	1
1	Revision 1:
2	Olivine from spinel peridotite xenoliths: Hydroxyl incorporation and mineral
3	composition
4	
5	
6	Esther Schmädicke ^{1*} , Jürgen Gose ¹ , Gudrun Witt-Eickschen ² , and Helene Brätz ¹
7	
8	1: Universität Erlangen-Nürnberg, Geozentrum Nordbayern, Schlossgarten 5a, D-91054
9	Erlangen, Germany
10	2: Universität Köln, Institut für Geologie und Mineralogie, Zülpicher Str. 49a, 50674 Köln
11	
12	* corresponding author; e-mail: esther@geol.uni-erlangen.de
13	
14	ABSTRACT
15	
16	Traces of water in mantle minerals strongly influence mantle melting and viscosity
17	which, in turn, govern large-scale processes like mantle convection, plate tectonics and
18	the stabilization of cratons. A major problem in estimating the mantle's water budget from
19	xenoliths arises from decompression-induced water loss during uplift. Mantle-derived
20	xenoliths have been investigated with respect to water from numerous occurrences
21	worldwide. However, little is known about water in the mantle beneath most parts of
22	Europe and Asia. This study presents water contents for mantle olivine from Germany,
23	Austria, Mongolia and Nigeria and suggests a possibility to assess water loss. It also
24	addresses the question whether or not water contents are related to olivine composition
25	and/or the presence of coexisting amphibole.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4440

9/4

2

26 The highest water concentrations are present in olivine from the Eifel, Germany 27 (up to 21 ppm H_2O) whereas the Fichtelgebirge xenoliths, Germany, reveal the lowest 28 contents (<1 ppm). All water-bearing olivines show three dominant infrared absorption bands: bands at 3572, 3525 and 3560 cm^{-1} and weaker bands at 3485, 3542 and 3597 29 cm⁻¹. The peaks at 3572 and 3525 cm⁻¹ are ascribed to Ti related substitutions of H. 30 31 Additional peaks, related to H substitutions involving trivalent cations, occur in the 3300-3400 cm⁻¹ range. However, their intensity does not correlate with the content of trivalent 32 33 cations. The olivines show a pronounced correlation of AI + Cr and Ca implying that 34 incorporation of AI and Cr is governed by pressure and temperature and primarily 35 attributed to Tschermak's substitution. This study confirms that a coupled substitution 36 involving Ti is the most important mode of water storage in shallow upper mantle olivine. 37 The Ti content and the fraction of water bound to 'Ti defects' are related and support the substitution model $Ti^{4+} + 2H^{+} = Mg^{2+} + Si^{4+}$. Hence, the Ti content is useful to estimate 38 39 the maximum amount of water incorporated by this substitution – providing a tool to 40 approximate the degree of water loss. Five of the investigated olivines provide evidence 41 for no or very little water loss. Their water content of 16-21 ppm is presumably typical for 42 the depleted uppermost mantle. Twelve samples with <1-15 ppm may have lost from 36 43 to >80 % of their original water. Olivine from amphibole-bearing spinel peridotite has 44 relatively low water contents as well as low amounts of Ca, Al, Cr, Ti, and V. Particularly 45 low Ca, AI and Cr contents suggest fluid infiltration, amphibole formation and re-46 equilibration of the whole assemblage at comparably low pressure and/or temperature 47 and may explain the low water content of olivine. Infrared spectra with dominant peaks in the 3200-3300 cm⁻¹ range (spectrum type E) are confined to olivine from amphibole-48 49 bearing peridotite.

- 51 Keywords: water content, nominally anhydrous minerals, olivine, spinel peridotite, trace
- 52 elements
- 53

9/4

5	5
J	J

56

INTRODUCTION

57

58 Water, or more precisely hydrogen, is present in the Earth's mantle as structural OH 59 groups in nominally anhydrous minerals such as olivine and pyroxene (e.g., Miller et al. 60 1987; Bell and Rossman 1992). Trace concentrations of water in mantle minerals have 61 significant influence on physical properties, melting behavior, mantle convection, plate 62 tectonics and the stabilization of cratonic roots (e.g., Karato 1990; Thompson 1992; 63 Hirose and Kawamoto 1995; Hirth and Kohlstedt 1996; Asimow and Langmuir 2003; 64 Peslier et al. 2010; Green et al. 2010). It has been shown that the water storage capacity 65 of mantle minerals is significant and depends on pressure, temperature, and mineral 66 composition (e.g., Kohlstedt et al. 1996; Rauch and Keppler 2002; Stalder 2004; Zhao et 67 al. 2004; Hirschmann et al. 2005). Olivine, as the most abundant mineral in the upper 68 mantle, has been investigated with respect to water concentration and possible 69 substitution mechanisms (e.g., Beran and Putnis 1983; Freund and Oberheuser 1986; 70 Miller et al. 1987; Bai and Kohlstedt 1993; Sykes et al. 1994; Libowitzky and Beran 1995; 71 Khisina and Wirth 2002; Gose et al. 2010) for more than three decades. The most 72 commonly applied analytical method, infrared (IR) spectroscopy, is very sensitive to 73 detect trace amounts of water and simultaneously provides information on substitution 74 mechanisms. 75 76 Several experimental studies were conducted to investigate the water storage capacity of 77 olivine as a function of pressure, temperature and chemical environment (e.g., Bai and

78 Kohlstedt 1993; Kohlstedt et al. 1996; Zhao et al. 2004; Grant et al. 2006, 2007;

Mosenfelder et al. 2006; Smyth et al. 2006; Bali et al. 2008). The experiments have

80 shown that water solubility in olivine is pressure-enhanced. The temperature effect on

5 81 water solubility, however, is controversial and may vary with pressure. For pressures of 82 2.5 and 3.0 GPa, water solubility increases with temperature (Zhao et al. 2004; Bali et al. 83 2008), whereas at 2.0 GPa, temperature has no visible influence on water content in 84 olivine (Grant et al. 2006). Further experiments with different olivine compositions, 85 including a variety of trace elements, were directed to identify possible substitution 86 mechanisms that enable the incorporation of water in the olivine structure (e.g., Bai and 87 Kohlstedt 1993; Lemaire et al. 2004; Berry et al. 2005; Berry et al. 2007b). This 88 information is important to interpret the infrared absorption spectra of natural samples. 89 More than 20 absorption bands were identified in natural olivine (Beran and Libowitzky 90 2006; and references therein). A single crystal may contain more than 10 different bands 91 in the infrared absorption spectrum caused by intrinsic water in the olivine structure (e.g., 92 Khisina et al. 2001; Koch-Müller et al. 2006). For a review and further references see 93 Beran and Libowitzky (2006).

94

95 Another field of research focuses on the quantification of water in natural olivine 96 samples, predominantly those of mantle heritage. These studies provide information on 97 actual water contents in the upper mantle. Naturally, measured contents comprise the 98 whole range from zero up to the maximum water storage capacity. Data were collected 99 for mantle samples from most parts of the world. The focus has been on peridotite 100 xenoliths; the majority of which represents the sub-continental mantle and includes 101 samples from cratons and non-cratonic areas (e.g., Miller et al. 1987; Bell and Rossman 102 1992; Kurosawa et al. 1997; Bell et al. 2004; Demouchy et al. 2006; Yang et al. 2008; 103 Soustelle et al. 2010). Fewer data are available for massive-type peridotite and 104 pyroxenite (e.g., Hermann et al. 2007; Gose et al. 2008) and even less data for sub-105 oceanic peridotite (Gose et al. 2009; Schmädicke et al. 2011).

6 107 Low water contents were identified as a characteristic feature of the cratonic mantle, and 108 were interpreted as a probable pre-condition for the stabilization of cratons (Peslier et al. 109 2010). Samples from non-cratonic areas (New Mexico, Washington State; e.g., Bell and 110 Rossman 1992; Peslier and Luhr 2006) may also be water-poor. However, it has been 111 shown that these contents need not reflect the original mantle contents but were 112 probably caused by water loss due to uplift and decompression (Peslier and Luhr 2006) 113 favored by fast diffusion of hydrogen in olivine (Demouchy and Mackwell 2006). 114

115 More data on olivine water contents are needed for non-cratonic mantle xenoliths. Data 116 are available for various parts of the world, including Africa, North America (Bell and 117 Rossman 1992; Peslier and Luhr 2006) and Asia-Pacific (Kurosawa et al. 1997; Yang et 118 al. 2008; Soustelle et al. 2010). Comparably little, however, is known from European 119 xenolith occurrences. Falus et al. (2008) focused on occurrences in Eastern Europe. In 120 the present study we concentrate on xenoliths from Central Europe, specifically from 121 Germany, and include further samples from other occurrences. We present analytical 122 data on water contents and concentrations of major and trace elements in olivine. The 123 aim of the investigation is to address the following questions: 1. What are the typical 124 water contents in olivine from non-cratonic spinel peridotite xenoliths in Central Europe 125 compared to other parts of the world? 2. Is there a relation between water content and 126 olivine composition, trace elements included? 3. Is the infrared absorption spectrum 127 related to the trace element content in olivine? 4. Is there a difference in water content 128 and/or spectrum type between amphibole-bearing and amphibole-free peridotite 129 xenoliths? 5. Are there any signs of water loss and, if so, can the original contents be 130 estimated?

