1	Analysis of H ₂ O in silicate glass using attenuated total reflectance
2	(ATR) micro-FTIR spectroscopy
3	REVISION 1
4	
5	
6	Jacob B. Lowenstern and Bradley W. Pitcher*
7	
8	
9	U.S. Geological Survey, Volcano Science Center, MS 910,
10	345 Middlefield Road, Menlo Park, CA 94025 U.S.A.
11	
12	
13	
14	
15	
16	
17	
18	
19	*Present address: College of Earth, Ocean, and Atmospheric Sciences,
20	Oregon State University, Corvallis, OR 97331 U.S.A.

21 22 23	ABSTRACT
24	We present a calibration for Attenuated Total Reflectance (ATR) micro-FTIR for
25	analysis of H ₂ O in hydrous glass. A Ge ATR accessory was used to measure evanescent
26	wave absorption by H_2O within hydrous rhyolite and other standards. Absorbance at
27	3450 cm ⁻¹ (representing H ₂ O total or H ₂ Ot) and 1630 cm ⁻¹ (molecular H ₂ O or H ₂ O _m)
28	showed high correlation with measured H ₂ O in the glasses as determined by transmission
29	FTIR spectroscopy and manometry. For rhyolite,
30	Wt.%H ₂ O = 245(±9) * $A_{3450} - 0.22(\pm 0.03)$ and
31	Wt.%H ₂ O _m = 235(±11) * $A_{1630} - 0.20(\pm 0.03)$
32	where A_{3450} and A_{1630} represent the ATR absorption at the relevant infrared wavelengths.
33	The calibration permits determination of volatiles in singly polished glass samples with
34	spot size down to ~5 μm (for H_2O-rich samples) and detection limits of ~0.1 wt.% H_2O.
35	Basaltic, basaltic and esite and dacitic glasses of known $\mathrm{H_2O}$ concentrations fall along a
36	density-adjusted calibration, indicating that ATR is relatively insensitive to glass
37	composition, at least for calc-alkaline glasses. The following equation allows
38	quantification of H ₂ O in silicate glasses that range in composition from basalt to rhyolite.
39	Wt.% H ₂ O = $(\omega * A_{3450} / \rho) + b$
40	where $\omega = 550 \pm 21$, $b = -0.19 \pm 0.03$, $\rho = \text{density}$, in g cm ⁻³ and A_{3450} is the ATR
41	absorbance at 3450 cm ⁻¹ .
42	The ATR micro-FTIR technique is less sensitive than transmission FTIR, but
43	requires only a singly polished sample for quantitative results, thus minimizing time for
44	sample preparation. Compared with specular reflectance, it is more sensitive and better

45	suited for imaging of H_2O variations in heterogeneous samples such as melt inclusions.
46	One drawback is that the technique can damage fragile samples and we therefore
47	recommend mounting of unknowns in epoxy prior to polishing. Our calibration should
48	hold for any Ge ATR crystals with the same incident angle (31°). Use of a different
49	crystal type or geometry would require measurement of several H2O-bearing standards to
50	provide a crystal-specific calibration.
51	
52	
53	
54	
55	
56 57 58	Key words: IR Spectroscopy, Glass Properties, FTIR, Water, New Technique, Igneous Petrology, ATR, Glass
59	
60	

61 62

INTRODUCTION

63	Numerous methods have been used to quantify H_2O concentrations in natural and
64	experimental silicate glass. Traditional approaches include manometry, loss-on-ignition,
65	and Karl-Fischer titration (as applied to geologic materials by Newman et al., 1986;
66	Westrich, 1987). They are destructive techniques, require large sample size (>100 mg),
67	and are less frequently used in recent years. Later came the development of transmission
68	FTIR spectroscopy (Stolper 1982), a non-destructive and highly reproducible technique
69	that requires calibration to account for variations in the host compositions and preparation
70	of polished wafers of known thickness (Newman et al., 1986; Zhang et al., 1997; Zhang
71	1999). Though the technique remains popular, the difficulty of preparing doubly
72	polished wafers of very small samples such as silicate melt inclusions (MI) has caused
73	many workers to explore other methods for analysis of microscopic glassy samples.
74	Specular reflectance (SR-FTIR) has been successfully used to quantify H_2O in
75	polished glasses (Hervig et al., 2003; King et al., 2004a,b; King and Larsen, in press).
76	The SR technique is less sensitive than transmission FTIR, requiring a larger analysis
77	area to ensure adequate signal, and is challenging for small glass samples such as MI
78	(Hervig et al., 2003; Nichols and Wysoczanski, 2007); nevertheless, SR-FTIR requires
79	only a singly polished sample. The ion microprobe (Hauri et al., 2002) is increasingly
80	popular, but is expensive and requires careful calibration to account for sample matrix
81	effects and high instrumental backgrounds of volatile species (Wright et al., 2012). Laser
82	raman methods have also been successfully developed (Thomas, 2000; Thomas et al.
83	2008) and are increasingly popular, but require relatively sophisticated post-processing
84	(Mercier et al., 2010; LeLosq et al., 2012) and can be subject to sample fluorescence

