1 Revision 1

2	Quantification of dissolved CO_2 in silicate glasses using Micro-Raman spectroscopy.
3	
4	Yann Morizet ^{1,2,*} , Richard A. Brooker ³ , Giada Iacono-Marziano ² and Bruce A. Kjarsgaard ⁴
5	
6	(1) Laboratoire de Planétologie et Géodynamique de Nantes (LPGN) UMR CNRS 6112,
7	Université de Nantes, Nantes Atlantique Universités, 2 rue de la Houssinière, 44322
8	NANTES (France)
9	(2) Institut des Sciences de la Terre D'Orléans (ISTO) UMR CNRS 7327, Université
10	d'Orléans, Campus Géosciences, 1A rue de la Férolerie, 45071 ORLEANS Cedex 2
11	(3) School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens road,
12	BRISTOL, BS8 1RJ (UK)
13	(4) Geological Survey of Canada, 601 Booth street, OTTAWA, ON, Canada K1A 0E8
14	
15	
16	*E-mail: yann.morizet@univ-nantes.fr
17	

18 Abstract

This study investigates the potential use of Confocal Micro-Raman spectroscopy for the 19 quantification of CO₂ in geologically relevant glass compositions. A calibration is developed 20 using a wide range of both natural and synthetic glasses, that have CO₂ dissolved as 21 carbonate (CO_3^{2-}) in the concentration range from 0.2 to 16 wt.%. Spectra were acquired in 22 the 200 and 1350 cm⁻¹ frequency region that includes the v_1 Raman active vibration for 23 carbonate at 1062-1092 cm⁻¹ and the intensity of this peak is compared to various other peaks 24 representing the aluminosilicate glass structure. The most precise and accurate calibration is 25 found when carbonate peaks are compared to aluminosilicate spectral features in the high 26 27 frequency region (HF: 700-1200 cm⁻¹) which can be simulated with several Gaussian peaks, 28 directly related to different structural species in the glass. In some samples the 'dissolved' CO_3^{2-} appears to have two different Raman bands, one sharper than the other. This may be 29 consistent with previous suggestions that CO_3^{2-} has several structural environments in the 30 31 glass, and is not related to any precipitation of crystalline carbonate from the melt during 32 quenching. The calibration derived using the HF peaks appears linear for both the full range of glass composition considered and the range of CO_2 concentrations, even when multiple 33 34 carbonate peaks are involved. We propose the following, compositionally independent linear 35 equation to quantify the CO₂ content in glass with micro-Raman spectroscopy:

36 wt.%
$$CO_2 = 15.17 \times \frac{CO_3}{HF}$$

where CO₃/HF is the area ratio of the fitted v_1 carbonate peak(s) at 1062-1092 cm⁻¹ to the remaining area of the fitted aluminosilicate envelope from 700-1200 cm⁻¹. This is similar to the Raman calibration developed for water, but is complicated by the overlapping of these two fitted components. Using error propagation, we propose the calibration accuracy is better than ±0.4 wt.% CO₂ for our dataset.

- 42 The v_1 Raman peak position for carbonate is not constant and appears to be correlated with
- 43 the density of the melt (or glass) in some way rather than the chemical composition.
- 44 Keyword: Raman spectroscopy, CO₂ content, silicate glass, melt density, CO₃ molecules
- 45 Raman shift.
- 46

INTRODUCTION

10	Carbon dioxide (CO.) is generally considered the second most abundant volatile in magnetic
40	Carbon dioxide (CO ₂) is generally considered the second most abundant volatile in magnitude
49	systems after water (Gerlach and Graeber 1985; Blank and Brooker 1994; Symmonds et al.
50	1994; Jambon 1994), but can become dominant in some peralkaline igneous provinces, being
51	found at high concentrations in melt inclusions (e.g. Fulignati et al. 2004; . Shimizu et al.
52	2009; Oppenheimer et al. 2011; Mormone et al. 2011; De Moor et al., 2013). Even
53	subordinate concentration of CO_2 can still have a dramatic effect on eruptive processes due to
54	lower saturation levels in decompressing magmas, initiating bubble nucleation and growth
55	(Holloway and Blank 1994; Dixon 1997; Papale and Polacci 1999; Aiuppa et al. 2010).
56	Understanding how magmas transfer and release CO ₂ can play an important role in our
57	understanding of the Earth carbon cycle and long term effects on atmospheric fluctuations
58	(Marty and Tolstikhin 1998; Kerrick 2001).
59	There has been considerable experimental effort dedicated to measuring the CO ₂ solubility in
60	silicate melts ranging from natural to synthetic systems (e.g. Stolper and Holloway 1988;
61	Fogel and Rutherford 1990; Pan et al. 1991; Dixon and Stolper 1995; Dixon 1997; Jakobsson
62	1997; Tamic et al. 2001; King and Holloway 2002; Behrens et al. 2009; Vetere et al. 2011;
63	Rai et al. 1983; Thibault and Holloway 1994; Brooker et al. 1999, 2001a; Morizet et al. 2002,
64	2010; Botcharnikov et al. 2006). Under oxidizing conditions, CO ₂ dissolves in silicate melt as
65	two main species: molecular CO_2 (CO_2^{mol}) and carbonate groups (CO_3^{2-}) (e.g. Fine and
66	Stolper 1985, 1986; Dixon and Stolper 1995; Brooker et al. 1999, 2001b; Morizet et al. 2001,
67	2007). The speciation appears to be related to melt compositions, with CO_2^{mol} dominant in
68	highly silicic, and polymerized quenched glasses (Fine and Stolper 1985; Fogel and
69	Rutherford 1990; Blank et al. 1993; Brooker et al. 1999; Tamic et al. 2001) and CO_3^{2-} groups
70	becoming the dominant species in lower silica or depolymerized compositions such as
71	basaltic glasses (Fine and Stolper 1986; Blank and Brooker 1994; Pan et al. 1991). However,

5/29

72	the extent to which the glass reflects the actual melt speciation is complex (Morizet et al.
73	2001, 2007; Spickenbom et al. 2010). These experimental studies along with investigation of
74	natural samples have used a wide range of techniques to measure total CO ₂ content dissolved
75	in glasses as well as the speciation. These methods range from totally destructive bulk
76	content determinations (manometry, mass spectrometry or LECO TM) to less destructive
77	spectroscopic methods using ion probe (SIMS), infrared (FTIR) or Nuclear Magnetic
78	Resonance (NMR). Each of these methods can have its own advantages and drawbacks
79	related to sample preparation and/or size, or the need for composition dependent calibration.
80	Micro-Raman spectroscopy is an analytical technique that has rarely been used to examine
81	volatile species in geological glasses (Mysen and Virgo, 1980a, b; Brooker et al. 1999) but is
82	commonly used for studies of fluid inclusions (Dubessy et al. 1989; Morizet et al. 2009).
83	Several attempts have been made to develop a Raman technique to quantify water in glasses
84	(e.g. Thomas 2000; Chabiron et al. 2004; Zajacz et al. 2005; Behrens et al. 2006; Mercier et
85	al. 2009; Le Losq et al. 2012). However, the potential to use Raman as a quantitative tool for
86	CO ₂ has not been explored to date. Micro-Raman spectroscopy as an analytical technique has
87	several advantages: 1) it has a very small analytical volume which allows the analysis of <10
88	μ m-size glass inclusions, 2) it is non-destructive and 3) it requires relatively minimal sample
89	preparation. The main drawback has been the assumption that a compositionally dependent
90	calibration would be required.

It has long been known that any Raman vibrational signature of a molecule is proportional to
the quantity of the analyzed molecule, but is also a function of the Raman cross-section
parameter of the investigated molecular vibration (e.g. Frantz and Mysen, 1995; Burke, 2001;
Wu et al., 2004; Mysen, 2007; Morizet et al., 2009). The extent to which the cross section
parameter for silicate glass molecular species is dependent on the bulk glass composition is

96	still matter of debate. However, a compositionally independent calibration has recently been
97	demonstrated for water using the intensity of OH stretching peaks relative to aluminosilicate
98	bands for H_2O contents ranging from 0.2 to above 10 wt.% (Le Losq et al. 2012). This was
99	achieved without needing corrections related to Raman cross-section effects (Mercier et al.
100	2009; Le Losq et al. 2012). This was surprising given previous attempts to calibrate for water
101	that suggested a significant dependence on the glass compositions (Zajacz et al. 2005;
102	Behrens et al. 2006). One of the objectives of this study is to examine the possibility of
103	developing a similar quantitative technique for CO ₂ in glasses that is also independent of
104	composition. In particular, we test the methods considered in previous attempts to calibrate
105	for water, based around the scaling of the $\mathrm{H_{2}O}$ band intensity (I_{\mathrm{H2O}}) against the silicate
106	network Raman bands either at high frequency (I_{HF}) or at low frequency $(I_{LF}; Mercier et al.$
107	2009). However, the carbonate v_1 Raman peak used in this study introduces further
108	complication due to the overlap between the carbonate peak(s) position at 1062-1092 cm^{-1}
109	and the silicate network bands in the I_{HF} region from 700-1200 cm ⁻¹ .
110	The calibration utilizes a wide range of glass compositions (synthetic and natural) with
111	known CO ₂ content ranging from 0.2 wt.% up to 16 wt.%. For this initial investigation we
112	have only considered samples that have all CO ₂ dissolved in the form of carbonate species.
113	However, Raman active bands for molecular CO_2 are also easily measured (see Brooker et al.
114	1999) and could potentially be combined with this technique in the future.

- 115
- 116

METHODOLOGY

117 Selected glass samples

118 The compositions of glasses selected for this study are reported in the Supplementary 119 material. Some features of the natural and synthetic compositions are summarized in Table 1, along with the original reference for the data that has been published. The samples are 120 121 individual glass chips mounted in epoxy resin blocks (epo-fix) and polished to a finish of 3 122 μ m or better. The data set covers 65 CO₂-bearing samples plus 1 volatile-free sample. The 123 majority of glasses have been previously reported in Brooker et al. (2001a; 2011), Morizet et al. (2002), Iacono-Marziano et al. (2008, 2012) and Brooker and Kjasgaard (2011). A few 124 125 analyzed samples represent unpublished data from the authors. The investigated glasses cover 126 a wide range of compositions both natural and synthetic. As shown in Table 1, seven samples 127 are natural (trachy-andesite to alkali basalt) from Iacono-Marziano et al. (2008, 2012). 128 Several samples from Brooker et al. (2001a) represent natural compositions (andesite to 129 nephelinite) while others were synthesized in the Na₂O-CaO-Al₂O₃-SiO₂ and Na₂O-CaO-130 MgO-Al₂O₃-SiO₂ systems. The glasses from Morizet et al. (2002) are haplo-phonolitic in 131 composition. The sample set covers a large compositional range of geological interest: SiO_2 132 ranges from 30 to 59 wt.%; Al₂O₃ ranges from 4 to 24 wt.%; alkalis range from 0 to 21 wt.% 133 and alkaline-earths range from 2 to 52 wt.% (see Supplementary material for major elements 134 concentrations), although high-silica compositions such as rhyolite are not included as these 135 tend to be dominated by molecular CO_2 species. One useful parameter to distinguish between 136 silica-rich (e.g., rhyolite) and silica-poor (e.g., kimberlite) melts is the degree of 137 depolymerization, usually expressed as NBO/T and defined as the ratio between the concentration of Non-Bridging Oxygen and the concentration of Tetrahedral units (see 138 139 Mysen 1988; Brooker et al. 2001a). As shown in Table 1, the investigated glasses range from 140 slightly to highly depolymerized compositions, the lowest NBO/T is 0.13 for phonolite 141 RB461, RB465 samples and the highest NBO/T is 2.42 for haplo-kimberlite HK1500 and HK1580 samples. We also indicated the peralkalinity of the glasses defined as the molar 142

(Na₂O+K₂O) / Al₂O₃ ratio and this ranges from 0 to 2.3. The inclusion of iron-free glasses
which are colorless and natural iron-bearing glasses that are brown to green in color, allows
us to assess the importance of this feature during the analysis (see Le Losq et al., 2012). All
the samples were synthesized at high-pressure and high-temperature, the exact synthesis
conditions can be obtained from the relevant reference.

