 Meyer, C., Williams, I.S., and Compston, W. (1996) Uranium-lead ages for lunar zircons:
- Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga.
- 832 Meteoritics and Planetary Science, 21, 370-387.
- 833 Montel, J.-M., Foret, S., Veschambre, M., Nicollet, C., and Provost, A. (1996) Chemical
- 834 Geology., 131, 37-53.

9/4

- Morgan, J.W. and Ehman, W.D. (1970) Lunar rock 12013; O, Si, Al and Fe abundances.
- Earth and Planetary Science Letters, 9, 164.
- 837 Morisset, C.-E., and Scoates, J.S. (2008) Origin of zircon rims around ilmenite in mafic
- 838 plutonic rocks of proterozoic anorthosite suites. Canadian Mineralogist, 46, 289-839 304.
- 840 Morris, R.W., Taylor, G.J., Newsom, H.E., and Keil, K. (1990) Highly evolved and
- 841 ultramafic lithologies from Apollo 14 soils. Proceedings of the 20th Lunar and
- 842 Planetary Science Conference, 61–75.
- Neal, C.R., and Taylor, L.A. (1989), The nature of barium partitioning between
- immiscible melts: A comparison of experimental and natural systems with
- reference to lunar granite petrogenesis. Proceedings of the 19th Lunar and
- 846 Planetary Science Conference, 19th, 209.
- Papike, J.J., Ryder, G., and Shearer, C.K. (1998) Lunar samples. Planetary Materials,
 Reviews in Mineralogy, 36, 5-1.
- Papike, J.J., Taylor, L., and Simon, S. (1991) Lunar minerals. The Lunar Sourcebook,
- 850 Cambridge University Press, 121-181.
- 851 Philpotts, A.R. (1981). Liquid immiscibility in silicate melt inclusions in plagioclase
- phenocrysts. Bulletin de Mine¤ralogie, 104, 317-324.
- Philpotts, A.R. (1982). Compositions of immiscible liquids in volcanic rocks.
- Contributions to Mineralogy and Petrology, 80, 201-218.
- 855 Quick, J.E., Albee, A.L., Ma, M.-S., Murali, A.V., and Schmitt, R.A. (1977) Chemical
- compositions and possible immiscibility of two silicate melts in 12013.
- Proceedings of the 8th Lunar and Planetary Science Conference, 2153-2189.

- Quick, J.E., James, O.B., and Albee, A.L. (1981) Petrology and petrogenesis of lunar
- breccia 12013. Proceedings of the 12th Lunar and Planetary Science Conference,
- 860 117-172
- Rasmussen, B., Fletcher, I.R., and Muhling, J.R. (2008) Pb/Pb geochronology,
- 862 petrography and chemistry of Zr-rich accessory minerals (zirconolite,
- tranquillityite and baddeleyite) in mare basalt 10047. Geochimica et
- 864 Cosmochimica Acta, 72, 5799-5818.
- 865 Roedder, E. (1951) Low temperature liquid immiscibility in the system K₂O-FeO-Al₂O₃-
- SiO₂. American Mineralogist, 36, 282-286. Proceedings of the 3rd Lunar Science
 Conference, 251-279.
- 868 Roedder, E. and Weiblen, P.W. (1970) Lunar pertrology of silicate melt inclusions,
- Apollo 11 rocks. Proceedings of the Apollo 11 Lunar Science Conference, 801-837.
- 871 Roedder, E. and Weiblen, P.W. (1971) Petrology of silicate melt inclusions, Apollo 11
- and Apollo 12 and terrestrial equivalents. Proceedings of the Second LunarScience Conference, 801-837.
- 874 Roedder, E. and Weiblen, P.W. (1972) Petrographic features and petrologic significance
- 875 of melt inclusions in Apollo 14 and 15 rocks. Proceedings of the Third Lunar
 876 Science Conference, 801-837.
- 877 Rutherford, M.J., Hess, P.C., Ryerson, F.J., Campbell, H.W., and Dick, P.A. (1976) The
- 878 chemistry, origin and petrogenetic implications of lunar granite and monzonite.
- 879 Proceedings of the 7th Lunar Science Conference, 1723-1740.

- 880 Ryabov, V.V. (1989). Liquation in Natural Glasses: the Example of Traps. Novosibirsk:
- 881 Nauka.
- Ryder, G. (1976) Lunar sample 15405: remnant of a KREEP basalt-granite differentiated
 pluton. Earth and Planetary Science Letters, 29, 255-268.
- 884 Ryder, G. and Martinez, R.R. (1991) Evolved hypabyssal rocks from Station 7, Apennine
- 885 Front, Apollo 15. Proceedings of the 21st Lunar and Planetary Science
- 886 Conference, 137-150.
- 887 Schnetzler, C.C., J.A. Philpotts, and M.L. Bottino (1970) Li, K, Rb, Sr, Ba and rare-earth
- 888 concentrations, and Rb-Sr age of lunar rock 12013. Earth and Planetary Science
- 889 Letters, 9, 185-192.
- 890 Seddio, S.M., Korotev, R.L., Jolliff, B.L., and Zeigler, R.A. (2009) Petrographic diversity
- in Apollo 12 regolith rock particles. Lunar and Planetary Science Conference XL.

Lunar and Planetary Institute, Houston. #2415 (abstract).

893 Shaw, H.R. (1972) Viscosities of magmatic silicate liquids: an empirical method of

prediction. American Journal of Science, 272, 870-893.

- 895 Snyder, G.A., Taylor, L.T., Liu, Y-.G., and Schmitt, R.A. (1992) Petrogenesis of the
- 896 western highlands of the moon Evidence from a diverse group of whitlockite-
- 897 rich rocks from the Fra Mauro formation. Proceedings of Lunar and Planetary
 898 Science, 22, 399-416.
- 899 Stormer, J.C., Pierson, M.L., and Tacker, R.C., (1993) Variation of F-X-ray and Cl-X-ray
- 900 intensity due to anisotropic diffusion in apatite during electron-microprobe
- 901 analysis. American Mineralogist, 78, 641-648.

- 902 Taylor, G.J., Warner, R.D., Keil, K., Ma, M.-S., and Schmitt, R.A. (1980) Silicate liquid
- 903 immiscibility, evolved lunar rocks and the formation of KREEP. Proceedings of
 904 the Conference of the Lunar Highlands Crust, 339-352.
- 905 Wakita, H. and Schmitt, R.A. (1970) Elemental abundances in seven fragments from
- 906 lunar rock 12013. Earth and Planetary Science Letters, 9, 169-176.
- 907 Wark, D.A, Reid, A.F., Lovering, J.F., and El Goresy, A. (1973) Zirconolite (versus
- 908 zirkelite) in lunar rocks. Abstracts of the Lunar and Planetary Science
- 909 Conference, 4, 764 (abstract).
- 910 Warren, P.H. (1989) KREEP: major-element diversity, trace-element uniformity
- 911 (almost). Workshop on Moon in Transition: Apollo 14, KREEP, and Evolved
- 912 Lunar Rocks, 149-153 (abstract).
- 913 Warren, P.H., Jerde, E.A., and Kallemeyn, G.W. (1987) Pristine Moon rocks: a "large"
- 914 felsite and a metal-rich ferroan anorthosite. Proceedings of the 17th Lunar and
 915 Planetary Science Conference, E303–E313.
- 916 Warren, P.H., Taylor, G.J., Keil, K., Kallemeyn, G.W., Rosener, P.S., and Wasson, J.T.
- 917 (1983a) Sixth foray for pristine nonmare rocks and an assessment of the diversity
- 918 of lunar anorthosites. Proceedings of the 13th Lunar and Planetary Science
- 919 Conference, A615-A630.
- 920 Warren, P.H., Taylor, G.J., Keil, K., Kallemeyn, G.W., Shirley, D.N., and Wasson, J.T.
- 921 (1983b) Seventh Foray Whitlockite-rich lithologies, a diopside-bearing
- 922 troctolitic anorthosite, ferroan anorthosites, and KREEP. Proceedings of the 14th
- 923 Lunar and Planetary Science Conference, B151–B164.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4330

- 926 Science Letters, 64, 175–185.
- 927 Wilson, L., and Head, J.W. (2003), Lunar Gruithuisen and Mairan domes: Rheology and
- 928 mode of emplacement. Journal of Geophysical Research, 108, 5012.
- 229 Zeigler, R.A., Korotev, R.L., Jolliff, B.L., Haskin, L.A., and Floss, C. (2006) The
- 930 geochemistry and provenance of Apollo 16 mafic glasses. Geochimica et
- 931 Cosmochimica Acta, 70, 6050-6067.
- 932

924

925

933

934 **Figure Captions**

Figure 1. Photograph of sample 12032,366-19 top (a) and bottom (b) with a 1-mm grid

936 in the background. K-feldspar, plagioclase, and silica appear white. Hedenbergite,

937 fayalite, and ilmenite are the dark phases.

938

939 Figure 2. Positive linear time dependence of F X-ray count-rates (counts per second).

940 Solid lines are best fit lines. Curved, dashed lines represent the 95% confidence envelope.

- 941 Parts "a" and "b" are analyses of the REE-rich apatite. Part "c" is an analysis of apatite.
- 942 Part "d" is an analysis of the Durango fluorapatite (Jarosewich et al. 1980) standard. Parts
- 943 "a", "b", and "c" were analyzed with a 2 μm beam diameter and a 25 nA probe current.
- Part "d" was analyzed with a 20 μm beam diameter and a 25 nA probe current.

946 Figure 3. Back-scattered electron (BSE) image mosaic of 12032,366-19. In order of 947 brightness from darkest to brightest, minerals are quartz, sodic plagioclase, K-feldspar, 948 hedenbergite, fayalite and ilmenite, and zirconolite and baddeleyite. Note that the 949 inclusion-bearing hedenbergite grain in the lower right appears to be a hopper crystal. See 950 Fig. 4 for phase identifications based on X-ray analysis. 951 952 Figure 4. a. An RGB image of 12032,366-19 with K in the red channel, Na in the green 953 channel, and Fe in the blue channel. With this color scheme, K-feldspar is orange, more 954 sodic K-feldspar is light orange, plagioclase is green, olivine is bright blue, pyroxene is 955 darker blue, and quartz is represented as black. b. An RGBGray image of 12032,366-19 956 with Ca in the red channel, Zr in the green channel, Ti in the blue channel, and Si in the 957 gray channel. With this color scheme, pyroxene is pink, plagioclase is dull pink, ilmenite 958 is blue, zirconolite and ZrO₂ are green. 959

Figure 5. Three BSE images of the largest zirconolite grain taken at varying accelerating
voltages of 5, 15, and 25 kV. Arrow "x" points to a region that is covered by a thin layer

962 of K-feldspar. Arrow "y" points to a region where the zirconolite is thin. The thin layers

963 become transparent in the images taken at higher accelerating voltages since the

backscattered electrons penetrate deeper into the sample at higher accelerating voltages.

965

966

967

968

969	Figure 6. Feldspar ternary diagram showing the K-feldspar and plagioclase compositions
970	found in 12032,366-19. The composition has been normalized to An, Ab, and Or. The
971	celsian (Cn) component is represented by the symbol shade. Vectors indicate the feldspar
972	composition changes as crystallization progressed.
973	
974	Figure 7. BSE images of textures in 12032,366-19. We enhanced the contrast in all 4
975	BSE images to the same extent so that the same phases in each image have the same
976	brightness. Hd = hedenbergite, Kfs = K-feldspar, Fa = Fayalite, Ilm = ilmenite, Qz =
977	quartz, and $Pl = plagioclase$. a . The large medium-gray phase transects the image is
978	hedenbergite. The white arrow points to an ilmenite of a typical grain size in this sample.
979	The black arrow points to the largest occurrence of baddeleyite in 12032,366-19. The
980	baddeleyite is bordered mostly by a coarse ilmenite grain and silica to a lesser extent. b .
981	An elongate example of zirconolite lies diagonally in the center of the image and is
982	nearly paralleled by another occurrence in the bottom left. c. The white arrow points to
983	the irregularly-shaped occurrence of zirconolite discussed in text. The gray arrow points
984	to another occurrence of zirconolite. d. The white arrow points to the largest phosphate
985	occurrence; it is REE-rich apatite (Table 3).
986	

Figure 8. Raman spectra of quartz in 12032,366-19. The "Standard" spectrum is from the
RRUFF[™] Project (Downs 2006) database.

989

990

991

992	Figure 9. REE plots of zirconolite (shaded gray) and merrillite (shaded gray with
993	diagonal lines) in 12032,366-19. The gray regions are the ranges of concentrations for the
994	four zirconolite analyses with the lowest SiO_2 and the two merrillite analyses; the black
995	solid lines represent the average concentrations. Yttrium is plotted with the REEs
996	(Korotev 1996). The analyzed elements are indicated on the horizontal axis. *Gd was
997	analyzed on merrillite but not zirconolite. The other REE concentrations were estimated
998	(see text). Europium is assumed to be present in low concentration assuming the
999	zirconolite and merrillite crystallized after plagioclase. Chondrite values are those of
1000	Anders and Grevesse (1989) for CI chondrites multiplied by a factor of 1.36 to maintain
1001	consistent values with older literature, in which data were normalized to ordinary
1002	chondrites (Korotev 1996).
1003	
1004	Figure 10. Compositional diagram for Apollo 12 rock fragments (after Fig. 3 of Korotev
1005	et al. 2011). Sample 12032,366-19 is shown by the star, plotting at just over 60 ppm Th.

1006 The color of each symbol corresponds to the Ba (red channel), Zr (green channel), and Cr

1007 (blue channel) concentrations. The granites and a few other points that are riched in Ba

1008 relative to Zr are readily distinguished from those that have normal KREEP-like Ba/Zr

1009 (light green).

1010

1011 Figure 11. Bulk elemental concentrations of 12032,366-19 compared to High-K KREEP1012 (Warren 1989).

1013

1014

1015	Figure 12. Compared to typical Apollo 12 regolith (Korotev et al. 2011), 12032,366-19
1016	has a "V"-shaped REE pattern common to lunar granitic materials (12013, Quick et al.
1017	1977; 12033,517,Warren et al. 1987; 14161,7269, Jolliff et al. 1991; 14303,206, Warren
1018	et al. 1983b; 14321,1028, Warren et al. 1983a; 15434,10, Ryder and Martinez 1991; and
1019	73255,27, Blanchard and Budahn 1979). 14303,206 (Warren et al. 1983b) has a REE
1020	pattern similar to the typical Apollo 12 soil. Chondrite values are those of Anders and
1021	Grevesse (1989) for CI chondrites multiplied by a factor of 1.36 to maintain consistent
1022	values with older literature, in which data were normalized to ordinary chondrites
1023	(Korotev 1996). The analyzed elements are indicated on the horizontal axis; the other
1024	REE concentrations were estimated (see text). Samples with "*" include Dy; samples
1025	with "**" include Dy and Ho. Ce was estimated for 14161,7269.
1026	
1027	Figure 13. Mg# of pyroxenes in lunar granites (12032,366-19; 12033,507; 14303,204;
1028	15405,12; and 15434,10) and two quartz-monzogabbros (14161,7069 and 14161,7373)
1029	plotted against the An content of the plagioclase in the same samples. The coexisting
1030	pyroxene and plagioclase from fractional crystallization modeling is also plotted. The
1031	earlier crystallization is in the upper-right and crystallization proceeds down to the lower-
1032	left. The KB starting composition produced 3 pyroxenes; the BAG starting composition
1033	produced 2 pyroxenes. The gray rectangle represents the region occupied by 14303,204;
1034	15405,12; and 15434,10, which each considerably overlap each other. 12033,507 and

- 1035 14303,204 (Warren et al. 1987). 14161,7069 and 14161,7373 (Jolliff 1991). 15405,12
- 1036 (Ryder 1976). 15434,10 (Ryder and Martinez 1991).
- 1037

- Figure 14. Ternary diagram illustrating the compositional paths that the KB and BAG residual melt compositions follow during fractional crystallization. Note that the BAG path barely intersects the field of SLI, while the KB path does not intersect it. The granitic compositions (natural and experimental) of Table 7 are also plotted. All units are in wt%. The field of SLI is an estimation based on the experimental work of Roedder (1951).
- 1045 **Figure 15.** Illustration depicting a gravity separation model that could have produced a
- 1046 mineralogy like that of 12032,366-19 without requiring SLI.

1.1

An

Zone of pyroxene and plagioclase crystallization (gabbro).

Plagioclase concentrates in neutrally buoyant layer (alkali anorthosite).

Silica and K-feldspar buoyantly rise bringing some of the remaining liquid along producing a mineralogy like that of 12032,366-19.

	CMR	% Error	INAA	1σ		CMR	INAA	1σ
SiO ₂	70.1	0.15	-	-	Sm	-	24.6	0.3
TiO ₂	1.07	1.8	-	-	Eu	-	3.01	0.03
Al ₂ O ₃	13.5	0.23	-	-	Tb	-	6.56	0.07
FeO	4.98	0.54	4.99	0.05	Yb	-	51.8	0.5
MnO	0.07	5.7	-	-	Lu	-	7.44	0.08
MgO	0.14	0.81	-	-	Sc	-	8.7	0.09
CaO	3.04	0.41	2.91	0.18	Со	-	0.77	0.02
BaO	0.68	1.1	0.68	0.01	Ni	-	<25	-
Na ₂ O	2.47	0.52	2.10	0.02	Zn	-	16	3
K ₂ O	4.58	0.21	4.80	0.24	Rb	-	96	2
P_2O_5	0.052	4.5	-	-	Sr	-	167	12
SUM	100.7	-	-	-	Cs	-	3.67	0.04
Cr	<200	-	11.3	0.6	Та	-	10.4	0.1
Zr	1500	-	1500	20	W	-	9	1
Hf	37.8	-	45.5	0.5	Ir	-	<1.3	-
Nb	304	-	-	-	Au	-	<5	-
La	11.3	-	79.4	0.8	Y	457	-	-
Ce	106	-	182	2	Th	126	60.6	0.6
Nd	83.2	-	82	2	U	52.7	20.7	0.2

Table 1. The bulk composition of 12032,366-19.

Oxide values are in wt%; element values are in ppm except Ir and Au which are in ppb. The INAA data are from Korotev et al. (2011); uncertainties (1σ) are 1 standard deviation estimates of analytical uncertainty based mainly on counting statistics. The "CMR" composition and "% Error" were derived by modal recombination using the average phase compositions from the microprobe (Table 2) to "best fit" the bulk rock INAA data (see text).

		Abun	dance
Phase	Composition	Image	CMR
K-feldspar	An _{1.2-6.1} Ab ₂₅₋₃₃ Or ₅₈₋₇₄ Cn _{0.4-3.9}	49	43.5
Quartz	(Si,Al,Fe,Ti)O ₂	31	26
Plagioclase	$An_{35-48}Ab_{52-64}Or_{0.9-1.3}Cn_{0.0-0.1}$	6.2	19
Pyroxene	$En_{4.6-6.2}Fs_{51-52}Wo_{43-44}$	7.3	6.0
Olivine	Fo _{2.7} Fa ₉₇	4.5	3.1
Ilmenite	Il _{99.6} Gk _{0.4}	1.8	1.7
Zirconolite	(Fe,Y,Ca,REE)(Zr,Hf,U,Th)(Ti,Nb,Al,Si,Ta) ₂ O ₇	0.13	0.30
REE-rich apatite	(Ca,REE,Y,Fe) ₅ ([P,Si]O ₄) ₃ (F,Cl)	Trace	0.2
Apatite	$(Ca,Fe)_5(PO_4)_3(F,Cl)$	Trace	0.1
RE-merrillite	(Ca,REE) ₁₆ (REE,Y) ₂ (Fe,Mg) ₂ ([P,Si]O ₄) ₁₄	Trace	0.08
ZrO ₂	Zr _{98.4} Hf _{1.6}	0.07	0.058
Sum		100	100

Table 2. Modal mineralogy of 12032,366-19.

"Image" is the modal mineralogy of the 12032,366-19 polished section directly determined by image analysis. "CMR" was derived from a modal recombination using the average mineral compositions from the microprobe to "best fit" the bulk rock compositions from INAA (see text). All values are converted to weight percent. Zirconolite and phosphate formulae are idealized. Compositions are in Tables 3, 4a, and 4b. Cn = Celsian (Ba-feldspar end-member), Gk = Geikielite (Mg endmember of ilmenite solid-solution).