85	(Zajacz et al., 2005). All these techniques can be used successfully, and the best
86	technique often times will be that which is most accessible and cost effective.
87	This paper describes an alternative FTIR-based technique, attenuated total
88	reflectance (ATR) analysis for H ₂ O in hydrous glass and compares the technique with
89	SR. The ATR micro-FTIR method utilizes a crystal with high refractive index (an
90	internal reflection element) through which light is passed. When the crystal contacts a
91	sample with lower refractive index, a small amount of light, or evanescent wave, is
92	absorbed at the contact surface (Compton and Compton, 1993). The depth of penetration
93	of light within the sample is typically less than 1-2 μ m, and is a function of the refractive
94	indices of the sample and crystal, the angle of incidence inherent to the ATR crystal (Θ),
95	and the specific wavelength of incident light. Magnification (4X) within the ATR crystal
96	permits spatial resolution $< 5 \ \mu$ m. Most modern FTIR imaging microscopes have a
97	mountable ATR crystal as a relatively inexpensive accessory. Though the technique has
98	been in use for decades to investigate organic compounds, it only rarely has been applied
99	to the study of hydrous glass (e.g., Uchino et al., 1989), and has never been used
100	quantitatively for this purpose.
101	Below we describe methods to use ATR to quantify H ₂ O concentration in hydrous

Below we describe methods to use ATR to quantify H_2O concentration in hydrous glass. We find that ATR micro-FTIR is a reliable method to obtain H_2O concentrations in hydrous glasses prepared in epoxy mounts intended for other micro-analytical techniques. The method can be applied successfully to melt inclusions (MI) as small as 15µm across, and is ideal for rapid mapping of H_2O distributions in heterogeneous materials. Our results indicate that the calibration curve developed for hydrous rhyolites also applies to dacitic, basaltic andesite and basaltic glasses.

108	
109	METHODS
110	
111	Sample Preparation
112	Glass chips were prepared first as doubly-polished wafers with parallel sides.
113	Final polishing was done with 0.3 μ m Al ₂ O ₃ or 0.1 μ m diamond grit. Sample
114	smoothness was comparable to a typical electron-microprobe mount. After transmission
115	FTIR analysis, most free-standing glass chips were then attached to a glass slide with
116	CrystalBond TM for ATR and SR analyses. Others were mounted in a 1-inch epoxy mount
117	and re-polished. A few glass samples were analyzed while remaining embedded in
118	Indium mounts intended for ion microprobe analysis.
119	
120	Transmission FTIR
121	H ₂ O concentrations for glass chips were determined by transmission FTIR using
122	established calibrations (Newman et al., 1986; Zhang et al., 1997). Hydrous glass chips
123	from a variety of sources and publications (see Supplementary Methods and
124	Supplementary Table 1) and quartz-hosted melt inclusions were prepared as doubly
125	polished wafers for analysis with a Nicolet iN10 MX infrared imaging microscope with
126	an attached liquid-N ₂ -cooled MCT-B detector at the USGS in Menlo Park, CA USA.
127	The iN10 MX is normally purged with low-CO ₂ , dry air and is equipped with a collar
128	that, for transmission experiments, can be lowered around the sample stage to maximize
129	purge during sample and reference collection. Samples were placed on a BaF ₂ window
130	transparent to both visible and infrared light. The sample surface was brought into focus