148 One important consideration for this initial calibration is that all the dissolved CO_2 in the

149 glass is present as carbonate groups (CO_3^{2-}) with no CO_2^{mol} present. The presence of CO_3^{2-}

groups and absence of molecular CO_2 has been established by previous FTIR investigations

151 (Brooker et al. 2001b; Iacono-Marziano et al. 2008, 2012). However, it should be noted that

Morizet et al. (2002) suggested that a small fraction (2% relative) of the dissolved CO_2 is

153 present as CO_2^{mol} in haplo-phonolite glasses and a similar small fraction is present in the

andesites; this is considered insignificant in the context of our calibration.

As reported in Table 1, the glasses cover a CO_2 range from 0.20 to 15.58 wt.%. In the

156 majority of the samples, the CO₂ content was previously determined by LECO bulk analyzer

157 (see Brooker et al. 2001a, 2011; Morizet et al. 2002; Brooker and Kjasgaard 2011). The

accuracy and reproducibility for these bulk measurements is on the order of ± 0.1 wt.% CO₂.

The CO_2 content in the samples from Iacono-Marziano et al. (2008, 2012) was determined by

160 FTIR measurements (with well-established extinction coefficients), with an error believed to

161 be better than ± 0.1 wt.%.

162

163 Analytical conditions

164 The Raman scattering was excited using an Innova 300-5W Argon ion laser from Coherent©

operating at 514 nm in wavelength and the spectra collected using a Jobin-Yvon Labram

166 spectrometer (focal distance = 300 mm) equipped with a 2400 grooves/mm grating. The 167 analyses were performed in confocal mode (hole = $500 \,\mu\text{m}$, slit = $200 \,\mu\text{m}$). We performed the analyses using a x50 Olympus objective producing a small analytical volume of a few 168 μ m³. Spectral range covered was between 200 and 1350 cm⁻¹. The spectral frequency position 169 170 was calibrated using the emission lines of Ne- and Hg-lamps with an accuracy within ± 1 cm⁻ ¹. The output power was set between 50 and 200 mW. We tested the effect of the laser power 171 on the Raman signal for different samples (see Supplementary material for details of 172 173 analytical conditions). In particular, the sample 2TA2 was analyzed four times at the same 174 sample location but with different laser power from 75 to 200 mW and with an identical 175 acquisition time. The results in terms of CO_2 quantification are almost identical (see Table 2, 176 CO₃/HF ratios) suggesting that this range of laser power does not influence the Raman signal 177 in the studied frequency region. Some samples (Fe-bearing colored glasses for instance) 178 required lower laser power (50 mW) so as to avoid local heating (Behrens et al. 2006; 179 Thomas et al. 2008; Mercier et al. 2009). The absence of local heating of the glass was 180 confirmed by visual inspection with no holes or color change observed. We collected at least 181 two spectra for each sample (except for YP31, with only one spectrum). The acquisition 182 depth was optimized in order to obtain the highest Raman signal (Behrens et al. 2006; 183 Mercier et al. 2009: Le Losq et al. 2012). The acquisition time on a given sample was 184 typically 5 scans for between 20 and 120 sec (10 scans in some cases, see Supplementary 185 material). The spectra were acquired at room temperature and no correction was applied for 186 the dependence of the scattered intensity on temperature and frequency (Neuville and Mysen 187 1996; Long 2002).

188

189 Band assignment

190 Figure 1 illustrates some typical Raman spectra obtained for different compositions. In Figure 1A, we show several spectra obtained for the YP phonolite composition, while Figure 1B and 191 192 C show spectra for other selected compositions. The spectra shown in Figure 1A consist of 193 two main characteristic regions: a low-frequency domain (LF) and a high frequency domain 194 (HF). The exact nature of the peaks within and between each frequency domain changes depending on composition. For instance, in YP spectra for phonolite (NBO/T = 0.18) in 195 Figure 1A, the LF is located between 250 and 650 cm⁻¹ and the HF between 820 and 1220 196 cm^{-1} whereas for HK1500 in Figure 1B (highly depolymerized composition, NBO/T = 2.42) 197 the LF is seen between 300 and almost 800 cm⁻¹ and the HF starts at 800 and seems to extend 198 199 to about 1200 cm⁻¹. An increase in depolymerization (increasing NBO/T) produces a shift of 200 the LF towards higher frequency as suggested by previous works (e.g. Mysen et al. 1982; 201 Matson et al. 1983; Wu et al. 2004; Malfait et al. 2007). 202 The general assignment for the different frequency region has been discussed previously by 203 Mercier et al. (2009). The LF region is a convolution of several individual spectral signatures 204 which are difficult to decipher and as a result the assignment is not straightforward (Rossano 205 and Mysen 2013). In general, this region is considered to represent several vibrational modes: 206 1) the symmetric stretch of bridging oxygen (BO) within tetrahedral TO₄ units (T = Si, Al; McMillan et al. 1982; Neuville et al. 2004); 2) cation motion in the silicate network (Matson 207 208 et al. 1983); 3) structural defects in the silicate network (McMillan 1984); 4) three- or four-209 membered (or higher) ring silicate structural units (Sharma et al. 1981; Galeener 1982; 210 Pasquarello and Car 1998); 5) rocking vibration in polymerized tetrahedral unit (Mysen and 211 Virgo 1980a, b). 212 The HF region is better understood with peaks assigned to the stretching vibration of various

aluminosilicate structural units (Q^n species) that have different numbers of bridging oxygens

'n' such that n is between 0 to 4 (Mysen et al. 1980, 1982; Merzbacher et al. 1991; Mysen

and Richet 2005). A fully polymerized melt structure has all TO₄ units linked with no non-215 bridging oxygens (NBO/T =0), whilst a fully depolymerized structure has no linked TO_4 216 217 tetrahedra and all oxygens are non-bridging such that NBO/T=4. It should be noted that NBO/T and the 'n' value of Qⁿ species change in the opposite direction with 218 219 depolymerisation and the 'average' value represent by NBO/T can be made up of differing proportions of various Oⁿ species. However, this mixture of Oⁿ units gives an overall shift in 220 221 the HF envelop to higher frequency as the higher Qⁿ species become more dominant in more polymerized compositions. The possibility of either Si or charge balanced Al (and possibly 222 223 other elements) in the T-site introduces further complexity in peak assignment. Comparing 224 spectra in Figure 1 we observe this effect as HK1500 (haplo-kimberlite with NBO/T = 2.42) shows a low frequency HF envelope with a prominent signature centered at 900 cm⁻¹ whereas 225 226 YP spectra (phonolite with NBO/T = 0.18) has a spectral line shape centered at around 1050 cm⁻¹. 227 Also indicated in Figure 1 is the symmetric stretch ($v_1 CO_3^{2-}$) peak for CO_3^{2-} groups which 228 can be observed at positions ranging from 1060 and 1090 cm⁻¹ in the glasses of this study. 229 This is within the known range of v_1 Raman peaks for crystalline carbonates (e.g. Farmer, 230

Boulard et al. 2012). We observe some variation in $v_1 \text{ CO}_3^{2-}$ peak position in different

233 compositions. For example the position of the $v_1 CO_3^{2-}$ in Figure 1B is 1067 cm⁻¹ for BK113

1974; Brooker and Bates, 1974; Rutt and Nicola 1974; Cloots 1991; Rividi et al. 2010;

whereas HK1500 is at 1083 cm^{-1} . However there can also be a shift between glasses of the

same composition prepared at different conditions.

236

231

237 Background problems

238 **Spectral contamination.** In some cases, the true sample signal is difficult to identify due to unwanted background interference. One problem was traced to the Olympus objectives 239 that containing glue which is adding 'contamination' peaks at ~900 and 1300 cm⁻¹ (Figure 240 1C). A similar problem was if epoxy resin of the mount manages to get included in the glass 241 sample. An example is shown in Figure 1C where we show the raw spectrum for RB107 242 243 exhibiting both epoxy and the Olympus objective Raman signal contributions. We have 244 corrected for this contamination in the spectra by subtracting 1) the spectrum from the objective taken in air at different acquisition time and 2) the spectrum from the epoxy resin 245 246 mount (Figure 1C). The resulting spectrum from RB107 after correction in Figure 1C is almost free of spurious signals apart from small sharp peaks at 700 and 925 cm⁻¹; however 247 these features do not affect the fitting for the calibration. A smooth baseline in the 1200-1350 248 cm⁻¹ frequency region is usually a good indicator of a reliable correction as this area should 249 250 be free of any Raman signal for a silicate glass and therefore totally flat. However, it should 251 be noted that any CO₂ present as the molecular species could give peaks in the 1250 to 1450 region (see Brooker et al. 1999). 252

Baseline fitting. The high intensity of the Rayleigh scattering line at 0 cm⁻¹ produces 253 a slopping background to at least 600 cm⁻¹ (Figure 2). As a result, it is necessary to perform a 254 baseline subtraction for uncorrected spectra. The influence of the Rayleigh line at higher 255 frequency (above 800 cm⁻¹) becomes less important. Such baseline subtractions have been 256 257 discussed extensively (Mercier et al. 2009; Rossano and Mysen 2013; Tarcea and Popp 258 2013). Mercier et al. (2009) tested two methods: 1) multi-linear baseline fitting (e.g. Robinet et al. 2008) and 2) polynomial spline functions (e.g. Di Muro et al. 2006). Behrens et al. 259 260 (2006) used the latter method and highlighted the difficulty in defining the parts of the spectrum that are peak-free to be used as reference points for fitting the polynomial function. 261 Although these two methods are the most widely used, other mathematical functions have 262

been considered (Tarcea and Popp 2013). In this study, we followed the method described inBehrens et al. (2006) and Mercier et al. (2009).

We fitted a third order polynomial function for the entire spectral range (several examples are 265 266 included in Figure 2). This baseline fitting procedure used three peak free frequency regions: one between 200 and 300 cm⁻¹, one between 1200 and 1340 cm⁻¹ and one intermediate 267 generally located at 800 cm⁻¹ (located at 700 cm⁻¹ for RB459). The baseline is well simulated 268 269 using a third-order polynomial equation (indicated next to each curve). Each baseline 270 equation is reported in Supplementary material. In a few cases (RB159 and RB461, see 271 Supplementary material), we were forced to use a fourth-order polynomial equation. Higher order polynomial fits are not desirable as they can produce unwanted oscillation in the 272 273 baseline (Tarcea and Popp 2013). As seen in Figure 2A and D, some of the baselines fitted in 274 this simplistic way are obviously not a perfect fit to the spectra, especially in the low frequency region below 300 cm⁻¹. However, the baseline fit in the HF reason is generally 275 successful. This may be one reason that our calibration using this region is the most 276 277 promising and our calibration using LF region produces a much large scatter in the data. As well as the poor baseline fit in the LF region and difficulty in the band assignment, it is also 278 possible that additional vibrational bands for CO_3^{2-} are present in the LF region. These low 279 intensity CO_3^{2-} peaks would always be difficult to identify (making them unsuitable for 280 281 calibration) but perhaps prominent enough to interfere with the fitting of the main melt structure peaks as required for the calibration. In theory, the v_4 in-plane bend of a CO_3^{2-} 282 group has a small Raman active band around 680 cm⁻¹ and whilst the v_2 out-of-plane bend at 283 ~880cm-1 is not Raman active, it may become so if certain conditions of local symmetry are 284 285 imposed.