131

SAMPLES AND METHODS

134

135 All olivine samples are derived from spinel peridotites occurring as xenoliths in alkali 136 basalt. The majority of samples (12) stem from the Eifel and the Fichtelgebirge in the 137 western and southeastern part of Germany, respectively. Further samples from Mongolia 138 (3 samples), Austria and Nigeria (1 sample each) were included for comparison. A 139 sample list is given in Table 1. Most spinel peridotites are characterized by the four-140 phase assemblage olivine, orthopyroxene, clinopyroxene, and spinel. Four samples, 141 three from the Eifel area and the one from Austria, contain additional calcic amphibole 142 (Table 1). The olivine grains of the investigated samples have typical grain diameters of 143 1-3 mm; only the sample from Nigeria has a larger grain size of 10 mm. 144 145 The major element composition of olivine was determined with a JEOL 8200 electron 146 microprobe, equipped with five wavelength dispersive spectrometers, including a high-147 resolution spectrometer and operating at 15 kV and 15 nA. A counting time between 20 148 and 40 seconds was applied for major and most minor elements; only Ca was measured 149 for 60 seconds. Silicate and oxide standards were used for the calibration. The analytical 150 error of the results displayed in Table 2 is \leq 1 % (relative). At least 10 spot analyses were 151 obtained for each sample, measured on different sites to unravel possible compositional

152 zoning.

153

The trace element composition was obtained by LA-Q-ICP-MS using an UP193FXesi_®
laser ablation unit coupled to an Agilent 7500i quadrupole inductively- coupled plasma
mass spectrometer, tuned for maximum sensitivity by ThO/Th <0.5 %. Ar was used as
plasma and cooling gas (14.9 L/min), auxiliary gas (0.9 L/min) and carrier gas (1.1 L/min)
while He was utilized as second carrier gas (0.65 L/min). Each olivine was measured 4

9/4

9/4

159	times at different sites, including core and rim areas. Spot diameter and repetition rate
160	were 25 μm and 20 Hz, respectively, by applying an irradiance of 0.56 GW/cm^2 and a
161	fluence of 2.8 J/cm ² . The background and mineral ablation times were 20 and 25
162	seconds, respectively. External calibration was performed on the NIST SRM 612
163	standard applying linear fit, and SiO_2 determined by microprobe was used as internal
164	standard. Data evaluation was carried out with GLITTER (van Achterbergh et al. 2000).
165	Microanalytical reference material BCR-2G (USGS) was used as secondary standard to
166	check for reproducibility (mostly <5 %) and accuracy (mostly <8 %) of the method.
167	
168	The water content of olivine was determined by IR spectroscopy using a Bruker Tensor
169	27 Fourier transform IR spectrometer equipped with a Hyperion 3000 microscope and an
170	MCT detector. For the FTIR analysis, clear and transparent crystal areas free of
171	inclusions, cracks and alteration products were carefully selected. Spectra were collected
172	in a transmittance mode, using a square aperture of 40 x 40 to 60 x 60 μm^2 to restrict the
173	lateral size of the probed spatial regions.
174	
175	The samples were first investigated with non-polarized IR radiation (qualitative analysis)
176	using doubly polished and self-supporting rock slices with a thickness of 0.3 to 1.5 mm,
177	depending on crystal quality and size. These qualitative analyses were used to
178	investigate a relatively large number of grains for the presence (or absence) of water and
179	also to recognize possible zonation patterns in terms of water content or spectrum type
180	by comparing analyses from core and rim areas.

181

182 Quantitative analysis of water in an anisotropic mineral is possible by measurements

183 either using polarized IR radiation in different directions of a single crystal (e.g.,

184 Libowitzky and Rossman 1996) or utilizing non-polarized IR radiation on multiple

185 randomly oriented grains (e.g., Kovács et al. 2008; Withers 2013). The first approach has 186 been preferred in geological science, whereas the second approach is useful if crystal 187 size is not large enough to prepare oriented slices (Kovács et al. 2008). The samples 188 investigated in this study have grain sizes that are large enough to prepare defined slices 189 of single crystals. In the case of a randomly oriented single crystal, measurements in 190 three orthogonal directions and two polarizer positions (0 and 90°, equivalent to 191 maximum and minimum absorption) are necessary, resulting in six spectra per sample 192 (Libowitzky and Rossman 1996). If it is possible to prepare oriented slices, two 193 orthogonal sections each parallel to two indicatrix axes are needed in order to 194 accomplish the measurements along the three indicatrix axes (Libowitzky and Rossman 195 1996). Thus, representative single olivine crystals were extracted from the slices by 196 cutting with a wire-saw and prepared as cuboid bodies, polished on all six planar sides. The typical size of the bodies is 1 mm³ but some specimens are as small as 0.03 mm³ 197 and the largest one has a size of c. 10 mm³. These specimens were measured with 198 199 polarized IR radiation, using a gold wire polarizer, in the required directions resulting in 200 three or six spectra per sample, according to crystal orientation. The spectra were obtained by averaging over 128 scans in the wavenumber range 2000-4000 cm⁻¹ with an 201 instrumental resolution of 2 cm⁻¹. Water contents were calculated by summing the 202 203 average data from the three directions as described by Libowitzky and Rossman (1996), 204 applying the mineral-specific molar absorption coefficient of Bell et al. (2003). The 205 integral absorbance was determined by fitting the spectra between 3000 and 3620 cm⁻¹ 206 using a polynomial baseline correction. The peak fit was obtained by a combination of 207 Lorentzian and Gaussian functions using a varied weight coefficient for all samples. 208 Figure 1 shows an example of a de-convoluted spectrum. The uncertainty of the 209 calculated water contents given in Table 3 is \leq 10 %. Water attributed to Ti related 210 defects (see Table 3) was inferred from the peak areas of the two diagnostic peaks at

9/4

	10
211	peaks at 3525 and 3572 cm ^{-1} . For more information on the method and sample
212	preparation see Gose et al. (2009) and Schmädicke et al. (2011).
213	
214	
215	RESULTS
216	
217	Mineral composition
218	
219	All olivines are unzoned and have similar major element compositions but can differ in
220	minor and trace element concentrations. All samples have Mg# (= Mg/(Mg+Fe); Table 2)
221	in the range of 0.89-0.92. The typical Mg# of most samples is 0.91. The samples from
222	Mongolia are characterized by lower values of 0.89-0.90, and two samples from the Eifel
223	have Mg# of 0.92. The minor elements Mn and Ni and the trace elements Co, P, and Ge
224	have rather uniform concentrations in all samples (Table 2). The NiO and MnO contents
225	cluster in the range of 0.30-0.40 and 0.10-0.18 wt.%, respectively. The Co and P
226	contents comprise a range of 145-167 ppm and 66-100 ppm, respectively. The contents
227	of Li (1.4-3.1 ppm), B (0.9-2.3 ppm) and Sc (2.1-4.4 ppm) show moderate variability.
228	Concentrations of Be, and rare earth elements are below the detection limit. Fluorine
229	contents are below the detection limit of the electron microprobe and cannot be
230	measured by ICP-MS. If F is incorporated by the coupled substitution $B(OH,F)Si_{-1}O_{-1}$
231	(Sykes et al. 1994), the F contents should be <2.3 ppm in the investigated olivines.
232	
233	Pronounced compositional variations are shown by the elements Ti, Cr, Al, Ca, and V (in
234	decreasing order). Aluminum ranges from 56 to 362 ppm; the whole compositional range
235	is present in the Eifel samples. The four samples in which olivine coexists with amphibole

are characterized by comparably low Al contents of ≤109 ppm (E-194: 109 ppm, E-211: 236

	11
237	56 ppm, E-213: 64 ppm, Kapf: 87 ppm). The Ca contents of all samples are in the range
238	of 290-1000 ppm. Again, the four amphibole-bearing samples reveal relatively low Ca
239	contents of \leq 510 ppm. The Cr contents vary in the range of 28-362 ppm, and are \leq 139
240	ppm in the amphibole-bearing samples. Vanadium ranges from 2.0 to 7.2 ppm (\leq 2.8 ppm
241	in amphibole-bearing samples). Titanium shows the strongest compositional variation in
242	the sample set, ranging from 4 to 66 ppm. The Ti contents of the Eifel samples are in the
243	range of 4-50 ppm, whereas samples from Fichtelgebirge (4-12 ppm) and Mongolia (22-
244	39 ppm) show lower variability. Olivine from amphibole-bearing peridotites is
245	characterized by Ti contents of 4-26 ppm.
246	
247	The olivine samples reveal a pronounced positive correlation between Ca and the
248	content of AI + Cr, with a coefficient of determination R^2 of 0.98 (Fig. 2a). A similar
249	positive correlation is found in plots of Ca versus AI ($R^2 = 0.92$; Fig. 2b) and of Ca versus
250	Cr (not shown), respectively. Moreover, the contents of Ca and Sc are positively
251	correlated (R^2 = 0.85; Fig. 2c) as well as the contents of AI and Sc (not shown). A
252	correlation of Ti and V (Fig. 2d) or Ti and AI (not shown) is very poor to nonexistent ($R^2 \le$
253	0.28).
254	
255	Infrared absorption patterns
256	
257	The infrared absorption spectra of most olivine samples reveal stretching bands caused
258	by structurally incorporated hydroxyl groups or 'water'. Exceptions are the three samples
259	from the Fichtelgebirge that are devoid of any detectable peaks in the infrared spectra.