131	with reflected light prior to collection of the sample spectrum (S). A reference spectrum
132	(R) was collected through the BaF_2 window away from the hydrous glass sample. We
133	collected sufficient scans to minimize noise (usually 256) at 4 cm ⁻¹ resolution. A square
134	aperture, typically sized to 150µm for experimental glass standards, was used to define
135	the precise area of analysis. For melt inclusions, we instead sized the aperture to ensure
136	that the light passed through only the inclusion (as small as $20\mu m$). Measured absorbance
137	(A) was calculated by comparing the detected energy from light passed through the
138	sample compared with a reference spectrum without sample.
139	
140	$A = \log (I_R/I_S) $ Eq. 1
141	
142	where I_R = the radiation transmitted in the reference spectrum and I_S = radiation
143	transmitted through the sample plus reference.
144	Data were collected between 6000 and 700 cm ⁻¹ . Peak heights at 5200 cm ⁻¹
145	(A_{5200}) , 4500 cm ⁻¹ (A_{4500}) , and 1630 (A_{1630}) cm ⁻¹ were measured relative to a flexicurve-
146	drawn baseline (Newman et al., 1986; Zhang et al., 1997; Ihinger et al., 1999; Figure 1 in
147	Zhang, 1999). For A ₃₅₇₀ , a straight baseline was more appropriate. The intensity of the
148	peaks were measured at their maximum height.
149	Concentrations were calculated with Beer's Law following Newman et al. (1986):
150	
151	wt% $H_2O = 1802A/(\epsilon d\rho)$ Eq. 2

where ε = the extinction coefficient for the peak in L mol-cm⁻¹, A is the absorption for the peak of interest, ρ is the density in g L⁻¹, and *d* is the thickness of the doubly polished sample in cm.

155 Total water (H_2O_t) was calculated with the method of Zhang et al. (1997) where 156 molecular water (H_2O_m) and hydroxyl (OH) are quantified by means of the two near-IR (NIR) peaks at 5200 and 4500 cm⁻¹ The required values change as a function of total 157 158 H₂O content. For comparison, we also quantified H₂O_m and OH⁻ with ε values from the 159 earlier Newman-Stolper-Epstein (NSE) method that uses fixed ε values (Newman et al. 160 1986; Dobson et al. 1989), where $\varepsilon_{1630} = 55\pm 2$; $\varepsilon_{3570} = 88\pm 2$; $\varepsilon_{4500} = 1.73\pm 0.02$; $\varepsilon_{5200} =$ 161 1.61±0.05. Basaltic glasses were quantified with fixed ε calculated for A₄₅₀₀ ($\varepsilon = 0.54$) and A_{5200} ($\epsilon = 0.69$) calculated with equations from Dixon et al. (1995) using the basaltic 162 163 composition and density appropriate for the experimental basaltic glass (D. Blatter, written communication, August 2012). Similarly, we used ε of A₄₅₀₀ ($\varepsilon = 1.24$) and A₅₂₀₀ 164 165 $(\varepsilon = 1.41)$ for the dacite glasses based on Ohlhorst et al. (2001). 166 Wafer thicknesses were measured with three different techniques depending on 167 sample fragility and thickness: a) a digital pin micrometer, b) interference fringes at the 168 exact spot of analysis as measured with specular reflectance rather than transmission 169 (Wysoczanski and Tani, 2006), and c) a spindle stage mounted on a petrographic 170 microscope with a calibrated reticule. Comparison of thickness measurements made with 171 multiple techniques were typically within a few μm . Uncertainty varies depending on the 172 homogeneity of the wafer and the thickness. For rhyolites, glass densities were 173 calculated with equations in Zhang et al. (1997) assuming anhydrous rhyolite with a density of 2350 g cm⁻³. For the other compositions, densities were calculated based on 174

Lange and Carmichael (1987) and Ochs and Lange (1999). One-sigma uncertainties for
density are 0.02 g cm⁻³.

177 With the exception of the seven samples measured directly by manometry [the 178 three rhyolite glasses from Newman et al. (1986; 1988) and the four basaltic andesites 179 (M. Mangan et al., in preparation)] all samples were re-analyzed by transmission FTIR 180 for this study and reported concentrations may vary somewhat from values in the original 181 references cited in the Supplementary Methods. Variations can result from a different 182 measured absorption, use of a different ε , or a slight variation in the density value used in 183 the calculation. The full data set is reported in Supplementary Table 2.