RESULTS: THE CO₂ CALIBRATION METHOD

288 Spectra simulation based on peak fitting

To develop a robust calibration method we will first identify the spectra features related to 289 the main (volatile-free) melt/glass structure before considering the CO_3^{2-} peak. This is 290 291 important for the initial step in the spectral simulation procedure. As previously explained, 292 the introduction of more cations (increasing the calculated NBO/T) produces a change in the distribution of the Qⁿ units that are responsible for the peaks in the HF envelope. A great deal 293 of work has been published on the interpretation of this HF region (e.g. Mysen et al. 1982; 294 295 Seifert et al. 1982; McMillan 1984; Neuville and Mysen 1996; Rossano and Mysen 2013) 296 and it is important to establish if a full understanding of the peaks involved is important in 297 developing a successful calibration. Our fitting procedure involves fitting several Gaussian peaks to simulate the entire HF 298 envelope. The assignment of each individual Gaussian peak can be made after the simulation 299 300 is completed, and although we show that this assignment is not essential for our calibration, it 301 is important that the results broadly conform to our general understanding peak distributions 302 as a function of composition. A recent review by Rossano and Mysen (2013) shows typical 303 examples of the simulations of the Raman spectra. Invariably, recurrent positions are 304 obtained for the individual Gaussian peaks approximately centered near ~1150, ~1070, ~ 1020 , ~ 950 cm⁻¹. These positions varying as a function of composition (Malfait et al. 2007; 305 306 2008) as do the relative heights. Additional Raman features have also been observed at lower 307 frequency. Early works (Brawer and White 1977; Furukawa et al. 1981; Mysen et al. 1982) suggest that another Gaussian centered at 860 cm⁻¹ may be assigned to Q^0 species whereas Q^1 308 species may be represented by a peak at 900 cm⁻¹ (McMillan 1984). For our purpose, the 309

5/29

310	detailed assignment of each individual Gaussian proves to be unimportant as we show that
311	the calibration is dependent only on the area beneath the entire HF region.
312	For the calibration, the spectral fitting of the aluminosilicate structural units (\boldsymbol{Q}^n) and the ν_1
313	CO_3^{2-} signature were simulated together. The simulations were conducted with Origin 7.5 [©]
314	software fitting package. The selection of initial input parameters are important for an
315	accurate simulation but as previously stated these are dependent on the glass composition.
316	We show typical simulations obtained for several samples in Figure 3 and 4. The whole set of
317	fitted parameters include peak positions, full width at half maximum (FWHM) and areas with
318	associated error are all reported in Supplementary material, but in Table 2 there is a summary
319	of the peak position for the $v_1 \text{ CO}_3^{2-}$ peak and Q-species peaks. It should be emphasized that
320	each proposed simulations is not unique and represents one of several possible fits.
321	The fitting procedure for the calibration is described below, but for the YP haplo-phonolite
322	samples we also have the Raman spectrum of the volatile-free sample (YPF) allowing a more
323	rigorous testing of the fitting for the CO ₂ -free part of the structure. We simulated the CO ₂ -
324	free YPF haplo-phonolite spectra with four individual Gaussian peaks (Figure 3A)
325	corresponding to various aluminosilicate Q ⁿ structural units. Two spectra were simulated at
326	the same time so as to provide better constraints on the iterative procedure and the simulation
327	was conducted as follow:
328	- The four peaks were located at 920, 1000, 1050 and 1120 cm ⁻¹ , based on previous
329	investigations (e.g. Rossano and Mysen 2013).
330	- The FWHM of each peak was fixed at 65 cm^{-1} .
331	- A first set of iterations was performed to adjust the area of each Gaussian peak to
332	give the best fit possible at this stage. The position and the FWHM are fixed
333	during this step. The resulting quality of fit (expressed as χ^2) is usually high.

334	-	During the second iterative step, the areas and peak position are left free to evolve.
335		The iteration is performed until the χ^2 does not change.
336	-	With the peak position fixed from the second step. A third step is performed
337		where the FWHM and peak areas are optimized until the χ^2 does not change.
338	-	The second and third steps are repeated several times until we obtain the best fit
339		(lowest χ^2) possible.

As seen in Figure 3A, the resulting simulation reproduces the actual Raman spectrum well as shown by the plot of residual data. For this haplo-phonolite we obtained the following positions for the individual Gaussian: 921.2, 997.7, 1070.2 and 1132.6 cm⁻¹. The FWHM obtained are 78.6, 85.9, 96.5 and 95.6, respectively. The error on the peak position and FWHM is less than 1 cm⁻¹.

345 The simulation of the YP CO₂-bearing haplo-phonolite spectra was conducted in a similar 346 way to the YPF CO₂-free sample; however, we added an additional band corresponding to the CO_3^{2-} vibrational peak. The peak positions and the FHWM obtained for YPF were transferred 347 to the CO₂-bearing YP samples. This procedure is justified by constant composition but does 348 make the assumption that the dissolved carbonate is not affecting the Q^n species distribution 349 significantly. For these simulations, the peak position and the FWHM of the Q-species 350 structural units are fixed and one extra peak added to simulate the v_1 for $CO_3^{2^2}$. This peak 351 alone is then left totally free to evolve. As shown in Figure 3, the simulation of the $v_1 CO_3^{2-}$ 352 peak gives similar results (peak position and FWHM) in all the YP CO₂-bearing samples. The 353 low residual demonstrate the reliability of our simulation. As expected, the $v_1 CO_3^{2-}$ shows an 354 increasing intensity with increasing CO₂ content. The $v_1 CO_3^{2-}$ peak position is approximately 355 1082 cm^{-1} . The v₁ CO₃²⁻ FWHM exhibits more variability with a range between 34 and 46 356 cm^{-1} (see Table 2). The increase in FWHM seems to be correlated to the total CO₂ content: 357

358	the lowest FWHM (34 cm ⁻¹) is obtained for YP34 with 0.66 wt.% CO ₂ whereas the highest
359	FWHM (46 cm ⁻¹) is obtained for YP4 with 1.99 wt.% CO_2 (Table 2).

360 The FWHM for the fitted $v_1 CO_3^{2-}$ peak has a value which is well-below the FWHM values

of the Q-species structural units (> 78 cm⁻¹). This observation is important because we can,

362 subsequently constrain the robustness of our simulation by considering that $v_1 CO_3^{2-}$ will

363 have an FWHM not exceeding a certain value.

364 For other samples, a volatile-free equivalent glass was not available, so the Raman spectrum

simulation was more complicated. Ideally the initial guess for the Gaussian peak parameters

should be totally free, but we introduced the assumption that Q^n Gaussian peaks must be

367 wider than the $v_1 CO_3^{2-}$: on the order of 60-70 cm⁻¹ for Q^n and less than 30-40 cm⁻¹ for v_1

368 $CO_3^{2^-}$. A second assumption is that the individual Qⁿ Gaussian peak position are known

approximately and are a strong function of the initial chemical composition (e.g. Malfait et al.

2007; Rossano and Mysen 2013). A glass with a high NBO/T will have HF region shifted to a

lower frequency whereas a low NBO/T glass has the HF region shifted to the higher

frequency (see Figure 1 and 2). The distribution of area between Gaussian peaks for different

 Q^n species also changes with NBO/T in a way generally consistent with current

374 understanding.

We show several simulation results in Figure 4 and there is clearly an increase in the intensity of the fitted $v_1 CO_3^{2-}$ peak with concentration. For example, the simulation for BK115 (Figure 4C) with 11.47 wt.% CO₂ shows a considerably more intense $v_1 CO_3^{2-}$ peak compared with the simulation for 2TA1 (Figure 4A) with 0.32 wt.% CO₂. The $v_1 CO_3^{2-}$ peak position shows more variability compared to YP samples as might be expected for the range of compositions with peak position ranging from 1062 to 1092 cm⁻¹. The FWHM of the $v_1 CO_3^{2-}$ peak is on the same order as for YP samples with values ranging from 5 to 45 cm⁻¹ (Table 2). The

narrowest peaks are observed for very specific samples that in fact require two fitted peaks 382 for CO_3^{2-} . An obvious example is shown for RB66 (Figure 4F) and suggests there are at least 383 two CO_3^{2-} environments present in these glasses. This is consistent with the fact that certain 384 glasses in this study (from Brooker and Kjarsgaard 2011) have been synthesized as the 385 386 silicate component of a silicate-carbonate immiscible pair or synthesized in the one liquid 387 regions, but close to the two liquid solvus and in both cases these melts could enter the two liquid region during quenching. Most samples in this study are very clear, but a few have 388 389 been included that range from 'opalescent' to 'milky'. We have considered that some 390 carbonate liquid may have been exsolved on a microscopic scale during quenching, subsequently crystallizing to give a second sharper $v_1 CO_3^{2-}$ peak as expected for crystalline 391 392 carbonates. However, there is no correlation between the presence of the second peak and the 393 clarity or 'milkyness' of the sample. All the samples with two peaks are optically clear apart 394 from RB66 and RB163, whereas several opalescent samples have only one peak (BK 32, 39, 48 and RB8). 395 396 Although, it adds another variable in the simulation of the spectra, the residual plot shows that the spectra can be simulated with good accuracy where two carbonate peaks are required. 397 398 Even when the samples are opalescent and/or have two peaks such as RB66, the peaks areas still seem to give the correct quantification in the following calibration. 399 400

401 A linear calibration for total CO₂ content

402 Following previous studies (Thomas 2000; Zajacz et al. 2005; Behrens et al. 2006; Mercier et

al. 2009) that investigated the relationship between the areas of the broad water band at 3550

404 cm⁻¹ and the silicate glass structure (either the HF or LF) we have applied the same procedure

405 to see if the ratio of the $v_1 CO_3^{2-}$ to HF peak areas is proportional to the total CO₂ content.

406	The LF areas were also considered but produce poor results for the reasons previously
407	described; in particular the difficulty of fitting a third-order polynomial baseline underneath
408	the LF region.

410 homogeneity and reproducibility, which are discussed along with other sources of error

411 below. In Figure 5 the entire set of CO₃/HF ratios are plotted against the wt.% CO₂ as

412 measured by bulk analyses or FTIR. Figure 5B has a more detailed view of the dataset at low

413 CO₂ content below 1 wt.% CO₂ but above our estimated minimum detection limit of 0.2

wt.%. The dataset is presented in three groups: 1) the YP haplo-phonolite samples (constant 414

composition), 2) the other compositions for which the simulation lead to one single $v_1 CO_3^{2-}$ 415

peak and 3) the compositions for which two $v_1 CO_3^{2-}$ peaks were needed for the simulation. 416

417 Perhaps surprisingly, we observe that this third group does not noticeably depart from the

418 linear trend established by the other two groups.

419 In Figure 5B the shaded area illustrates our minimum detection limit (m.d.l.) where it was not

possible to resolve CO_3^{2-} peaks from the silicate envelope. Our attempt to simulate the 420

spectra for an alkali-basalt with a CO_2 content lower than 0.2 wt.% did not require any peak 421

at ~1070 cm⁻¹ making it impossible to obtain a CO_3/HF ratio. 422

The excellent linear correlation of the $v_1 CO_3^{2-}$ intensity as a function of total CO₂ content 423 (Figure 5), allows us to propose the following linear equation for the entire 143 point dataset: 424

425
$$wt.\% CO_2 = 15.17 \times \frac{CO_3}{HF}$$
 Eq. 1

This equation leads to a correlation factor of 0.9747. Included in Table 2 is the calculated 426 CO_2 content from this linear regression and the corresponding CO_3 /HF with its associated 427 error. This can be compared with the actual measured value as presented in Table 1. 428

5/29

429

430 Sources of error in the Raman measurements and linear fit

431	We have considered several sources of error associated with either the samples themselves or
432	the simulation of the Raman spectra or the linear fit. The error associated with any sample
433	heterogeneity can be represented by the standard deviation (1σ) obtained on replicated
434	CO ₃ /HF ratios. For a few samples, we did observe a significant range of CO ₃ /HF values. For
435	instance if we consider the CO_3/HF given in Table 2 for HK1500 and calculate the average
436	and standard deviation of the CO ₃ /HF ratio we obtain a value of 0.540 ± 0.064 (see
437	Supplementary material). This standard deviation value corresponds to a CO ₂ change on the
438	order of ± 1.0 wt.% or 12% relative. The CO ₃ /HF standard deviation calculated for all
439	samples excluding HK1500 is far less than this, averaging ± 0.010 which corresponds to
440	± 0.15 wt.% CO ₂ . This suggests that we can consider that the investigated glass samples are
441	homogeneous and the spectra features are highly reproducible.
442	The second type of error is related to the simulation itself. The error reported by the fitting
443	software probably underestimates the true error on the calculated CO_3/HF ratio. We have
444	tested several ways to provide a more realistic error on each CO ₃ /HF value. The first attempt
445	was to change the position of the $v_1 \text{ CO}_3^{2-}$ peak and quantify the corresponding change in the
446	peak area. For each Raman spectrum, we have one data point every 1 cm ⁻¹ ; therefore we have
447	applied a variation of ± 0.5 cm ⁻¹ in the v ₁ CO ₃ ²⁻ peak position which is more than twice the
448	software reported error ($\pm 0.2 \text{ cm}^{-1}$). Adopting this procedure did not produce any significant
449	error on the CO_3/HF ratio. Even for the samples with the lowest CO_2 content (e.g. #4-3), the
450	calculated error of less than 0.05 wt.% CO ₂ is not significant.