- All other samples possess at least six separate absorption bands. Considering the
- spectra from all samples, 11 peaks can be distinguished. The main bands occur in the
- wavenumber range from 3450 to 3650 cm⁻¹ (Fig. 3). Additional peaks in the range of

	12
263	3100-3400 cm ⁻¹ have weaker intensities. Peaks in the wavenumber range from 3450 to
264	3650 cm ⁻¹ have been referred to in the literature as ,high frequency' or ,group I' bands;
265	those in the 3100-3450 cm^{-1} range as ,low frequency' or ,group II' bands (Bai and
266	Kohlstedt 1993; Lemaire et al. 2004; Matveev et al. 2005). The high frequency peaks are
267	basically identical in all investigated samples. Differences in the absorption patterns are
268	restricted to the low frequency range and are the basis to distinguish the five types of
269	spectra A, B, C, D, and E (Fig. 3; Table 3). Spectrum E is restricted to olivine that
270	coexists with amphibole,
271	
272	The IR absorption patterns reveal pronounced pleochroism. The strongest absorption

commonly occurs parallel to the crystallographic a-axis of olivine. Only the peaks at 3230
and 3328 cm⁻¹ show the strongest absorption parallel c. The weakest absorption of all
peaks is observed parallel b.

276

The high frequency peaks show the following characteristics: The strongest peak in all
samples (in spectra taken parallel a) occurs at 3572 cm⁻¹. Further dominant peaks at
3525 (second strongest) and 3560 cm⁻¹ (third strongest) and weaker peaks at 3485,
3542 and 3597 cm⁻¹ are present in all spectra types. A very weak peak occurring around
3613-3615 cm⁻¹ is found only in spectra B, D, and E.

282

283 The weak peaks at 3328 and 3356 cm^{-1} are present in the spectra types A, B, and C.

Furthermore, a broad asymmetric peak around 3230 cm⁻¹ occurs in spectra A and E. In

spectrum C it is visible that this peak is split into two small peaks. This peak is strongly

286 pleochroitic with maximum absorption parallel c (Fig. 3). Another small peak at 3403 cm⁻

¹ is only found in spectrum E.

289 **Band assignment**

290

291 The two strongest peaks at 3572 and 3525 cm⁻¹ are present in almost every mantle 292 olivine (Miller et al. 1987). In olivine from spinel peridotite xenoliths, these peaks are the 293 most prominent ones in the IR absorption spectra and are correlated with the dominant 294 mode of water incorporation in the spinel peridotite facies. Laboratory experiments failed 295 to reproduce these peaks in synthetic olivine under relevant conditions (Matveev et al. 296 2001; Lemaire et al. 2004; Mosenfelder et al. 2006) except for experimental charges in 297 equilibrium with rutile (Berry et al. 2005; 2007a; Walker et al. 2007). These authors 298 suggested that the two bands are caused by Ti-related OH point defects rather than by planar Ti-clinohumite defects, unless a further broad peak around 3400 cm⁻¹ appears in 299 300 the spectrum. Such a peak is present only in spectrum type E, as displayed by the three 301 amphibole-bearing samples E-194, E-211, and E-213 from the Eifel (Fig. 3; Table 3). All other samples lack the 3400 cm⁻¹ band suggesting that water incorporation is 302 303 presumably dominated by Ti-point defects. A possible substitution mechanism involves replacement of a divalent cation by Ti⁴⁺ on an octahedral site charge-balanced by 304 305 substitution of Si⁴⁺ by two protons on a tetrahedral site (Berry et al. 2005, 2007a; Walker 306 et al. 2007). Planar Ti-clinohumite defects seem to be restricted to amphibole-bearing 307 samples from the Eifel. However, the diagnostic peak at 3400 cm⁻¹ is very small relative 308 to other peaks. Hence, planar Ti-clinohumite, if present at all, is only of minor 309 importance.

310

Other bands in the high frequency range of 3450 to 3650 cm^{-1} are presumably related to 311 312 Si vacancies in a tetrahedral site, each of which is charge-balanced by four protons 313 (Lemaire et al. 2004; Walker et al. 2007). This includes the relatively strong peak at 3560 cm^{-1} and the peaks at 3485, 3542, and 3597 cm^{-1} that are present in all samples and, 314

9/4

thus, in all five spectra types. An additional peak around 3613-3615 cm⁻¹, also ascribed
to Si vacancies (Gose et al. 2010), is present in two samples from the Eifel (spectrum
type B), in the three samples from Mongolia and in the Nigeria sample (all spectrum type
D).

320 The bands in the low-frequency range of $3100-3400 \text{ cm}^{-1}$ are divided into two groups, (i)

321 3100-3300 and (ii) 3300-3400 cm⁻¹ because they are presumably induced by two types

of substitutions (e.g., Kovács et al. 2010; and references therein). Peaks in the interval of

323 3100-3300 cm⁻¹ are interpreted as Mg-site vacancies, ascribed to substitution of a

divalent cation (predominantly Mg) by two protons. Such peaks are most pronounced in

our spectra A and E, weak in spectra B and C, and absent in D (Fig. 3). These strongly

326 pleochroitic peaks show maximum absorption parallel to the c axis.

327

328 Peaks in the interval 3300-3400 cm⁻¹ are related to substitutions involving trivalent

329 cations (e.g., Berry et al. 2005; Berry et al. 2007b; Grant et al. 2007). The mechanism by

330 which hydrogen is incorporated involves a coupled substitution in which two divalent

331 cations (e.g., Mg^{2+}) are replaced by H⁺ and a trivalent cation, predominantly Al^{3+} or Fe³⁺.

332 Moderately sized peaks in this range occur in spectra A, B, and E; spectrum C reveals

small peaks and spectrum D has no peaks in this range (Fig. 3).

334

335 Water contents

336

The investigated olivine samples are characterized by low water contents of \leq 21 ppm H₂O (Table 3). Traces of water are present in all samples, except of those from the

339 Fichtelgebirge where contents are below the detection limit (<1 ppm H_2O). The Eifel

340 samples show the highest water concentrations ranging between 10 and 21 ppm. The

341	water contents of the remaining samples, from Mongolia, Austria and Nigeria, are in the
342	range of 4-16 ppm H_2O . Differences between olivine cores and rims were not found. The
343	total water contents are not related to the spectrum type, nor do they depend on the
344	grain size (Tables 1 and 3). The portion of water ascribed to Ti-related substitutions
345	(Table 3) is highly variable and ranges from about 5 to 75 % of the total water content,
346	depending on the spectrum type. For spectrum types A, B, and C, 'Ti-related' water
347	makes up roughly 50 % of the total water content. Higher 'Ti-related' water contents (up
348	to 75 %) may be present in samples characterized by spectrum type D, and lower
349	contents of 5-20 % may be associated with spectrum type E.
350	
351	Correlation of water and Ti
352	
353	Several authors stated that Ti and water concentrations in natural olivine are not
354	correlated (e.g., Kurosawa et al. 1997; Gose et al. 2008). The same result is found in the
355	present study if Ti contents are compared only to the total water contents (Fig. 4a).
356	However, if the spectrum type is considered, compositional systematics become obvious
357	and the previous statement is no longer valid. Samples characterized by spectrum type
358	D accommodate the highest proportion of water in Ti-related defects. These samples, in
359	fact, reveal the highest relative Ti-contents (Fig. 4a, Table 3), with Ti (μ mole/g) ≥ H/2
360	(μ mole/g). In contrast, 'spectrum type E samples' – all coexisting with amphibole -
361	incorporate the least fraction of water in Ti-related defects. These samples, indeed, are
362	characterized by the lowest relative Ti contents, with Ti (μ mole/g) << H/2 (μ mole/g).
363	Samples with spectra types A, B, and C are consistent with this observation as the Ti-
364	related amount of water increases from A to C as well as the relative Ti content of the
365	samples (i.e., Ti versus H/2 in μmole/g; Fig. 4a).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4440

9/4

	16
367	The above comparison implies that a correlation between Ti and water is unlikely if the
368	sample set includes olivines with different types of IR absorption spectra. However, if
369	only the peaks at 3572 and 3525 cm^{-1} in the IR absorption patterns are caused by 'Ti-
370	related' defects, i.e., the substitution $Mg^{2+} + Si^{4+} = Ti^{4+} + 2 H^+$, then Ti in olivine should
371	only correlate with the fraction of water involved in this substitution (see Table 3).
372	
373	Hence, a plot of Ti versus H/2 in 'Ti defects' (Fig. 4b) should be used for comparing
374	water and Ti contents. If Ti incorporation in olivine is solely governed by the above
375	substitution, and if, vice versa, the peaks at 3572 and 3525 cm^{-1} are exclusively caused
376	by water in Ti-related defects, a 1 : 1 correlation line should result, provided no
377	secondary water loss occurred. Samples affected by water loss should then easily be
378	identified by Ti contents exceeding H/2. Figure 4b reveals six olivine samples plotting at
379	or close to the 1 : 1 correlation line and eight samples that plot moderately or significantly
380	above it. The former samples should have preserved their original water content, at least
381	that fraction incorporated via Ti-related substitutions. Presumably, the latter samples
382	experienced different degrees of water loss; for an estimate see Table 3. However, it
383	cannot be excluded that originally they contained less water than predicted by the Ti
384	contents because a substitution of Ti for Si is possible in olivine (Hermann et al. 2005;
385	Berry et al. 2007a).
386	

387 If the substitution model is correct, samples should not have Ti contents lower than H/2. 388 Figure 4b shows that only one sample (with overall low H and Ti contents) plots 389 somewhat below the line. Hence, the results of our study can be reconciled with the 390 substitution model $Mg^{2+} + Si^{4+} = Ti^{4+} + 2 H^+$.