	Kfs	Kfs*	Qz	Pl	Hd	Fa	Ilm	Apatite	RE-Ap	Merr	Glass Incl.	CMR
Ν	66	3	11	16	6	5	1	3	13	1	1	-
SiO ₂	64.2	67.2	101.5	58.6	47.6	29.4	< 0.03	2.01	3.17	0.90	78.3	70.0
TiO ₂	0.063	0.04	$<\!\!0.05$	< 0.04	0.92	0.13	51.1	n.a.	n.a.	n.a.	0.13	1.04
Al_2O_3	20.3	18.8	0.21	26.3	0.69	< 0.02	< 0.02	< 0.02	0.05	< 0.02	12.4	13.5
Cr_2O_3	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	n.a.	n.a.	n.a.	< 0.03	< 0.02
FeO	0.12	0.46	0.21	0.21	29.3	68.6	47.4	0.90	1.79	5.24	1.10	4.99
MnO	< 0.04	< 0.04	< 0.04	< 0.04	0.34	0.83	0.43	< 0.03	0.09	0.07	< 0.04	0.12
MgO	< 0.02	< 0.02	< 0.02	< 0.02	1.65	1.06	0.12	< 0.02	< 0.02	0.59	< 0.01	0.13
CaO	1.34	0.23	< 0.10	8.56	19.2	0.17	< 0.02	54.6	46.6	36.9	0.48	2.9
BaO	1.43	0.26	< 0.06	< 0.04	< 0.05	< 0.04	< 0.05	n.a.	n.a.	n.a.	0.079	0.68
Na ₂ O	3.71	2.43	< 0.04	6.57	0.10	< 0.05	< 0.05	0.10	0.17	0.07	0.86	2.10
K_2O	9.82	12.6	0.02	0.19	< 0.01	< 0.01	< 0.01	n.a.	n.a.	n.a.	2.95	4.8
P_2O_5	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	38.4	33.9	40.4	< 0.01	0.039
Y_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.18	1.30	2.45	n.a.	n.a.
REE_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.13	7.21	12.6	n.a.	n.a.
F	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.47	0.96	< 0.02	n.a.	n.a.
Cl	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.34	1.32	< 0.01	n.a.	n.a.
-O=F	-	-	-	-	-	-	-	0.62	0.40	-	-	-
-O=Cl	-	-	-	-	-	-	-	0.34	0.30	-	-	-
Sum	101.0	102.0	102.4	100.6	99.8	100.1	100.2	99.3	95.9	99.2	96.4	100.0
Ilmenite also	o contains -	-1 wt% Nb	$_{2}O_{5}$, but V_{2}	O_5 was be	low the det	ection limi	t; for oxide	abundances i	in zirconolite,	see Table 4a	ι.	

Table 3. Minerals in 12032,366-19.

All values are reported in weight percent (wt%). *N* is the number of analyses averaged. "Kfs*" is a single analysis of a K-feldspar in an inclusion within a hedenbergite grain. "RE-Ap" refers to apatite analyses with high REE concentration. "Merr" refers to RE-merrillite. The "CMR" composition was derived by modal recombination using the average phase compositions from the microprobe (Table 2) to "best fit" the bulk rock INAA data (see text and Table 1). "n.a." means "not analyzed." REE₂O₃ was estimated from La, Ce, Nd, Gd, Y, and Yb included in the analyses (details in Experimental Procedures).

Spot	Sum	ZrO ₂	TiO ₂	Y ₂ O ₃	FeO	Nb ₂ O ₅	CaO	ThO ₂	UO ₂	PbO	HfO ₂	Ta ₂ O ₅	Al ₂ O ₃	SiO ₂	MnO
1930	97.48	28.73	24.28	9.85	9.32	7.42	4.30	2.46	1.10	-	0.58	0.32	0.13	< 0.01	0.09
1931	97.52	28.72	24.25	9.92	9.37	7.29	4.26	2.34	1.06	-	0.57	0.31	0.23	0.21	0.10
1936	98.74	30.21	24.05	9.73	8.84	7.81	4.70	1.45	0.50	-	0.81	0.29	0.11	0.31	0.11
1938	97.36	29.57	24.11	8.96	8.59	7.27	4.62	2.33	0.72	-	0.67	0.32	0.17	0.41	0.08
1943	94.55	21.43	17.43	6.67	6.65	5.07	3.18	1.39	0.37	0.60	0.63	0.24	0.13	21.08	0.06
1944	99.00	22.05	18.61	6.85	7.12	5.19	3.30	1.38	0.38	0.63	0.64	0.27	0.11	22.21	0.09
1945	91.95	23.81	19.15	7.18	7.27	5.65	3.61	1.71	0.43	0.74	0.62	0.22	0.12	11.05	0.07
1946	103.94	24.15	20.23	7.62	7.47	5.94	3.75	1.29	0.40	0.54	0.66	0.18	0.14	19.81	0.06
12013	89.7	17.2	22.1	9.1	11.6	8.3	3.0	4.1	3.4	-	-	-	-	2.1	-
Mare	100.28	30.61	28.51	9.05	9.70	3.91	3.18	0.11	0.05	-	0.60	0.24	0.41	0.08	0.00
G (-				~ ~						-	_			
<u>Spot</u>	La_2O_3	Ce_2O_3	$Pr_2O_3^*$	Nd_2O_3	Sm_2O_3	[¢] Gd ₂ O	3* T	$b_2O_3^*$	$Dy_2O_3^*$	Ho ₂ O ₃ *	$Er_2O_3^*$	' Tm ₂ () ₃ * Y	/b ₂ O ₃	$Lu_2O_3^*$
<u>Spot</u> 1930	La ₂ O ₃ 0.23	Ce ₂ O ₃ 1.59	Pr ₂ O ₃ * 0.19	Nd ₂ O ₃ 1.38	Sm ₂ O ₃ * 0.52	• Gd ₂ O 0.81	<u>3* 1</u>	b₂O₃* 0.16	Dy₂O₃* 1.16	Ho ₂ O ₃ * 0.28	$Er_2O_3^*$ 0.98	• Tm ₂ (0.1)₃* Y 7	(b₂O₃) 1.22	Lu ₂ O ₃ * 0.21
<u>Spot</u> 1930 1931	La ₂ O ₃ 0.23 0.17	Ce ₂ O ₃ 1.59 1.61	Pr ₂ O ₃ * 0.19 0.18	Nd ₂ O ₃ 1.38 1.44	Sm ₂ O ₃ * 0.52 0.54	• Gd ₂ O 0.81 0.83	3* T	b₂O₃* 0.16 0.16	Dy₂O₃* 1.16 1.17	Ho ₂ O ₃ * 0.28 0.29	Er ₂ O ₃ * 0.98 0.97	• Tm ₂ 0.1 0.1)₃* 	7 b₂O₃ 1.22 1.17	Lu ₂ O ₃ * 0.21 0.19
<u>Spot</u> 1930 1931 1936	La ₂ O ₃ 0.23 0.17 0.30	Ce ₂ O ₃ 1.59 1.61 2.26	Pr ₂ O ₃ * 0.19 0.18 0.23	Nd ₂ O ₃ 1.38 1.44 1.58	Sm ₂ O ₃ * 0.52 0.54 0.58	* Gd ₂ O 0.81 0.83 0.86	3* <u>1</u>	b ₂ O ₃ * 0.16 0.16 0.17	Dy ₂ O ₃ * 1.16 1.17 1.18	Ho ₂ O ₃ * 0.28 0.29 0.28	Er ₂ O ₃ * 0.98 0.97 0.93	* Tm ₂ 0.1 0.1 0.1	D₃* Y 7 6 5	7 b₂O₃ 1.22 1.17 1.11	Lu ₂ O ₃ * 0.21 0.19 0.18
<u>Spot</u> 1930 1931 1936 1938	La ₂ O ₃ 0.23 0.17 0.30 0.24	Ce ₂ O ₃ 1.59 1.61 2.26 2.28	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21	Nd ₂ O ₃ 1.38 1.44 1.58 1.60	Sm ₂ O ₃ * 0.52 0.54 0.58 0.57	<u>Gd2O</u> 0.81 0.83 0.86 0.83	3* 1	b₂O₃* 0.16 0.16 0.17 0.16	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26	Er ₂ O ₃ * 0.98 0.97 0.93 0.88	* Tm ₂ (0.1 0.1 0.1	<u>⊅₃* 1</u> 7 6 5 5	7 b₂O₃ 1.22 1.17 1.11 1.09	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18
Spot 1930 1931 1936 1938 1943	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19	Sm ₂ O ₃ * 0.52 0.54 0.58 0.57 1.19	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85	<u>3* 1</u>	b₂O₃* 0.16 0.16 0.17 0.16 0.15	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75	³ Tm ₂ 0.1 0.1 0.1 0.1 0.1)₃* 	Zb ₂ O ₃ 1.22 1.17 1.11 1.09 0.83	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14
Spot 1930 1931 1936 1938 1943 1944	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30	Sm ₂ O ₃ [*] 0.52 0.54 0.58 0.57 1.19 1.24	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.85	3* 1	b₂O₃* 0.16 0.17 0.16 0.15 0.16	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06 1.10	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79	⁴ Tm ₂ C 0.1 0.1 0.1 0.1 0.1 0.1)₃*) 7 6 5 5 2 3	Zb2O3 1.22 1.17 1.11 1.09 0.83 0.88	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15
Spot 1930 1931 1936 1938 1943 1944 1945	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24 0.26	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83 1.82	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30 2.30	Sm ₂ O ₃ [*] 0.52 0.54 0.58 0.57 1.19 1.24 1.26	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.85 0.88	3* 1	b ₂ O ₃ * 0.16 0.16 0.17 0.16 0.15 0.16 0.16	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06 1.10 1.13	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26 0.27	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79 0.81	⁴ Tm ₂ C 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D₃* 1 7 6 5 5 2 3 3	Zb2O3 1.22 1.17 1.11 1.09 0.83 0.88 0.90	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15 0.15
Spot 1930 1931 1936 1938 1943 1944 1945 1946	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24 0.26 0.32	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83 1.82 2.42	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35 0.35 0.45	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30 2.30 2.88	Sm ₂ O ₃ * 0.52 0.54 0.58 0.57 1.19 1.24 1.26 1.49	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.85 0.88 0.90 1.04	3* 1	b₂O₃* 0.16 0.17 0.16 0.15 0.16 0.16 0.16 0.18	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06 1.10 1.13 1.23	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26 0.27 0.28	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79 0.81 0.82	⁴ Tm ₂ C 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D₃* Y 7 6 5 5 2 3 3 3 3	Zb2O3 1.22 1.17 1.11 1.09 0.83 0.88 0.90 0.85	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15 0.15 0.13
Spot 1930 1931 1936 1938 1943 1944 1945 1946 12013	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24 0.26 0.32 0.2	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83 1.82 2.42 1.7	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35 0.35 0.45 -	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30 2.30 2.88 -	Sm2O3* 0.52 0.54 0.58 0.57 1.19 1.24 1.26 1.49	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.85 0.88 0.90 1.04	3* 1	b ₂ O ₃ * 0.16 0.17 0.16 0.15 0.16 0.16 0.16 0.18 -	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06 1.10 1.13 1.23 -	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26 0.27 0.28 -	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79 0.81 0.82	⁴ Tm ₂ C 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D₃* Y 7 6 5 5 2 3 3 3 3	7b2O3 1.22 1.17 1.11 1.09 0.83 0.88 0.90 0.85 -	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15 0.15 0.13 -

Table 4a. Zirconolite analyses containing the lowest concentrations of SiO₂ and those in which PbO was included.

REE oxides with * are estimated concentrations based on the measured REE values (see text). All values are in wt%. "Mare" is an average of 12 analyses from 7 zirconolite grains in 10047,11, 10047,227 and 10047,230 (Rasmussen et al. 2008). "12013" is an average of two zirconolite analyses from granitic lunar breccia 12013 (Haines et al. 1971). The * does not apply to "Mare" or "12013." "-" means "not reported."

A	Ca	0.3220	0.3179	0.3455	0.3441
	Fe	0.5449	0.5456	0.5065	0.4999
	Mn	0.0055	0.0059	0.0066	0.0048
	Sum	0.8724	0.8694	0.8587	0.8487
В	Y	0.3665	0.3676	0.3549	0.3316
	La	0.0059	0.0045	0.0077	0.0061
	Ce	0.0406	0.0411	0.0568	0.0580
	Pr*	0.0048	0.0045	0.0057	0.0054
	Nd	0.0345	0.0358	0.0388	0.0397
	Sm*	0.0126	0.0130	0.0137	0.0137
	Gd*	0.0187	0.0191	0.0195	0.0190
	Tb*	0.0037	0.0037	0.0038	0.0036
	Dy*	0.0260	0.0263	0.0261	0.0249
	Ho*	0.0063	0.0064	0.0062	0.0059
	Er*	0.0214	0.0211	0.0201	0.0192
	Tm*	0.0036	0.0035	0.0033	0.0032
	Yb	0.0261	0.0249	0.0231	0.0232
	Lu*	0.0043	0.0041	0.0037	0.0038
	Sum	0.5753	0.5757	0.5834	0.5573
С	Zr	0.9794	0.9753	1.0100	1.0029
	Hf	0.0116	0.0113	0.0158	0.0132
	U	0.0171	0.0164	0.0076	0.0111
	Th	0.0391	0.0370	0.0226	0.0369
	Sum	1.0473	1.0400	1.0560	1.0641
D	Ti	1.2761	1.2701	1.2399	1.2610
	Si	0.0000	0.0148	0.0214	0.0287
	Nb	0.2346	0.2295	0.2419	0.2285
	Та	0.0062	0.0059	0.0054	0.0060
	Al	0.0104	0.0190	0.0088	0.0139
	Sum	1.5272	1.5393	1.5175	1.5380
M_{I}	А	0.8724	0.8694	0.8587	0.8487
	В	0.1276	0.1306	0.1413	0.1513
	Sum	1.0000	1.0000	1.0000	1.0000
M_{II}	С	0.5523	0.5549	0.5579	0.5939
	В	0.4477	0.4451	0.4421	0.4061
	Sum	1.0000	1.0000	1.0000	1.0000
M_{III}	D	1.5272	1.5393	1.5175	1.5380
	Zr	0.4272	0.4204	0.4521	0.4090
Sum	1.9544	1.9597	1.9696	1.9470	
M _I +M _{II} +	M _{III}	3.9544	3.9597	3.9696	3.9470

 Table 4b. Zirconolite formula calculation.

Methodology follows that of Wark et al. (1973) for four selected analyses. Ideally, M_I , M_{II} , and M_{III} should sum to 4. Elements with a * are estimated concentrations based on the measured REE values (see text).

					1		
	KB ¹	BAG²	SLI ³	SLI ⁴	SLI ⁴	SLI ⁵	SLI ⁶
SiO ₂	52.8	52.5	73.3	71.8	79.7	68.42	72.18
TiO ₂	2.14	3.58	0.8	0.7	0.6	1.55	0.60
Al ₂ O ₃	15.2	12.9	12.1	10.2	10.6	8.1	13.38
Cr_2O_3	0.29	0.13	-	-	-	-	-
FeO	10.1	13.3	3.2	4.0	3.5	7.26	4.10
MnO	0.15	0.18	0.0	0.0	0.0	0.06	0.26
MgO	7.4	4.82	0.0	1.1	0.6	1.92	1.06
CaO	9.4	9.1	1.8	6.5	1.2	2.84	2.90
Na ₂ O	0.89	0.97	3.1	2.2	2.2	2.33	0.75
K ₂ O	0.65	0.68	3.3	3.5	1.6	2.84	1.40
P_2O_5	0.62	0.51	0.07	0.0	0.0	0.0	0.37
SUM	99.6	98.7	97.7	100.0	100.0	95.3	97.0
		1			0		

Table 5. KB and BAG, and silicic immiscible liquid compositions.

Units are wt%. ¹Compiled by Papike et al. 1998. ²Zeigler et al. 2006. ³Philpotts 1982. ⁴Philpotts 1981. ⁵Krasov and Clocchiatti 1979. ⁶Ryabov 1989.

Wt%			KB					BAG		
Liquid	100	75.3	51.3	26.1	10.6	100	74.69	50.19	25.67	14.58
SiO ₂	53.0	54.3	54.5	53.0	57.6	53.2	53.4	52.2	53.5	55.1
TiO ₂	2.2	2.7	4.0	3.2	0.4	3.6	4.7	4.4	2.1	0.5
Al ₂ O ₃	15.3	13.9	12.9	12.5	14.6	13.1	12.1	11.7	12.1	13.4
Cr ₂ O ₃	0.3	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
FeO	10.1	11.3	12.9	14.7	12.6	13.5	14.5	15.9	17.2	15.3
MgO	7.4	5.8	3.5	1.8	0.4	4.9	3.4	2.5	1.2	0.3
MnO	0.2	0.2	0.2	0.3	0.4	0.2	0.2	0.3	0.3	0.4
CaO	9.4	9.0	8.6	8.5	4.2	9.2	9.0	9.5	7.7	5.6
K ₂ O	0.7	0.8	1.2	2.2	5.0	0.7	0.9	1.3	2.3	3.9
Na ₂ O	0.9	1.0	1.1	1.4	1.9	1.0	1.1	1.2	1.6	1.9
P_2O_5	0.6	0.8	1.2	2.3	2.5	0.5	0.7	1.0	1.9	3.4
T(°C)	1147	1122	1078	1047	915	1092	1077	1062	1036	1017
η_{s}	125	260	618	702	66700	285	412	365	864	2650
$\eta_{B\text{-}W}$	106	196	471	787	20100	279	420	511	1120	3530

Table 6. Compositions and characteristics of residual liquids in KB and BAG fractional crystallization models.

Oxides and temperatures are calculated by the MAGFOX program (Longhi 1991). η_s and η_{B-W} are the dynamic viscosities calculated using the KWare Magma program (Ken Wohletz, Version 2.49.0126) by the methods of Shaw (1972) and Bottinga and Weill (1972), respectively.

		q <i>a</i> 1 <i>ab</i> , 1	ante Brai		npoon	5 8 6 m		10111 810			
	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	70.0	73.0	70.8	74.2	68.1	75.5	76.4	74.2	65.8	70.2	70.2
TiO ₂	1.04	0.60	0.60	0.33	0.90	0.26	0.7	0.7	2.3	1.17	1.16
Al ₂ O ₃	13.5	11.9	12.7	12.5	10.2	12.3	12.2	11.1	10.6	13.3	13.4
FeO	4.93	0.90	6.30	2.32	6.99	3.10	1.8	6.9	8.5	4.62	4.97
MnO	0.13	0.12	0.10	0.02	-	0.04	-	-	-	-	-
MgO	0.14	0.70	0.40	0.07	1.53	0.20	0.5	0.1	1.5	0.34	0.25
CaO	3.0	1.40	1.00	1.25	4.89	0.50	1.1	2.1	5.7	3.88	3.51
BaO	0.77	0.65	-	0.24	-	0.61	-	-	-	-	-
Na ₂ O	2.49	1.40	1.10	0.52	0.79	0.53	0.5	0.4	1.6	1.67	1.91
K ₂ O	4.5	6.80	7.40	8.60	3.39	7.55	6.1	4.2	4.3	4.76	4.58
P_2O_5	0.039	-	0.70	-	-	-	0.01	0.2	0.3	-	-
ZrO ₂	0.203	0.15	-	0.09	-	-	-	-	-	-	-
Hf	41.9	24	-	13.9	-	16	-	-	-	-	-
Cr	56	1010	0	17	-	70	-	-	-	0	0
Y	494	-	-	-	-	-	-	-	-	-	-
Th	132	41	-	65	-	9.5	-	-	-	-	-
U	45	12.3	-	23.4	-	-	-	-	-	-	-
SUM	100.8	97.6	101.1	100.1	96.7	100.6	99.3	99.9	100.6	100.0	100.0

Table 7. Bulk compositions of 12032,366-19, selected lunar granites, selected high SiO₂ immiscible liquids, and granitic compositions generated from gravity separation model.