451	The third source of error is related to the estimated peaks areas. Following Mysen et al.
452	(1982) we have applied 5% error on the fitted peak areas and this was propagated through
453	standard error calculation to the CO_3/HF ratios. The resulting error is given in Table 2 for
454	each CO ₃ /HF value. The largest error (1 σ) on the CO ₃ /HF is generated for the RB8 analyses
455	giving ± 0.080 on the CO ₃ /HF (see Table 2). In term of CO ₂ content, this corresponds to ± 1.25
456	wt.% CO ₂ (or 8% relative). The lowest error on the CO ₃ /HF is on the order of ± 0.001 (see
457	Table 2) which corresponds to about 5% relative for RB466 (1.1 wt%) and #4-4 (0.43 wt%).
458	The average of all the calculated the peak area errors (see Supplementary material) is ± 0.018
459	on the CO ₃ /HF, which corresponds to ± 0.3 wt.% CO ₂ .
460	A fourth source of error related to the linear regression in Figure 5. As shown for Eq. 1, the
461	scaling factor relating the CO ₂ content to the CO ₃ /HF is 15.17 with an error of ± 0.17 . This
462	value represents the error in 1σ for 95% confidence interval. The linear fit also gives the
463	lower and upper limit confidence intervals which are 14.83 and 15.51, respectively. These
464	two values lead to an error on the 95% confidence interval of ± 0.34 . This error value is of a
465	similar order to the 5% error applied to the peaks area.
466	Considering the different types of error mentioned above, the expected accuracy for the
467	calibrated CO ₂ content determination is much better than ± 0.4 wt.% CO ₂ . This is not as
468	precise or as sensitive as some other techniques such as IR at low concentrations of CO_2 , but
469	is comparable at higher concentrations and could be considered more accurate as it is
470	independent of compositional factors such as IR extinction coefficients.
476	There is one fourther extended a former of the life (L. D. S.
4/1	i nere is one further potential source of error related to the Raman scattering cross-sections

for the different Q^n species and indeed the carbonate. In common with the water calibration

- of Le Losq et al. (2012) we observe a direct and linear relationship between CO₃/HF ratios
- and the volatile content. This implies that the average Raman scattering cross section of all

475	the different Q ⁿ species in the HF envelope is always the same and additionally that the
476	carbonate scattering cross-section (and OH) is also independent of composition. However,
477	current knowledge of the Raman scattering cross-sections for the different Q ⁿ species,
478	suggest they vary considerably (see Frantz and Mysen 1995). The molecular dynamic
479	simulations of Wu et al. (2004) suggest the peak area for the same mol.% of silicate
480	tetrahedral may fall by half as the Q ⁿ distribution changes between NBO/T values of 2 and 1
481	and by half again between 1 and 0. For a constant area carbonate peak this should introduce a
482	compositional dependence that will double the apparent amount of carbonate each time. Our
483	calibration clearly demonstrated that this is not the case and the fixed carbonate area
484	represents the same amount of CO_2 . Le Losq et al. (2012) suggests that the Raman cross-
485	section coefficients are cancelled by the baseline subtraction therefore allowing the direct use
486	of species ratio (i.e. water / silicate glass) for quantitative purposes. An alternative is that the
487	carbonate (and OH) peak cross section changes with composition in a way that exactly
488	cancels out the Q-species compositional effect. Without a systematic study involving specific
489	compositions designed to test these theories, we can only claim our empirical observation
490	appears to work in the same way as the water calibration of Le Losq et al. (2012) and it is not
491	possible to evaluate any associated error.

493 Spectral characteristics of the carbonate group in glasses

494 The shifting position of the fitted carbonate peak has been noted above and can be seen in

Table 2. Although these fitted v_1 peak positions are in the general range for crystalline

- 496 carbonates, they do not match the exact position for the corresponding cations between
- 497 crystals and even the more simple glass compositions where the cation options are limited.
- 498 Attempts to correlate this shift against various compositional parameters (cation

5/29

499 concentrations, NBO/T and peralkalinity) also proved unsuccessful. However, the samples 500 made at higher pressures did tend the have peaks at higher frequencies and some correlation 501 was found between the peak position and the estimate melt density (at run conditions). This is 502 actually difficult to quantify in a meaningful way as the melt has a different density to the 503 glass, which has its structure 'frozen in' at the pressure-temperature conditions of the glass 504 transition (Tg). This depends on the P-T path during quenching of the experiment and Tg has 505 a compositional dependence that is also difficult to estimate accurately. In addition, the CO₂ 506 speciation may have a different 'effective Tg' to the traditional melt structure value and some 507 unobserved molecular CO_2 may also be being converted to carbonate during quenching 508 (Morizet et al. 2007; Spickenborn et al. 2010). In Figure 6 we use the dataset for haplo-509 phonolite to make the empirical observation that for a single composition (i.e. with a 510 relatively constant Tg value) the peak shifts to higher frequency with calculated melt density 511 using Lange and Carmichael (1990) model, pressure having the most obvious effect. Similar 512 effects can be seen for the andesite (RB466 & 459) and Fe-Phonolite (RB 465 & 461) at 1.5 513 to 2.0 GPa as well as the more depolymerised composition (NBO/T = 2) of R85Ca10 and R85Ca15 from 1.0 to 1.5 GPa. This suggests the v_1 C-O stretching mode of the carbonate 514 515 maybe partly constrained by the physical constriction of the surrounding aluminosilicate 516 network rather than being controlled by solely by variations in the local coordinating cations that are responsible for the position shift in crystalline materials (Farmer, 1974; Brooker and 517 518 Bates, 1974).

519

520

APPLICATION OF THE TECHNIQUE

- 521 This study has established both the potential and limitations for the use of Micro-Raman
- 522 spectroscopy in the quantitative analysis of CO₂ in aluminosilicate glasses. The method used

523	to calibrate the CO_2 content via Raman spectroscopy is similar to the most recent calibration
524	developed for H ₂ O content in glasses, using the area ratio of a volatile species peak to
525	aluminosilicate peaks between 800 and 1200 cm ⁻¹ . For CO_2 (in this case represented by
526	dissolved carbonate species) there is the added complication that the Raman active $\nu_1 \mbox{ peak}(s)$
527	for CO_3^{2-} are between 1060 and 1090 cm ⁻¹ and therefore overlap with this aluminosilicate
528	region. Ultimately, it is this overlap that limits the sensitivity of the technique to CO_2 content
529	above 0.2 wt.%, but it appears possible to accurately identify the carbonate component of the
530	HF envelope at higher concentrations up to at least 16 wt.%. Unfortunately, the lower
531	detection level will limit the application of Raman for the majority of natural volcanic
532	systems where concentrations tend to be lower. However, the technique has great potential
533	for some peralkaline volcanoes, especially where silicate melts are associated with
534	carbonatites (Mitchell and Dawson 2012; Guzmics et al. 2012; De Moor et al. 2013). In
535	addition, silicate glass is constantly being discovered in mantle xenoliths where it is
536	sometime associated with carbonates (Amundsen 1989; Pyle and Haggerty 1994; Kogarko et
537	al. 2001; Laurora et al. 2001; Hurai et al. 2007). The issue of what these mantle carbonates
538	represent (solid phases or quenched immiscible melts) may be evaluated by analysis of the
539	CO ₂ content of the silicate glass.
540	However, the most useful application for this technique will be the analysis of silicate melts
541	in high pressure, experimental studies. Especially those investigating carbonate-silicate melt
542	immiscibility (e.g., Brooker and Kjarsgaard 2011) and carbonated mantle melting (e.g.,
543	Dalton and Presnall 1998; Moore and Wood 1998; Dasgupta et al. 2006). With increasing
544	pressure the experimental samples become ever smaller and difficult to analyze with other
545	techniques, particularly when small pockets of partial melt are involved. In theory, the

simultaneous analysis of both water and CO_2 in glasses should be possible with this

technique, although this remains to be tested. The possibility of measuring molecular CO_2 is also an area that may be developed in the future.

549 The linear nature of the calibration also has interesting implications for Raman investigations of silicate glass structure and the CO₂ solubility mechanism. As previously discussed, the 550 551 most striking feature of Figure 5 is the clear linear correlation between the CO₃/HF ratio and 552 the measured CO₂ content over the whole range of compositions considered. Whilst clearly a 553 desirable result, this independence from the glass composition is perhaps an area requiring 554 further investigation as it remains at odds with our understanding of the Raman scattering coefficients (see above). One possibility is that different Qⁿ species in HF region could be 555 related to specific NBOs that favor a reaction with CO_2 to give $CO_3^{2^2}$ (Brooker et al. 2001a; 556 Iacono-Marziano et al. 2012) and this counteracts the scattering cross sectional effect in a 557 systematic way. 558

559 Another important aspect related to silicate melt structure is the way the peak position for the $CO_3^{2-}v_1$ vibration mode appears to shift with calculated melt density. This is different to the 560 561 shift observed in crystalline carbonates resulting from the substitution of cations with different radii, although these solid materials do also demonstrate a peak shift related to 562 563 pressure. The glass shift may represent a response of this symmetric vibration to the 564 'physical' confining nature of the surrounding melt structure. This is in contrast to the v_3 asymmetric CO_3^{2-} mode investigated by infrared spectroscopy, which appears to be more 565 566 sensitive to the 'chemical' nature or surrounding cations (Brooker et al., 2001b). Whether the shift in silicate glasses has potential to estimate the quenching pressure for melt inclusions 567 remain to be explored. 568

569

570 Acknowledgement

571	The authors are grateful to the University of Orléans, the University of Nantes, the University
572	of Bristol and the CNRS for their financial support and access to analytical facilities. We
573	would like to thank B.O. Mysen for handling the manuscript and the constructive reviews by
574	two anonymous reviewers which greatly improved the quality of the manuscript.
575	
576	References
577	Aiuppa, A., Bertagnini, A., Metrich, N., Moretti, R., Di Muro, A., Liuzzo, M., and
578	Tamburello, G. (2010) A model of degassing for Stromboli volcano. Earth Planetary Science
579	Letters, 295, 195-204.
580	
581	Amundsen, H.E.F. (1987) Evidence for liquid immiscibility in the upper mantle. Nature, 327,
582	692-695.
583	
584	Behrens, H., Roux, J., Neuville, D.R., and Siemann, M. (2006) Quantification of dissolved

H₂O in silicate glasses using confocal microRaman spectroscopy. Chemical Geology, 229,
96–112.