- 391
- 392

17

393

COMPARISON WITH LITERATURE DATA

394

Water contents of olivine from spinel peridotite xenoliths were determined for a number of occurrences worldwide (for references see 'Introduction' and Table 4). Literature data comprising concentrations of water and other trace elements in natural olivine, however, are still limited. The most relevant published data for olivine from basalt-hosted spinel peridotite xenoliths, summarized in Table 4, are discussed below and compared with our results. Data from kimberlite-hosted types and garnet peridotite xenoliths are included only for comparison and are not discussed in detail.

402

403 Available data imply that low water content is typical for olivine from basalt-hosted spinel 404 peridotite xenoliths and oceanic spinel peridotites. Considering only results from IR 405 spectroscopic measurements, excluding data inferred from coexisting pyroxene (see 406 Table 4), the highest water content is 16 ppm (Kent and Rossman 2002; Falus et al. 407 2008). In most cases, the maximum contents are below 10 ppm (Miller et al. 1987; 408 Peslier and Luhr 2008; Yang et al. 2008; Gose et al. 2009; Soustelle et al. 2010; 409 Schmädicke et al. 2011). Comparably high water contents of 10-39 ppm were 410 determined by secondary ion mass spectrometry (Kurosawa et al. 1997) for samples 411 from various locations, including two Eifel samples. The water contents of the latter 412 samples are 10 ppm (Dreiser Weiher) and 18 ppm (Meerfelder Maar), respectively, 413 matching the analyses of the present study nicely. The same applies to the Li 414 concentrations (1.8 and 2.1 ppm) that overlap with the results of the present study (1.4-415 3.1 ppm). 416

From the studies listed above it appears that olivine water contents are unrelated to thetectonic setting of the host peridotite, i.e. within-plate sub-continental or plate-margin

	18
419	supra-subduction zone mantle. However, the database is small and setting-related
420	characteristics might be obscured by differential water loss. No data exist for olivine from
421	sub-oceanic mantle peridotite, except that water content is below the detection limit of <1
422	ppm (Table 4). This is probably a result of secondary water loss due to slow tectonic
423	exhumation. However, orthopyroxene presumably preserved the original water contents
424	(Gose et al. 2011) and can be used for a preliminary estimate of the water content in
425	olivine. With an orthopyroxene-olivine partition coefficient of 6.7 (Kovács et al. 2012),
426	original water contents of 40 and 2 ppm are obtained for olivine of sub-oceanic peridotite
427	from two different sites at the Mid-Atlantic Ridge (Table 4).
428	
429	The generally low water contents in olivine from spinel peridotites are probably not the
430	original mantle contents but were modified by decompression-related water loss during

431 ascent. This is evident from the positive correlation between water content and grain 432 size, and from concentrations depending on grain area (i.e., core or rim) as documented 433 by Peslier and Luhr (2006) and Soustelle et al. (2010). In addition, Yang et al. (2008) 434 ascribe the very low contents of 0-2 ppm in olivine to water loss caused by the fast 435 diffusion of H in olivine compared to that in both pyroxenes. Their conclusion is based on 436 data of coexisting ortho- (up to 155 ppm) and clinopyroxene (355 ppm) that were utilized 437 to calculate the primary equilibrium water contents for olivine (0-35 ppm). Moreover, the 438 non-equilibrium distribution of water between olivine and pyroxene, described above for 439 oceanic peridotite, may be explained by differential water loss in olivine and pyroxene.

440

Judging from the infrared spectra published in the literature, the two 'Ti peaks' seem to be the typical feature shared by many, if not most, investigated olivines. In addition, the two peaks are the most prominent ones in the majority of recorded spectra. However, there are also samples in which these peaks are lacking such as in samples from

	19
445	Romania (Falus et al. 2008) and Kenya (Miller et. al. 1987). In these cases, the main
446	bands occur in the range 3300-3450 cm ⁻¹ . Olivine in xenoliths from Kamchatka derived
447	from the supra-subduction zone mantle also has the main peaks in the 3300-3400 ${ m cm}^{-1}$
448	range, but with an additional weak peak at 3572 cm ⁻¹ (Soustelle et al. 2010).
449	
450	Data for both water and trace elements concentrations, needed to recognize possible
451	correlations between water content or IR spectrum type and crystal chemistry, are given
452	only in a few studies. Contents of B and Li were determined on four olivine samples from
453	different continents but no correlation with the water content was found (Kent and
454	Rossman 2002). Kurosawa et al. (1997) also observed no correlation between water and
455	trivalent cations in olivine from spinel peridotite (18 samples) but garnet peridotite
456	samples (9) did reveal a positive correlation. These authors concluded that trivalent

457 cations are incorporated in spinel-peridotite-facies olivine by the Tschermak's

458 substitution and not by a substitution involving hydrogen. However, the increasing

459 evidence (see above) of water loss in olivine from spinel peridotite, compared to garnet

460 peridotite, may also explain the observations.

461

462 Comparative studies of water in olivine from amphibole-bearing and amphibole-free 463 peridotites are rare. Recently, Yang et al. (2008) came to the conclusion that water 464 contents of both olivine and pyroxene do not correlate with the presence or absence of 465 amphibole. In fact, the only water-free olivine was derived from an amphibole peridotite, 466 and the olivine richest in water (35 ppm) was found in an amphibole-free peridotite. The 467 results of the present study are very similar to the findings of Yang et al. (2008). The 468 water-poorest olivine from the Eifel (10 ppm) was found in an amphibole-bearing 469 peridotite, whereas the water-richest olivine (21 ppm) was derived from a 'dry' peridotite.

20
The literature data on water contents in olivine fit in well with the results of the present
study. In general, olivine from spinel peridotites contains comparably low water
concentrations, regardless of geological setting. The maximum values, however, are
variable reaching only c. 6-8 ppm in some areas and c. 35 ppm in others. Our maximum
contents of 21 ppm are close to the data from samples from Romania (Falus et al. 2008).
However, our spectra types are different compared to the Romanian olivines but
compare well with the spectra presented by Peslier and Luhr (2006). A relation between
spectrum type and geological setting is presently not visible.
Considerably more water is present in olivine from kimberlite-hosted mantle xenoliths,
most of which are garnet peridotites (e.g., Miller et al. 1987; Bell and Rossman 1992).

482 For instance, olivine from South African xenoliths contains 60-150 ppm water (Kent and

483 Rossman 2002). Higher contents of up to 300-400 ppm were determined for olivine

484 megacrysts from South African kimberlites (Bell et al. 2004), xenolithic olivine (Matsyuk

485 and Langer 2004) and olivine xenocrysts (Koch-Müller et al. 2006), both from Siberian

486 kimberlites. Although lower water contents may be typical of olivine from cratonic garnet

- 487 peridotite (i.e., 0-80 ppm; Peslier et al. 2010), the maximum water contents in olivine
- 488 from garnet peridotite xenoliths (c. 400 ppm) are one order of magnitude higher

489 compared to spinel peridotite xenoliths (35 ppm). Moreover, olivine from spinel peridotite

490 is also characterized by lower Ti concentrations (20-80 ppm) compared to olivine from

491 garnet peridotite (50-280 ppm; Berry et al. 2005). In contrast, other trace elements such

492 as Li and B (Kent and Rossman 2006; Koch-Müller et al. 2006; this study) have

493 comparable contents in both rock types. The great difference in water contents between

spinel and garnet peridotite may be due to two reasons: (i) the pressure-enhanced water

- 495 storage capacity, and (ii) water loss due to different uplift velocities. The majority of
- 496 garnet peridotite xenoliths are transported by kimberlite whereas most spinel peridotites