184

185 Attenuated Total Reflectance FTIR

186 We used a Ge crystal with a refractive index of 4.0 that comes as an optional 187 accessory for use with the iN10 MX. The angle of incidence is fixed at 31° and given the 188 index of refraction of natural rhyolitic glass (~1.5: Hodder, 1978), the incident beam penetrates 0.33 μ m into the sample at 3450 cm⁻¹ and 0.69 μ m at 1630 cm⁻¹ (Compton and 189 190 Compton, 1993). The ATR crystal has a 350µm-diameter circular tip that makes contact 191 with the sample (Figure 1). An optical aperture of was used to define the initial beam 192 size; 100x100µm for hydrous glass chips, and 25 or 30 µm for melt inclusions depending 193 on the inclusion size. Because of the magnification within the ATR crystal, this 194 corresponds to a spot size of $25x25\mu m$ for the glass chips and $\sim 7x7 \mu m$ for a typical melt 195 inclusion. A reference spectrum was collected in air after which the sample stage was 196 raised to contact the ATR crystal for sample collection.

197 Typically, 256 scans were collected for each sample with a spectral resolution of 198 8 cm⁻¹. Spectra were collected from 4000 to 1200 cm⁻¹ with the same liquid-N₂-cooled 199 MCT-B detector used for transmission FTIR, and spectra were processed and evaluated 200 as absorbance versus wavenumber. Peak heights in absorbance units were measured at 201 their maximum values near 3450 cm⁻¹ (A_{3450}) and 1630 cm⁻¹ (A_{1630}), utilizing a straight 202 baseline for 3450 cm⁻¹ (Figure 2b) and a flexicurve for 1630 cm⁻¹.

203 Compared with transmission FTIR spectroscopy of hydrous glass, absorbance 204 intensities for a typical ATR spectrum are very low (compare total absorbance in Fig. 2a 205 versus 2c). As a result, atmospheric moisture and CO_2 represent a higher proportion of 206 the signal during both sample and reference spectra, and are therefore more difficult to 207 remove. When needed, peak height was measured after applying a correction to remove interference from atmospheric water vapor, present especially near the 1630 cm⁻¹ peak 208 209 (Figure 2a). The "atmosphere suppression" algorithm is a standard reprocess option in the 210 OMNIC Picta software package that comes with the iN10 MX. The correction aided 211 quantification on samples with low H₂O concentrations, but did not change A_{3450} or A_{1630} 212 peak height and could be performed reproducibly for multiple analyses of the same spot. 213 No other corrections or reprocessing were applied to the data. We also found that noise 214 associated with atmospheric water vapor could be minimized by collecting fewer background and sample scans, and by using lower spectral resolution (16 cm⁻¹). This is 215 216 because the small measured ATR absorbances are strongly affected by minute variations 217 in atmospheric moisture, such that minimizing the time between sample and background 218 collection can be beneficial. Moreover, IR absorption by H₂O vapor is characterized by 219 much narrower peaks than H₂O dissolved in the glass, so that decreasing the spectral

220 resolution can eliminate the narrow vapor peaks while not affecting A_{3450} or A_{1630} . We 221 did not utilize a different purge gas (e.g., N₂) or a special shroud over the spectrometer to 222 decrease atmospheric gases, though as described below in the Discussion, such 223 techniques are also helpful. 224 Repeated analysis of sample chips confirmed that the chosen aperture size had no 225 effect on peak height for large samples of homogeneous glass (Supplementary Figure 1). 226 We also repeated the ATR measurement at multiple crystal-stage contact pressures and 227 determined a minimum pressure at which the peak height became fixed and reproducible 228 for silicate glass. Though the OMNIC Picta software does not report the actual contact 229 pressure, the relative pressure index was at the low end of the allowable range (setting of 230 12 within a range of 0-100). 231 Typically, spectra for five to ten spots were collected for each rhyolite glass chip. 232 Any rare analysis that was deemed an outlier $(\pm 4\sigma)$ was attributed to be the result of a 233 surface impurity (i.e. a scratch or mineral inclusion) or poor surface-crystal contact, and

234 was discarded. The remaining ATR analyses were averaged.