- Behrens, H., Misiti, V., Freda, C., Vetere, F., Botcharnikov, R.E., and Scarlato, P. (2009)
- 589 Solubility of H₂O and CO₂ in ultrapotassic melts at 1200 and 1250°C and pressure from 50 to
- 590 500 MPa. American Mineralogist, 94, 105–120.
- 591

592	Blank, J.G., Stolper, E.M., and Carroll, M.R. (1993) Solubilities of carbon dioxide and water
593	in rhyolitic melt at 850°C and 750 bars. Earth Planetary Science Letters, 119, 27-36.
594	
595	Blank, J.G. and Brooker, R.A. (1994) Experimental studies of carbon dioxide in silicate
596	melts: solubility, speciation and stable isotope behavior. In: Carroll M.R., Holloway J.R. (eds)
597	Volatiles in magmas. (Reviews in mineralogy) Mineralogical Society of America, Washington, DC
598	30, 157–186.
599	
600	Botcharnikov, R.E., Behrens, H., and Holtz, F. (2006) Solubility and speciation of C-O-H

fluids in andesitic melt at T=1100–1300°C and P=200 and 500 MPa. Chemical Geology, 229,
125–143.

603

Boulard, E., Guyot, F., and Fiquet, G. (2012) The influence on Fe content on Raman spectra
and unit cell parameters of magnesite-siderite solid solutions. Physics and Chemistry of
Minerals, 39, 239-246.

607

Brawer, S.A. and White, W.B. (1977) Raman spectroscopic investigation of the structure of
silicate glasses. II. Soda-alkaline earth-alumina ternary and quaternary glasses. Journal of
Non-Crystalline Solids, 23, 261-278.

611

Brooker, M.H. and Bates, J.B. (1974) Raman and infrared spectral studies of anhydrous

potassium and rubidium carbonates. Spectrochimica Acta, 80, 2211-2220.

614

- Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., and Carroll, M.R. (1999)
- 616 Solubility, speciation and dissolution mechanisms for CO₂ in melts on the NaAlO₂-SiO₂ join.
- 617 Geochimica Cosmochimica Acta, 63, 3549-3565.

618

- 619 Brooker, R.A., Kohn, S.C., Holloway, J.R., and McMillan, P.F. (2001a) Structural controls
- on the solubility of CO_2 in silicate melts. Part I: Bulk solubility data. Chemical Geology, 174,
- 621 225–240

622

- Brooker, R.A., Kohn, S.C., Holloway, J.R., and McMillan, P.F. (2001b) Structural controls
- on the solubility of CO₂ in silicate melts. Part II: IR characteristics of carbonate groups in
- silicate glasses. Chemical Geology, 174, 241–254.

626

Brooker, R.A., Sparks, R.S.J., Kavanagh, J.L., and Field, M. (2011) The volatile content of

628 hypabyssal kimberlite magmas: some constraints from experiments on natural rock

629 compositions. Bulletin of Volcanology, 73, 959-981.

630

- Brooker, R.A. and Kjasgaard, B.A. (2011) Silicate-carbonate liquid immiscibility and phase
- relations in the System SiO_2 -Na₂O-Al₂O₃-CaO-CO₂ at 0.1-2.5 GPa with applications to
- carbonatite genesis. Journal of Petrology, 52, 1281-1305.

6	3	5
_	_	-

- Burke, E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos 55, 139–158.
 Chabiron, A., Pironon, J., and Massare, D. (2004) Characterization of water in synthetic
 rhyolitic glasses and natural melt inclusions by Raman spectroscopy. Contribution to

Mineralogy and Petrology, 146, 485-492.

641

640

642	Cloots, R. (1991) Raman spectrum of carbonates MnCO ₃ in the 1100-1000 cm ⁻¹	region:
-----	--	---------

observation of the v_1 mode of the isotopic $(C^{16}O_2^{18}O)^{2-}$ ion. Spectrochimica Acta A, 47, 1745-1750.

645

```
646 Dalton, J.A. and Presnall, D.C. (1998) The continuum of primary carbonatitic-kimberlitic
```

647 melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al $_2O_3$ –

648 SiO₂–CO₂ at 6 GPa. Journal of Petrology, 39, 1953–1964

649

```
Dasgupta, R., Hirschmann, M.M., and Stalker, K. (2006) Immiscible transition from
```

carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO_2 and

652 genesis of silica-undersaturated Ocean Island Lavas. Journal of Petrology, 47, 647-671.

653

De Moor, J.M., Fischer, T.P., King, P.L., Botcharnikov, R.E., Hervig, R.L., Hilton, D.R.,

Barry, P.H., Mangasini, F., and Ramirez, C. (2013) Volatile-rich silicate melts from Oldoinyo

- Lengai volcano (Tanzania): Implications for carbonatite genesis and eruptive behavior. Earth
- and Planetary Science Letters, 361, 379-390.

- Di Muro, A., Villemant, B., Montagnac, G., Scaillet, B., and Reynard, B. (2006)
- 660 Quantification of water content and speciation in natural silicic glasses (phonolite, dacite,
- rhyolite) by confocal microRaman spectrometry. Geochimica Cosmochimica Acta, 70, 2868-

662 2884.

663

664 D	xon, J.E. and Sto	lper, E.M. (1	1995) An exp	perimental study	y of water and	l carbon dioxide
-------	-------------------	---------------	--------------	------------------	----------------	------------------

solubilities in mid-ocean ridge basaltic liquids. Part II: Application to Degassing. Journal of

666 Petrology, 36, 1633–1646.

667

Dixon, J.E. (1997) Degassing of alkalic basalts. American Mineralogist, 82, 368–378.

669

Dubessy, J., Poty, B., and Ramboz, C. (1989) Advances in C–O–H–N–S fluid geochemistry

based on micro-Raman spectrometric analysis of fluid inclusions. European Journal of

672 Mineralogy, 1, 517–534.

673

Farmer, V.C. (1974) The Infrared Spectra of Minerals. Mineralogical Society, London, 539pp.

677	Fine, G. and Stolp	er, E.M. (198:	5) The speciation	of carbon dioxi	de in sodium	aluminosilicate
-----	--------------------	----------------	-------------------	-----------------	--------------	-----------------

glasses. Contribution to Mineralogy and Petrology, 91, 105–121.

679

- 680 Fine, G. and Stolper, E.M. (1986) Dissolved carbon dioxide in basaltic glasses:
- 681 concentrations and speciation. Earth Planetary Science Letters, 76, 263–278.

682

- 683 Fogel, R.A. and Rutherford, M.J. (1990) The solubility of carbon dioxide in rhyolitic melts:
- A quantitative FTIR study. American Mineralogist, 75, 1311–1326.

685

Frantz, J.D. and Mysen, B.O. (1995) Raman spectra and structure of BaO-SiO₂, SrO-SiO₂,
and CaO-SiO₂ melts to 1600°C. Chemical Geology, 121, 155-176.

688

- 689 Fulignati, P., Marianelli, P., Métrich, N., Santacroce, R., and Sbrana, A. (2004) Towards a
- reconstruction of the magmatic feeding system of the 1944 eruption of Mt Vesuvius. Journal
- of Volcanology and Geothermal Research, 133,13-22.

692

- 693 Furukawa, T., Fox, K.E., and White, W.B. (1981) Raman spectroscopic investigation of the
- 694 structure of silicate glasses. III. Raman intensities and structural units in sodium silicate
- glasses. Journal of Chemical Physics, 75, 3226–3237.

696

697 Galeener, F.L. (1982) Planar rings in glasses. Solid State Communications, 44, 1037–1040.

```
698
```

Gerlach, T.M. and Graeber, E.J. (1985) Volatile budget of Kilauea volcano. Nature, 313, 273277.

701

- Guzmics T., Mitchell, R.H., Szabo, C., Berkesi, M., Milke, R., and Ratter, K. (2012) Liquid
- immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-
- 704 precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic
- magma. Contributions to Mineralogy and Petrology, 164, 101–122

706

- 707 Holloway, J.R. and Blank, J.G. (1994) Application of experimental results to C-O-H species
- in natural melts. In: Carroll M.R., Holloway J.R. (eds) Volatiles in magmas. (Reviews in

mineralogy) Mineralogical Society of America, Washington, DC 30, pp 157-230.

710

- Hurai, V., Huraiova, M., Konecny, P., and Thomas, R. (2007) Mineral-melt-fluid
- composition of carbonate-bearing cumulate xenoliths in Tertiary alkali basalts of southern
- 713 Slovakia. Mineralogical Magazine, 71, 63-79.

714

- 715 Iacono-Marziano, G., Gaillard, F., and Pichavant, M. (2008) Limestone assimilation by
- basaltic magmas: an experimental re-assessment and application to Italian volcanoes.
- 717 Contribution to Mineralogy and Petrology, 155, 719-738.

719	Iacono-Marziano, G., Morizet, Y., Le Trong, E., and Gaillard, F. (2012) New experimental
720	data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochimica
721	Cosmochimica Acta, 97, 1-23.
722	
723	Jakobsson, S. (1997) Solubility of water and carbon dioxide in an icelandite at 1400°C and 10
724	kilobars. Contribution to Mineralogy and Petrology, 127, 129-135.
725	
726	Jambon, A. (1994) Earth degassing and large-scale geochemical cycling of volatile elements.
727	In: Carroll M.R., Holloway J.R. (eds) Volatiles in magmas. (Reviews in mineralogy)
728	Mineralogical Society of America, Washington, DC, 30, pp 479-517.

Kerrick, D.M. (2001) Present and past nonanthropogenic CO₂ degassing from the solid Earth.
Reviews of Geophysics, 39, 565-585.

732

King, P.L. and Holloway, J.R. (2002) CO₂ solubility and speciation in intermediate

(and esitic) melts: the role of H_2O and composition. Geochimica Cosmochimica Acta, 66,

735 1627–1640.

- 737 Kogarko, L.N., Kurat, G., and Ntaflos, T. (2001). Carbonate metasomatism of the oceanic
- mantle beneath Fernando de Noronha Island, Brazil. Contributions to Mineralogy and
- 739 Petrology, 140, 577-587.

741	Lange, R., and Carmichael, I.S.E (1990) Thermodynamic properties of silicate liquids with
742	emphasis on density, thermal expansion and compressibility. In: Nicholls J. and Russell J.K.
743	(eds) Modern methods of igneous petrology: Understanding magmatic processes (Reviews in
744	Mineralogy) Mineralogical Society of America, Washington, DC, 24, pp 25-64.
745	
746	Laurora, A., Mazzucchelli, M., Rivalenti, G., Vannucci, R., Zanetti, A., Barbieri, M.A., and
747	Cingolani, C.A. (2001). Metasomatism and melting in carbonated peridotite xenoliths from
748	the mantle wedge: The Gobernador Gregores case (southern Patagonia). Journal of Petrology,
749	42, 69-87.
750	
751	Le Losq, C., Neuville, D.R., Moretti, R., and Roux, J. (2012) Determination of water content
752	in silicate glasses using Raman spectrometry: Implications for the study of explosive
753	volcanism. American Mineralogist, 97, 779-790.
754	
755	Long, D.A. (2002). The Raman Effect: A Unified Treatment of the Theory of Raman
756	Scattering by Molecules. John Wiley and Sons, Eds pp. 598.
757	
758	Malfait, W.J., Zakaznova-Herzog, V.P., and Halter, W.E. (2007) Quantitative Raman

- spectroscopy: High-temperature speciation of potassium silicate melts. Journal of Non-
- 760 Crystalline Solids, 353, 4029-4042.
- 761

	762	Malfait, W.J.	, Zakaznova-Herzog,	V.P.	, and Halter,	W.E.	(2008)) (Juantitative Ra	ama
--	-----	---------------	---------------------	------	---------------	------	--------	-----	-----------------	-----

spectroscopy: Speciation of Na-silicate glasses and melts. American Mineralogist, 93, 15051518.

765

Marty, B. and Tolstikhin, I.N. (1998) CO₂ fluxes from mid-ocean ridges, arcs and plumes.

767 Chemical Geology, 145, 233-248.

768

- 769 Matson, D.W., Sharma, S.K., and Philpotts, J.A. (1983) The structure of high-silica alkali-
- silicate glasses. A Raman spectroscopic investigation. Journal of Non-Crystalline Solids, 58,323-352.