Oxide units are wt%. Element units are ppm. 1. 12032,366-19: This study – microprobe and modal recombination. 2. 12013,10 light: Hubbard et al. 1970, Schnetzler et al. 1970, Wakita and Schmitt 1970, and Quick et al. 1977. 3. 12070,102-5: Potash rhyolite, Marvin et al. 1971. 4. 14321,1027: Pristine granite clast, Warren et al. 1983c. 5. 15405,12: Granite fragments, Ryder 1976. 6. 73255,27,3: Felsite clast, Blanchard and Budahn 1979. 7. Average compositions of six immiscible granitic inclusions in sample 14310,5, Roedder and Weiblen 1972. 8. Experimentally-produced high SiO₂ liquid from the fractionation of sample 12038,105, Hess et al. 1975. 9. Experimentally-produced high SiO₂ liquid from the fractionation of a composition similar to 15405 KREEP basalt, Rutherford et al. 1976. 10 and 11 are modeled compositions of low-density minerals in equilibrium with the melts of KB and BAG, respectively, in the last stages of fractional crystallization.

1	Petrology and geochemistry of lunar granite 12032,366-19 and
2	implications for lunar granite petrogenesis.
3	
4	Stephen M. Seddio ^{1,*} , Bradley L. Jolliff ¹ , Randy L. Korotev ¹ , and Ryan A. Zeigler ²
5	¹ Department of Earth and Planetary Sciences and the McDonnell Center for Space Sciences, Washington
6	University, St. Louis, MO 63130, U.S.A. ² Johnson Space Center, Houston, TX 77058, U.S.A.
7	
8	
9	Abstract
10	Apollo 12 sample 12032,366-19 is a 21.3-mg granite fragment that is distinct
11	from any other lunar granite or felsite. It is composed of barian K-feldspar, quartz, sodic
12	plagioclase, hedenbergite, fayalite, and ilmenite, with trace amounts of zirconolite,
13	baddeleyite, apatite, and merrillite. The texture of 12032,366-19 is largely a micrographic
14	intergrowth predominantly of K-feldspar and quartz and, to a lesser extent, plagioclase
15	and quartz. Hedenbergite, fayalite, and ilmenite are present in minor but significant
16	quantities—6.0, 3.1, and 1.7 wt% respectively—and are scattered throughout the
17	feldspar-quartz intergrowths. Trace amounts of Zr-bearing phases are found including
18	zirconolite (0.6 wt%) and baddeleyite (0.04 wt%). Incompatible trace-element
19	concentrations are high in 12032,366-19, particularly the high-field-strength elements,
20	e.g., Zr, Sm, and Th (1500, 25, and 61 μ g/g, respectively). The chondrite-normalized,
21	rare-earth-element concentrations form a "V-pattern" that is characteristic of other lunar
22	granitic material. Modeling 12032,366-19 as a derivative from a KREEP-like parent melt,

^{*} E-mail: sseddio@levee.wustl.edu

23	the composition and mineral assemblage can be obtained by extended fractional
24	crystallization combined with separation of the low-density minerals plus trapped melt
25	components prior to final solidification. However, this model cannot quantitatively
26	account for the relatively sodic composition of the plagioclase (An_{34-50}) and requires that
27	the starting melt has Na_2O of $1.2 - 1.4$ wt%, which is higher than most KREEP
28	compositions. Formation of this assemblage by silicate-liquid immiscibility is neither
29	required nor indicated by petrogenetic modeling.
30	INTRODUCTION
31	There are about twenty known lunar granites (Appendix 1) including "large"
32	individual samples (e.g., Apollo 12 sample 12013, 82 g) and clasts within breccias (e.g.,
33	14321,1027, 1.8 g). Most lunar granites are fine-grained; sample 15405,12 is the coarsest
34	with >1-mm mineral grains (Ryder 1976). Lunar granites characteristically contain
35	intergrowths of K-feldspar and silica. Plagioclase is also common and may be intergrown
36	with silica as well. Lunar granites are diverse in the presence, abundance, and
37	compositions of pyroxene and olivine (fayalite), and contain no water-bearing minerals.
38	Most lunar granites have been severely affected by meteorite impacts in that they have
39	been partially melted or brecciated, have experienced shock metamorphism, or contain
40	clasts of other lithologies as well as Fe-Ni metal from impactors. We describe here a
41	small granite fragment, designated 12032,366-19, that we separated from an Apollo 12
42	regolith sample. This granitic rock fragment is petrographically, mineralogically, and
43	compositionally distinct from any previously characterized lunar granite and is largely
44	unaffected by processes associated with meteorite impacts, i.e., it is monomict and
45	unbrecciated. It is, however, unquestionably lunar.
47

SAMPLES AND EXPERIMENTAL PROCEDURE

48	Sample 12032 is the 2–4 mm grain-size fraction of one of several regolith
49	samples collected on the Apollo 12 mission. Subsample 366 consists of 41 lithic
50	fragments allocated for the studies of Barra et al. (2006) and Korotev et al. (2011) along
51	with 317 lithic fragments from other Apollo 12 regolith samples. The subject of this
52	paper is the 19th fragment in the subset, designated 12032,366-19 (Fig. 1). We examined
53	all 358 fragments under a binocular microscope and analyzed each one individually for
54	concentrations of 26 chemical elements by INAA (instrumental neutron activation
55	analysis; Korotev et al. 2011). Eight fragments were found to be granitic in composition,
56	with 12032,366-19 being the largest at 21.3 mg. INAA results for 12032,366-19 are
57	reported in Table 1. Results for 12001,912-02 (9.2 mg) and 12032,366-07 (15.7 mg) are
58	reported in Barra et al. (2006). Compositional results for the other five fragments (2.7-
59	7.5 mg) are reported in Appendix 1. (INAA data for all 366 fragments are presented in
60	the electronic annex of Korotev et al. 2011.)
61	After INAA, which is effectively nondestructive, we mounted and polished the
62	sample in a petrographic thick section for EPMA (electron-probe microanalysis). The
63	texture and mineral assemblage were characterized by high-resolution BSE (back-
64	scattered electron) imaging and X-ray map analysis using the 5-wavelength-spectrometer
65	JEOL 8200 electron microprobe at Washington University, which includes a high-
66	intensity LIFH/PETH H-type spectrometer and an EDS (energy-dispersive spectrometer)
67	with an SDD (silicon-drift detector). Images and maps were generated at an accelerating

68 voltage of 15 kV and a beam current of 25 nA (50 nA for X-ray maps), except as

69 indicated below. We used a combination of WDS (wavelength-dispersive spectrometers)
70 and the SDD EDS to generate X-ray maps.

71 Quantitative mineral compositions were determined by WDS EPMA using the 72 Probe for EPMA software developed by Probe Software, Inc. In addition, we used the 73 Probe for EPMA software for data correction including peak interference corrections 74 (e.g., Th m β on U m α ; and Fe L α_1 on F K α). Nominal analytical conditions for typical 75 mineral phases (feldspar, silica, pyroxene, fayalite, ilmenite, and glass) were 15 kV 76 accelerating voltage and 25 nA beam current, with beam diameters ranging from 1 to 10 77 μm. Analytical standards included synthetic and natural silicate, oxide, and REE glass 78 standards of Drake and Weill (1972) and Carpenter et al. (2002) for primary calibration, 79 and these were checked against secondary standards. 80 Typically, elements were measured using the K α lines and counted on peak for 40 81 seconds (Si, Ti, Al, Cr, Fe, Mn, Mg, Na), except for elements analyzed using the high-82 intensity spectrometer (Ca, K, and P were counted for 20 seconds, and Ba, using the La 83 line, was counted for 120 seconds). In addition to these elements, analyses of Zr-rich 84 minerals included an expanded element list as follows: V (20 seconds); Zr (60 seconds); 85 La, Ce, Nd, and Yb (120 seconds each); Hf, Ta, and Pb (180 seconds each); Y and Nb 86 (220 seconds each); and U and Th (240 seconds each). This protocol led to detection 87 limits for most minor and trace elements in the 0.01 to 0.04 wt% range (100 to 400 μ g/g). 88 When analyzing phosphates, elements measured using the K α lines were counted 89 on peak for 20 seconds (Ca), 25 seconds (Na), 30 seconds (Mn, Fe), 35 seconds (Al), 40 90 seconds (Mg, Si, and P), 45 seconds (Cl), and 130 seconds (F); elements measured using 91 the L α lines were counted on peak for 30 seconds (La, Ce, Gd, Nd, and Yb) and 45

92	seconds (Y). We used the Probe for EPMA software to correct for the interference of Fe
93	$L\alpha_1$ and Ce M ζ on F K α and to apply a non-linear (polynomial) background correction
94	for F (and Si). The F X-ray count-rates, which were analyzed on a layered-dispersive
95	element (LDE1) crystal, were found to vary with positive linear time dependence (Fig. 2;
96	Stormer et al. 1993). Such variations were accounted for by the time-dependent intensity
97	correction of the Probe for EPMA software, which we used to project the F X-ray count-
98	rates back to time zero using a linear extrapolation to determine the intensity (e.g.,
99	McCubbin et al. 2010). In our analyses of the REEs, we applied the following the
100	interference corrections using the Probe for EPMA software: Nd Ll on La L α_1 ; La L γ_3 ,
101	Ce $L\gamma_1$, and Nd $L\beta_2$ on Gd $L\alpha_1$; and Ce $L\beta_1$ on Nd $L\alpha_1$.
102	We used a modal recombination technique that we designate Model 1 (Tables 1
103	and 2) to estimate the bulk concentration of elements for which concentration data were
104	not obtained by INAA. The model was constrained to fit the oxides for which both
105	microprobe and INAA concentrations were obtained (FeO, CaO, BaO, Na ₂ O, K ₂ O, and
106	ZrO ₂). Phase abundances (Table 2) were determined using image analysis of a BSE
107	mosaic and X-ray maps to essentially count all pixels in each phase, which were then
108	divided by the total number of pixels (background subtracted) to obtain the volume
109	fraction. The volume fraction of each phase was multiplied by the density of each
110	respective phase (Deer et al. 1976). Finally, we divided these individual values by their
111	sum to yield weight fractions. The bulk concentrations of each oxide were then calculated
112	by summing the oxide concentration of each phase (an average of the phase compositions
113	determined by electron microprobe) multiplied by the weight fraction of the phase (see
114	example for SiO_2 below).

$$[SiO_2]_{Bulk} = \sum_{phase \ n=1,2,3...} ([SiO_2]_n X(weight \ fraction \ of \ phase \ n))$$

115	The bulk composition obtained from INAA represents the entire 21.3 mg sample,
116	but the concentrations generated from the modal recombination technique represent only
117	the specific plane of the section exposed by the polished mount and the BSE image and
118	X-ray maps of that section. To assure that our bulk major-element composition was
119	representative of the whole sample, we adjusted phase proportions from those obtained
120	from image analysis to best-fit the INAA data. For example, our polished section of
121	12032,366-19 contains 6.2% plagioclase and 7.3% hedenbergite (area percentages
122	converted to weight percentages) leading to a bulk CaO concentration of 2.2 wt% for
123	12032,366-19 (based on the average compositions of plagioclase and hedenbergite).
124	INAA, however, yields a bulk CaO of 2.9 ± 0.2 wt%. In Model 1, we increase the
125	plagioclase abundance to 19 wt%, and decrease the hedenbergite abundance to 6.0 wt\%
126	(to fit both the INAA derived bulk CaO of 2.9 ± 0.2 wt% and FeO of 4.99 ± 0.05 wt%).
127	The Model 1 bulk CaO therefore is 3.04 wt%. This example is simplified since Model 1
128	takes the CaO contribution of all present phases into account, not just plagioclase and
129	hedenbergite.
130	The Model 1 error was calculated using the error from both EPMA and image

analysis. We applied counting statistics to the total number of pixels attributed to each
phase in the image and X-ray maps (Fig. 3,4). The final "% Error" values are the result of
propagating error through averaging the phase compositions, multiplying the average
compositions by the wt% of that phase, and summing those values for each oxide or
element. The trace-element compositions listed in the "EPMA" composition are from
zirconolite, baddeleyite, REE-rich apatite, RE-merrillite, and apatite. These phases

137 account for very small portions of the image, and their abundances were constrained to fit 138 the INAA data as closely as possible. Following the same procedures for error 139 propagation as with the major elements, the errors in the model associated with the trace 140 elements would be between 260 and 640%. 141 One irregular zirconolite grain (see descriptions in next section) yielded initial 142 compositional analyses containing anomalously high SiO₂. To further investigate this 143 composition, assuming that the zirconolite grain thickness might be such that the 144 analyzed composition resulted from overlap of the electron interaction volume with 145 another mineral, we obtained three BSE images of the area at 5, 15, and 25 kV 146 accelerating voltages (Fig. 5). We then modeled electron trajectories by Monte Carlo 147 simulations using the Casino program version 2.42 (Hovington et al. 1997). Simulations 148 of 5000 electron trajectories each were run at 5, 15, and 25 kV on models consisting of 149 K-feldspar overlying zirconolite and zirconolite overlying quartz. The thickness of the 150 top layer was varied. We constrained the thickness by noting whether or not the 151 backscattered electrons interacted only with the top phase at the different accelerating 152 voltages.

Following the method of Montel et al. (1996), we calculated the crystallization age of 12032,366-19 from our analyses of zirconolite. In doing so, we assumed that all Pb analyzed is radiogenic which is valid since Pb should not exist in thorite beyond trace concentrations. Given that assumption,

$$Pb = \frac{Th}{232} \left(e^{\lambda^{232}t} - 1 \right) 208 + 0.9928 \frac{U}{238.04} \left(e^{\lambda^{238}t} - 1 \right) 206 + 0.0072 \frac{U}{238.04} \left(e^{\lambda^{235}t} - 1 \right) 207$$

157 where Pb, Th, and U are in ppm and λ^{232} , λ^{235} , and λ^{238} are the decay constants for 158 Th²³², U²³⁵, and U²³⁸, respectively. Solving for *t* yields the age of the analyzed grain 159 along with the fraction of lead generated from each parent element.

160 We identified the silica phase as the polymorph quartz by Raman spectroscopic 161 analysis using a Hololab 5000-532 laser Raman spectrometer (Kaiser Optical Systems, 162 Inc.). The 532 nm line of a frequency-doubled Nd:YAG solid-state laser was used as the 163 excitation source. Analyses were done using a 20× long-working distance objective 164 (NA=0.4), which condenses the laser beam into a spot of 6 μ m diameter on the sample, 165 with an average power of 11 mW. This objective also collects the back-scattered Raman 166 photons from the sample. These photons were sent through a multimode optical fiber to a 167 Raman spectrograph. A volume holographic grating spectrometer disperses the collected Raman photons into a Raman Stokes shift range of 100 to 4300 cm⁻¹ relative to the 532-168 nm laser line, with a spectral resolution of $4-5 \text{ cm}^{-1}$. See Freeman et al. (2008) for more 169 170 analytical details.

171

172

RESULTS

173 **Petrography**

Lunar sample 12032,366-19 is an unshocked, unbrecciated, fine-grained granitic rock fragment. It is composed predominantly of granophyric intergrowths of barian Kfeldspar ($An_{0.7-16}, Ab_{21-50}, Or_{33-78}, Cn_{0.4-3.9}$) and quartz (Figs. 3,4) that, according to modal analysis, account for ~62 wt% of the sample, and to a lesser extent, a graphic intergrowths of plagioclase ($An_{34-50}, Ab_{49-65}, Or_{0.8-6.6}, Cn_{0.0-0.3}$) and quartz (Table 2, Figs. 3,4) that account for ~27 wt% of the sample. K-feldspar and silica intergrowths extend

throughout the entire sample, whereas intergrowths of plagioclase and silica occur on the
scale of ~1 mm. The mafic phases are present in significant amounts (6.0 wt%
hedenbergite and 3.1 wt% fayalite) compared to most other lunar granites (e.g., 12013
Light; 12033,507; 14161,7269; 14303,204; 14321,1027; 15405,12; and 73255,27,3; see
Appendix 1 for references) in which it is common for either pyroxene or olivine (or both)
to be absent. There are >20 hedenbergite grains and >30 fayalite grains exposed in our

186 polished section of 12032,366-19.

187 **Potassium feldspar.** Compositions of K-feldspar (Fig. 6; Table 3) are similar, 188 from spot to spot and as reflected in the K X-ray image, with two exceptions. (1) In 189 several instances, large subhedral grains (as large as $440 \times 100 \,\mu$ m) of K-feldspar lack 190 quartz intergrowths (Figs. 3,4) and are zoned. The cores of these grains have a higher 191 Na/K than their rims, which have Na/K similar to the rest of the K-feldspar in the sample 192 (Fig. 4). (2) The K-feldspar ("Kfs*" of Table 3) that is part of a subrounded inclusion 193 inside one of the three "large" (see below) pyroxene grains has among the lowest Na/K in 194 the fragment. Moreover, in K-feldspar in the inclusion, the abundance of the Cn (celsian, 195 Ba-Feldspar) component is only 0.5%, whereas the other analyzed K-feldspar 196 compositions have Cn values of 1.6 to 3.9% (0.91 to 1.90 wt% BaO). The "Kfs*" 197 analyses also have the highest FeO content (0.44 to 0.49 wt%) of the analyzed K-feldspar 198 grains but not by a large amount (the other analyses range from <0.05 to 0.34 wt%). It is 199 unlikely that the high FeO of these analyses results from beam overlap with the 200 surrounding hedenbergite grain because these analyses also have some of the highest K_2O 201 (11.0 to 13.5 wt%) in the sample.

202	The granophyric intergrowths of quartz and K-feldspar occur in the following
203	three textures in decreasing order of abundance: parallel (Fig. 7d), irregular (lower left,
204	Fig. 7a), and graphic (Upper half, Fig. 7b; left of center, Fig. 7c). The parallel granophyre
205	consists of homogeneously thin (average width: $6 \ \mu m$), parallel grains of quartz
206	intergrown with K-feldspar. The quartz grains in the irregular granophyre are commonly
207	wider (average width: 8 μ m) than those in the parallel. The quartz grains of the graphic
208	texture are the widest (8-12 μ m) of the three granophyric textures and intersect each
209	other. The three textures continuously extend from K-feldspar into plagioclase (Figs.
210	3,4).
211	Plagioclase. Plagioclase is not zoned and is unusually sodic for a lunar rock
212	(An _{33.5-50.2} , Fig. 6). In fact, the albite contents of the plagioclase are the highest of which
213	we are aware in any lunar sample. This high albite content is not totally unprecedented
214	though: Warren et al. (1987) reported zoned plagioclase with rims of $An_{35.5}$ in felsite
215	12033,507. The FeO content of the plagioclase ranges from 0.14 to 0.33 wt% with an
216	average concentration of 0.21 wt %. These values are consistent with FeO concentrations
217	reported for plagioclase in other lunar granites (e.g. Warren et al. 1987; Jolliff 1991).
218	Quartz. The SiO_2 phase is identified as quartz on the basis of Raman
219	spectroscopy (Fig. 8). Its texture is fractured in a hackled pattern, suggesting that it may
220	have inverted from cristobalite. Quartz analyses with the electron microprobe give minor-
221	oxide concentrations (Table 3), including Al_2O_3 (0.21 wt%), FeO (0.21), TiO ₂ (0.05),
222	CaO (<0.06), BaO (<0.06), and K ₂ O (0.02 wt%).

Hedenbergite. All analyzed pyroxene grains in 12032,366-19 are hedenbergite
(En_{4.6-6.2}, Fs₅₁₋₅₂, Wo₄₃₋₄₄). In the probe mount, there are three relatively large grains: an

225	elongate grain ($670 \times 56 \mu m$; Figs. 3,4,7a) that terminates at the edge of the sample, a 196
226	\times 134 µm grain with a sub-rounded inclusion (diameter = 58 µm; Figs. 3,4), and a 425 \times
227	112 μ m grain (Figs. 3,4). There are >20 other, smaller grains of hedenbergite in the
228	section. The pyroxene grains are subhedral with irregular boundaries and in some cases
229	are serrated. Six spot analyses of hedenbergite yielded minor concentrations of TiO_2
230	(0.69-1.28 wt%), Al ₂ O ₃ (0.53-0.84 wt%), MnO (0.33-0.38 wt%), and Na ₂ O (0.07-0.14
231	wt%) which are common concentrations for pyroxenes in other lunar granites (Quick et
232	al. 1977; Warren et al. 1987; Jolliff 1991). Careful examination of the 12032,366-19 Mg
233	X-ray map indicates that the larger pyroxene grains are slightly richer in Mg (up to 2 wt%
234	MgO) at the cores.