	21
497	are basalt-hosted. Kimberlite-hosted mantle xenoliths, because of faster upward
498	transport, preserve the original water much better than basalt-hosted ones (Peslier and
499	Luhr 2006; Peslier et al. 2008). Differential uplift velocities will enhance the original,
500	pressure-related differences in water contents between garnet and spinel peridotites.
501	The recent findings imply that pyroxenes are better suited than olivine to infer the
502	mantle's water budget.
503	
504	
505	DISCUSSION AND CONCLUSIONS
506	
507	General findings
508	
509	The investigated olivine samples from basalt-hosted spinel peridotite xenoliths contain
510	water in the range of <1-21 ppm. Such low concentrations were reported from several
511	other studies on equivalent samples and interpreted as a result of water loss (e.g.,
512	Peslier and Luhr 2006). In the present study, we consider water contents between 16
513	and 21 ppm as original mantle values typical for olivine from depleted spinel peridotite
514	from the uppermost mantle, whereas water contents of ≤15 ppm were probably caused
515	by water loss (see below).
516	
517	Each sample displays at least six different bands in the IR absorption spectra. The two
518	bands at 3572 and 3525 cm ⁻¹ that are ascribed to Ti-related point defects and the bands
519	at 3485, 3542 and 3597 cm ⁻¹ being associated with Si vacancies are displayed by all
520	samples. Differences in the absorption patterns occur in the low frequency range (i.e.,
521	3100-3450 cm ⁻¹) and are the basis to distinguish 5 spectra types, A, B, C, D, and E.
522	Bands ascribed to Mg site vacancies (i.e., 3100-3300 cm ⁻¹) and those associated with

	22
523	trivalent cations (i.e., 3300-3400 cm ⁻¹) are present in most spectra, except of D.
524	Comparing the spectra, the peaks in the $3300-3400 \text{ cm}^{-1}$ interval seem to correlate in
525	intensity with those in the 3100-3300 cm^{-1} range (moderate size in spectra A, B, E; small
526	in C, and absent in D). Berry et al. (2005) noted that water in Ti-related defects is
527	primary, while Fe ³⁺ related bands are diagnostic of oxidation and secondary processes. If
528	true, the observed correlation of ,Mg vacancy peaks' and those involving trivalent cations
529	suggests that both are non-primary features but due to secondary processes.
530	
531	Our study confirms the suggestion (e.g., Berry et al. 2005; Walker et al. 2007) that H
532	incorporation associated with Ti is the most important mode of water storage in olivine
533	from the shallow upper mantle. A possible exception is olivine that equilibrated with
534	amphibole. Spectrum E is restricted to amphibole-bearing xenoliths (three Eifel samples).
535	This spectrum indicates only a small fraction of water possibly related to Ti point defects

536 and a similar small quantity that may be bound to planar Ti defects. The dominant

absorption bands occur in the low frequency range suggesting other substitution

538 mechanisms (e.g., coupled substitutions with trivalent cations).

539

540 The present results also indicate that water and Ti contents of natural olivine from spinel 541 peridotites are related. A correlation, however, may only become obvious if the fraction of 542 water associated with 'Ti defects' is considered instead of the total water content of 543 olivine, as shown in Fig. 4b. The analytical data of this study confirm the model substitution $Ti^{4+} + 2H^+ = Mg^{2+} + Si^{4+}$ proposed in the literature (Berry et al. 2006, 2007a; 544 545 Walker et al. 2007). We suggest that the Ti content of olivine may be used to estimate 546 the maximum amount of water that can be incorporated by this substitution. The latter, 547 calculated value, compared to the measured content of water that is bound to Ti-related 548 defects, may be useful to infer the degree of water loss (Fig. 4b; Table 3). Applied to the

investigated olivines, five samples show no or only little water loss. The total water
contents in these olivines are in the range of 16-21 ppm. The remaining twelve samples
may have lost variable amounts of their original water in the range from 36 to >80 %.
These olivines have lower water contents ranging from <1 to 15 ppm. This approximation
provides an upper limit for water loss because it supposes that Ti in olivine is exclusively
incorporated by the above substitution.

555

The intensity of the peaks in the range of 3300-3400 cm⁻¹ or, more precisely, the fraction 556 557 of water calculated for this range (not shown) does not correlate with the contents of 558 trivalent cations in olivine. This does not contradict the assumption that part of the water 559 in olivine is incorporated via a coupled substitution involving trivalent cations. It merely 560 indicates that other substitutions are probably more important for the incorporation of 561 trivalent cations in olivine than the coupled substitution with H. This is also in accordance 562 with the several hundreds ppm concentration of trivalent cations as compared to only a 563 few ppm H associated with the 3300-3400 cm⁻¹ range in the IR spectrum. 564 565 The content of the most abundant trivalent cations, AI + Cr, correlates with Ca (Fig. 2a) 566 implying that their concentration in olivine is primarily controlled by P and T and not by 567 water fugacity. The Ca content in olivine has been used as a geothermobarometer (Brey 568 and Köhler 1990) and is very important to infer equilibrium conditions for garnet-free 569 spinel peridotites (e.g., Will et al. 2010). The positive correlation of Ca with AI + Cr 570 implies that the AI + Cr totals of olivine are potentially useful for thermobarometry. 571 572 Amphibole and olivine water content

573

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

24 574 The presence of amphibole, observed in three of the Eifel samples and in the sample 575 from Austria, does not lead to high water contents in coexisting olivine. On the contrary, 576 the water-poorest Eifel olivine was derived from an amphibole-bearing peridotite, 577 whereas the water-richest olivine was found in an amphibole-free peridotite. Other trace 578 elements may help to explain this observation. Obviously, the presence of amphibole in 579 the investigated spinel peridotite xenoliths is related to rather low Ca, AI, Cr, and V 580 contents in coexisting olivine. The Ti contents of olivine in two of the amphibole-bearing 581 samples are also very low (3.8 and 4.5 ppm), but intermediate in the other two samples 582 (13 and 26 ppm).

583

584 Formation of amphibole in peridotite is commonly related to infiltration of water-rich fluid 585 and/or interaction with alkali basaltic or carbonatitic melts (e.g., Coltorti et al. 2007; Witt-586 Eickschen et al. 2003). Fluid not only triggers amphibole formation but it also should 587 equilibrate with the nominally anhydrous minerals in peridotite, namely olivine and 588 pyroxene. Interestingly, olivine in the amphibole-bearing samples does not seem to have 589 incorporated water as a result of fluid infiltration, presumably due to unfavorable pressure 590 and/or temperature. Of course, minerals either take up water if they are under-saturated, 591 or lose water if they previously equilibrated at higher pressures and/or temperatures 592 under water-saturated conditions. The relatively low contents of Ca and AI + Cr in the 593 amphibole-bearing samples, compared with the 'dry' samples, suggest fluid infiltration 594 and re-equilibration at comparably low pressure and/or temperature. This conclusion 595 agrees with previously estimated temperatures of 800-1000°C for amphibole-bearing and 596 1000-1300°C for 'dry' peridotites from the Eifel (Witt-Eickschen 2007). We suggest that 597 re-equilibration of the whole assemblage occurred during amphibole formation and 598 presumably led to water loss including loss of further trace elements such as Ca, Al, Cr, 599 V, and Ti in olivine. Simultaneously, re-distribution of water in the olivine structure

- 600 occurred as documented by the observed change in relative peak intensities. Spectrum
- 601 type E, restricted to amphibole-bearing samples, suggests that very little (if any) water is
- 602 bound to Ti related defects. This is in contrast to most other investigated olivines,
- displaying spectra A to D, that accommodate a large fraction of, or even all, water in Ti
- 604 related defects.

605

- 606
- 607

ACKNOWLEDGMENTS

- 608 Generous financial support by Städtler Stiftung is gratefully acknowledged. The authors
- 609 thank Associate Editor Boriana Mihailova, Anton Beran, and an anonymous reviewer for
- 610 their constructive comments and suggestions. We are indebted to Anton Beran, Vienna,
- 611 who kindly provided analytical facilities for FTIR spectroscopy. Franz Brandstätter,
- 612 Vienna, is thanked for contributing samples from Kapfenstein.
- 613

614

26 616 617 **REFERENCES CITED** 618 619 Asimow, P.D. and Langmuir, C.H. (2003) The importance of water to oceanic mantle 620 melting regimes. Nature, 421, 815-820. 621 622 Bali, E., Bolfan-Casanova, N., and Koga, K.T. (2008) Pressure and temperature 623 dependence of H solubility in forsterite: an application to water activity in the Earth 624 interior. Earth and Planetary Science Letters, 268, 354-363. 625 626 Bai, Q., and Kohlstedt, D.L. (1993) Effects of chemical environment on the solubility and 627 incorporation mechanism for hydrogen in olivine. Physics and Chemistry of Minerals, 19, 628 460-471. 629 630 Bell, D.R. and Rossman, G.R. (1992) Water in the Earth's mantle: the role of nominally 631 anhydrous minerals. Science, 255, 1391-1397. 632 633 Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., and Rauch, F. (2003) Hydroxide in 634 olivine: A quantitative determination of the absolute amount and calibration of the IR 635 spectrum. Journal of Geophysical Research B2, 108, 2105, doi:10.1029/2001JB000679. 636 637 Bell D.R., Rossman, G.R., and Moore, R.O. (2004) Abundance and partitioning of OH in 638 a high pressure magmatic system: megacrysts from the Monastery kimberlite, South 639 Africa. Journal of Petrology, 45, 1539-1564. 640