235 Because the sample or aperture cannot be viewed with the ATR in contact with 236 the sample, placement of the ATR crystal on the sample is only approximate (within tens 237 of microns). For the analysis of melt inclusions, maps were collected with a small 238 aperture (8 to 15 μ m spot). The stage moves a user-selectable distance, as little as 1 μ m, 239 to create a matrix of analyses, made up of pixels, each associated with a complete 240 spectrum. The maps were framed to ensure that inclusion-free quartz was sampled in the 241 outer pixels, but with a spot size small enough to ensure that the inclusion can be sampled 242 without any overlapping host phase (Figure 3). Between the analysis of each pixel, the

243	stage drops slightly (<< 1mm) and then moves the user-selected distance. The OMNIC
244	Picta software can automatically calculate baselines and peak heights to map out
245	variations in H_2O (i.e., A_{3450}) within the sampled region. Figure 3 demonstrates an ATR
246	map of a particularly large silicate melt inclusion, and illustrates how inclusions can be
247	mapped with very high spatial precision.
248	
249	Specular Reflectance FTIR
250	We also quantified H ₂ O in rhyolitic glasses following the method of Hervig et al.
251	(2003) as clarified by King et al. (2004b). Reference spectra were collected on polished
252	gold. Multiple spectra were collected on each rhyolite chip after careful focusing on a flat
253	sample surface. Spectra were converted to "% reflectance" with the FTIR software. The
254	negative peak ΔR_{3500} and R_{4000} were determined for each sample spectrum and H ₂ O was
255	quantified via:
256	
257	wt% $H_2O_t = ((\Delta R_{3500}/R_{4000}) - k_2)/k_1$ Eq. 3
258	
259	where k_2 and k_1 for rhyolite are 0.007 and 0.021, respectively (King et al., 2004b).
260	ΔR_{3500} is akin to a peak height at 3500 cm ⁻¹ and R_{4000} represents the absolute %
261	reflectance at 4000 cm ⁻¹ . An example of a spectrum and measured ΔR_{3500} and R_{4000} is
262	shown in Supplementary Figure 2.
263	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4466

264	RESULTS
265	Calibration of the ATR Micro-FTIR Technique
266	H ₂ O concentrations were quantified by transmission FTIR for rhyolite chips from
267	7 samples. Each average analysis represents 3 to 8 separate spots for each chip. Table 1
268	reports means and calculated standard deviations (1 σ), as quantified with extinction
269	coefficients from Zhang (Zhang et al., 1997) and NSE (Newman et al., 1986). Three
270	additional rhyolite standards were obtained that had H ₂ O quantified by both manometry
271	and FTIR (Newman et al., 1986, 1988).
272	As shown in Figure 4, trends of wt% H ₂ O vs. A_{3450} (ATR) are linear, with R ² of
273	0.99. For rhyolitic glass, total H_2O is predicted by the following equation:
274	Wt.% $H_2O = (\alpha * A_{3450}) + b$ Eq.4
275	where α is a correction factor (essentially an inverse-absorption coefficient in units of
276	wt%), A_{3450} is the ATR peak height in absorbance units at ~3450 cm ⁻¹ , and b is the x
277	intercept of the best fit in Figure 4a.
278	Three samples of dacite (Mangan, 2005) fall close to the rhyolite calibration.
279	Three samples of hydrous basaltic glass and four basaltic andesites plot noticeably above
280	the calibration curve (Figure 4a). However, when normalized by sample density, they
281	plot on top of the rhyolite calibration (Figure 4b). As such, the following equation can be
282	applied to basalts, rhyolite, dacites, andesites and potentially other hydrous glasses:
283	
284	Wt.% H ₂ O = $(\omega * A_{3450} / \rho) + b$ Eq.5
285	

286	where ω is the density-normalized correction factor (in wt% \cdot cm ³ g ⁻¹), ρ is density in g
287	cm ⁻³ and <i>b</i> is the x-intercept in wt%. Values of α , ω and <i>b</i> are listed in Table 2 for both
288	A_{3450} and A_{1630} .
289	Similar correlations for A_{1630} versus A_{5230} (Figure 5, Table 2) demonstrate that
290	H_2O_m can be estimated by ATR methods with the 1630 cm ⁻¹ peak. It is interesting to
291	note that the initial calibration (Figure 5a) appears slightly superior to the density-

corrected curve (Figure 5b) for the two basalt samples, such that it may be more accurate

293 to calculate H_2O_m for basalts with Eq. 4 than Eq. 5. We did not attempt to calculate A_{1630}

for the basaltic andesites due to the very large carbonate peaks in those particular

samples, which interfere with the shape of the background for the 1630 cm⁻¹ peak.