772

773	McMillan, P.F., Piriou, B., and Navrotsky, A. (1982) A Raman spectroscopic study of glasses
774	along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium
775	aluminate. Geochimica Cosmochimica Acta, 46, 2021-2037.
776	
777	McMillan, P.F. (1984) Structural studies of silicate glasses and melts - applications and

1778 limitations of Raman spectroscopy. American Mineralogist, 69, 622-644.

- 780 Mercier, M., Di Muro, A., Giordano, D., Métrich, N., Lesne, P., Pichavant, M., Scaillet, B.,
- and Clocchiatti, R. (2009) Influence of glass polymerisation and oxidation on micro-Raman
- water analysis in alumino-silicate glasses. Geochimica Cosmochimica Acta, 73, 197–217.

784	Merzbacher, C.I. and White, W.B. (1991) The structure of alkaline earth aluminosilicate
785	glasses as determined by vibrational spectroscopy. Journal of Non-Crystalline Solids, 130,
786	18-34.
787	
788	Mitchell, R.H. and Dawson, J.B. (2012) Carbonate-silicate immiscibility and extremely
789	peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai
790	Volcano, Tanzania. Lithos, 152, 40–46
791	
792	Moore, K. and Wood, B.J. (1998) The transition from carbonate to silicate melts in the CaO-

794

793

Morizet, Y., Kohn, S.C., and Brooker, R.A. (2001) Annealing experiments on CO₂-bearing

MgO-SiO₂ -CO₂ system. Journal of Petrology **39**, 1943-1952.

jadeite glass: an insight into the true temperature dependence of CO₂ speciation in silicate

melts. Mineralogical Magazine, 65, 701-707.

798

```
Morizet, Y., Brooker, R.A., and Kohn, S.C. (2002) CO<sub>2</sub> in haplo-phonolite melt: solubility,
```

speciation and carbonate complexation. Geochimica Cosmochimica Acta, 66, 1809–1820.

801

Morizet, Y., Nichols, A.R.L., Kohn, S.C., Brooker, R.A., and Dingwell, D.B. (2007) The

influence of H_2O and CO_2 on the glass transition temperature: insights into the effects of

volatiles on magma viscosity. European Journal of Mineralogy, 19, 657-669.

5/29

8	0	5
_	_	_

806	Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2009) Raman quantification factor
807	calibration for CO-CO ₂ gas mixture in synthetic fluid inclusions: application to oxygen
808	fugacity calculation in magmatic systems. Chemical Geology, 264, 58-70.
809	
810	Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2010) C-O-H fluid solubility in
811	haplobasalt under reducing conditions: An experimental study. Chemical Geology, 279, 1-16.
812	
813	Mormone, A., Piochi, M., Bellatreccia, F., De Astis, G., Moretti, R., Della Ventura, G.,
814	Cavallo, A., and Mangiacapra, A. (2011) A CO ₂ -rich magma source beneath the Phlegraean
815	Volcanic District (Southern Italy): Evidence from a melt inclusion study. Chemical Geology,
816	287, 66-80.
817	
818	Mysen, B.O., Virgo, D., and Scarfe, C.M. (1980) Relations between the anionic structure and
819	viscosity of silicate melts – a Raman spectroscopic study. American Mineralogist, 65, 690-
820	710.
821	
822	Mysen, B.O., Virgo, D., and Seifert, F.A. (1982) The structure of silicate melts: implications
823	for chemical and physical properties of natural magma. Reviews of Geophysics and Space
824	Physics, 20, 353-383.
825	

826	Mysen, B.O. and Virgo, D. (1980a) Solubility mechanisms of carbon dioxide in silicate
827	metals: a Raman spectroscopic study. American Mineralogist, 65, 885-899.
828	
829	Mysen, B.O. and Virgo, D. (1980b) Solubility mechanisms of water in basalt melt at high
830	pressures and temperatures: NaCaAlSi ₂ O ₇ -H ₂ O as a model. American Mineralogist, 65,
831	1176-1184.
832	
833	Mysen, B.O. and Richet, P. (2005) Silicate glasses and melts: Properties and structure. 560
834	pp.
835	
836	Mysen, B.O. (1988) Structure and properties of silicate melts. Developments in
837	Geochemistry, vol. 4. Elsevier, Amsterdam, 354 pp.
838	
839	Mysen, B.O. (2007) The solution behavior of H2O in peralkaline aluminosilicate melts at
840	high pressure with implications for properties of hydrous melts. Geochimica Cosmochimica
841	Acta, 71, 1820-1834.
842	
843	Neuville, D.R. and Mysen, B.O. (1996) Role of the Al in the silicate network: in situ, high
844	temperature study of glasses and melts on the join SiO ₂ -NaAlO ₂ . Geochimica Cosmochimica
845	Acta, 60, 1727-1737.

- 847 Neuville, D.R., Cormier, L., and Massiot, D. (2004) Al environment in tectosilicate and
- 848 peraluminous glasses: a ²⁷Al MQMAS NMR, Raman, and XANES investigation. Geochimica
- 849 Cosmochimica Acta, 68, 5071–5079.

- 851 Oppenheimer, C., Moretti, R., Kyle, P.R., Eschenbacher, A., Lowenstern, J.B., Hervig, R.L.,
- and Dunbar, N.W. (2011) Mantle to surface degassing of alkalic magmas at Erebus volcano,
- Antartica. Earth Planetary Science Letters, 306, 261-271.

854

Pan, V., Holloway, J.R., and Hervig, R.L. (1991) The pressure and temperature dependence

of carbon dioxide solubility in tholeiitic basalt melts. Geochimica Cosmochimica Acta, 55,

858

857

1587-1595.

Papale, P. and Polacci, M. (1999) Role of carbon dioxide in the dynamics of magma ascent in
explosive eruptions. Bulletin of Volcanology, 60, 583-594.

861

Pasquarello, A. and Car, R. (1998) Identification of Raman defect lines as signatures of ring
structures in vitreous silica. Physical Review Letters, 80, 5145–5147.

- Pyle, J.M. and Haggerty, S.E. (1994) Silicate-carbonate liquid immiscibility in upper-mantle
- 866 eclogites: Implications for natrosilicic and carbonatitic conjugate melts. Geochimica et
- 867 Cosmochimica Acta, 58, 2997-3011.

- Rai, C.S., Sharma, S.K., Muenow, D.W., Matson, D.W., and Byers, C.D. (1983) Temperature
- dependence of CO_2 solubility in high pressure quenched glass of diopside composition.
- 871 Geochimica Cosmochimica Acta, 47, 953–958.

872

- 873 Rividi, N., Van Zuilen, M., Philippot, P., Ménez, B., Godard, G., and Poidatz, E. (2010)
- 874 Calibration of carbonate composition using Micro-Raman analysis: Application to planetary
- surface exploration. Astrobiology, 10, 293-309.

876

- 877 Robinet, L., Bouquillon, A., and Hartwig, J. (2008) Correlations between Raman parameters
- and elemental composition in lead and lead alkali silicate glasses. Journal of Raman
- 879 Spectroscopy, 39, 618–626.

880

- 881 Rossano, S. and Mysen, B.O. (2013) Raman spectroscopy of silicate glasses and melts in
- geological system. In: Dubessy J., Caumon M.C., Rull F. (eds) Raman spectroscopy applied
- to Earth Sciences and Cultural Heritage (EMU notes in Mineralogy) Mineralogical Society of

884 America, 12, pp 321-366.

885

Rutt, H.N. and Nicola, J.H. (1974) Raman spectra of carbonates of calcite structure. Journal
of Physics C Solid State Physics, 7, 4522-4528.

889	Seifert, F.A., Mysen, B.O., and Virgo, D. (1982) Three-dimensional network structure in the
890	systems SiO ₂ -NaAlO ₂ , SiO ₂ -CaAl ₂ O ₄ and SiO ₂ -MgAl ₂ O ₄ . American Mineralogist, 67, 696-
891	711.

- 893 Sharma, S.K., Mammone, J.F., and Nicol, M.F. (1981) Raman investigation of ring
- configurations in vitreous silica. Nature, 292, 140-141..

895

- 896 Shimizu, K., Shimizu, N., Komiya, T., Suzuki, K., Maruyama, S., and Tatsumi, Y. (2009)
- 897 CO₂-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island,

898 Colombia. Earth Planetary Science Letters, 288, 33-43.

899

Spickenbom, K. Sierralra, M. and Nowak, M. (2010) Carbon dioxide and argon diffusion in
silicate melts: Insights into the CO₂ speciation in magmas. Geochimica Cosmochimica Acta,
74, 6541-6564.

903

```
Stolper, E.M. and Holloway, J.R. (1988) Experimental determination of the solubility of
carbon dioxide in molten basalt at low-pressure. Earth Planetary Science Letters, 87, 397–
408.
```

- 908 Symonds, R.B., Rose, W.I., Bluth, G.J.S., and Gerlach, T.M. (1994) Volcanic-gas studies:
- 909 Methods, Results and Applications. In: Carroll M.R., Holloway J.R. (eds) Volatiles in

910	magmas. (Reviews in mineralogy) Mineralogical Society of America, Washington, DC, 30,
911	pp 1-66.
912	
913	Tamic, N., Behrens, H., and Holtz, F. (2001) The solubility of H ₂ O and CO ₂ in rhyolitic melts
914	in equilibrium with a mixed CO ₂ -H ₂ O fluid phase. Chemical Geology, 174, 333-347.
915	
916	Tarcea, N. and Popp, J. (2013) Raman data analysis. In: Dubessy J., Caumon M.C., Rull F.
917	(eds) Raman spectroscopy applied to Earth Sciences and Cultural Heritage (EMU notes in
918	Mineralogy) Mineralogical Society of America, 12, pp 193-226.
919	
920	Thibault, Y. and Holloway, J.R. (1994) Solubility of CO ₂ in a Ca-rich leucitite: Effects of
921	pressure, temperature, and oxygen fugacity. Contribution to Mineralogy and Petrology, 116,
922	216–224.
923	
924	Thomas, R. (2000) Determination of water contents of granite melt inclusions by confocal
925	laser Raman microprobe spectroscopy. American Mineralogist, 85, 868-872.
926	
927	Thomas, R., Metrich, N., Scaillet, B., Kamenetsky, V., and Davidson, P. (2008)
928	Determination of water in Fe-rich basalt glasses with confocal micro-Raman spectroscopy.
929	Zeitschrift für Geologische Wissenschaften, 36, 31–37.
930	

- Vetere, F., Botcharnikov, R.E., Holtz, F., Behrens, H., and De Rosa, R. (2011) Solubility of
- H_2O and CO_2 in shoshonitic melts at 1250°C and pressures from 50 to 400 MPa: Implications
- for Campi Flegrei magmatic systems. Journal of Volcanology and Geothermal Research, 202,251-261.

- 936 Wu, Y.Q., Jiang, G.C., You, J.L., Hou, H.Y., Chen, H., and Xu, K.D. (2004) Theoretical
- study of the local structure and Raman spectra of CaO-SiO₂ binary melts. Journal of
- 938 Chemical Physics, 121, 7883-7895.

939

- 940 Zajacz, Z., Halter, W., Malfait, W.J., Muntener, O., Bodnar, R.J., Bahcmann, O., Webster,
- J.D., Ulmer, P., Mandeville, C.W., Hirschmann, M.M., and Morizet, Y. (2005) A
- 942 composition independent quantitative determination of the water content in silicate glasses
- and silicate melt inclusions by confocal Raman-spectroscopy. Contribution to Mineralogy
- and Petrology, 150, 631–642.

946 Figure caption

947	Figure 1. Typical Raman spectra. The spectra illustrate the silicate melt bands in the
948	HF (800-1200 cm ⁻¹) and LF (200-600 cm ⁻¹) regions as well as the typical Raman band for v_1
949	CO_3 peak at ~1070 cm ⁻¹ . (A) Raman spectra obtained for YP phonolite samples: YPF,
950	volatile-free; YP39, 0.75 wt.% CO ₂ ; YP11, 1.41 wt.% CO ₂ ; and YP22, 1.99 wt.% CO ₂ . (B)
951	Raman spectra obtained for other selected glass compositions. RB117 shows a $v_1 \text{ CO}_3^{2-}$
952	which is composed of two peaks suggesting two different CO_3^{2-} environments. (C) Raman
953	spectra showing the characteristics of contamination, by Epoxy resin and Olympus x50
954	objective. RB107 is used as an example to show the spectra before and after subtraction of
955	contamination.
956	
957	Figure 2. Examples of baseline curves fitted to the Raman spectra. In (A), (C) and

(D), the baseline is constrained by three anchor points at 250, 800 and 1250 cm⁻¹. In (B), the
second anchor is located between 600 and 700 cm⁻¹. The fitted baseline is a third order
polynomial function.