9/4

- 641 Beran, A. and Libowitzky, E. (2006) Water in natural mantle minerals II: Olivine, garnet
- and accessory minerals. In H. Keppler and H.R. Smyth, Eds., Water in nominally
- anhydrous minerals, 62, p. 169-191. Reviews in Mineralogy and Geochemistry,
- 644 Mineralogical Society of America, Chantilly, Virginia.
- 645
- Beran, A., and Putnis, A. (1983) A model of the OH positions in olivine, derived from
- 647 infrared spectroscopic investigations. Physics and Chemistry of Minerals, 9, 57-60.
- 648
- Berry, A., Hermann, J., O'Neill, H.S.C., and Foran, G.J. (2005) Fingerprinting the water
- site in mantle olivine. Geology, 33, 869-872.
- 651
- Berry, A.J., Walker, A.M., Hermann, J., O'Neill, H.S.C., Foran, G.J., and Gale, J.D.
- 653 (2007a) Titanium substitution mechanisms in forsterite. Chemical Geology, 242, 176-
- 654 186.
- 655
- Berry, A.J., O'Neill, H.S.C., Hermann, J., and Scott, D.R. (2007b) The infrared signature
 of water associated with trivalent cations in olivine. Earth and Planetary Science Letters,
 261, 134-142.
- 659
- Brey, G.P. and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites. II: New
 thermobarometers, and practical assessment of existing thermobarometers. Journal of
 Petrology, 31, 1353-1378.
- 663

Coltorti, M., Bonadiman, C. Faccini, B., Ntaflos, T., and Siena, A. (2007) Slab melt and
intraplate metasomatism in Kapfenstein mantle xenoliths (Styrian Basin, Austria). Lithos,
94, 66-89.

667	

668	Demouchy, S., Jacobsen, S.D., Gaillard, F. and Stern, C.R. (2006) Rapid magma ascent
669	recorded by water diffusion profiles in mantle olivine. Geology, 34, 429-432.
670	
671	Demouchy, S. and Mackwell, S. (2006) Mechanisms of hydrogen incorporation and
672	diffusion in iron-bearing olivine. Physics and Chemistry of Minerals, 33, 347-355.
673	
674	Falus, G., Tomassi, A., Ingrin, J., and Szabó, C. (2008) Deformation and seismic
675	anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the
676	study of mantle xenoliths. Earth and Planetary Science Letters, 272, 50-64.
677	
678	Freund, F. and Oberheuser, G. (1986) Water dissolved in olivine: A single crystal infrared
679	study. Journal of Geophysical Research B1, 91, 745-761.
680	
681	Gose, J., Reichart, P., Dollinger, G., and Schmädicke, E. (2008) Water in natural olivine
682	- determined by proton-proton scattering analysis. American Mineralogist, 93, 1613-
683	1619.
684	
685	Gose, J., Schmädicke, E., and Beran, A. (2009) Water in enstatite from Mid-Altantic
686	Ridge peridotite: Evidence for the water content of suboceanic mantle? Geology, 37,
687	543-546.
688	
689	Gose, J., Schmädicke, E., Markowitz, M. and Beran, A. (2010) OH point defects in olivine
690	from Pakistan. Mineralogy and Petrology, 99, 105-111.
691	

- 692 Gose, J., Schmädicke, E., and Stalder, R. (2011) Water in mantle orthopyroxene no
- 693 visible change in defect water during serpentinization. European Journal of Mineralogy,
- 694 23, 529-536.
- 695
- 696 Grant, K.J., Kohn, S.C., and Brooker, R.A. (2006) Solubility and partitioning of water in
- 697 synthetic forsterite and enstatite in the system MgO-SiO₂-H₂O \pm Al₂O₃. Contributions to
- 698 Mineralogy and Petrology, 151, 651-664.
- 699
- Grant, K.J., Brooker, R.A., Kohn, S.C. and Wood, B.J. (2007) The effect of oxygen
- fugacity on hydroxyl concentrations and speciation in olivine: Implications for water
- solubility in the upper mantle. Earth and Planetary Science Letters, 261, 217-229.
- 703
- Green, D.H., Hibberson, W.O., Kovács, I., and Rosenthal, A. (2010) Water and its
- influence on the lithosphere-asthenosphere boundary. Nature, 467, 448-451.
- 706

707 Hermann, J., O Neill, H.S.C., Berry, A.J. (2005) Titanium solubility in olivine in the

system TiO₂-MgO-SiO₂: no evidence for an ultra-deep origin of Ti-bearing olivine.

709 Contributions to Mineralogy and Petrology, 148, 746-760.

- 710
- Hermann, J., Fitz Gerald, J.D., Malaspina, N., Berry, A.J., and Scambelluri, M. (2007)
- 712 OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite
- minerals from Dabie Shan (China). Contributions to Mineralogy and Petrology, 153, 417-
- 714 428.
- 715

3
Hirose, K., and Kawamoto, T. (1995) Hydrous partial melting of Iherzolite at 1 GPa: the
effect of H_2O on the genesis of basaltic magmas. Earth and Planetary Science Letters,
133, 463-473.
Hirth, G. and Kohlstedt, D.L. (1996) Water in the oceanic upper mantle: implications for
rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary
Science Letters, 144, 93-108.
Hirschmann, M.M., Aubad, C., and Withers, A.C. (2005) Storage capacity of H_2O in
nominally anhydrous minerals in the upper mantle. Earth and Planetary Science Letters,
236, 167-181.
Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle.
Nature, 347, 272-273.
Kent, A.J.R. and Rossman, G.R. (2002) Hydrogen, lithium, and boron in mantle-derived
olivine: The role of coupled substitutions. American Mineralogist, 87, 1432-1436.
Khisina, N.R. and Wirth, R. (2002) Hydrous olivine $(Mg_{1-y}Fe^{2+}_y)_{2-x}v_xSiO_4H_{2x} - a$ new
DHMS phase of variable composition observed as nanometer-sized precipitations in
mantle olivine. Physics and Chemistry of Minerals, 29, 98-111.
Khisina, N.R., Wirth, R., Andrut, M., and Ukhanov, A.V. (2001) Extrinsic and intrinsic
mode of hydrogen occurrence in natural olivines: FTIR and TEM investigation. Physics

740 and Chemistry of Minerals, 28, 291-301.

741

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

	31
742	Koch-Müller, M., Matsyuk, S.S., Rhede, D., Wirth, R., and Khisina, N. (2006): Hydroxyl in
743	mantle olivine xenocrysts from the Udachnaya kimberlite pipe. Physics and Chemistry of
744	Minerals, 276-287.
745	
746	Kohlstedt, D.L., Keppler, H., and Rubie, D.C. (1996) Solubility of water in the α,β and γ
747	phases of $(Mg,Fe)_2SiO_4$. Contributions to Mineralogy and Petrology, 123, 345-357.
748	
749	Kovács, I., O'Neill, H.S.C., Hermann, J., and Hauri, E. H. (2010) Site-specific infrared O-
750	H absorption coefficients for water substitution in olivine. American Mineralogist, 95, 292-
751	299.
752	
753	Kovács, I., Green, D.H., Rosenthal, A., Hermann, J., O'Neill, H.S.C., Hibberson, W.O.,
754	Udvardi, B. (2012) An experimental study of water in nominally anhydrous minerals in the
755	upper mantle near the water-saturated solidus. Journal of Petrology, 53, 2067-2093.
756	
757	Kurosawa, M., Yurimoto, H., and Sueno, S. (1997) Patterns of the hydrogen and trace
758	element compositions of mantle olivines. Physics and Chemistry of Minerals, 24, 385-
759	395.
760	
761	Lemaire, C., Kohn, S.C., and Brooker, R.A. (2004) The effect of silica activity on the
762	incorporation mechanism of water in synthetic forsterite: a polarised infrared
763	spectroscopic study. Contributions to Mineralogy and Petrology, 147, 48-57.
764	
765	Libowitzky, E. and Beran, A. (1995) OH defects in forsterite. Physics and Chemistry of
766	Minerals, 22, 387-392.
767	

768	Libowitzky, E. and Rossman, G.R. (1996) Principles of quantitative absorption
769	measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319-327.
770	
771	Matsyuk, S.S. and Langer, K. (2004) Hydroxyl in olivines from mantle xenoliths in
772	kimberlites from the Siberian platform. Contributions to Mineralogy and Petrology, 147,
773	413-437.
774	
775	Matveev, S., O'Neill, H.S.C., Ballhaus, C., Taylor, W.R., and Green, D.H. (2001) Effect of
776	silica activity on OH-IR spectra of olivine: implications for low-aSiO ₂ mantle
777	metasomatism. Journal of Petrology, 42, 721-729.
778	
779	Matveev, S., Portnyagin, M., Ballhaus, C., Brooker, R., and Geiger, C.A. (2005) FTIR
780	spectrum of phenocryst olivine as an indicator of silica saturation in magmas. Journal of
781	Petrology, 46, 603-614.
782	
783	Miller, G.H., Rossman, G.R., and Harlow, G.E. (1987) The natural occurrence of
784	hydroxide in olivine. Physics and Chemistry of Minerals, 14, 461-472.
785	
786	Mosenfelder, J.L., Deligne, N.I., Asimow, P.D., and Rossman, G.R. (2006) Hydrogen
787	incorporation in olivine from 2-12 GPa. American Mineralogist, 91, 285-294.
788	
789	Peslier, A. and Luhr, J.F. (2006) Hydrogen loss from olivine in mantle xenoliths from
790	Simcoe (USA) and Mexico: Mafic alkalic magma ascent rates and water budget of the
791	sub-continental lithosphere. Earth and Planetary Science Letters, 242, 302-319.
792	