Fayalite. In 12032,366-19, the fayalite (Fa_{97.3}) grains are small (average grain size: $130 \times 50 \mu$ m), and subhedral to anhedral with generally equant morphologies. The fayalite contains ~1 wt% MgO and small amounts of MnO (0.79-0.86 wt%), CaO (0.11-0.24 wt%), TiO₂ (<0.05-0.19 wt%), and P₂O₅ (0.06-0.07 wt%). These concentrations are typical of olivine compositions in other lunar granites (Quick et al. 1977; Warren et al. 1987).

Ilmenite. Ilmenite grains tend to be elongate (aspect ratio average: 13.5, range: 5.9 to 27; Fig. 7b,7c) but not to the extent of some of the zirconolite grains (see below).
Ilmenite is commonly found along the boundaries of pyroxene and olivine, though where it occurs as such, it tends to be subhedral to anhedral. Ilmenite and baddeleyite are the only minerals in the sample that exhibit a preference for occurring adjacent to another mineral. Ilmenite grains contain only 0.12 wt% MgO, lower than the MgO range observed in the ilmenite of 12013 felsic material (1.76-2.01 wt%, Quick et al. 1981). The

248 Nb₂O₅ concentration is 0.97 wt%, whereas V_2O_5 is below the detection limit (<0.017

wt%). Both of these concentrations are similar to those of ilmenite in the granitic phase of
12013 (Quick et al. 1981).

251 **Baddeleyite.** In 12032,366-19, the baddeleyite phase is always found in 252 association with ilmenite, and its analyses reveal concentrations of HfO₂ of 2.8 wt% and 253 measureable FeO (1.1 wt%), TiO₂ (0.8 wt%), and Nb₂O₅ (0.5 wt%). The largest ZrO_2 254 grain is euhedral, 24.7 x 16.8 μ m, and is highlighted in Figure 7a. 255 **Zirconolite.** Zirconolite occurs in two forms in 12032,366-19. The first consists 256 of fine-grained, elongate "strings" (finely elongate green phase in Fig. 4b; diagonal, 257 bright phase in Fig. 7b; and gray arrow in Fig. 7c) scattered throughout the section. These 258 elongate grains are typically $\sim 65 \,\mu m$ long and $\sim 3 \,\mu m$ wide. There is only one occurrence 259 of the second form in the studied slice of 12032,366-19. It is coarser (0.1 mm long, 0.04 260 mm wide) than any occurrence of the elongate form and has an irregular shape (green at 261 top of Fig. 4b, false-colored X-ray image).

262 Zirconolite is a fairly common accessory mineral in evolved lunar rocks that has 263 the general formula (Ca,REE)₁Zr₁(Ti,Nb,Ta)₂O₇. In 12032,366-19, its composition (Table 264 4) is similar to compositions reported by Wark et al. (1973) and Rasmussen et al. (2008) 265 in some lunar mare basalts and breccias (Table 4); however, the composition obtained by 266 Haines et al. (1971) for zirconolite in the 12013 granitic breccia has 12.8 wt% less ZrO_2 267 than that in 12032,366-19. Several of our zirconolite analyses on elongate grains imply 268 significant concentrations of SiO_2 ; however, we conclude that these results are an artifact 269 of electron beam volume overlap because the zirconolite grains are so thin. Figure 9 270 shows that concentrations of other elements correlate inversely with the SiO_2

271 concentration, implying that SiO_2 from other minerals effectively 'dilutes' the other 272 oxides as opposed to Si replacing cations in the zirconolite crystal. If Si were replacing 273 one or a few cations, we would expect the concentrations of the substituted cations to 274 decrease as Si increases while the concentrations of the cations Si does not replace should 275 remain constant as Si increases. In the largest zirconolite grain in the probe mount, an 276 irregularly-shaped occurrence (Fig. 4b,5), initial analyses yielded as much as 22.2 wt% 277 SiO₂. We addressed this issue as described in the analytical section; here we further 278 discuss the mineral chemical trends because it is important to establish the chemical 279 composition of this occurrence of zirconolite. Suspecting the high SiO₂ might be an 280 analytical issue, we imaged (BSE) the grain using different accelerating voltages and then 281 modeled the thickness (using the Casino program version 2.42; Hovington et al. 1997) to 282 be only 70-250 nm. Other portions of the irregular occurrence are overlain by K-feldspar 283 (Fig. 5) modeled to be only 120-220 nm thick. All analyses on the thin or overlain 284 portions of this zirconolite grain also contain a compositional component from the 285 overlying and underlying phases. We conclude that the SiO_2 , Al_2O_3 , and Na_2O_3 286 components of our zirconolite analyses were contributed by electron beam interaction 287 with nearby (vertically distributed) phases, specifically quartz, plagioclase, and K-288 feldspar. Our best analysis indicates that the zirconolite contains <0.008 wt% SiO₂. 289 We measured concentrations of the four REEs present in the highest 290 concentrations (La, Ce, Nd, and Yb) and Y in our zirconolite analyses (Fig. 10), but many of the analyses resulted in low totals. The REE³⁺ concentrations of the zirconolite 291 292 analyses with the lowest SiO₂ concentrations were interpolated to form a smooth, 293 chondrite-normalized pattern with the measured REE concentrations (Fig. 10). We also

294	assume that the Y concentration, normalized to chondrites, plots at a point halfway
295	between normalized Ho and Er concentrations (Korotev, 1996). The full REE component
296	was then used to calculate the structural formula of the 12032,366-19 zirconolite (Table
297	4b). The normalized REE pattern is HREE-rich (Fig. 10) unlike the pattern of REE in the
298	mare basalt occurrence reported by Rasmussen et al. (2008). Oxide sums, including the
299	REE, for the four analyses with lowest silica range from 97.4% to 98.7% (Table 4a).
300	Zirconolite analyses were normalized on the basis of 7 oxygen atoms using the
301	structural formula, $(\mathbf{M}_{\mathbf{I}})^{2+}(\mathbf{M}_{\mathbf{II}})^{4+}(\mathbf{M}_{\mathbf{III}})^{4+}\mathbf{O}_{7}$, following the methods of Wark et al.
302	(1973) as described in the experimental procedure section. The results are listed in Table
303	4b. Four zirconolite analyses included PbO data (Table 4a). Using Th, U, and Pb
304	concentrations, we calculated a crystallization age of 3.87 ± 0.28 Ga.
305	Phosphates. Phosphates are rare in 12032,366-19 and account for <0.3 vol% of
306	12032,366-19, on the basis of image analysis of a P X-ray map of the sample.
307	Quantitative analyses reveal that three phosphate phases are present in 12032,366-19-
308	apatite, REE-rich apatite, and RE-merrillite-all of which are anhedral to subhedral and
309	likely took on the shape of the small pockets of residual melt where they occur. Of the
310	apatite grains we have measured, the compositions fall into a high-REE group (we refer
311	to these compositions as "REE-rich apatite") and a low-REE group (we refer to these
312	compositions as "apatite"); they do not form a continuum of REE concentrations.
313	Because the phosphate grain sizes are small, commonly $<5 \mu m$, we disregarded analyses
314	that indicate overlap of the electron beam interaction volume with an adjacent phase (e.g.,
315	~1 wt% Al_2O_3 from feldspar or ~5 wt% SiO_2 from quartz). We measured concentrations
316	of five REEs (La, Ce, Nd, Gd, and Yb) and Y in our phosphate analyses (Fig. 10). La, Ce,

317	Nd, and Y were above detection limits in analyses of all three phosphates; Gd and Yb are
318	above detection limits in merrillite with 15-22% and 23-32% error, respectively, and are
319	above detection limits in about half of the REE-rich apatite analyses with 24-52% and 25-
320	47% error, respectively. The (low REE) apatite analyses have Gd and Yb below detection
321	limits. On a chondrite-normalized plot (Fig. 10), the analyzed LREE form a negative
322	slope that is the same for the three phosphates. In merrillite, the analyzed HREEs have a
323	roughly flat slope. We used these slopes to interpolate the unanalyzed REE ³⁺
324	concentrations. Though Gd and Yb were commonly below detection limits in the apatites,
325	Y (and Gd and Yb when detectable) indicates that the apatite and REE-rich apatite have
326	LREE and HREE chondrite-normalized patterns that mimic the pattern of merrillite. We
327	interpolated the concentrations of REE ³⁺ in apatite that were either not analyzed or that
328	were found to be below our detection limits using the chondrite-normalized REE pattern
329	of merrillite scaled to the concentrations detected for the LREE and Y.
330	The largest grain of apatite in 12032,366-19 is $25 \times 15 \mu m$ and is adjacent to an
331	elongate zirconolite grain and quartz. In apatite, the (F, Cl, OH) site is occupied by 0.30-
332	0.56 F and 0.17-0.23 Cl apfu (atoms per formula unit), and sums range from 0.47 to 0.78
333	leaving open the possibility for a missing component, possibly OH (McCubbin et al.
334	2010). The apatite analyses contain 1.91-2.09 wt% SiO ₂ (0.16 to 0.18 apfu) which is
335	more than enough to provide a charge balance for the 1.25-1.36 wt% (REE,Y)_2O_3 (0.04-
336	0.05 apfu). We suspect that the excess SiO_2 was contributed to the analyses by secondary
337	fluorescence of Si in adjacent quartz.
338	The REE-rich apatite ("RE-Ap" in Table 3, Fig. 2) contains 7.21 average wt%
339	REE ₂ O ₃ . The largest occurrence of REE-rich apatite is elongate, $44 \times 6 \mu m$ (Fig. 7d), but

340 it has been fractured into segments typically with dimensions of $\sim 5 \,\mu m$ or less. It contains 341 3.17 average wt% SiO₂, which corresponds to 0.29 apfu per 25 negative charges and 342 provides charge-balance for the REEs and Y (0.31 apfu). F and Cl are also present at 343 0.96 ± 0.11 and 1.32 ± 0.06 wt% (0.28 and 0.21 apfu), respectively (errors are one σ) 344 which, based on apatite stoichiometry, only occupies 41.7-53.8% of the (F, Cl, OH) site, 345 leaving open the possibility that this grain contains significant OH. 346 RE-merrillite is the third phosphate present in 12032,366-19. Concentrations of F 347 and Cl are below detection limits (<0.02 and <0.01 wt%, respectively). Only on grain 348 was large enough $(15 \times 5 \ \mu\text{m})$ to provide a good analysis, and it contains 5.24 wt% FeO, 349 0.59 wt% MgO, and 15.1 wt% (REE+Y)₂O₃. The chondrite-normalized REE pattern (Fig. 350 10) shows that the RE-merrillite is LREE-rich. On the basis of our electron microprobe 351 analyses, the REE-rich apatite has a similar chondrite-normalized REE pattern to that of 352 the RE-merrillite but is about an order of magnitude lower in concentration. 353 Glass Inclusions. We observed inclusions of glass and two crystalline inclusions 354 in pyroxene in 12032,366-19. The inclusions are more or less rounded and located at or 355 near the center of the pyroxene grains. All of the inclusions are glass except for the 356 largest (diameter of 58 µm), which has crystallized to an assemblage of K-feldspar, 357 plagioclase, and quartz, and another, which has crystallized into K-feldspar and quartz. 358 One of the largest glass inclusions has a composition with significantly higher SiO_2 than 359 the bulk sample (e.g., 78.3 vs. 70.1 wt% SiO₂, Table 3). The bulk composition of the 360 largest crystalline inclusion contains 70.6 wt% SiO₂. The inclusion's composition was 361 calculated using a modal recombination technique that assumed the inclusion-362 hedenbergite boundary was originally smooth, like all other inclusion-hedenbergite

boundaries in the section, until the inclusion crystallized additional hedenbergite onto the
boundary. The hedenbergite within the assumed boundary is included in the modal

365 recombination.

366 Bulk composition

The bulk composition of 12032,366-19, as estimated from Model 1 (constrained modal recombination), and the composition obtained by INAA are listed in Table 1. The phase abundances derived from both the image analysis and the modal recombination are

370 listed in Table 2. Notable major oxide concentrations obtained from INAA include: 4.99

371 wt% FeO (Fig. 11), 2.10 wt% Na₂O, and 4.8 wt% K₂O (Table 1). Only four reported

lunar granitic compositions have lower bulk FeO (12023,147-10; 14321,1027;

373 73215,43,3; 73255,27,2; Appendix 1). Samples 14321,1027 (149 mg); 73215,43,3 (20

374 mg); and 73255,27,3 (2 mg) are granitic clasts and have the lowest bulk FeO (2.3, 3.0,

and 3.1 wt%, respectively; references are in Appendix 1). Sample 12023,147-10 (2.67

376 mg) is an igneous fragment with no evidence of brecciation. It contains 3.1 wt% FeO.

377 Clast 14303,204 (70 mg) has a bulk FeO concentration of 5.6 wt% (Warren et al. 1983c),

which is the most similar to that of 12032,366-19. Sample 15434,10 (27 mg), which has

an igneous texture, has the highest bulk FeO (19 wt%) of any sample identified as lunar

380 granite (identified as such from thin section 15434,10,136; Ryder and Martinez 1991)—

381 likely a sampling issue from the coarseness of the texture compared to the size of the 39

382 mg chip analyzed by INAA (Ryder and Martinez 1991). The remaining eighteen samples

383 listed in Appendix 1 have bulk compositions that range from 6.0 to 14 wt% FeO and have

384 been identified as granitic lunar samples. High bulk FeO is likely a result of other

385 lithologies being mixed with granitic lithologies during the formation of granitic breccias.

386	The bulk Na ₂ O (2.10 wt%) of 12032,366-19 is the highest of any lunar sample of which
387	we are aware. The second most sodic lunar granitic composition is that of breccia
388	14001,28.4 (1.90 wt%, Morris et al. 1990), and others have bulk Na_2O as low as 0.19
389	wt% (breccia 73215,43,3).
390	Compared to high-K KREEP (Warren 1989), Ba, Rb, Cs, Yb, Lu, Ta, W, Th, and
391	U concentrations are high in 12032,366-19 (Fig. 12), whereas the LREE are lower by a
392	factor of ~0.6. Iridium and Au are below INAA detection limits (<1.3 ppb and <5 ppb,
393	respectively), consistent with an unbrecciated rock unaffected by meteoritic
394	contamination. REE abundances and relative concentrations are unlike typical Apollo 12
395	mare and nonmare materials, including KREEP, but are similar to other granites and
396	felsites, exhibiting a characteristically V-shaped chondrite-normalized REE pattern (e.g.,
397	Blanchard and Budahn 1979; Jolliff 1991; Fig. 13). In 12032,366-19, the LREE-rich RE-
398	merrillite and REE-rich apatite and the HREE-rich zirconolite (Fig. 10) are the most
399	likely main contributors to the V-shaped chondrite-normalized REE pattern.
400	DISCUSSION
401	Granites are one of the rarest lithologies in the Apollo collection, implying that
402	rocks of granitic composition make up only a small fraction of the lunar crust. However,
403	granitic samples are relatively common among the nonmare components at Apollo 12
404	(five have been characterized thus far) compared to the other Apollo sites presumably
405	because the site is located in the Procellarum KREEP Terrane, which has the highest
406	abundances of K, Th, and U on the lunar surface (Lawrence et al. 1998). Given the high
407	concentrations of those elements in granite, it logically follows that the source of most of
408	the lunar granitic material would be in this terrane as well. The Apollo 14 and Apollo 15

409 sites also lie within this terrane, and both have yielded several granitic samples (Ryder

410 1976; Warren et al. 1983c; Jolliff 1991; Ryder and Martinez 1991) whereas we are aware

411 of no granite clasts in the Apollo 16 collection. Moreover, silicic surface compositions

412 associated with some of the "red spots" such as the Gruithuisen domes, Mairan domes,

413 and Hansteen Alpha (Hawke et al. 2003; Wilson and Head 2003; Glotch et al. 2010),

414 most of which are now known to be silica-rich (Glotch et al. 2010), occur within this415 terrane.

416 **12032,366-19 compared to other lunar granites**

Granite 12032,366-19 is of lunar origin. It contains no petrographic indication of
hydrous alteration of any minerals (e.g., serpentinization of fayalite, sericitization of
plagioclase). Micas and amphiboles are absent in 12032,366-19 (and other lunar samples)
but are common in terrestrial granites.

421 Sample 12032,366-19 is unique among lunar samples. It contains no impact-422 generated glass or brecciated material, unlike many other lunar granites (Rutherford et al. 423 1976; Warren et al. 1983c; Morris et al. 1990; Jolliff 1991). The graphic intergrowth of 424 K-feldspar and silica, commonly expressed as a granophyre, dominates most of the lunar 425 granitic samples (e.g., 12013); however, significant amounts of plagioclase-silica 426 intergrowths are far less common among reported samples. It is also common for lunar 427 granites to contain shock-melted glass, but 12032,366-19 contains none. It is noteworthy 428 that only a quarter or so of known lunar granites have any pyroxene in abundances large 429 enough to analyze, and the Mg' of the pyroxene in 12032,366-19, essentially endmember 430 hedenbergite, is significantly lower than those of other lunar granites (Fig. 14).

431	Perhaps because all samples are exceedingly small by terrestrial sampling and
432	analysis standards, a wide distribution in bulk compositions characterizes rocks (and
433	assemblages) that have been classified as lunar granites or felsites. Appendix 1 includes
434	several granitic bulk compositions for comparison with 12032,366-19. The 12032,366-19
435	REE concentrations are most similar (of those to which it has been compared thus far) to
436	those of 12001,912-02; 12013,10,28; 12023,147-10; and 12033,517, all from Apollo 12.
437	12032,366-19 contains the second highest concentration of BaO (0.68 wt%) of which we
438	are aware in a lunar sample (the highest is in sample 12032,366-07, another lithic
439	fragment of granitic composition) and a substantial amount of Zr-bearing minerals. The
440	most striking difference between 12032,366-19 and the other lunar granites is that its
441	Na ₂ O/K ₂ O is higher by a factor of 2-5 than that of the others—a characteristic reflected
442	by both the abundance and sodic nature of its plagioclase. To our knowledge, the texture
443	and mineral assemblage of this sample is unique among studied lunar samples.
444	Lunar granites (pristine or otherwise) have U-Pb crystallization ages between 3.88
445	and 4.32 Ga (from zircon analyses; Meyer et al. 1996). Our calculation of a
446	crystallization age of 3.87 ± 0.28 Ga for sample 12032,366-19 is consistent with the
447	young end of that range.
448	Pristinity
449	Although 12032,366-19 was collected on the immediate surface of the Moon, it
450	contains no evidence of any admixed meteoritic or regolith material. The bulk rock
451	concentration of Ir is low, <1.3 ppb, corresponding to <0.2% meteoritic material (H
452	chondrite equivalent). Moreover, metallic iron and troilite are absent. Metallic Fe,
453	depending on Ni concentrations, would also indicate a meteoritic source (Papike et al.

454 1991). There are no spherules present in the sample, and there is no regolith adhering to
455 the edge of the sample (Fig. 1) indicating that no regolith has been incorporated into
456 12032,366-19, which, if present, would have been obvious in the siderophile element
457 concentrations.

458 Shock-melted glass is a common occurrence in many lunar granitic samples (e.g., 459 14303,204 is a felsite clast of which half is glass; Warren et al. 1983c). It is also common 460 for veins of impact glass to cut through portions of granitic samples (e.g., 12033,507; 461 Warren et al. 1987). The only glass in 12032,366-19 occurs as inclusions in hedenbergite 462 and does not appear to be of shock-melted origin. These glass inclusions are more likely 463 to be melt that became trapped within an early forming crystal. The granitic composition 464 of the inclusion glass indicates that the hedenbergite was in equilibrium with the granite 465 melt. The texture indicates that 12032,366-19 only experienced one episode of 466 crystallization and has not experienced any re-melting since.