961

Figure 3. Raman spectra simulated with four individual Gaussian peaks for the aluminosilicate Q-species and one Gaussian peak for the v_1 vibration of CO_3^{2-} . The CO₂-free haplo-phonolite YPF was first simulated with fours Gaussian peaks in A. Typical peak positions are 921, 997, 1070 and 1132 cm⁻¹. For CO₂-bearing equivalents (YP12, 11 and 22), the Raman spectra (B to D) were simulated with an additional peak for $v_1 CO_3^{2-}$ along with Q-species peak position obtained for YPF sample. The $v_1 CO_3^{2-}$ peak position changes from 1082 to 1084 cm⁻¹ for the illustrated samples.

970	Figure 4. Simulation of the Raman spectra for other selected glass compositions with
971	various CO_2 contents to illustrate the variation in HF envelope shape as well as the $v_1 \text{ CO}_3^{2-}$
972	peak intensity. The simulations show examples requiring different numbers of Q-species
973	Gaussian peaks (3 to 6) to fit the spectra as well a one or two (in F) peaks for $v_1 CO_3^{2-}$. The
974	peak positions representing the different Q-species change as a function of glass composition.
975	For instance, in polymerized glasses (NBO/T close to 0), a peak at 1130-1150 cm ⁻¹ is
976	required (see B, D and E) whereas for the depolymerised glass, this peak is not required, but
977	instead a peak at 860-880 cm ⁻¹ is necessary (see C).
978	
979	Figure 5. The fitted ratio of CO_3/HF as a function of the wt.% CO_2 measured by
980	LECO and FTIR. The entire CO ₂ dataset is plotted in A, whilst the lower concentration range
981	from 0 to 1 wt.% CO ₂ is shown in more detail in B. The error bar on each data point
982	represents the propagated error for the CO ₃ /HF ratios assuming an error of 5% on the
983	determined peaks area from the simulation. The different symbols correspond to three subsets
984	of the database: the YP phonolite, All other compositions with one $v_1 \text{ CO}_3^{2-}$ peak and
985	Compositions with two $v_1 \text{ CO}_3^{2-}$ peaks. The equation obtained from the linear regression and
986	the fit (R^2) is also reported.
987	
988	Figure 6. Shifts in the carbonate $v_1 \text{ CO}_3^{2-}$ peak position as a function of calculated

Figure 6. Shifts in the carbonate $v_1 CO_3^-$ peak position as a function of calculated melt density for haplo-phonolite samples of Morizet et al. (2002). Densities were calculated at the experimental equilibration conditions using the model of Lange and Carmichael (1990). An error of ±0.5 cm⁻¹ is applied to the carbonate $v_1 CO_3^{2-}$ peak position.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

5/29

5/29

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Sample	wt.% CO_2^*	NBO/T [†]	Peralkalinity [‡]	Glass Composition [§]	Reference
YPF	0	0.18	0.994	haplo-phonolite	[1]
YP34	0.66	0.18	0.994	haplo-phonolite	[1]
YP35	0.67	0.18	0.994	haplo-phonolite	[1]
YP7	0.72	0.18	0.994	haplo-phonolite	[1]
YP10	0.73	0.18	0.994	haplo-phonolite	[1]
YP39	0.75	0.18	0.994	haplo-phonolite	[1]
YP12	0.78	0.18	0.994	haplo-phonolite	[1]
YP33	1.08	0.18	0.994	haplo-phonolite	[1]
YP6	1.1	0.18	0.994	haplo-phonolite	[1]
YP9	1.17	0.18	0.994	haplo-phonolite	[1]
YP31	1.23	0.18	0.994	haplo-phonolite	[1]
YP11	1.41	0.18	0.994	haplo-phonolite	[1]
YP3	1.56	0.18	0.994	haplo-phonolite	[1]
YP30	1.65	0.18	0.994	haplo-phonolite	[1]
YP2	1.66	0.18	0.994	haplo-phonolite	[1]
YP20	1.74	0.18	0.994	haplo-phonolite	[1]
YP29	1.79	0.18	0.994	haplo-phonolite	[1]
YP28	1.91	0.18	0.994	haplo-phonolite	[1]
YP4	1.99	0.18	0.994	haplo-phonolite	[1]
YP22	1.99	0.18	0.994	haplo-phonolite	[1]
YP54	2.04	0.18	0.994	haplo-phonolite	unpublished
YP37	2.26	0.18	0.994	haplo-phonolite	unpublished
YP36	2.35	0.18	0.994	haplo-phonolite	unpublished
2TA1	0.32	0.67	0.773	trachy-andesite	[2]
2TA2	0.53	0.85	0.736	basaltic trachy-andesite	[2]
2TA3	0.98	1.15	0.731	tephrite	[2]
#4-3	0.20	0.80	0.385	alkali-basalt	[3]
#4-4	0.43	0.98	0.396	alkali-basalt	[3]
#5-5	0.60	1.08	0.415	alkali-basalt	[3]
EtnaCO22702	0.28	0.68	0.480	alkali-basalt	unpublished
RB459	1.12	0.22	0.392	andesite	[4]
RB465	1.5	0.13	0.889	phonolite	[4]
RB461	1.51	0.13	0.889	phonolite	[4]
RB108	2.45	0.34	2.029	NCAS system	[4]
RB107	2.5	0.41	2.038	NCAS system	[4]
RB99	2.78	0.39	1.457	NCAS system	[4]
RB100	2.93	0.32	1.535	NCAS system	[4]
RB102	3.3	0.44	1.292	NCAS system	[4]
RB134	3.44	0.45	1.531	NCMAS system	[4]
RB163	3.58	0.29	1.557	NCMAS system	[4]
RB159	3.75	0.22	1.288	NCMAS system	[4]
RB66	4.29	0.78	0.394	NCAS system	[4]

Table 1: Sample dataset of various glass compositions.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4516

RB439	4.55	1.16	0.466	Mg-nephelinite	[4]
RB117	4.7	0.58	1.848	NCMAS system	[4]
RB138	5.3	0.83	2.035	NCMAS system	[4]
RB84	8.6	2.27	1.003	NCAS system	[4]
RB8	15.58	1.96	0.889	NCAS system	[4]
BK113	0.8	0.48	2.151	NCAS system	[5]
BK12	0.95	0.83	0.999	NCAS system	[5]
BK116	3.79	0.79	1.545	NCAS system	[5]
BK3	3.87	1.32	1.021	NCAS system	[5]
BK16	3.91	0.71	2.051	NCAS system	[5]
BK9	6.29	1.29	0.965	NCAS system	[5]
BK32	8.53	1.58	2.195	NCAS system	[5]
BK115	11.47	1.85	1.008	NCAS system	[5]
HK1500	8.61	2.42	0.962	haplo-kimberlite	[6]
HK1580	8.63	2.42	0.962	haplo-kimberlite	[6]
R85Ca15	12.22	2.00	0	NCAS system	[6]
RCcNa15	13.34	2.00	0.498	NCAS system	[6]
AbCcNa10	14.51	2.00	2.001	NCAS system	[6]
RB466	1.1	0.22	0.392	andesite	unpublished
BK236	1.9	0.33	0.939	phonolite	unpublished
BK237	4.15	0.58	0.979	néphélinite	unpublished
BK39	7.58	1.94	2.299	NCAS system	unpublished
BK38	11.03	2.00	2.302	NCAS system	unpublished
BK48	13.94	2.35	1.69	NCAS system	unpublished

^{*} The reported wt.% CO₂ was determined from replicated bulk analyses in references [1], [3], [4] and [5]. The reported wt.% CO₂ in [2] is determined from micro-FTIR measurements and Beer-Lambert law.

[†] The NBO/T describing the average polymerisation was calculated using the definition of Mysen (1988, 1990).

[‡] The peralkalinity is defined as the molar ratio (Na₂O+K₂O)/Al₂O₃. For a ratio above 1, the glass is peralkaline and for a ratio below 1, the glass is peraluminous.

[§] The glass compositions are not represented for clarity but can be found in Supplementary material. NCAS system: Na₂O-CaO-Al₂O₃-SiO₂; NCMAS system: Na₂O-CaO-MgO-Al₂O₃-SiO₂.

References: [1], Morizet et al. (2002); [2], Iacono-Marziano et al. (2012); [3], Iacono-Marziano et al. (2008); [4] Brooker et al. (2001a); [5], Brooker and Kjarsgaard (2011); [6], Brooker et al. (2011).

				Calculated CO2					
Samples	CO₃†	Q ⁿ pk1	Q ⁿ pk2	Q ⁿ pk3	Q ⁿ pk4	Q ⁿ pk5	Q ⁿ pk6	CO₃/HF [‡]	content from linear regression
YPF-1 [§]		1133	1070	998	921			0.000	0.000
YPF-2		78.6	85.9	96.5	95.6			0.000	0.000
YP34-1	1082							0.031 ±0.002	0.48 ±0.03
YP34-2	34.2							0.031 ±0.002	0.47 ±0.03
YP35-1	1084							0.029 ±0.002	0.44 ±0.03
YP35-2	37.5							0.027 ±0.002	0.41 ±0.03
YP7-1	1086							0.027 ±0.002	0.41 ±0.03
YP7-2	36.6							0.029 ±0.002	0.44 ±0.03
YP10-1	1083							0.036 ±0.003	0.54 ±0.04
YP10-2	38.2							0.030 ± 0.002	0.46 ±0.03
YP39-1	1083							0.029 ±0.002	0.45 ±0.03
YP39-2	34.9							0.029 ±0.002	0.44 ±0.03
YP12-1	1083							0.046 ±0.003	0.69 ±0.05
YP12-2	36.8							0.043 ±0.003	0.66 ±0.05
YP33-1	1084							0.062 ±0.004	0.94 ±0.07
YP33-2	40.2							0.061 ±0.004	0.93 ±0.07
YP6-1	1086							0.069 ±0.005	1.04 ±0.07
YP6-2	40.6							0.073 ±0.005	1.10 ±0.08
YP9-1	1084.7							0.051 ±0.004	0.77 ±0.05
YP9-2	39.8							0.051 ±0.004	0.77 ±0.05
YP31-2	1086 42.4							0.103 ±0.007	1.56 ± 0.11
YP11-1	1082							0.083 ±0.006	1.26 ±0.09
YP11-2	39.5							0.073 ±0.005	1.11 ±0.08
YP3-1	1085							0.083 ±0.006	1.26 ±0.09
YP3-2	41.2							0.086 ± 0.006	1.30 ±0.09
YP30-1	1086							0.104 ±0.007	1.58 ±0.11
YP30-2	42.0							0.107 ±0.008	1.63 ±0.12
YP2-1	1086							0.105 ±0.007	1.59 ±0.11
YP2-2	43.3							0.103 ±0.007	1.57 ±0.11
YP20-1	1087							0.108 ±0.008	1.63 ±0.12
YP20-2	41.7							0.099 ±0.007	1.50 ±0.11
YP29-1	1085							0.103 ±0.007	1.56 ±0.11
YP29-2	41.6							0.109 ±0.008	1.66 ±0.12
YP28-1	1085							0.094 ±0.007	1.42 ±0.10
YP28-2	45.4							0.098 ±0.007	1.49 ±0.11
YP4-1	1086							0.128 ±0.009	1.94 ±0.14
YP4-2	46.3			·····				0.123 ±0.009	1.87 ±0.13
YP22-1	1084							0.114 ±0.008	1.73 ±0.12
YP22-2	42.2						.,	0.119 ±0.008	1.81 ±0.13
YP54-1	1090							0.099 ± 0.007	1.49 ±0.11

Table 2: Raman spectra simulation results for CO₃ and silicate glass structure and calculated CO₂ content.