296 Subtraction of H₂O_m from H2O_t, as determined by ATR, allows calculation of

297 OH^{-} , such that ATR spectra can be used to assess speciation of H₂O within the glass.

298 Table 1 lists calculated OH⁻ for the rhyolite standards. Values for OH⁻ via transmission

299 FTIR (using A_{4500}) and ATR are comparable for the rhyolites (and dacites), with an R^2 of

300 0.94 (Supplementary Table 3).

302	DISCUSSION
303	The ATR micro-FTIR technique provides an accurate and reproducible means for
304	quantifying both H_2O_m and H_2O_t in hydrous rhyolite glasses. Usable spectra were
305	achieved for spot sizes down to $5\mu m$ on samples with only ~1.5% H ₂ O. Reproducibility
306	was excellent: for example, nine spectra on dacite F33 produced A_{3450} between 0.0145
307	and 0.0149, yielding variations $<1.5\%$ around the mean of 0.0147.
308	Because samples were singly polished, the technique offers the capability of determining
309	H ₂ O concentrations in small pockets of experimental or natural hydrous glasses (i.e., melt
310	inclusions).
311	One drawback of the technique is the potential for cracking or otherwise
312	damaging fragile samples through direct contact of the ATR crystal with the sample
313	surface. Samples that were free-standing wafers or were affixed to glass slides with a
314	thin layer of adhesive were far more likely to be damaged than samples mounted in
315	epoxy. Our experience suggests that samples prepared in epoxy mounts will be ideal
316	candidates for ATR micro-FTIR spectroscopy. For particularly fragile samples, the SR
317	FTIR (Hervig et al., 2003; King and Larsen, 2013) is preferable.
318	
319	Detection limit for H ₂ O
320	Both York (York, 1966) and traditional least-squares approaches did not produce
321	fits that passed exactly through the origin. Calculated b values (Table 2) are ~ 0.2 for both
322	A_{3450} and A_{1630} , as well as their density-normalized equivalents (Figs, 3, 4). The
323	prediction of the presence of a small A_{3450} peak even for nominally anhydrous samples

324 could be due to minimal adsorbed water on the outer nanometers of the polished glass

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4466

surface. The negative x intercept in Figure 4 and 5 also remained when considering only

326	the three samples with H_2O quantified manometrically. Peaks for A_{3450} were measurable
327	down to H_2O_t concentrations of ~0.13 wt.% (sample MT-3). The practical detection limit
328	of the technique for both H_2O_t and H_2O_m is approximately equal to 0.1 wt%.
329	Reproducible quantification will be difficult for samples with less than 0.2 wt% H_2O .
330	
331	Comparison of ATR with specular reflection
332	Specular reflectance and ATR can be used to determine H ₂ O concentrations in
333	singly polished hydrous glass and provide similar results (Table 1). Because sample
334	preparation is facilitated and thickness measurement is unnecessary, both techniques
335	offer significant advantages compared with transmission spectroscopy. Both have similar
336	detection limits and accuracy.
337	One advantage of specular reflectance compared with ATR is the simple analysis
338	setup, which does not require a "plug-in" accessory for the microscope and is less likely
339	to have any lab-to-lab variations due to accessory type or geometry. Moreover, there is
340	no need to touch the sample with a crystal, so that there is no possibility of damaging the
341	hydrous glass sample.
342	ATR, however, does offer some advantages in quantification and reproducibility
343	relative to specular reflectance. First, it yields better sensitivity for a given optical
344	aperture size, especially $< 20\mu m$. Moreover, because the ATR spot size is 25% of the
345	aperture diameter, much higher spatial resolution can be achieved. The uncertainty on the
346	ATR analysis is generally less than that for the more complex reflectance analysis. We
347	demonstrated this by analyzing the same sample (IDDP-1) with both methods using a
	16