467

ZrO₂ – SiO₂ phase boundary

468 In sample 12032,366-19, baddeleyite (monoclinic) is in textural contact with 469 quartz (Fig. 7a). The ZrO_2 -SiO₂ phase diagram generated by Kaiser et al. 2008 indicates 470 that ZrO_2 (tetragonal) and SiO₂ (cristobalite) are only stable together between 1673 and 471 1687°C. At lower temperatures, the phases should react to form zircon. We are unaware 472 of another instance of zirconia and silica coexisting adjacent to one another. The presence 473 of the other minerals or the chemical composition of the melt itself may have made the 474 coexistence of baddeleyite and silica thermodynamically favorable. Alternatively, 475 baddeleyite and silica may not have crystallized in thermodynamic equilibrium. The 476 granophyric intergrowth of K-feldspar and quartz and plagioclase and quartz suggests

477 that crystallization was rapid. In that case, the kinetics of crystallization may have

478 allowed baddeleyite and silica to coexist outside of thermodynamic equilibrium. This

479 particular occurrence warrants further investigation.

480 **Petrogenesis**

481 The following three methods of producing granitic compositions in the low- fO_2 , 482 low-pressure conditions near the lunar surface have been suggested: (1) high SiO_2 483 achieved by fractional crystallization of an evolved parent such as KREEP basalt or 484 basaltic andesite glass (e.g., Longhi 1990); (2) high SiO₂ achieved by SLI (silicate liquid 485 immiscibility; e.g., Hess et al. 1975; Rutherford et al. 1976; Neal and Taylor 1989; Jolliff 486 1991); and (3) partial melting of an enriched crustal protolith (e.g., KREEP basalt) by 487 basaltic underplating (e.g., Lawrence et al. 2005; Hagerty et al. 2006). SLI tends to form very high SiO₂, low CaO and low FeO compositions (Table 5), so we do not favor it. (2) 488 489 and (3) are both plausible based on terrestrial analogs, but are difficult to distinguish. 490 Process (3), coupled with upward enrichment of high-silica melt is a very common 491 process on Earth, leading to the formation of bimodal volcanics, i.e., basalt and rhyolite. 492 We see this situation perhaps reflected in 12013. In the same vein, we do not see 493 intermediate compositions (with SiO_2 between 52 and 70 wt%) when there should be 494 more of the intermediate silica materials than high silica if (2) were the main process. We 495 explore the methods of producing lunar granitic material, considering their ability to 496 produce lithologies like 12032,366-19. 497 12032,366-19 contains K-feldspar, quartz, alkali-rich plagioclase, Fe-pyroxene,

and Fe-olivine—a complete mineral assemblage consistent with late-stage fractional
 crystallization. These phases have relatively low melting temperatures compared to Mg-

500 pyroxenes and Mg-olivine, and indicate of crystallization from a liquid that had already 501 exhausted most of its Mg and was therefore in the extreme late stages of fractionation. 502 The incompatible trace elements in 12032,366-19 are high compared to KREEP (Fig. 503 12). The concentrations of these elements in the liquid become higher as crystallization 504 continues, and it logically follows that 12032,366-19 crystallized from a liquid that was 505 at a late stage of fractional crystallization in order to explain such high concentrations of 506 incompatible elements. This indication of the late-stage nature of the parent melt is 507 complemented by the near absence of phosphates. Phosphorus is an incompatible 508 element, and phosphates tend to crystallize late in the fractional crystallization process 509 (Hess and Rutherford 1974, Hess et al. 1975, Warren et al. 1983c, Jolliff 1991, and Jolliff 510 et al. 1999). Since phosphate in 12032,366-19 is present at only a trace level, the parent 511 melt must have crystallized phosphates as part of a residual assemblage that was 512 presumably segregated and left behind during gravity separation of the granitic mass, as 513 hypothesized by Jolliff (1991). Separation of minerals that concentrated the middle REE 514 (merrillite and apatite) explains the V-shaped REE pattern as a result of early phosphate 515 crystallization, which would impart a middle REE depletion relative to the LREE and 516 HREE on remaining residual melt.

517 **Petrogenetic modeling**

518

Because the texture of 12032,366-19 shows no direct (relict) evidence of liquid

519 immiscibility—except, perhaps, the glass inclusions with ~78 wt% SiO₂ within

520 hedenbergite (see below)—such as that seen in sample 14161,373, a mafic assemblage

521 containing rounded segregations of K-feldspar and SiO₂ (Jolliff 1991, Jolliff et al. 1999),

522 we tested whether the bulk composition could be achieved simply by fractional

523	crystallization of a melt with a KREEP-like composition. We selected KREEP basalt
524	(KB) 15434,18,199-A (composition compiled by Papike et al. 1998) and basaltic andesite
525	glass (BAG) of Zeigler et al. (2006) as compositions to represent potential parent melts
526	because both compositions (Table 5) represent alkali-rich melts that could plausibly have
527	fractionally crystallized to produce felsic final assemblages. Compared to the KB
528	composition, the BAG composition has higher Fe/Mg (2.8 vs. 1.4) and lower Al_2O_3 (12.9
529	vs. 15.2 wt%), but the SiO ₂ contents are similar(BAG: 52.5 wt%; KB: 52.8 wt%). The
530	compositions were modeled using MAGFOX (Longhi 1991) as resulting from extended
531	fractional crystallization reaching 89.4 wt% crystallized (for KB) and 85.4 wt%
532	crystallized (for BAG). The paths that the compositions of the residual liquids for KB and
533	BAG follow are shown in Figs. 15 and 16. The compositions, temperatures, and
534	viscosities of the residual liquids at ~25 wt% crystallization intervals are given in Table
535	6.
536	For the fractional crystallization of the KB melt, SiO_2 increases from ~53 to 55.4
537	wt% at 44 wt% crystallization when quartz begins to crystallize and then decreases back
538	to 53 wt% at 71 wt% crystallization. Then SiO ₂ increases to 57.5 wt% at 89.4 wt%
539	crystallized. K ₂ O increases to 5 wt% at 89.4 wt% crystallization. Initially, Al_2O_3
540	decreases from ~16 to 12 wt% at 69 wt% crystallization and then increases to 14.6 wt%.
541	FeO increases from 10 to 12 wt% until quartz begins to crystallize at 44 wt%
542	crystallization, after which FeO increases more markedly, reaching a maximum of 15.3
543	wt% at 79 wt% crystallized. From there, FeO decreases to 12.6 wt% owing to
544	crystallization of fayalitic olivine, ferropyroxene (Fo ₁₂ and En ₁₀ Wo ₄₇ , respectively), and
545	ilmenite. P_2O_5 increases from 0.6 wt% to 3.5 wt% at 83 wt% crystallization. At that

546 point, whitlockite (merrillite) begins to crystallize and drives the P_2O_5 down to 2.9 wt%.

547 The KB residual liquid is closest to the field of immiscibility (Roedder 1951) at 44 wt%
548 crystallization (Figs. 15, 16).

549 For the fractional crystallization of the BAG melt, SiO₂ initially increases 550 slightly to 54 wt% at 21 wt% crystallization and then decreases to ~52 wt% at 49 wt% 551 crystallization owing to the crystallization of quartz. SiO_2 then finally increases to 55 552 wt%. K₂O increases from 0.7 wt% to around 4% at 85.4 wt% crystallized. Plagioclase 553 $(An_{86}Ab_{13})$ forms early and keeps Al_2O_3 relatively constant at around 13.2 wt%. FeO 554 increases to 17.4 wt% at ~69 wt% crystallized, at which point fayalitic olivine saturates. 555 The FeO increase is relatively gradual—a result of the saturation of pigeonite, ilmenite, 556 and ferroaugite. The co-crystallization of fayalitic olivine, pigeonite, ferroaugite, and 557 ilmenite drive FeO to a concentration of 15.3 wt% in the residual melt. The P_2O_5 558 concentration increases from 0.52 wt% to 3.4 wt% at 85.4 wt% crystallization without a 559 phosphate saturating. The BAG residual liquid is enters the field of immiscibility 560 (Roedder 1951) at 16.2 wt% crystallization (Figs. 15, 16). 561 Both the KB and BAG crystallization models have several shortcomings. Neither 562 KB nor BAG produce, upon fractional crystallization, residual melt compositions as rich 563 in SiO₂ (57.5 wt% and 55.1 wt%, respectively; Figs. 15 and 16) as observed in the granite 564 (70.1 wt%)%), at least not at a stage when there is enough liquid left for plausible 565 separation of melt from crystals. Low oxygen fugacity relevant to the lunar system 566 prevents crystallization of magnetite, which in terrestrial liquid compositions occurs early 567 and halts the FeO-enrichment trend, and causes the SiO₂ concentration of residual melt to 568 increase to produce rhyolitic liquid compositions (e.g., Hess et al., 1975). Under lunar

569	fO_2 and low water content, FeO-rich residual melts would typically reach the field of
570	silicate-liquid immiscibility prior to onset of Fe-Ti oxide crystallization. Both models
571	drive TiO_2 to very low levels by the 80-85% solidification stage, yet in 12032,366-19,
572	ilmenite is present and the bulk TiO_2 is 1.07 wt%. FeO concentrations in the model
573	residual melts at this point are 12.3 wt% (KB) and 15.3 wt% (BAG), which is roughly
574	three times that of 12032,366-19 (4.98 wt%). K ₂ O in 12032,366-19 (4.58 wt%) is similar
575	to that predicted by the models (5.0 wt%, KB and 3.9 wt%, BAG). KB and BAG produce
576	P_2O_5 of 2.9 wt% (KB) and 3.4 wt% (BAG) while that of 12032,366-19 is only 0.052
577	wt%. Also, the anorthite contents of KB (An _{62.6}) and BAG (An _{62.5}) are higher than that of
578	12032,366-19 (An _{34.9}). Most importantly, K-feldspar does not saturate in either the KB or
579	BAG models. The crystallizing mineral assemblages at the 80-85% solidification stage of
580	the KB and BAG models would be tonalitic based on QAPF classification (Fig. 15);
581	however, if the normative K-feldspar from the residual liquid is included in the
582	classification, the mineral assemblage for both models is that of quartz monzonite
583	Silicate liquid immiscibility

584 As noted above, a the key failure of extended fractional crystallization is that it 585 does not generate SiO₂ concentrations in residual melts as high as observed in the granite 586 (~70 wt%) while there is still a significant proportion of residual melt. Moreover the 587 process of extended fractional crystallization should produce intermediate evolved 588 compositions in greater volumes than granite, yet such compositions are not observed. In 589 fact, evolved lunar rock compositions generally have bimodal distributions with respect 590 to silica content (Hess et al. 1975; Rutherford et al. 1976). Also, the absence of 591 intermediate lunar lithologies, something akin to terrestrial granodiorite (or dacite), which

would be produced as a melt progressed from crystallizing mafic rocks to felsic rocksimplies that another process may have occurred (Rutherford et al. 1976).

594 Silicate liquid immiscibility has long been suggested as a process responsible for 595 the production of lunar granites while at the same time accounting for the absence of 596 intermediate lithologies (e.g., Hess et al. 1975; Rutherford et al. 1976; Neal and Taylor 597 1989; Jolliff 1991). SLI is a process that can occur as a melt undergoes fractional 598 crystallization. As crystallization proceeds and melt becomes progressively richer in Si, 599 Fe, and incompatible elements, the melt can ultimately reach a composition that unmixes 600 when the melt enters the field of SLI (Fig. 16). This process has been observed in the 601 laboratory (Hess et al. 1975, Rutherford et al. 1976) and in nature (e.g., Skaergaard, 602 Jakobsen et al. 2005; Bushveld, Lee 1979). One of the liquids is Fe-rich and incorporates 603 the REE- and P-rich fraction of KREEP, which, if it separates physically from the felsic 604 fraction, crystallizes as monzogabbro or monzodiorite. The complementary liquid is rich 605 in Si and K, and if it separates physically from the Fe-rich liquid, would crystallize to a 606 felsic or granitic assemblage (Rutherford et al. 1976; Taylor et al. 1980; Jolliff 1991; 607 Table 5).

608 SLI could feasibly be combined with the fractional crystallization model to 609 explain the bulk composition of 12032,366-19 in the following way: a parent melt of 610 composition similar to BAG or KB undergoes extensive fractional crystallization until it 611 reaches a point where SLI occurs (Fig. 16). As the melt unmixes into two liquids, the 612 denser, Fe-rich liquid remains with the crystallizing (gabbroic) assemblage, and the 613 lower-density felsic liquid rises and separates from the gabbroic fraction. Finally, the 614 granitic liquid continues to crystallize producing the bulk composition of 12032,366-19.

However, in our models, as the KB composition crystallizes, it does not pass into the
field of SLI, and BAG only grazes the boundary of the field before trending away from it
(Fig. 16). This leads us to search for other possibilities to explain the petrogenesis of
12032,366-19.

619 Although SLI has been observed to occur on a small (micro) scale in lunar rocks, 620 including mare basalts (Roedder and Weiblen 1970; Roedder and Weiblen 1971; Roedder 621 and Weiblen 1972) and monzogabbro (Jolliff 1991), it is not clear that SLI could or did 622 occur on a scale large enough to produce some of the large silicic volcanic constructs on 623 the Moon such as the Gruithuisen domes, the Mairan domes, and Hansteen Alpha (Glotch 624 et al. 2010). Partial melting produced by basaltic "underplating" has been suggested as an 625 alternative process that could produce significant amounts of granitic material (Lawrence 626 et al. 2005; Hagerty et al. 2006). This process involves the injection of basaltic magma 627 into the lunar crust and partial melting of the overlying crustal material, which then 628 intrudes to a shallow level, forming granite, or extrudes onto the surface as a large 629 volume of rhyolitic material without producing intermediate lithologies. The efficacy of 630 this process depends on the composition of the crust at the point of intrusion of basaltic 631 melt and on the rheology and transport of the silica-rich material upward from the zone 632 where it is formed. If the crust was anorthositic, it is unlikely that basaltic underplating would lead to a significant amount of melting because of the high melting point of 633 634 anorthosite. If, however, basaltic melt intruded into a crust of KREEP-basalt or similar 635 composition, which has a melting point around 1000° C, and if the crust in this region 636 was already hot, then partial melting would have been much more likely and more 637 volumetrically significant.

638	The glass inclusions with $\sim 78 \text{ wt}\% \text{ SiO}_2$ within hedenbergite could be explained
639	as a product of local SLI. A liquid with the composition of the glass inclusion combined
640	with a relatively small amount of hedenbergite and a liquid with the composition of
641	hedenbergite combined with the glass inclusion would be complementary liquids
642	consistent with the miscibility gap of Roedder (1951). However, The glass inclusion
643	composition could also be the result of the crystallization of hedenbergite from an
644	inclusion with the bulk composition of 12032,366-19 onto the inner walls of the host
645	hedenbergite grain. A third explanation appeals to the vagaries of late stage fractional
646	crystallization.

647 Gravity separation of phases

648 If we take the mineral compositions that are in equilibrium with the KREEP 649 basalt and BAG residual melts at the latest stages of crystallization as modeled above and 650 adjust the proportions by increasing the low-density phases relative to the high-density 651 phases, as might occur during gravity separation or flow differentiation, we can achieve 652 the compositions of the pristine granites without appealing to SLI (Fig. 17; Columns 10 653 and 11, Table 7). For this gravity separation model, we add the K-feldspar from 654 calculating the normative mineralogy of the residual liquid at the final stages of the KB 655 and BAG models to the mineral assemblages predicted by the KB and BAG models. To 656 obtain the pristine granite compositions, the concentrations of K-feldspar and quartz modeled above must increase by factors of 1.3 to 1.5 and 4.0 to 4.2, respectively. An 657 658 exception for 12032,366-19 is its high Na₂O, which requires a more sodic plagioclase and 659 an additional 0.3-0.5 wt% Na₂O content in either the KB or BAG starting melt

660 composition in order for the crystallizing plagioclase to have $\sim An_{33.5}$ to match that 661 contained in the sample.

662 The obvious problem for this model is how to separate phases after a high degree 663 of crystallization and at relatively high silica contents when the viscosity of the system is 664 very high. The viscosities of the KB and BAG models, calculated using the KWare 665 Magma program (Ken Wohletz, Version 2.49.0126) and the methods of Shaw (1972) and 666 Bottinga and Weil (1972), become as high as ~67000 and ~3500 Pa·s, respectively. 667 Separation of phases is also a problem in the case of the two liquids produced by SLI 668 because the Si-rich phase similarly has a very high viscosity. Separation of the mafic and 669 felsic phases in the lunar magmatic environment was not assisted by tectonic forces and 670 processes involving significant concentrations of magmatic water as it is in terrestrial 671 environments. The high-viscosity, silica-rich phase does not need to flow, it simply needs 672 to rise through the much lower-viscosity mafic residual melt. Perhaps movements related 673 to large impacts that occurred during the time of upper-crustal magmatism played a role 674 in the segregation of these phases, for example, movement along faults or uplifts 675 associated with basin ring formation, or movement related to isostatic adjustments 676 following an impact and associated flow segregation.

677 Equilibrium crystallization and SLI

678 Compositions derived from crystallization modeling done using the MAGPOX 679 program (Longhi 1991) plotted on the phase diagram of Roedder (1951) indicate that a 680 liquid with the initial composition of KB is driven into the field of SLI after 56 wt% of 681 crystallization in equilibrium with the crystallizing solids. Granitic compositions could be 682 produced from the crystallization of a liquid of KB composition if the first 50% of

683 crystallization occurred in equilibrium with the solids. If the immiscible liquids were 684 physically separated, then the silicic liquid would solidify to produce a rock with \sim 70 685 wt% bulk SiO₂ (terrestrial examples include the silicic immiscible liquid compositions in 686 Table 5).

687

IMPLICATIONS

688	Remote sensing data, Earth-based (near-IR reflectance spectra) and orbital
689	(images from Clementine and LRO; spectra from Lunar Prospector gamma-ray
690	spectrometer and LRO Diviner radiometer), have provided evidence for regions of silicic
691	volcanism on the Moon. Sample 12032,366-19 (an igneous rock rich with K-feldspar,
692	quartz, and plagioclase, along with near Fe end-member mafic minerals) is a candidate to
693	be among the lunar samples most similar to the rocks that compose some of the lunar
694	"red spots." Glotch et al. (2010) identified several of the red spots as regions of high-SiO ₂
695	content from the Christiansen Feature in the LRO Diviner data. Perhaps the 12032,366-
696	19 mineralogy is relevant to interpreting some of the features seen at the silicic volcanic
697	complex that lies at the center of the Compton/Belkovich Th-anomaly (Jolliff et al.
698	2011), which has been modeled to have a Th concentration of 40-55 ppm (Lawrence et
699	al. 2003). This concentration is similar to that for the bulk sample of 12032,366-19 (60.6
700	ppm) as well as other lunar granites (Appendix 1).
701	ACKNOWLEDGEMENTS
702	We thank Paul Carpenter for his assistance with trace element analysis on the
703	electron microprobe and insight into Zr-Ti phases. We also thank Alian Wang and
704	Weigang Kong for Raman spectroscopic measurements. This work was funded by NASA
705	grant NNG04GG10G (RLK).

706	References Cited
707	Anders E. and Grevesse N. (1989) Abundances of the elements: meteoritic and solar.
708	Geochimica et Cosmochimica Acta, 53, 197-214.
709	Barra, F., Swindle, T.D., Korotev, R.L., Jolliff, B.L., Zeigler, R.A., and Olson, E. (2006)
710	⁴⁰ Ar- ³⁹ Ar dating on Apollo 12 regolith: Implications on the age of Copernicus and
711	the source of non-mare materials. Geochimica et Cosmochimica Acta, 70, 6016-
712	6031.
713	Blanchard, D.P., J.W. Jacobs, and J.C. Brannon (1977) Chemistry of ANT-suite and
714	felsite clasts from the consortium breccia 73215 and of gabbroic anorthosite
715	79215. Procedings of the 8th Lunar and Planetary Science Conference, 2507-
716	2524.
717	Blanchard, D.P. and J.R. Budahn (1979) Remnants from the ancient lunar crust: clasts
718	from consortium breccia 73255. Proceedings of the 10th Lunar and Planetary
719	Science Conference, 803-816.
720	Bottinga, Y.A. and Weil, D.F. (1972) The viscosity of magmatic silicate liquids: a model
721	for calculation. American Journal of Science, 272, 438-473.
722	Brown, G.M., Emeleus, C.H., Holland, J.G., and Phillips, R. (1970) Mineralogical,
723	Chemical and petrological features of Apollo 11 rocks and their relationship to
724	igneous processes. Proceedings of the Apollo 11 Lunar Science Conference, 195-
725	219.
726	Carpenter, P., Counce, D., Kluk, E., and Nabelek, C. (2002) Characterization of Corning
727	EPMA Standard Glasses 95IRV, 95IRW, and 95IRX. Journal of Research of the
728	National Institute of Standards and Technology, 107, 703-718.