YP54-2	44.1						0.092 ±0.007	1.40 ± 0.10
YP37-1	1088						0.154 ±0.011	2.33 ±0.16
YP37-2	41.6						0.135 ±0.010	2.05 ±0.15
YP36-1	1088						0.141 ±0.010	2.14 ±0.15
YP36-2	43.1						0.157 ±0.011	2.38 ±0.17
2TA2-1						······	0.033 ±0.002	0.50 ± 0.04
2TA2-2	1084	1118		1017	953	879	0.030 ± 0.002	0.45 ± 0.03
2TA2-3	32.5	74.3		103.7	66.3	80.5	0.031 ± 0.002	0.48 ± 0.03
2TA2-4							0.032 ± 0.002	0.48 ±0.03
2TA3-1	1083	1110		1012	951	877	0.062 ± 0.004	0.93 ±0.07
2TA3-2	33.0	74.1		102.3	65.1	78.2	0.058 ± 0.004	0.88 ± 0.06
2TA1-1	1084	1121		1016	948	873	0.024 ±0.002	0.35 ±0.03
2TA1-2	34.3	79.1		106.6	69.6	82.6	0.023 ± 0.002	0.37 ±0.02
#4-3-1	1080		1098	1023	956	886	0.020 ±0.001	0.31 ±0.02
#4-3-2	34.7		78.5	77.4	70.7	69.6	0.020 ± 0.001	0.30 ± 0.02
#4-4-1							0.022 ±0.002	0.34 ±0.02
#4-4-2	1079		1071	1001	938	874	0.017 ± 0.001	0.26 ± 0.02
#4-4-3	31.7		92.9	91.6	77.9	71.7	0.017 ± 0.001	0.25 ± 0.02
#4-4-4							0.016 ± 0.001	0.24 ± 0.02
#5-5-1	1077		1077	1009	944	876	0.033 ±0.002	0.50 ±0.04
#5-5-2	33.9		91.6	82.9	76.3	72.0	0.027 ± 0.002	0.41 ±0.03
#5-5-3							0.025 ± 0.002	0.39 ±0.03
EtnaCO22702-1	1077		1089	1022	960	894	0.016 ±0.001	0.24 ±0.02
EtnaCO22702-2	30.4		68.0	69.3	68.4	67.9	0.013 ±0.001	0.19 ±0.01
RB459-1	1087	1134		1028	956	898	0.078 ±0.006	1.19 ±0.08
RB459-2	45.1	81.9		93.7	80.6	75.6	0.055 ± 0.004	0.84 ± 0.06
RB465-1	1081	1107	1030	962	911		0.068 ± 0.005	1.04 ±0.07
RB465-2	39.2	74.5	78.3	69.9	69.5		0.068 ± 0.005	1.03 ± 0.07
RB461-1	1083	1114	1044	971	918	······································	0.072 ±0.005	1.09 ±0.08
RB461-2	30.4	87.7	81.8	71.0	67.3		0.070 ± 0.005	1.06 ± 0.07
RB108-1	1070 / 1087	1110	1058	993	950		0.138 ±0.015	2.09 ±0.23
RB108-2	19.7 / 5.0	87.3	69.9	62.4	64.5		0.140 ± 0.016	2.12 ±0.24
RB108-3							0.142 ± 0.017	2.15 ±0.24
RB107-1	1070 / 1085	1174	1096	1037	963		0.209 ±0.023	3.17 ±0.35
RB107-2	22.5 / 5.3	83.6	67.5	67.5	66.8		0.173 ±0.019	2.63 ±0.29
RB107-3							0.202 ± 0.014	3.06 ± 0.22
RB99-1	1074	1148	1084	1031	959		0.222 ±0.016	3.37 ±0.24
RB99-2	23.8	84.0	71.4	83.0	74.3		0.226 ± 0.016	3.43 ±0.24
RB99-3							0.195 ±0.014	2.96 ±0.21
RB100-1	1077	1117	1063	1002	952		0.190 ±0.013	2.89 ±0.20
RB100-2	22.5	72.2	61.0	51.0	54.2		0.192 ±0.014	2.92 ±0.21
RB102-1	1072	1111	1067	1002	941		0.203 ±0.014	3.08 ±0.22
RB102-2	22.1	54.6	66.8	72.0	70.0		0.203 ±0.014	3.08 ± 0.22
RB134-1	1074 / 1088	1141	1077	1013	952		0.182 ±0.020	2.76 ±0.31
RB134-2	21.3 / 6.5	60.6	60.5	60.8	61.0		0.181 ±0.020	2.75 ±0.31
RB163-1	1074	1134	1072	1006	952	,	0.211 ±0.024	3.19 ±0.36
RB163-2	18.0	57.2	59.2	62.2	64.9		0.213 ±0.024	3.23 ±0.36

RB159-1	1071	1104	1062	1006	954			0.213 ±0.015	3.23 ±0.23
RB159-2	27.1	59.3	61.8	55.4	56.4			0.218 ±0.015	3.31 ±0.23
RB66-1	1062 / 1078		1047	983	922	840		0.220 ±0.025	3.34 ±0.37
RB66-2	17.3 / 6.3		65.5	61.2	65.6	53.9		0.221 ±0.025	3.35 ±0.37
RB439-1	1085			1030	961	882	759	0.158 ±0.011	2.40 ±0.17
RB439-2	26.9			66.1	73.4	74.3	140.1	0.094 ± 0.007	1.43 ±0.10
RB117-1	1074 / 1091	1142	1076	1007	947			0.238 ±0.027	3.61 ±0.40
RB117-2	18.8 / 8.7	58.0	58.1	60.0	60.4			0.241 ±0.027	3.66 ±0.41
RB138-1	1075 / 1092		1082	1011	949	889		0.321 ±0.036	4.88 ±0.55
RB138-2	27.5 / 11.2		74.3	72.2	64.9	78.8		0.326 ± 0.036	4.94 ±0.55
RB138-3								0.347 ±0.039	5.27 ±0.59
RB84-1	1076			1008	943	876		0.505 ± 0.036	7.66 ± 0.54
RB84-2	27.8			66.0	62.9	62.5		0.505 ±0.036	7.65 ±0.54
RB8-1	1079		1073	1002	943	876		1.145 ± 0.081	17.37 ±1.23
RB8-2	26.2		66.1	67.0	57.9	55.4		1.180 ± 0.083	17.91 ±1.27
RB8-3								1.106 ±0.078	16.78 ±1.19
BK113-1	1068	1120	1072	1007	951			0.050 ± 0.004	0.77 ±0.05
BK113-2	21.8	64.5	64.8	63.2	63.9			0.056 ±0.004	0.85 ±0.06
BK12-1	1076	1137	1077	998	955	888		0.060 ± 0.004	0.91 ±0.06
BK12-2	24.3	58.0	62.0	70.0	61.5	50.8		0.064 ±0.004	0.96 ±0.07
BK116-1	1075		1067	1003	943	892		0.207 ±0.015	3.14 ± 0.22
BK116-2	25.5		77.1	67.0	50.1	60.5		0.199 ±0.014	3.02 ±0.21
BK3-1	1076		1070	1004	947	883		0.175 ± 0.012	2.68 ±0.19
BK3-2	25.3		61.8	63.1	62.1	62.1		0.176 ±0.012	2.66 ±0.19
BK16-1	1071	1153	1079	1017	949	883		0.251 ±0.018	3.81 ±0.27
BK16-2	24.8	42.4	59.5	62.5	59.9	47.0		0.251 ±0.018	3.81 ±0.27
BK9-1	1077		1081	1014	950	885		0.336 ± 0.024	5.10 ± 0.36
BK9-2	26.0		53.3	72.6	62.3	66.7		0.345 ±0.024	5.23 ±0.37
BK32-1	1075	1073		1013	922	869		0.469 ±0.033	7.12 ± 0.50
BK32-2	23.8	47.4		48.3	49.9	51.5		0.507 ±0.036	7.70 ±0.54
BK115-1	1078		1071	1016	944	876		0.749 ± 0.053	11.36 ±0.80
BK115-2	26.3		64.4	64.3	63.5	60.2		0.739 ±0.052	11.21 ±0.79
HK1500-1	1085			1008	944	874		0.555 ± 0.039	8.42 ± 0.60
HK1500-2	36.2			81.9	66.1	61.8		0.595 ± 0.042	9.03 ±0.64
HK1500-3								0.471 ±0.033	7.14 ±0.50
HK1580-1	1086			1022	932	865		0.547 ±0.039	8.51 ±0.59
HK1580-2	37.1			59.5	112.2	42.4		0.561 ±0.040	8.30 ±0.60
R85Ca15-1	1081		1052	989	939	876		0.850 ± 0.060	12.90 ±0.91
R85Ca15-2	28.1		69.9	56.3	57.7	59.3		0.814 ±0.058	12.35 ±0.87
RCcNa15-1	1080		1072	1002	944	880		0.868 ± 0.006	13.16 ±0.93
RCcNa15-2	26.2		60.5	64.1	59.3	58.7		0.949 ±0.007	14.40 ±1.02
AbCcNa10-1	1077		1073		949	878		1.099 ± 0.078	16.67 ± 1.18
AbCcNa10-2	25.2		62.7		61.3	58.0		1.022 ±0.072	15.51 ±1.10
RB466-3	1083		1094	1004	925	863	777	0.022 ± 0.001	0.33 ± 0.02
RB466-2	33.9		107.1	94.3	89.9	87.4	85.4	0.014 ±0.001	0.21 ±0.01
BK236-1	1076	1105		1016	948	879		0.082 ± 0.006	1.34 ± 0.09
BK236-2	31.1	75.9		60.5	71.1	77.2		0.085 ± 0.006	1.29 ±0.09

BK236-3						0.072 ± 0.005	1.09 ±0.08
BK237-1	1076	1079	1008	942	871	0.139 ±0.010	2.10 ±0.15
BK237-2	26.8	75.4	73.3	67.5	66.6	0.137 ±0.010	2.08 ±0.15
BK237-3						0.145 ±0.010	2.20 ±0.16
BK39-1	1076	1064	991	936	873	0.557 ±0.039	8.45 ±0.60
BK39-2	23.6	63.9	61.9	54.7	54.4	0.570 ± 0.040	8.64 ±0.61
BK38-1	1075	1080	1009	942	855	0.722 ±0.051	10.96 ±0.77
BK38-2	23.7	53.9	73.6	63.5	68.7	0.847 ± 0.060	12.84 ±0.91
BK38-3						0.800 ± 0.057	12.14 ±0.86
BK48-1	1078	1072	989	935	873	0.874 ±0.062	13.25 ±0.94
BK48-2	24.0	54.5	78.0	50.2	57.4	0.916 ±0.065	13.90 ±0.98

^{*} The numbers reported in those columns represent the Raman peak position and full width at half maximum (FWHM) as given by the simulation of the HF Raman spectra. For each parameter, we apply an error of ±0.5 cm⁻¹ considering the fact that we have two analytical points separated by 1 cm⁻¹.

[†] For several samples, the CO₃ shows two distinct peaks: one large and one sharp. The peak position and FWHM of each peak is reported.

[‡] The CO₃ / HF ratios are calculated from the area of the individual Gaussian peak obtained by the Raman spectra simulation. The error reported for each CO₃/HF was calculated through error propagation considering 5% of error on the derived peak areas.

[§] The YPF sample is a volatile-free sample. The Raman spectra simulation was performed with only four individual Gaussian peaks for silicate glass structure.

For 2TA2, the Raman spectra were acquired at the same sample location but with four different laser power (between 75 and 200 mW) and same acquisition time (5x60 sec; see Supplementary material for the detailed acquisition conditions) to check the impact of the laser power on the CO_3 / HF areas ratios.