348	small optical aperture ($25x25\mu m$). Propagating the uncertainties for peak measurement
349	with specular reflectance results in a relative error of ~55% for an individual spot,
350	relative to an uncertainty of 20% for the same ATR analysis taken with the same number
351	of scans. Moreover, the actual spot size on the sample with ATR is ~6 x 6 μ m, whereas
352	the spot with specular reflectance is the same as the 25 x 25 μ m optical aperture.
353	Also, whereas ATR measures the absorbance solely at the surface of a sample,
354	specular reflectance can be affected by internal reflectance when the incident beam
355	penetrates the sample and bounces off a polished surface or mineral inclusion. For
356	example, when analyzing a singly polished rhyolite glass chip from Iceland (IDDP-1_6),
357	internal reflections caused by cracks and mineral grains were observed with a reflected
358	light microscope. Analysis of such spots can yield apparent concentrations up to double
359	the true concentration. When using specular reflectance, it is important to avoid analysis
360	of doubly polished samples or ones with potential surfaces for additional reflection back
361	to the detector. King and Larsen, (in press) evaluate this problem and provide tips for
362	eliminating internal reflections.
363	Finally, the reflective method (Hervig et al., 2003; King et al., 2004), requires the
364	identification of 3 points along the spectrum (R_{upper} , R_{lower} , and R_{4000}), none of which are
365	associated with a clear peak and associated baseline (Supplementary Figure 2). The ATR
366	method requires only measurement of a single peak height (A_{3450}) , making it trivial to

367 program the FTIR software to instantaneously create a profile map (e.g., Figure 3c,d) that

368 directly reflects H₂O concentration of all pixels within a given map (see Della Ventura et

al., 2010 for examples of maps made in transmission mode). Such a map would be

370 difficult if not impossible using specular reflectance, at least as an automated product at

371	the time of analysis. A new method (King and Larson, 2013) for obtaining specular
372	reflectance spectra utilizes a Kramers-Kronig transformation that may allow easier
373	automated processing than the method evaluated herein (Hervig et al. 2003).
374	Overall, quantification of H_2O concentrations with the ATR technique is simpler
375	than specular reflectance, more reproducible, more composition-independent, and more
376	suited for imaging of H_2O variations in large areas. Its primary drawbacks are the
377	additional cost of the ATR accessory and the potential for damaging fragile samples.
378	
379	Applications to the study of melt inclusions
380	ATR techniques offer many potential advantages for the study of silicate melt
381	inclusions. Though it was not a focus of this paper to analyze melt inclusions, Figure 4,
382	shows data from six rhyolitic MI along with the glass standards and calibration curves.
383	Four of the six overlap the calibration (within 2 σ).
384	Heterogeneity of singly polished inclusions can be assessed at spatial scales down
385	to 5 μ m through modern FTIR mapping systems. Such maps (Figure 3) are easy to
386	interpret since they are not affected by inclusion thickness or inclusion geometry (curved
387	walls), as is the case for a map created in transmission FTIR. Moreover, the
388	magnification within the ATR crystal permits higher spatial resolution than is obtained
389	with transmission FTIR or a typical ion microprobe. In Figure 3e, a traverse of the
390	inclusion is displayed, and it is evident that the spot size was reduced to a diameter where
391	overlap between the inclusion and host was limited to only a single pixel with stage steps
392	of 8 μ m. Even better resolution is possible. It may be possible to use this technique to