- Deer, W.A., Howie, R.A., and Zussman, J. (1976) An Introduction to the Rock Forming
 Minerals. Longman Group Limited, London.
- 731 Dence, M.R., Douglas, J.A.V., Plant, A.G., and Traill, R.J. (1970) Petrology, mineralogy
- and deformation of Apollo 11 samples. Proceedings of the Apollo 11 Lunar
 Science Conference, 315–340.
- Drake, M.J., and Weill, D.F. (1972) New rare earth element standards for electron
 microprobe analysis, Chemical Geology, 10, 179-181.
- 736 Freeman, J.J., Wang, A., Kuebler, K.E, Haskin, L.A. (2008) Characterization of natural
- feldspar by Raman spectroscopy for future planetary exploration. Canadian
 Mineralogist, 46, 1477–1500.
- 739 Glotch, T.D., Lucey, P.G., Bandfield, J.L., Greenhagen, B.T., Thomas, I.R., Elphic, R.C.,
- Bowles, N., Wyatt, M.B., Allen, C.C., Hanna, K.D., Paige, D.A. (2010) Highly
 silicic compositions on the Moon. Science, 329, 1510.
- Haines, E.L., Albee, A.L., Chodos, A.A., and Wasserburg, G.J. (1971) Uranium-bearing
 minerals of lunar rock 12013. Earth and Planetary Science Letters, 12, 145-154.
- Hagerty, J.J., Lawrence, D.J., Hawke, B.R., Vaniman, D.T., Elphic, R.C., and Feldman,
- 745 W.C. (2006) Refined thorium abundances for lunar red spots: Implications for
- evolved, nonmare volcanism on the Moon. Journal of Geophysical Research, 111,E06002.
- Hawke, B.R., Lawrence, D.J., Blewett, D.T., Lucey, P.G., Smith, G.A., Spudis, P.D., and
- 749 Taylor, G.J. (2003), Hansteen Alpha: A volcanic construct in the lunar highlands,
- Journal of Geophysical Research, 108, 5069.

751	Hess, P.C. and Rutherford, M.J. (1974) Element fractionation between immiscible melts.
752	Abstracts of the Lunar and Planetary Science Conference, 5, 328-330.
753	Hess, P.C., Rutherford, M.J., Guillemette, R.N., Ryerson, F.J., and Tuchfeld, H.A. (1975)
754	Residual products of fractional crystallization of lunar magmas - an experimental
755	study. Proceedings of the 6 th Lunar Science Conference, 895-909.
756	Hovington, P., Drouin, D., and Gauvin, R. (1997) CASINO: A new Monte Carlo code in
757	C language for electron beam interaction—Part I: Description of the program.
758	Scanning,19, 1-14.
759	Hubbard, N.J., P.W. Gast, and H. Wiesmann (1970) Rare earth alkaline and alkali metal
760	and 87/86 Sr data for sub-samples of lunar sample 12013. Earth and Planetary
761	Science Letters, 9, 181-184.
762	Jakobsen, J.K., Veksler, I.V., Tegner, C., and Brooks, C.K. (2005) Immiscible iron- and
763	silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion.
764	Geology, 33, 885-888.
765	Jarosewich, E., Nelen, J.A., and Norberg, J.A. (1980) Reference samples for electron
766	microprobe analysis. Geostandards Newsletter, 4, 43–47.
767	Jolliff, B.L. (1991) Fragments of quartz monzodiorite and felsite in Apollo 14 soil
768	particles. Proceedings of the 21 st Lunar and Planetary Science Conference, 101–
769	118.
770	Jolliff, B.L., Floss, C., McCallum, I.S., and Schwartz, J.M. (1999) Geochemistry,
771	petrology, and cooling history of 14161, 7373: A plutonic lunar sample with
772	textural evidence of granitic-fraction separation by silicate-liquid immiscibility.
773	American Mineralogist, 84, 821-837.

774	Jolliff, B.L., Korotev, R.L., and Haskin, L.A. (1991) Geochemistry of 2-4-mm particles
775	from Apollo 14 soil (14161) and implications regarding igneous components and
776	soil-forming processes. Proceedings of the 21 st Lunar and Planetary Science
777	Conference, 193–219.
778	Jolliff, B.L., Wiseman, S.A., Lawrence, S.J., Tran, T.N., Robinson, M.S., Sato, H.,
779	Hawke, B.R., Scholten, F., Oberst, J., Hiesinger, H., van der Bogert, C.H.,
780	Greenhagen, B.T., Glotch, T.D., and Paige, D.A. (2011) Non-mare silicic
781	volcanism on the lunar farside at Compton-Belkovich. Nature Geoscience, 4, 566-
782	571.
783	Kaiser, A., Lobert, M., and Telle, R. (2008) Thermal stability of zircon (ZrSiO ₄). Journal
784	of the European Ceramic Society, 28, 2199-2211.
785	Keil, K. and Prinz, M. (1971) Mineralogy and composition of Apollo 11 lunar samples.
786	Proceedings of the Second Lunar Science Conference, 319-341.
787	Keil, K., Bunch, T.E., and Prinz, M. (1970) Mineralogy and composition of Apollo 11
788	lunar samples. Proceedings of the Apollo 11 Lunar Science Conference, 561–598.
789	Korotev, R.L. (1996) A self-consistent compilation of elemental concentration data for 93
790	geochemical reference samples. Geostandards Newsletter, 20, 217-245.
791	Korotev, R.L., Jolliff, B.L., Zeigler, R.A., Seddio, S.M., and Haskin, L.A. (2011) Apollo
792	12 revisited. Geochimica et Cosmochimica Acta, 75, 1540-1573.
793	Krasov, N.F. and Clocchiatti, R. (1979). Immiscibility in silicate melts and its possible
794	petrogenetic importance, as shown by study of melt inclusions. Transactions
795	(Doklady) of the USSR Academy of Sciences, 248, 92-95.

796	Lawrence, D.J., Hawke, B.R., Hagerty, J.J., Elphic, R.C., Feldman, W.C., Prettyman,
797	T.H., and Vaniman, D.T. (2005) Evidence for a high-Th, evolved lithology on the
798	Moon at Hansteen Alpha. Geophysical Research Letters, 32, L07201.
799	Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A.B., Elphic, R.C.,
800	Maurice, S., and Thomsen, D.R. (1998) Global elemental maps of the moon: The
801	Lunar Prospector Gamma-Ray Spectrometer. Science, 281, 1484.
802	Laul, J.C. (1986) Chemistry of the Apollo 12 highland component. Proceedings of the
803	16 th Lunar and Planetary Science Conference, D251–D261.
804	Lee, C.A. (1979) Spheroidal pyroxenite aggregates in the Bushveld Complex — a special
805	case of silicate liquid immiscibility. Earth and Planetary Science Letters, 44, 295-
806	310.
807	Longhi, J. (1990) Silicate liquid immiscibility in isothermal crystallization experiments.
808	Proceedings of the 20 th Lunar and Planetary Science Conference, 13-24.
809	Longhi, J. (1991) Comparative liquidus equilibria of hypersthene-normative basalts at
810	low pressure. American Mineralogist, 76, 785-800.
811	Marvin, U.B., Wood, J. A., Taylor, G. J., Reid Jr., J. B., Powell, B. N., Dickey Jr., J. S.,
812	and Bower, J. F. (1971) Relative proportions and probable sources of rock
813	fragments in the Apollo 12 soil samples. Proceedings of the Second Lunar
814	Science Conference, 679-699.
815	McCubbin, F.M., Steele, A., Nekvasil, H., Schnieders, A., Rose, T., Fries, M., Carpenter,
816	P.K., and Jolliff, B.L. (2010) Detection of structurally bound hydroxyl in
817	fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS. American
818	Mineralogist, 95, 1141-1150.

- 819 Meyer, C., Williams, I.S., and Compston, W. (1996) Uranium-lead ages for lunar zircons:
- Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga.
 Meteoritics and Planetary Science, 21, 370-387.
- Montel, J.-M., Foret, S., Veschambre, M., Nicollet, C., and Provost, A. (1996) Chemical
 Geology., 131, 37-53.
- Morgan, J.W. and Ehman, W.D. (1970) Lunar rock 12013; O, Si, Al and Fe abundances.
 Earth and Planetary Science Letters, 9, 164.
- 826 Morris, R.W., Taylor, G.J., Newsom, H.E., and Keil, K. (1990) Highly evolved and
- 827 ultramafic lithologies from Apollo 14 soils. Proceedings of the 20th Lunar and
 828 Planetary Science Conference, 61–75.
- 829 Neal, C.R., and Taylor, L.A. (1989), The nature of barium partitioning between
- 830 immiscible melts: A comparison of experimental and natural systems with
- reference to lunar granite petrogenesis. Proceedings of the 19th Lunar and
 Planetary Science Conference, 19th, 209.
- Papike, J.J., Ryder, G., and Shearer, C.K. (1998) Lunar samples. Planetary Materials,
 Reviews in Mineralogy, 36, 5-1.
- Papike, J.J., Taylor, L., and Simon, S. (1991) Lunar minerals. The Lunar Sourcebook,
 Cambridge University Press, 121-181.
- 837 Philpotts, A.R. (1981). Liquid immiscibility in silicate melt inclusions in plagioclase
- phenocrysts. Bulletin de Mine¤ralogie, 104, 317-324.
- 839 Philpotts, A.R. (1982). Compositions of immiscible liquids in volcanic rocks.
- 840 Contributions to Mineralogy and Petrology, 80, 201-218.

841	Quick, J.E., Albee, A.L., Ma, MS., Murali, A.V., and Schmitt, R.A. (1977) Chemical
842	compositions and possible immiscibility of two silicate melts in 12013.
843	Procedings of the 8th Lunar and Planetary Science Conference, 2153-2189.
844	Quick, J.E., James, O.B., and Albee, A.L. (1981) Petrology and petrogenesis of lunar
845	breccia 12013. Proceedings of the 12 th Lunar and Planetary Science Conference,
846	117-172
847	Rasmussen, B., Fletcher, I.R., and Muhling, J.R. (2008) Pb/Pb geochronology,
848	petrography and chemistry of Zr-rich accessory minerals (zirconolite,
849	tranquillityite and baddeleyite) in mare basalt 10047. Geochimica et
850	Cosmochimica Acta, 72, 5799-5818.
851	Roedder, E. (1951) Low temperature liquid immiscibility in the system K ₂ O-FeO-Al ₂ O ₃ -
852	SiO ₂ . American Mineralogist, 36, 282-286. Proceedings of the 3 rd Lunar Science
853	Conference, 251-279.
854	Roedder, E. and Weiblen, P.W. (1970) Lunar pertrology of silicate melt inclusions,
855	Apollo 11 rocks. Proceedings of the Apollo 11 Lunar Science Conference, 801-
856	837.
857	Roedder, E. and Weiblen, P.W. (1971) Petrology of silicate melt inclusions, Apollo 11
858	and Apollo 12 and terrestrial equivalents. Proceedings of the Second Lunar
859	Science Conference, 801-837.
860	Roedder, E. and Weiblen, P.W. (1972) Petrographic features and petrologic significance
861	of melt inclusions in Apollo 14 and 15 rocks. Proceedings of the Third Lunar
862	Science Conference, 801-837.
863	Rutherford, M.J., Hess, P.C., Ryerson, F.J., Campbell, H.W., and Dick, P.A. (1976) The
-----	---
864	chemistry, origin and petrogenetic implications of lunar granite and monzonite.
865	Proceedings of the 7 th Lunar Science Conference, 1723-1740.
866	Ryabov, V.V. (1989). Liquation in Natural Glasses: the Example of Traps. Novosibirsk:
867	Nauka.
868	Ryder, G. (1976) Lunar sample 15405: remnant of a KREEP basalt-granite differentiated
869	pluton. Earth and Planetary Science Letters, 29, 255-268.
870	Ryder, G. and Martinez, R.R. (1991) Evolved hypabyssal rocks from Station 7, Apennine
871	Front, Apollo 15. Proceedings of the 21 st Lunar and Planetary Science
872	Conference, 137-150.
873	Schnetzler, C.C., J.A. Philpotts, and M.L. Bottino (1970) Li, K, Rb, Sr, Ba and rare-earth
874	concentrations, and Rb-Sr age of lunar rock 12013. Earth and Planetary Science
875	Letters, 9, 185-192.
876	Seddio, S.M., Korotev, R.L., Jolliff, B.L., and Zeigler, R.A. (2009) Petrographic diversity
877	in Apollo 12 regolith rock particles. Lunar and Planetary Science Conference XL.
878	Lunar and Planetary Institute, Houston. #2415 (abstract).
879	Shaw, H.R. (1972) Viscosities of magmatic silicate liquids: an empirical method of
880	prediction. American Journal of Science, 272, 870-893.
881	Snyder, G.A., Taylor, L.T., Liu, YG., and Schmitt, R.A. (1992) Petrogenesis of the
882	western highlands of the moon - Evidence from a diverse group of whitlockite-
883	rich rocks from the Fra Mauro formation. Proceedings of Lunar and Planetary
884	Science, 22, 399-416.

885	Stormer.	. J.C.	Pierson.	M.L.	and	Tacker.	R.C	(1993)) Variation	of F-X	X-rav	and	Cl-X-r	av
000	~~~~	,	,				,	(/	~				

- intensity due to anisotropic diffusion in apatite during electron-microprobeanalysis. American Mineralogist, 78, 641-648.
- 888 Taylor, G.J., Warner, R.D., Keil, K., Ma, M.-S., and Schmitt, R.A. (1980) Silicate liquid
- immiscibility, evolved lunar rocks and the formation of KREEP. Proceedings of
 the Conference of the Lunar Highlands Crust, 339-352.
- 891 Wakita, H. and Schmitt, R.A. (1970) Elemental abundances in seven fragments from
- 892 lunar rock 12013. Earth and Planetary Science Letters, 9, 169-176.
- 893 Wark, D.A, Reid, A.F., Lovering, J.F., and El Goresy, A. (1973) Zirconolite (versus
- 894 zirkelite) in lunar rocks. Abstracts of the Lunar and Planetary Science895 Conference, 4, 764 (abstract).
- 896 Warren, P.H. (1989) KREEP: major-element diversity, trace-element uniformity
- 897 (almost). Workshop on Moon in Transition: Apollo 14, KREEP, and Evolved
 898 Lunar Rocks, 149-153 (abstract).
- 899 Warren, P.H., Jerde, E.A., and Kallemeyn, G.W. (1987) Pristine Moon rocks: a "large"
- 900 felsite and a metal-rich ferroan anorthosite. Proceedings of the 17th Lunar and
 901 Planetary Science Conference, E303–E313.
- 902 Warren, P.H., Taylor, G.J., Keil, K., Kallemeyn, G.W., Rosener, P.S., and Wasson, J.T.
- 903 (1983a) Sixth foray for pristine nonmare rocks and an assessment of the diversity
- 904 of lunar anorthosites. Proceedings of the 13th Lunar and Planetary Science
- 905 Conference, A615-A630.
- 906 Warren, P.H., Taylor, G.J., Keil, K., Kallemeyn, G.W., Shirley, D.N., and Wasson, J.T.
- 907 (1983b) Seventh Foray Whitlockite-rich lithologies, a diopside-bearing

908	troctolitic anorthosite, ferroan anorthosites, and KREEP. Proceedings of the 14 th
909	Lunar and Planetary Science Conference, B151–B164.
910	Warren, P.H., Taylor, G.J., Keil, K., Shirley, D.N., and Wasson, J.T. (1983c) Petrology
911	and chemistry of two 'large' granite clasts from the moon. Earth and Planetary
912	Science Letters, 64, 175–185.
913	Wilson, L., and Head, J.W. (2003), Lunar Gruithuisen and Mairan domes: Rheology and
914	mode of emplacement. Journal of Geophysical Research, 108, 5012.
915	Zeigler, R.A., Korotev, R.L., Jolliff, B.L., Haskin, L.A., and Floss, C. (2006) The
916	geochemistry and provenance of Apollo 16 mafic glasses. Geochimica et
917	Cosmochimica Acta, 70, 6050-6067.
918	
919	
920	
921	
922	
923	
924	
925	
926	
927	
928	
929	
930	

	M1	% Error	INAA	1σ		M1	INAA	1σ
SiO ₂	70.1	0.15	-	-	Sm	-	24.6	0.3
TiO ₂	1.07	1.8	-	-	Eu	-	3.01	0.03
Al ₂ O ₃	13.5	0.23	-	-	Tb	-	6.56	0.07
FeO	4.98	0.54	4.99	0.05	Yb	-	51.8	0.5
MnO	0.07	5.7	-	-	Lu	-	7.44	0.08
MgO	0.14	0.81	-	-	Sc	-	8.7	0.09
CaO	3.04	0.41	2.91	0.18	Co	-	0.77	0.02
BaO	0.68	1.1	0.68	0.01	Ni	-	<25	-
Na ₂ O	2.47	0.52	2.10	0.02	Zn	-	16	3
K ₂ O	4.58	0.21	4.80	0.24	Rb	-	96	2
P_2O_5	0.052	4.5	-	-	Sr	-	167	12
SUM	100.7	-	-	-	Cs	-	3.67	0.04
Cr	<200	-	11.3	0.6	Ta	-	10.4	0.1
Zr	1500	-	1500	20	W	-	9	1
Hf	37.8	-	45.5	0.5	Ir	-	<1.3	-
Nb	304	-	-	-	Au	-	<5	-
La	11.3	-	79.4	0.8	Y	457	-	-
Ce	106	-	182	2	Th	126	60.6	0.6
Nd	83.2	-	82	2	U	52.7	20.7	0.2

Table 1. The bulk composition of 12032,366-19.

Oxide values are in wt%; element values are in ppm except Ir and Au which are in ppb. The bulk composition of was measured by INAA (Korotev et al. 2007); uncertainties (1 σ) are 1 standard deviation estimates of analytical uncertainty based mainly on counting statistics. The "M1" (Model 1) composition and "% Error" were derived by modal recombination using the average phase compositions from the microprobe (Table 2) to "best fit" the bulk rock INAA data (see text).

932

938

939

		Abu	ndance
Phase	Composition	Image	Model 1
K-feldspar	An _{1.2-6.1} Ab ₂₅₋₃₃ Or ₅₈₋₇₄ Cn _{0.4-3.9}	49	43.5
Quartz	(Si,Al,Fe,Ti)O ₂	31	26
Plagioclase	$An_{35-48}Ab_{52-64}Or_{0.9-1.3}Cn_{0.0-0.1}$	6.2	19
Pyroxene	En _{4.6-6.2} Fs ₅₁₋₅₂ Wo ₄₃₋₄₄	7.3	6.0
Olivine	Fo _{2.7} Fa ₉₇	4.5	3.1
Ilmenite	Il _{99.6} Gk _{0.4}	1.8	1.7
Zirconolite	(Fe,Y,Ca,REE)(Zr,Hf,U,Th)(Ti,Nb,Al,Si,Ta) ₂ O ₇	0.13	0.30
REE-rich apatite	(Ca,REE,Y,Fe) ₅ ([P,Si]O ₄) ₃ (F,Cl)	Trace	0.2
Apatite	$(Ca,Fe)_5(PO_4)_3(F,Cl)$	Trace	0.1
RE-merrillite	(Ca,REE) ₁₆ (REE,Y) ₂ (Fe,Mg) ₂ ([P,Si]O ₄) ₁₄	Trace	0.08
ZrO ₂	Zr _{98.4} Hf _{1.6}	0.07	0.058
Sum		100	100
Cn = Celsian (Ba-feld = Zirconium, Hf = Ha	lspar end-member), Gk = Geikielite (Mg endmember of ilmer afnium.	nite solid-sol	lution), Zr

Table 2. Modal mineralogy of 12032, 366-19.

"Image" is the modal mineralogy of the 12032, 366-19 polished section directly determined by image analysis. "Model 1" was derived from a modal recombination using the average mineral compositions from the microprobe to "best fit" the bulk rock compositions from INAA (see text). All values are converted to weight percent. Zirconolite and phosphate formulae are idealized. Compositions are in Tables 3, 4a, and 4b.