- 793 Peslier, A.H., Woodland, A.B., and Wolff, J.A. (2008) Fast kimberlite ascent rates
- rom south Africa.
- 795 Geochimica Cosmochimica Acta, 72, 2711-2722.
- 796
- 797 Peslier, A.H., Woodland, A.B., Bell, D.R., and Lazarov, M. (2010) Olivine water contents
- in the continental lithosphre and the longevity of cratons. Nature , 457,
- 799 doi:10.1038/nature09317
- 800
- 801 Rauch, M. and Keppler, H. (2002) Water solubility in orthopyroxene. Contributions to
- 802 Mineralogy and Petrology, 143, 525-536.
- 803
- 804 Schmädicke, E., Gose, J., and Will, T.M. (2011) Heterogeneous mantle underneath the
- 805 North Atlantic: Evidence from water in orthopyroxene, mineral composition and
- 806 equilibrium conditions of spinel peridotite from different locations at the Mid-Atlantic
- 807 Ridge. Lithos, 125, 308-320.
- 808
- 809 Smyth, J.R., Frost, D.J., Nestola, F., Holl, C.M., and Bromiley, G. (2006) Olivine
- 810 hydration in the deep upper mantle: Effects of temperature and silica activity.
- 811 Geophysical Research Letters, 33, L15301.
- 812
- 813 Soustelle, V., Tommasi, A., Demouchy, S., and Ionov, D.A. (2010) Deformation and fluid-
- 814 rock interaction in the supra-subduction mantle: Microstructures and water contents in
- peridotite xenoliths from the Avacha Volcano, Kamchatka. Journal of Petrology, 51, 363-
- 816 394.
- 817

9/4

- 818 Stalder, R. (2004) Influence of Fe, Cr and Al on hydrogen incorporation in orthopyroxene.
- 819 European Journal of Mineralogy, 16, 703-711.
- 820
- 821 Sykes, D., Rossman, G.R., Veblen, D.R. and Grew, E.S. (1994) Enhanced H and F
- 822 incorporation in borian olivine. American Mineralogist, 79, 904-908.
- 823
- Thompson, A.B. (1992) Water in the Earth's upper mantle. Nature, 358, 295-302.
- 825
- Van Achterbergh, E., Ryan, C.G., and Griffin, W.L. (2000) GLITTER: on-line interactive
- data reduction for the Laser Ablation ICPMS microprobe. Macquarie University, 61 pp.
- 828
- Walker, A.M., Hermann, J., Berry, A.J. and O'Neill, H.S.C. (2007) Three water sites in
- 830 upper mantle olivine and the role of titanium in the water weakening mechanism. Journal
- of Geophysical Research, 112, B05211, doi:10.1029/2006JB004620.
- 832
- 833 Will, T., Schmädicke, E., and Frimmel, H.E. (2010) Deep solid state equilibration and
- 834 deep melting of plagioclase-free spinel peridotite from the slow-spreading Mid-Atlantic
- Ridge, ODP Leg 153. Mineralogy and Petrology, 100, 185-200.
- 836
- 837 Withers, A.C. (2012) On the use of infrared spectroscopy for quantitative analysis of
- 838 absorbing species in birefrigent crystals. American Mineralogist, in press.
- 839
- 840 Witt-Eickschen, G. (2007) Thermal and geochemical evolution of the shallow
- subcontinental lithospheric mantle beneath the Eifel: Constraints from mantle xenoliths, a
- review. In J.R.R. Ritter and U.R. Christensen, Eds., Mantle Plumes, p. 323-337.
- 843 Springer, Berlin.

	35
844	
845	Witt-Eickschen, G., Seck, H.A., Mezger, K., Eggins, S.M., and Altherr, R. (2003)
846	Lithospheric mantle evolution beneath the Eifel (Germany): constraints from Sr-Nd-Pb
847	isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths.
848	Journal of Petrology, 44, 1088-1095.
849	
850	Yang, X.Z., Xia, Q.K., Deloule, E., Dallai, L., Fan, Q.C., and Feng, M. (2008) Water in
851	minerals of the continental lithospheric mantle and underlying lower crust: A comparative
852	study of peridotite and granulite xenoliths from the North China Craton. Chemical
853	Geology, 256, 33-45.
854	
855	Zhao, JH., Ginsberg, S.B., and Kohlstedt, D.L. (2004) Solubility of hydrogen in olivine:
856	dependence on temperature and iron content. Contributions to Mineralogy and
857	Petrology, 147, 155-161.
858	
859	
860	
861	
862	

863 Figure captions

864

- 865 **FIGURE 1.** Polarized IR absorption spectra measured parallel to the crystallographic a-
- and c-axis, baseline-corrected and deconvoluted into single Gaussian- and Lorentzian-
- shaped bands.

868

869 **FIGURE 2.** Variation diagrams showing selected trace element concentrations in olivine.

870 The data correspond to the sample averages given in Table 2b; the regression lines

871 were calculated with Excel. a. Plot of Ca versus Al + Cr; b. Plot of Ca versus Al; c. Plot of

872 Sc versus Ca; d. Plot of V versus Ti. See text for further information.

873

874 **FIGURE 3.** Five different types of IR absorption spectra (A, B, C, D, and E) measured

875 with IR radiation polarized parallel to the crystallographic a-axis (bold black lines), b-axis

876 (bold gray lines) and c-axis (thin black lines). The spectra are normalized to 1 cm sample

877 thickness.

878

```
FIGURE 4. Plot of Ti versus H/2. Values are given in μmole/g in order to evaluate the
coupled substitution Mg<sup>2+</sup> + Si<sup>4+</sup> = Ti<sup>4+</sup> + 2 H<sup>+</sup> as potential mechanism for H incorporation
in the investigated olivines. a. Plot of Ti versus total hydrogen (H/2) in olivine. b. Plot of Ti
versus hydrogen (H/2) calculated from the 'Ti peaks' (i.e., 3572 and 3525 cm<sup>-1</sup>) as given
in Table 3. See text for further explanation.
```

887

Locality	Sample	Amphihole	Olivine grain
Locality	Campic	Апрільоїс	Chivine grain
	number	present?	size [mm]
Eifel, Dreiser Weiher	E-2	no	2-3
Eifel, Dreiser Weiher	E-5	no	2-3
Eifel, Dreiser Weiher	E-194	yes	1-2
Eifel, Dreiser Weiher	E-196	no	2
Eifel, Dreiser Weiher	E-211	yes	1
Eifel, Dreiser Weiher	E-213	yes	1-1.5
Eifel, Dreiser Weiher	E-D58	no	1-2
Eifel, Dreiser Weiher	E-K1	no	2
Eifel, Leyendecker Grube	E-LG	no	1.5-2
Fichtelgebirge, Hirschentanz	F-HT	no	2-2.5
Fichtelgebirge, Teichelberg	F-TB	no	2-2.5
Fichtelgebirge, Zinster Kuppe	F-ZK	no	2-2.5
Austria, Kapfenstein	Kapf	yes	2.5-3
Mongolia	Mo-21	no	1-2
Mongolia	Mo-22	no	2-3
Mongolia	Mo-8531	no	2
Nigeria	Nig	unknown	10

TABLE 1. Investigated olivine samples from spinel peridotite xenoliths.

TABLE 2a. Selected microprobe analyses of olivine samples in wt.-%. Cations were calculated on the basis of 4 oxygen atoms and by treating all Fe as Fe^{2+} .