-)50

	Kfs	Kfs*	Qz	Pl	Hd	Fa	Ilm	Apatite	RE-Ap	Merr	Glass Incl.	M1
Ν	66	3	11	16	6	5	1	3	13	1	1	-
SiO ₂	64.2	67.2	101.5	58.6	47.6	29.4	< 0.03	2.01	3.17	0.90	78.3	70.0
TiO ₂	0.063	0.04	< 0.05	< 0.04	0.92	0.13	51.1	n.a.	n.a.	n.a.	0.13	1.04
Al_2O_3	20.3	18.8	0.21	26.3	0.69	< 0.02	< 0.02	< 0.02	0.05	< 0.02	12.4	13.5
Cr_2O_3	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	n.a.	n.a.	n.a.	< 0.03	< 0.02
FeO	0.12	0.46	0.21	0.21	29.3	68.6	47.4	0.90	1.79	5.24	1.10	4.99
MnO	< 0.04	< 0.04	< 0.04	< 0.04	0.34	0.83	0.43	< 0.03	0.09	0.07	< 0.04	0.12
MgO	< 0.02	< 0.02	< 0.02	< 0.02	1.65	1.06	0.12	< 0.02	< 0.02	0.59	< 0.01	0.13
CaO	1.34	0.23	< 0.10	8.56	19.2	0.17	< 0.02	54.6	46.6	36.9	0.48	2.9
BaO	1.43	0.26	< 0.06	< 0.04	< 0.05	< 0.04	< 0.05	n.a.	n.a.	n.a.	0.079	0.68
Na ₂ O	3.71	2.43	< 0.04	6.57	0.10	< 0.05	< 0.05	0.10	0.17	0.07	0.86	2.10
K ₂ O	9.82	12.6	0.02	0.19	< 0.01	< 0.01	< 0.01	n.a.	n.a.	n.a.	2.95	4.8
P_2O_5	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	38.4	33.9	40.4	< 0.01	0.039
Y_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.18	1.30	2.45	n.a.	n.a.
REE_2O_3	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.13	7.21	12.6	n.a.	n.a.
F	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.47	0.96	< 0.02	n.a.	n.a.
Cl	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	1.34	1.32	< 0.01	n.a.	n.a.
-O=F	-	-	-	-	-	-	-	0.62	0.40	-	-	-
-O=Cl	-	-	-	-	-	-	-	0.34	0.30	-	-	-
Sum	101.0	102.0	102.4	100.6	99.8	100.1	100.2	99.3	95.9	99.2	96.4	100.0
Ilmenite also	contains ~	-1 wt% Nb	$_{2}O_{5}$, but V_{2}	O_5 was bel	low the det	ection limit	t; for oxide	abundances i	n zirconolite,	see Table 4a	1.	

Table 3. Minerals in 12032,366-19.

All values are reported in weight percent (wt%). *N* is the number of analyses averaged. "Kfs*" is a single analysis of a K-feldspar in an inclusion within a hedenbergite grain. "RE-Ap" refers to apatite analyses with high REE concentration. "Merr" refers to RE-merrillite. The "M1" (Model 1) composition was derived by modal recombination using the average phase compositions from the microprobe (Table 2) to "best fit" the bulk rock INAA data (see text and Table 1). "n.a." means "not analyzed." REE₂O₃ was estimated from La, Ce, Nd, Gd, Y, and Yb included in the analyses (details in Experimental Procedures).

Spot	Sum	ZrO ₂	TiO ₂	Y ₂ O ₃	FeO	Nb ₂ O ₅	CaO	ThO ₂	UO_2	PbO	HfO ₂	Ta ₂ O ₅	Al ₂ O ₃	3 SiO ₂	MnO
1930	97.48	28.73	24.28	9.85	9.32	7.42	4.30	2.46	1.10	-	0.58	0.32	0.13	<0.01	0.09
1931	97.52	28.72	24.25	9.92	9.37	7.29	4.26	2.34	1.06	-	0.57	0.31	0.23	0.21	0.10
1936	98.74	30.21	24.05	9.73	8.84	7.81	4.70	1.45	0.50	-	0.81	0.29	0.11	0.31	0.11
1938	97.36	29.57	24.11	8.96	8.59	7.27	4.62	2.33	0.72	-	0.67	0.32	0.17	0.41	0.08
1943	94.55	21.43	17.43	6.67	6.65	5.07	3.18	1.39	0.37	0.60	0.63	0.24	0.13	21.08	0.06
1944	99.00	22.05	18.61	6.85	7.12	5.19	3.30	1.38	0.38	0.63	0.64	0.27	0.11	22.21	0.09
1945	91.95	23.81	19.15	7.18	7.27	5.65	3.61	1.71	0.43	0.74	0.62	0.22	0.12	11.05	0.07
1946	103.94	24.15	20.23	7.62	7.47	5.94	3.75	1.29	0.40	0.54	0.66	0.18	0.14	19.81	0.06
12013	89.7	17.2	22.1	9.1	11.6	8.3	3.0	4.1	3.4	-	-	-	-	2.1	-
Mare	100.28	30.61	28.51	9.05	9.70	3.91	3.18	0.11	0.05	-	0.60	0.24	0.41	0.08	0.00
Spot	La_2O_3	Ce_2O_3	Pr ₂ O ₃ *	Nd ₂ O ₃	Sm ₂ O ₃	* Gd ₂ O	3* T	b ₂ O ₃ *	Dy ₂ O ₃ *	Ho ₂ O ₃ *	Er ₂ O ₃ *	* Tm ₂ () ₃ * 1	Yb ₂ O ₃	Lu ₂ O ₃ *
Spot 1930	La₂O₃ 0.23	Ce₂O₃ 1.59	Pr₂O₃* 0.19	Nd₂O₃ 1.38	Sm₂O₃ 0.52	* Gd ₂ O 0.81	<u>3* T</u>	b₂O₃* 0.16	Dy₂O₃* 1.16	Ho₂O₃* 0.28	Er ₂ O ₃ *	* Tm₂(0.1	D₃* 1 7	Yb₂O₃ 1.22	Lu₂O₃* 0.21
<u>Spot</u> 1930 1931	La₂O₃ 0.23 0.17	Ce₂O₃ 1.59 1.61	Pr₂O₃* 0.19 0.18	Nd₂O₃ 1.38 1.44	Sm₂O₃ 0.52 0.54	* Gd ₂ O 0.81 0.83	₃ * T	b₂O₃* 0.16 0.16	Dy₂O₃* 1.16 1.17	Ho ₂ O ₃ * 0.28 0.29	Er ₂ O ₃ * 0.98 0.97	* Tm ₂ 0.1 0.1	D₃* 1 7 6	Yb₂O₃ 1.22 1.17	Lu ₂ O ₃ * 0.21 0.19
Spot 1930 1931 1936	La ₂ O ₃ 0.23 0.17 0.30	Ce₂O₃ 1.59 1.61 2.26	Pr ₂ O ₃ * 0.19 0.18 0.23	Nd ₂ O ₃ 1.38 1.44 1.58	Sm₂O₃ 0.52 0.54 0.58	* Gd ₂ O 0.81 0.83 0.86	<u>3* T</u>	b₂O₃* 0.16 0.16 0.17	Dy₂O₃* 1.16 1.17 1.18	Ho ₂ O ₃ * 0.28 0.29 0.28	Er ₂ O ₃ * 0.98 0.97 0.93	* Tm ₂ (0.1 0.1 0.1	D₃* 1 7 6 5	Yb₂O₃ 1.22 1.17 1.11	Lu ₂ O ₃ * 0.21 0.19 0.18
Spot 1930 1931 1936 1938	La ₂ O ₃ 0.23 0.17 0.30 0.24	Ce ₂ O ₃ 1.59 1.61 2.26 2.28	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21	Nd ₂ O ₃ 1.38 1.44 1.58 1.60	Sm₂O₃ 0.52 0.54 0.58 0.57	* Gd ₂ O 0.81 0.83 0.86 0.83	<u>3* T</u>	b₂O₃* 0.16 0.16 0.17 0.16	Dy₂O₃* 1.16 1.17 1.18 1.11	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26	Er ₂ O ₃ * 0.98 0.97 0.93 0.88	* Tm ₂ (0.1 0.1 0.1 0.1	D ₃ * ⊻ 7 6 5 5	Yb₂O₃ 1.22 1.17 1.11 1.09	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18
<u>Spot</u> 1930 1931 1936 1938 1943	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19	Sm ₂ O ₃ 0.52 0.54 0.58 0.57 1.19	 Gd₂O 0.81 0.83 0.86 0.83 0.83 0.85 	<u>3* T</u>	b₂O₃* 0.16 0.16 0.17 0.16 0.15	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75	* Tm ₂ (0.1 0.1 0.1 0.1 0.1	D ₃ * Y 7 6 5 5 2	Yb₂O₃ 1.22 1.17 1.11 1.09 0.83	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14
<u>Spot</u> 1930 1931 1936 1938 1943 1944	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30	Sm ₂ O ₃ 0.52 0.54 0.58 0.57 1.19 1.24	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.88	<u>3* T</u>	b ₂ O ₃ * 0.16 0.16 0.17 0.16 0.15 0.16	Dy₂O₃* 1.16 1.17 1.18 1.11 1.06 1.10	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79	* Tm ₂ 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D₃* 7 6 5 5 2 3	Yb₂O₃ 1.22 1.17 1.11 1.09 0.83 0.88	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15
<u>Spot</u> 1930 1931 1936 1938 1943 1944 1945	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24 0.26	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83 1.82	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35 0.35	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30 2.30	Sm ₂ O ₃ 0.52 0.54 0.58 0.57 1.19 1.24 1.26	 Gd₂O 0.81 0.83 0.86 0.83 0.85 0.88 0.90 	<u>3* T</u>	b₂O₃* 0.16 0.16 0.17 0.16 0.15 0.16 0.16	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06 1.10 1.13	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26 0.27	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79 0.81	* Tm ₂ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D ₃ * Y 7 6 5 5 2 3 3	Yb₂O₃ 1.22 1.17 1.11 1.09 0.83 0.88 0.90	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15 0.15
<u>Spot</u> 1930 1931 1936 1938 1943 1944 1945 1946	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24 0.26 0.32	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83 1.82 2.42	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35 0.35 0.45	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30 2.30 2.30 2.88	Sm ₂ O ₃ 0.52 0.54 0.58 0.57 1.19 1.24 1.26 1.49	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.88 0.90 1.04	3* T	b ₂ O ₃ * 0.16 0.16 0.17 0.16 0.15 0.16 0.16 0.18	Dy₂O₃* 1.16 1.17 1.18 1.11 1.06 1.10 1.13 1.23	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26 0.27 0.28	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79 0.81 0.82	* Tm ₂ C 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D ₃ * Y 7 6 5 5 2 3 3 3 3	Yb₂O₃ 1.22 1.17 1.11 1.09 0.83 0.88 0.90 0.85	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15 0.15 0.13
<u>Spot</u> 1930 1931 1936 1938 1943 1944 1945 1946 12013	La ₂ O ₃ 0.23 0.17 0.30 0.24 0.20 0.24 0.26 0.32 0.2	Ce ₂ O ₃ 1.59 1.61 2.26 2.28 1.74 1.83 1.82 2.42 1.7	Pr ₂ O ₃ * 0.19 0.18 0.23 0.21 0.33 0.35 0.35 0.45	Nd ₂ O ₃ 1.38 1.44 1.58 1.60 2.19 2.30 2.30 2.88 -	Sm ₂ O ₃ 0.52 0.54 0.58 0.57 1.19 1.24 1.26 1.49	* Gd ₂ O 0.81 0.83 0.86 0.83 0.85 0.88 0.90 1.04	<u>3* T</u>	b₂O₃* 0.16 0.16 0.17 0.16 0.15 0.16 0.16 0.18 -	Dy ₂ O ₃ * 1.16 1.17 1.18 1.11 1.06 1.10 1.13 1.23 -	Ho ₂ O ₃ * 0.28 0.29 0.28 0.26 0.25 0.26 0.27 0.28 -	Er ₂ O ₃ * 0.98 0.97 0.93 0.88 0.75 0.79 0.81 0.82	* Tm ₂ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	D ₃ * Y 7 6 5 5 2 3 3 3 3	Yb₂O₃ 1.22 1.17 1.11 1.09 0.83 0.88 0.90 0.85 -	Lu ₂ O ₃ * 0.21 0.19 0.18 0.18 0.14 0.15 0.15 0.13 -

Table 4a. Zirconolite analyses containing the lowest concentrations of SiO₂ and those in which PbO was included.

REE oxides with * are estimated concentrations based on the measured REE values (see text). All values are in wt%. "Mare" is an average of 12 analyses from 7 zirconolite grains in 10047,11, 10047,227 and 10047,230 (Rasmussen et al. 2008). "12013" is an average of two zirconolite analyses from granitic lunar breccia 12013 (Haines et al. 1971). The * does not apply to "Mare" or "12013." "-" means "not reported."

 Table 4b. Zirconolite formula calculation.

А	Ca	0.3220	0.3179	0.3455	0.3441
	Fe	0.5449	0.5456	0.5065	0.4999
	Mn	0.0055	0.0059	0.0066	0.0048
	Sum	0.8724	0.8694	0.8587	0.8487
В	Y	0.3665	0.3676	0.3549	0.3316
	La	0.0059	0.0045	0.0077	0.0061
	Ce	0.0406	0.0411	0.0568	0.0580
	Pr*	0.0048	0.0045	0.0057	0.0054
	Nd	0.0345	0.0358	0.0388	0.0397
	Sm*	0.0126	0.0130	0.0137	0.0137
	Gd*	0.0187	0.0191	0.0195	0.0190
	Tb*	0.0037	0.0037	0.0038	0.0036
	Dy*	0.0260	0.0263	0.0261	0.0249
	Ho*	0.0063	0.0064	0.0062	0.0059
	Er*	0.0214	0.0211	0.0201	0.0192
	Tm*	0.0036	0.0035	0.0033	0.0032
	Yb	0.0261	0.0249	0.0231	0.0232
	Lu*	0.0043	0.0041	0.0037	0.0038
	Sum	0.5753	0.5757	0.5834	0.5573
С	Zr	0.9794	0.9753	1.0100	1.0029
	Hf	0.0116	0.0113	0.0158	0.0132
	U	0.0171	0.0164	0.0076	0.0111
	Th	0.0391	0.0370	0.0226	0.0369
	Sum	1.0473	1.0400	1.0560	1.0641
D	Ti	1.2761	1.2701	1.2399	1.2610
	Si	0.0000	0.0148	0.0214	0.0287
	Nb	0.2346	0.2295	0.2419	0.2285
	Та	0.0062	0.0059	0.0054	0.0060
	Al	0.0104	0.0190	0.0088	0.0139
	Sum	1.5272	1.5393	1.5175	1.5380
M_{I}	А	0.8724	0.8694	0.8587	0.8487
	В	0.1276	0.1306	0.1413	0.1513
	Sum	1.0000	1.0000	1.0000	1.0000
M_{II}	С	0.5523	0.5549	0.5579	0.5939
	В	0.4477	0.4451	0.4421	0.4061
	Sum	1.0000	1.0000	1.0000	1.0000
M_{III}	D	1.5272	1.5393	1.5175	1.5380
	Zr	0.4272	0.4204	0.4521	0.4090
Sum	1.9544	1.9597	1.9696	1.9470	
M _I +M _{II} +	M _{III}	3.9544	3.9597	3.9696	3.9470

Methodology follows that of Wark et al. (1973) for four selected analyses. Ideally, M_I, M_{II}, and M_{III} should sum to 4. Elements with a * are estimated concentrations based on the measured REE values (see text).

	KB ¹	BAG²	SLI ³	SLI ⁴	SLI ⁴	SLI ⁵	SLI ⁶
SiO ₂	52.8	52.53	73.3	71.8	79.7	68.42	72.18
TiO ₂	2.14	3.58	0.8	0.7	0.6	1.55	0.60
Al_2O_3	15.2	12.9	12.1	10.2	10.6	8.1	13.38
Cr_2O_3	0.29	0.13	-	-	-	-	-
FeO	10.1	13.28	3.2	4.0	3.5	7.26	4.10
MnO	0.15	0.18	0.0	0.0	0.0	0.06	0.26
MgO	7.4	4.82	0.0	1.1	0.6	1.92	1.06
CaO	9.4	9.1	1.8	6.5	1.2	2.84	2.90
Na ₂ O	0.89	0.97	3.1	2.2	2.2	2.33	0.75
K ₂ O	0.65	0.68	3.3	3.5	1.6	2.84	1.40
P_2O_5	0.62	0.51	0.07	0.0	0.0	0.0	0.37
SUM	99.6	98.68	97.7	100.0	100.0	95.3	97.0

Table 5. KB and BAG, and silicic immiscible liquid compositions.

Units are wt%. ¹Compiled by Papike et al. 1998. ²Zeigler et al. 2006. ³Philpotts 1982. ⁴Philpotts 1981. ⁵Krasov and Clocchiatti 1979. ⁶Ryabov 1989.

Wt%			KB					BAG		
Liquid	100	75.3	51.3	26.1	10.6	100	74.69	50.19	25.67	14.58
SiO ₂	53.0	54.3	54.5	53.0	57.6	53.2	53.4	52.2	53.5	55.1
TiO ₂	2.2	2.7	4.0	3.2	0.4	3.6	4.7	4.4	2.1	0.5
Al ₂ O ₃	15.3	13.9	12.9	12.5	14.6	13.1	12.1	11.7	12.1	13.4
Cr_2O_3	0.3	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
FeO	10.1	11.3	12.9	14.7	12.6	13.5	14.5	15.9	17.2	15.3
MgO	7.4	5.8	3.5	1.8	0.4	4.9	3.4	2.5	1.2	0.3
MnO	0.2	0.2	0.2	0.3	0.4	0.2	0.2	0.3	0.3	0.4
CaO	9.4	9.0	8.6	8.5	4.2	9.2	9.0	9.5	7.7	5.6
K ₂ O	0.7	0.8	1.2	2.2	5.0	0.7	0.9	1.3	2.3	3.9
Na ₂ O	0.9	1.0	1.1	1.4	1.9	1.0	1.1	1.2	1.6	1.9
P_2O_5	0.6	0.8	1.2	2.3	2.5	0.5	0.7	1.0	1.9	3.4
T(°C)	1147	1122	1078	1047	915	1092	1077	1062	1036	1017
η_{s}	125	260	618	702	66700	285	412	365	864	2650
η_{B-W}	106	196	471	787	20100	279	420	511	1120	3530

Table 6. Compositions and characteristics of residual liquids in KB and BAG fractional crystallization models.

Oxides and temperatures are calculated by the MAGFOX program (Longhi 1991). η_s and η_{B-W} are the dynamic viscosities calculated using the KWare Magma program (Ken Wohletz, Version 2.49.0126) by the methods of Shaw (1972) and Bottinga and Weil (1972), respectively.

	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	70.0	73.0	70.8	74.2	68.1	75.5	76.4	74.2	65.8	70.2	70.2
TiO ₂	1.04	0.60	0.60	0.33	0.90	0.26	0.7	0.7	2.3	1.17	1.16
Al ₂ O ₃	13.5	11.9	12.7	12.5	10.2	12.3	12.2	11.1	10.6	13.3	13.4
FeO	4.93	0.90	6.30	2.32	6.99	3.10	1.8	6.9	8.5	4.62	4.97
MnO	0.13	0.12	0.10	0.02	-	0.04	-	-	-	-	-
MgO	0.14	0.70	0.40	0.07	1.53	0.20	0.5	0.1	1.5	0.34	0.25
CaO	3.0	1.40	1.00	1.25	4.89	0.50	1.1	2.1	5.7	3.88	3.51
BaO	0.77	0.65	-	0.24	-	0.61	-	-	-	-	-
Na ₂ O	2.49	1.40	1.10	0.52	0.79	0.53	0.5	0.4	1.6	1.67	1.91
K ₂ O	4.5	6.80	7.40	8.60	3.39	7.55	6.1	4.2	4.3	4.76	4.58
P_2O_5	0.039	-	0.70	-	-	-	0.01	0.2	0.3	-	-
ZrO ₂	0.203	0.15	-	0.09	-	-	-	-	-	-	-
Hf	41.9	24	-	13.9	-	16	-	-	-	-	-
Cr	56	1010	0	17	-	70	-	-	-	0	0
Y	494	-	-	-	-	-	-	-	-	-	-
Th	132	41	-	65	-	9.5	-	-	-	-	-
U	45	12.3	-	23.4	-	-	-	-	-	-	-
SUM	100.8	97.6	101.1	100.1	96.7	100.6	99.3	99.9	100.6	100.0	100.0

Table 7. Bulk compositions of 12032,366-19, selected lunar granites, and selected high SiO₂ immiscible liquids.

Oxide units are wt%. Element units are ppm. 1. 12032,366-19: This study – microprobe and modal recombination. 2. 12013,10 light: Hubbard et al. 1970, Schnetzler et al. 1970, Wakita and Schmitt 1970, and Quick et al. 1977. 3. 12070,102-5: Potash rhyolite, Marvin et al. 1971. 4. 14321,1027: Pristine granite clast, Warren et al. 1983c. 5. 15405,12: Granite fragments, Ryder 1976. 6. 73255,27,3: Felsite clast, Blanchard and Budahn 1979. 7. Average compositions of six immiscible granitic inclusions in sample 14310,5, Roedder and Weiblen 1972. 8. Experimentally-produced high SiO₂ liquid from the fractionation of sample 12038,105, Hess et al. 1975. 9. Experimentally-produced high SiO₂ liquid from the fractionation of a composition similar to 15405 KREEP basalt, Rutherford et al. 1976. 10 and 11 are modeled compositions of low-density minerals in equilibrium with the melts of KB and BAG, respectively, in the last stages of fractional crystallization. **Figure 1**. Photograph of sample 12032,366-19 top (a) and bottom (b) with a 1-mm grid in the background. K-feldspar, plagioclase, and silica appear white. Hedenbergite, fayalite, and ilmenite are the dark phases.

Figure 2. Positive linear time dependence of F X-ray count-rates (counts per second). (a) and (a) are analyses of the REE-rich apatite. (c) is an analysis of apatite. (d) is an analysis of the Durango fluorapatite (Jarosewich et al. 1980) standard. (a), (b), and (c) were analyzed with a 2 μ m beam diameter and a 25 nA current. (d) was analyzed with a 20 μ m beam diameter and a 25 nA current.

Figure 3. Back-scattered electron (BSE) image mosaic of 12032,366-19. In order of brightness from darkest to brightest, minerals are quartz, sodic plagioclase, K-feldspar, hedenbergite, fayalite and ilmenite, and zirconolite and baddeleyite. See Fig. 4 for phase identifications based on X-ray analysis.

Figure 4. a. An RGB image of 12032, 366-19 with K in the red channel, Na in the green channel, and Fe in the blue channel. With this color scheme, K-feldspar is orange, more sodic K-feldspar is light orange, plagioclase is green, olivine is bright blue, pyroxene is darker blue, and quartz is represented as black. **b.** An RGBGray image of 12032, 366-19 with Ca in the red channel, Zr in the green channel, Ti in the blue channel, and Si in the gray channel. With this color scheme, pyroxene is pink, plagioclase is dull pink, ilmenite is blue, zirconolite and ZrO_2 are green.

Figure 5. Three BSE images of the largest zirconolite grain taken at varying accelerating voltages of 5, 15, and 25 kV. "x" points to a region that is covered by a thin layer of K-feldspar. "y" points to a region where the zirconolite is thin. The thin layers become transparent in the images taken at higher accelerating voltages since the backscattered electrons penetrate deeper into the sample at higher accelerating voltages.

Figure 6. Feldspar ternary diagram showing the K-feldspar and plagioclase compositions found in 12032,366-19. The composition has been normalized to An, Ab, and Or. The celsian (Cn) component is represented by the symbol color.

Figure 7. BSE images of textures in 12032,366-19. All 4 BSE images are stretched to the same extent. Hd = hedenbergite, Kfs = K-feldspar, Fa = Fayalite, IIm = ilmenite, Qz = quartz, and Pl = plagioclase. **a**. The large medium-gray phase transects the image is hedenbergite. The white arrow points to an ilmenite of a typical grain size in this sample. The black arrow points to the largest occurrence of baddeleyite in 12032,366-19. The ZrO₂ is bordered mostly by a coarse ilmenite grain and silica to a lesser extent. **b**. A finely elongate example of zirconolite lies diagonally in the center of the image and is nearly paralleled by another occurrence in the bottom left. **c**. The white arrow points to the irregularly-shaped occurrence of zirconolite discussed in text. The gray arrow points to another occurrence of zirconolite. **d**. The white arrow points to the largest phosphate occurrence; it is REE-rich apatite (Table 3).

Figure 8. Raman spectra of quartz in 12032,366-19. The "Standard" spectrum is from the RRUFF database.

Figure 9. Variations in concentrations of ZrO_2 and other elements with SiO_2 in zirconolite of 12032,366-19 reveals that, in general, the more SiO_2 contained in an analysis, the lower the concentration of everything else. ZrO_2 , however, increases as the concentrations of most other oxides increase (except for SiO_2) indicating that the actual zirconolite composition contains little or no SiO_2 .

Figure 10. REE plots of zirconolite (shaded gray) and merrillite (shaded gray with diagonal lines) in 12032,366-19. The gray regions are the ranges of concentrations for the four zirconolite analyses with the lowest SiO₂ and the two merrillite analyses; the black solid lines represent the average concentrations. Yttrium is plotted with the REEs (Korotev 1996). The analyzed elements are indicated on the horizontal axis. *Gd was analyzed on merrillite but not zirconolite. The other REE concentrations were estimated (see text). Europium is assumed to be present in low concentration assuming the zirconolite and merrillite crystallized after plagioclase. Chondrite values are those of Anders and Grevesse (1989) for CI chondrites multiplied by a factor of 1.36 to maintain consistent values with older literature, in which data were normalized to ordinary chondrites (Korotev 1996).

Figure 11. Compositional diagram for Apollo 12 rock fragments (after Fig. 3 of Korotev et al. 2011). Sample 12032,366-19 is shown by the star, plotting at just over 60 ppm Th. The color of each symbol corresponds to the Ba (red channel), Zr (green channel), and Cr (blue channel) concentrations. The granites and a few other points that are enriched in Ba relative to Zr are readily distinguished from those that have normal KREEP-like Ba/Zr (light green).

Figure 12. Bulk elemental concentrations of 12032,366-19 compared to High-K KREEP (Warren 1989).

Figure 13. Compared to typical Apollo 12 regolith (Korotev et al. 2011), 12032,366-19 has a "V"-shaped REE pattern common to lunar granitic materials (12013, Quick et al. 1977; 12033,517,Warren et al. 1987; 14321,1028, Warren et al. 1983a; 15434,10, Ryder and Martinez 1991; 73255,27, Blanchard and Budahn 1979; and 14161,7269, Jolliff et al. 1991). 14303,206 (Warren et al. 1983b) has a REE pattern similar to the typical Apollo 12 soil. Chondrite values are those of Anders and Grevesse (1989) for CI chondrites multiplied by a factor of 1.36 to maintain consistent values with older literature, in which data were normalized to ordinary chondrites (Korotev 1996). The analyzed elements are indicated on the horizontal axis; the other REE concentrations were estimated (see text). Samples with "**" include Dy; samples with "**" include Dy and Ho. Ce was estimated for 14161,7269.

Figure 14. Mg# of pyroxenes in lunar granites (12032,366-19; 12033,507; 14303,204; 15405,12; and 15434,10) and two quartz-monzogabbros (14161,7069 and 14161,7373) plotted against the An content of the plagioclase in the same samples. The coexisting pyroxene and plagioclase from fractional crystallization modeling is also plotted. The earlier crystallization is in the upper-right and crystallization proceeds down to the lower-left. The KB starting composition produced 3 pyroxenes; the BAG starting composition produced 2 pyroxenes. The gray rectangle represents the region occupied by 14303,204; 15405,12; and 15434,10, which each considerably overlap each other. 12033,507 and 14303,204 (Warren et al. 1987). 14161,7069 and 14161,7373 (Jolliff 1991). 15405,12 (Ryder 1976). 15434,10 (Ryder and Martinez 1991).

An

Figure 15. SiO₂, Al₂O₃, FeO, CaO, MgO, TiO₂, K₂O, P₂O₅, and Na₂O plotted vs. residual liquid along with the crystallizing mineral assemblage plotted vs. residual liquid (all in wt%). The plotted lines representing the wt% minerals crystallizing are qualitatively smoothed representations of the output of the MAGFOX program (Longhi 1991). Rock names of the crystallizing mineral assemblages (based on the QAPF diagram) and indicated by the background shade.

Figure 16. Ternary diagram illustrating the compositional paths that the KB and BAG residual melt compositions follow during fractional crystallization. Note that the BAG path barely intersects the field of SLI, while the KB path does not intersect it. The granitic compositions (natural and experimental) of Table 7 are also plotted. All units are in wt%.

Figure 17. Illustration depicting a gravity separation model that could have produced a mineralogy like that of 12032,366-19 without requiring SLI.

- ppoint			obleiono	01 00100	coa rana	Significor	, 4114 101	DICOD.					
Sample	12032,	12032,	12001,	12003,	12013,	12013,	12013,	12013,	12023,	12032,	12033,	12033,	12033,
	366-19A	366-19B	909-14	254	10,12a	10,16b	10,28	10A	147-10	367-04	517	634-30	634-34
Method	M1	INAA	INAA	INAA	INAA	INAA	INAA	INAA*	INAA	INAA	INAA,	INAA	INAA
											RNAA		
SiO ₂	70.1	-	-	-	-	-	-	60.8	-	-	65.0	-	-
TiO ₂	1.07	-	-	0.8	0.30	0.75	0.86	1.50	-	-	1.50	-	-
Al ₂ O ₃	13.5	-	-	11.6	10.1	11.1	9.8	12.8	-	-	12.9	-	-
FeO	4.98	4.99	8.45	10.7	14.0	9.60	6.00	10.68	3.11	8.62	7.60	9.00	12.5
MnO	0.07	-	-	0.14	0.15	0.12	0.08	0.15	-	-	0.04	-	-
MgO	0.14	-	-	5.5	8.50	6.30	5.50	-	-	-	2.40	-	-
CaO	3.04	2.9	6.9	5.4	4.6	4.1	3.8	7.1	3.0	9.1	4.9	9.2	6.4
BaO	0.68	0.68	0.22	0.40	0.42	0.46	0.46	-	0.44	0.19	0.51	0.48	0.51
Na ₂ O	2.47	2.10	1.37	1.3	1.12	1.28	1.17	1.25	1.22	1.27	1.47	1.66	1.04
K ₂ O	4.58	4.8	2.9	2.4	2.60	3.74	3.03	1.65	5.60	2.20	2.96	3.40	3.90
P_2O_5	0.052	-	-	-	-	-	-	-	-	-	-	-	-
Total	100.7	-	-	-	-	-	-	-	-	-	-	-	-
Mass	Section	21.28	7.01	8.10	5.25	1.21	0.98	Mass	2.67	7.39	99.3	7.50	6.96
								waighted					

Appendix 1. Bulk compositions of selected lunar granites and felsites.

weighted

Oxides are in wt%; elements are in ppm except for Ir and Au which are in ppb. "-" means "not reported." "n.d." means "not detected." "EPMA" implies a defocused beam analysis. "RNAA" stands for radiochemical neutron activation analysis. "Mass" refers to the mass of the sample analyzed in mg. 12032,366-19 A (Model 1 from EPMA, this study). 12032,366-19 B; 12001,909-14 (INAA data, this study). 12003,254 (Laul 1986). 12013,10,12a; 12013,10,16b; 12013,10,28 (Quick et al. 1977). 12013,10 A (12013,10 weighted mean; Wakita and Schmitt 1970). 12013 light (Hubbard et al. 1970, Schnetzler et al. 1970, Wakita and Schmitt 1970, and Quick et al. 1977). 12023,147-10; 12032,367-04 (INAA data, this study). 12033, 517 (Warren et al. 1987). 12033,634-30; 12032,634-34 (INAA data, this study). 12070,102-5 (Marvin et al. 1971). 14001,28.2, 14001,28.3, and 14001,28.4 (Morris et al. 1990). 14004,94 and 14004,96 (Snyder et al. 1992). 14161,7269 (Jolliff et al. 1991). 14303,204, 14321,1027 (Warren et al. 1983c). 15405,12 (Ryder 1976). 15434,10 (Ryder and Martinez 1991). 73215,43,3 (Blanchard et al. 1977). 73255,27,3 (Blanchard and Budahn 1979). *SiO₂ was calculated.

Appendix 1 continued.													
Sample	12070,	14001,	14001,	14001,	14004,	14004,	14161,	14303,	14321,	15405,	15434,	73215,	73255,
Methods	102-5 ЕРМА	28.2 INAA	28.3 INAA	28.4 INAA	94 INAA	96 INAA	7269 INAA EPMA	204 INAA	1027 INAA	12 EPMA	10 FB	43,3 INAA	27,3 INAA
SiO ₂	70.80	-	-	-	-	-	71.9	-	74.20	68.08	56.9	-	-
TiO ₂	0.60	1.80	1.40	1.00	1.35	1.14	0.54	0.75	0.33	0.90	1.13	-	0.26
Al ₂ O ₃	12.70	9.6	8.8	11.3	12.3	13.2	12.6	18.5	12.50	10.15	6.4	-	12.30
FeO	6.30	9.10	12.2	11.0	7.70	6.30	2.26	5.57	2.32	6.99	18.6	2.98	3.10
MnO	0.10	0.11	0.13	0.13	0.11	0.08	0.02	0.06	0.02	-	0.28	-	0.04
MgO	0.40	<1.2	< 0.83	<0.99	-	-	0.03	3.30	0.07	1.53	4.7	-	0.20
CaO	1.00	3.9	5.5	5.7	5.1	5.1	0.93	8.8	1.25	4.89	8.3	-	0.50
BaO	-	0.40	0.26	0.35	0.29	0.31	0.11	0.23	0.24	-	0.20	-	0.61
Na ₂ O	1.10	1.70	1.40	1.90	1.56	1.54	0.56	1.25	0.52	0.79	0.56	0.19	0.53
K ₂ O	7.40	3.40	2.10	2.50	3.10	3.20	10.06	3.60	8.60	3.39	2.17	7.00	7.55
P_2O_5	0.70	-	-	-	-	-	0.13	-	-	-	1.33	-	-
Total	101.1	-	-	-	-	-	99.3	-	100.1	96.7	100.6	-	100.6
Mass	Section	34.2	15.3	15.0	133.3	97.1	36.4	70	149	Section	27	20	2.0

App	penaix 1	conunu	ea.												
	12032,	12032,	12001,	12003,	12013,	12013,	12013,	12013,	12013,	12013	12023,	12032,	12033,	12033,	12033,
	366-19A	366-19B	909-14	254	10,12a	10,16b	10,28	10A	10 B	light	147-10	367-04	507	634-30	634-34
Cr	<200	11.3	610	1539	1723	1034	589.4	1410	1471	1010	31	8.62	479.5	66	19
Zr	1500	1500	1470	610	690	1130	720	-	766	1130	970	9.1	1310	2500	3020
Hf	37.8	45.5	38.9	4.7	27	23	25	23.0	26.1	24	31.5	0.19	37	65.1	78.2
La	11.3	79.4	115.6	50	57	64	39	66	55	68	77.0	1.274	82	213.0	181.2
Ce	106	182	289	110	151	170	100	-	111	126	184	2.20	199	539	435
Nd	83.2	82	159	56	74	91	59	-	75	64	80		100	310	212
Sm	-	24.6	46.3	14.1	19	20	13	25.0	18	16	23.8		28	87.8	62.8
Eu	-	3.01	2.60	2.7	2.14	1.85	1.74	2.00	2.04	2.54	2.38	1119	3.10	5.03	3.84
Tb	-	6.56	9.84	4	5.2	4.9	3.7	-	5.0	4.9	6.06	900	6.8	18.29	15.22
Yb	-	51.8	45.90	32	30.0	35.0	25.0	30.0	26.6	33.4	43.7	22.8	36.7	68.10	90.20
Lu	-	7.44	6.17	4.8	4.2	5.2	3.0	4.1	4.2	5.1	6.19	80.5	5.8	9.29	12.48
Sc	-	8.7	16.7	23.2	25.0	21.0	17.0	27	23	21	6.3	203	14.9	26.0	23.6
Со	-	0.8	9.3	12	24.0	12.0	8.6	26	20	20	0.8	107	8.0	7.5	4.7
Ni	-	<25	<50.	<40	-	-	-	-	-	-	<50	32.90	22.0	<70	<160
Rb	-	96	74	-	87	124	101	-	94.9	141	172	2.84	79	63	77
Sr	-	167	145	180	-	-	-	-	-	168	134	6.90	156	227	180
Cs	-	3.67	3.22	-	3.1	4.0	4.3	-	3.4	4	4.98	28.90	3.0	2.10	2.26
Та	-	10.4	6.9	7.7	-	-	-	-	6.7	6.6	8.8	4.020	-	9.1	9.4
\mathbf{W}	-	8.7	4.5	-	-	-	-	-	-	-	3.7	21.0	-	4.0	7.5
Ir	-	< 0.0013	<5.	-	-	-	-	-	-	-	<4.	17.2	1.27	<5.	<6.
Au	-	< 0.005	<5.	-	-	-	-	-	-	-	<11.	81	0.51	<9.	<6.
Th	126	60.6	39.0	37	48	45	36	22	45.5	41	59.5	53	40	52.9	61.7
U	52.7	20.7	11.2	11.3	14	12	10	8	13.4	12.3	19.5	171	12	16.1	18.9
Appendix	1	continued.													
----------	---	------------													
----------	---	------------													

	12070,	14001,	14001,	14001,	14004,	14004,	14161,	14303,	14321,	15405,	15434,	73215,	73255,
	102-5	28.2	28.3	28.4	94	96	7269	204	1027	12	10	43,3	27,3
Cr	0.00	94.90	149.8	99.89	91.90	137.9	679.3	549.4	17.00	-	1129	103.0	70.00
Zr	-	-	-	-	-	-	890	1020	660	-	885	-	-
Hf	-	41	120	43	41	51	33	22	13.9	-	19.4	25.6	16
La	-	110	200	130	91	87	95	58	44.3	-	65	42.9	20.3
Ce	-	250	460	270	218	237	-	149	117	-	174	125	50
Nd	-	-	-	-	111	113	-	93	58	-	101	-	34
Sm	-	36	66	40	33	33	36	22	15.9	-	64.5	19	6.74
Eu	-	2.80	3.30	3.00	2.53	2.82	2.69	3.30	1.17	-	1.44	3.11	2.71
Tb	-	8.1	15.0	9.3	8.1	8.4	8.0	4.9	4.3	-	7.6	5.6	1.52
Yb	-	37.0	64.0	43.0	38.0	33.0	55.3	18.0	32.2	-	32.7	27.2	10.3
Lu	-	5.0	7.7	5.9	4.9	4.3	7.9	2.6	5.1	-	4.9	5.3	1.5
Sc	-	15.0	20.0	20.0	15.8	13.6	15.6	10.7	3	-	49	4.8	2.3
Co	-	2.7	3.8	3.9	2.4	2.7	15.1	14.1	0.94	-	52.35	2.1	1.5
Ni	-	-	-	-	-	-	110.0	<60	4.9	-	-	n.d.	-
Rb	-	110	87	89	87	92	107	114	210	-	52.5	-	-
Sr	-	170	170	190	150	110	190	210	55±16	-	118	-	215
Cs	-	2.3	2.0	2.2	2.0	2.9	5.0	2.2	5.7	-	0.47	-	-
Та	-	-	-	-	-	-	-	-	8.3	-	4.4	5.4	2.4
W	-	-	-	-	-	-	-	-	-	-	-	-	-
Ir	-	<1.6	<5.7	<5.1	<1.4	<1.7	<6	<2.8	47	-	-	-	-
Au	-	-	-	-	10.00	<4	<4	-	35	-	<5	-	-
Th	-	35	42	28	29	30	66	-	65	-	19.7	39.9	9.5
U	-	9.1	13	8.2	8.2	9.9	20	-	23.4	-	5.7	-	-