	E-2-3	E-5-2	E-194	E-196-4	E-211-1	E-213	E-D58-2	E-K1-6	E-LG-2
	ol5	ol4	ol5	ol1	ol7	ol5	ol4	ol1	ol8
SiOa	40.67	41.06	40.61	39.88	39.84	40.88	40.34	40 99	40 27
TiO ₂	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01
- Cr ₂ O ₃	0.05	0.03	0.00	0.04	0.01	0.05	0.03	0.00	0.02
NiO	0.36	0.33	0.35	0.33	0.35	0.40	0.30	0.34	0.32
FeO	8.11	8.50	8.56	6 10.08	9.06	8.36	8.66	8.26	8.59
MnO	0.11	0.12	0.10	0.15	0.14	0.15	0.13	0.12	0.12
MgO	50.54	50.54	49.94	48.91	50.66	50.16	51.23	50.24	50.37
CaO	0.13	0.13	0.07	0.13	0.05	0.06	0.12	0.13	0.13
Total	99.97	100.71	99.63	99.52	100.11	100.06	100.81	100.09	99.83
Si	0.992	0.995	0.995	0.987	0.976	0.996	0.979	0.998	0.986
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr	0.001	0.000	0.000	0.001	0.000	0.001	0.000	0.000	0.000
Ni	0.007	0.006	0.007	0.007	0.007	0.008	0.006	0.007	0.006
Fe	0.165	0.172	0.175	0.209	0.186	0.171	0.176	0.168	0.176
Mn	0.002	0.002	0.002	0.003	0.003	0.003	0.003	0.002	0.002
Mg	1.837	1.825	1.824	1.804	1.850	1.823	1.853	1.823	1.839
Са	0.003	0.003	0.002	0.004	0.001	0.002	0.003	0.003	0.003
Total	3.008	3.005	3.005	5 3.013	3.024	3.003	3.021	3.002	3.014

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4440

Mg#	0.917	0.914	0.912	0.896 0.	909 0.9	014 0.9	13 0.916	0.913
	F-HT-1	F-TB-1	F-ZK-2	Kapf-2	Mo-21-3	Mo-22-3	Mo-8531	Nig
	ol4	ol3	ol1	ol	ol	ol	ol	ol
SiO ₂	40.75	40.27	40.43	3 41.01	40.77	41.10	40.69	40.92
TiO ₂	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01
Cr_2O_3	0.02	0.03	0.01	1 0.02	0.02	0.02	0.00	0.00
NiO	0.40	0.33	0.39	9 0.41	0.40	0.37	0.36	0.35
FeO	8.64	8.86	8.64	4 8.92	10.49	9.86	9.24	8.67
MnO	0.15	0.16	0.13	3 0.13	0.15	0.18	0.14	0.14
MgO	50.01	49.66	49.76	6 49.70	48.56	49.23	49.01	49.96
CaO	0.07	0.09	0.05	5 0.07	0.06	0.09	0.04	0.09
Total	100.02	99.38	99.42	2 100.26	100.45	100.84	99.47	100.14
Si	0.995	0.991	0.994	4 1.000	0.999	1.000	1.001	0.998
Ti	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ni	0.008	0.006	0.008	3 0.008	0.008	0.007	0.007	0.007
Fe	0.176	0.182	0.178	3 0.182	0.215	0.201	0.190	0.177
Mn	0.003	0.003	0.003	3 0.003	0.003	0.004	0.003	0.003
Mg	1.820	1.822	1.823	3 1.806	1.774	1.785	1.797	1.816
Са	0.002	0.002	0.00	1 0.002	0.002	0.002	0.001	0.002
Total	3.005	3.008	3.006	3.000	3.001	3.000	2.999	3.002
Mg#	0.912	0.909	0.912	1 0.908	0.892	0.899	0.904	0.911

TABLE 2b. Trace element concentrations of olivine in ppm determined by Q-LA-ICP-MS. The data are sample averages based on 4 analyses. Be and rare earth elements have concentrations below the detection limit.

	E-2	E-5	E-194	E-196	E-211	E-213	E-D58	E-K1	E-LG
Li	1.7	1.7	3.1	2.1	2.6	2.7	1.7	1.5	1.4
В	2.1	1.7	1.8	1.2	1.9	1.9	1.9	1.7	2.3
AI	253	356	109	362	56	64	329	344	275
Р	98	92	97	94	97	96	94	98	84
Са	909	998	510	900	363	409	872	890	837
Sc	4.0	4.4	2.7	3.8	2.3	3.2	3.9	3.9	3.9
Ti	28	23	26	51	3.8	4.5	31	41	18
V	7.2	5.8	2.8	6.2	2.0	2.5	5.3	5.4	6.8
Cr	362	243	139	152	85	126	223	226	263
Mn	816	992	1009	1082	1048	977	941	920	995
Со	158	156	146	162	145	155	152	154	151
Ni	3376	3288	3267	3034	3115	3396	3163	3244	3115
Ga	0.11	0.14	0.07	0.15	0.07	0.07	0.10	0.14	0.08
Ge	0.90	0.81	0.89	0.80	0.60	0.68	0.78	0.91	<0.6
Y	0.05	0.06	0.04	0.08	0.02	0.04	0.07	0.08	0.02
							Mo-		
	F-HT-1	F-TB-1	F-ZK-2	Kapf-2	Mo-21	Mo-22	8531	Nig	
Li	1.7	1.5	1.5	1.8	2.0	2.3	2.1	1.6	
В	1.8	1.3	1.9	1.7	0.9	1.4	1.2	1.3	

9/4

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4440

Al	126	159	108	87	70	265	66	188
Р	95	87	89	98	88	100	87	66
Са	486	580	452	409	314	662	299	675
Sc	3.2	3.6	3.2	2.6	2.1	3.4	2.2	3.5
Ti	12	3.7	7.7	13	23	39	26	66
V	3.6	3.4	3.7	2.3	2.0	4.5	2.1	6.0
Cr	183	147	126	74	28	117	31	185
Mn	989	952	965	980	1028	1040	1002	956
Со	154	151	146	157	167	167	149	148
Ni	3318	3298	3161	3279	3399	3311	3176	3141
Ga	0.07	<0.06	0.06	<0.06	0.08	0.17	0.06	0.09
Ge	0.90	0.80	0.66	0.77	0.69	0.83	0.75	0.97
Y	0.02	0.02	0.02	0.02	0.03	0.04	0.03	0.07

TABLE 3. Spectrum type, total water content in olivine and water content calculated from the intensity of the 'Ti peaks' at 3572 and 3525 cm⁻¹. Water in 'Ti peaks' is also given as H in μ mole/g for better comparison with the Ti content of olivine (also given in μ mole/g). See text for further explanation.

Sample	Spectrum	H ₂ O total	H ₂ O in 'Ti	H in 'Ti	Ti	Possible
number	type	[wtppm]	peaks'	peaks'	[µmole/g]	H ₂ O loss
			[ppm]	[µmole/g]		[%]
E-2	А	21	9.4	1.04	0.59	12
E-5	В	11	5.5	0.61	0.48	36
E-194	Е	15	2.1	0.23	0.54	78
E-196	С	13	6.6	0.73	1.06	65
E-211	Е	17	3.3	0.37	0.08	0
E-213	Е	10	0.5	0.06	0.09	71
E-D58	С	18	12.0	1.33	0.65	0
E-K1	С	10	5.6	0.62	0.86	64
E-LG	В	18	7.1	0.79	0.37	0
F-HT	-	<1	<1	<0.1	0.26	>80
F-TB	-	<1	<1	<0.1	0.08	>35
F-ZK	-	<1	<1	<0.1	0.16	>69
Kapf	А	16	5.1	0.57	0.27	0
Mo-21	D	9	3.9	0.43	0.48	53
Mo-22	D	11	5.9	0.66	0.82	60
Mo-8531	D	4	3.0	0.33	0.54	69
Nig	D	14	9.0	1.00	1.40	64

TABLE 4. Water contents in olivine from upper mantle spinel peridotites. The samples from intra-continental and continental arc settings are all basalt-hosted xenoliths. The oceanic spinel peridotites are drill-hole samples. With the exception of Kurosawa et al. (1997), all data were collected by IR spectroscopy.

Locality	Comment, sample	H ₂ O con-	Main peaks	Reference	
	number	tent [ppm]	[cm ⁻¹]		
various	intra-continental	<1-6 3572, 3525 (mos		Miller et al.	
	xenoliths, 12		samples), 3300-	(1987)	
			3400 (Kenya		
			sample)		
Tanzania,	intra-continental	0.8-16 (3	not given	Kent and	
Kenya,	xenoliths and	samples)		Rossman	
Australia,	xenocrysts, 4	34 (Kenya		(2002)	
China		sample)			
Mexico,	intra-continental	0-6.8	3571, 3562, 3541,	Peslier and	
Washington	xenoliths, 17		3525, 3480 (all	Luhr (2006)	
State			samples)		
Romania	intra-continental	2.1-15.4	3300-3450	Falus et al.	
	xenoliths, 7			(2008)	
North China	intra-continental	0-2 *	3600 (unpolarized	Yang et al.	
Craton	xenoliths, some with	0-35 [§]	measurements)	(2008)	
	amphibole, 27				
Kamchatka	continental arc	1-8.6	3300-3400, weak	Soustelle et al.	

	xenoliths, 26		peak at 3572	(2010)	
Japan, Aus-	intra-continental and	10-39	data obtained by	Kurosawa et al.	
tralia, San	continental arc		secondary ion	(1997)	
Carlos, Eifel	xenoliths, 18		mass spectrometry		
Mid-Atlantic	oceanic peridotite	<1 *	no peaks detected	Gose et al.	
Ridge, 23° N		40 #		(2009)	
Mid-Atlantic	oceanic peridotite	<1 *	no peaks detected	Schmädicke et	
Ridge, 15° N		2 #		al. (2011)	
<i>Notes:</i> * Measured values; [§] Calculated from water in clinopyroxene by applying a					

partition coefficient of 10. # Calculated from water in orthopyroxene applying an

orthopyroxene- olivine partition coefficient of 6.7 (Kovács et al. 2012).