393	identify diffusion-related gradients in melt inclusions, volcanic ejecta, and experimental
394	products, especially if a synchrotron source is utilized (Castro et al., 2008).
395	One drawback of any reflection technique is its relative insensitivity to the
396	inevitable low concentrations (<1000 ppm) of CO ₂ . Currently, we are evaluating the
397	detection threshold for CO ₂ in both basaltic and rhyolitic glasses (Lowenstern et al., in
398	preparation). But even without ATR data for CO ₂ , ATR spectra for H ₂ O can be
399	combined with transmission data on singly polished inclusions to quantify both $\mathrm{H_2O}$ and
400	CO ₂ . For example, an inclusion-bearing phenocryst can be prepared as a doubly polished
401	wafer, with one side intersecting the inclusion and the other simply a polished surface of
402	the host crystal. A reflectance spectrum can be collected on the side with the exposed
403	inclusion. Collection of a complementary transmission spectrum obtains a usable peak for
404	CO2 or carbonate and aids calculation of the glass inclusion thickness. Assuming
405	homogeneous H ₂ O within the sample, a value for which was determined through the
406	reflectance analysis, d (the thickness of host-free inclusion) can be solved through
407	rearranging Eq. 2 and inserting either A_{3570} or A_{5200} plus A_{4500} . Finally, the new
408	calculated thickness of silicate glass can be inserted to Beer's Law to solve for CO ₂ ,
409	using appropriate ε values for CO ₂ (e.g., Blank et al., 1993).
410	Nichols and Wyscoczanski (2007) provided a similar method whereby spectral
411	peaks from olivine were used to calculate the percentage of host mineral in transmission
412	spectra of unexposed MI. Yet another technique was assessed by Befus et al. (2012)
413	where MI thicknesses in unexposed inclusions were estimated from the mean diameters
414	of the inclusions as measured in cross section. Though we have not directly compared
415	our proposed method to the other two, we expect that direct reflectance measurement

416 with ATR- or SR-FTIR combined with transmission FTIR will be a labor-saving and 417 highly quantitative method for measurement of CO₂ and H₂O in silicate melt inclusions.

- 418

419 **Tips for Sample Preparation**

420 The most critical aspect of obtaining quality ATR spectra of silicate glass is the 421 contact between the ATR crystal and the sample. To ensure proper contact, we 422 recommend the following steps. First, the sample surface should be as horizontal as 423 possible, with minimal slope or surface topography. It is helpful to mount one or 424 multiple samples in epoxy, such that one creates a broad uniformly polished surface. 425 Grains mounted and polished individually may not provide as successful of an ATR 426 spectrum. On the other hand, a few visible scratches on the sample surface will not 427 adversely affect the analysis (e.g., Figure 3). Next, the sample mount should be fixed to 428 the sample stage so that impact of the ATR accessory does not cause the sample to move. 429 For example, an epoxy mount can be affixed with double-stick tape. If the sample 430 moves, or the ATR crystal is otherwise unable to make firm contact, the resulting 431 spectrum will yield low and irregular absorbance intensities. By collecting data on 432 multiple spots, it is relatively straightforward to assess whether the sample geometry has 433 been optimized. Another common problem occurs when the ATR accessory is not 434 inserted fully into its fittings. Usually, this latter problem will be evident in an 435 anomalous shape for the reference spectrum (air), as well as for the sample spectrum.

436

437 Improving signal/noise and elimination of signals from atmosphere

438	Ideal spectral peaks for ATR spectroscopy are those that are highly absorbing and
439	difficult to use in transmission FTIR. For example, in Figure 2, the transmission
440	spectrum for a 74- μ m-thick glass wafer is over-saturated at A ₃₅₇₀ , with an absorbance >
441	2.0 (i.e., $< 1\%$ of the initial light is transmitted through the sample). This truncated peak
442	cannot be used for quantitative analysis and the sample must be further thinned to allow
443	for collection of a usable spectrum. In contrast, the ATR spectrum has A_{3450} of ~ 0.02,
444	regardless of sample thickness. For samples with less than 1% H ₂ O, A_{3450} becomes very
445	small and it becomes increasingly important to reduce noise to achieve good spectral
446	quality. Though increasing the number of averaged sampled scans is the typical
447	procedure for increasing signal to noise in FTIR spectroscopy, it is of less importance
448	here than removing the effects of atmospheric H ₂ O vapor and CO ₂ , which have
449	considerably greater influence on the small peaks obtained in ATR FTIR compared with
450	transmission spectra. Moreover, placement of the ATR accessory prevents utilization of
451	the purge collar used for transmission and specular reflectance experiments, making it
452	more difficult to exclude atmosphere from the sample area.
453	As discussed above, we commonly reduced spectral resolution to 16 cm ⁻¹ and
454	decreased sampling time to minimize variations in background water vapor in the room.
455	Alternatively, we found we could post-process with the atmospheric-correction algorithm
456	available through the Omnic software. Though this post-processing is successful for
457	removing water-vapor fringes on A_{3450} and A_{1630} , it also precludes any attempt at
458	quantification of CO ₂ . Therefore, we also experimented with placing a shroud over the

459	sample-stage to minimize circulation of external atmosphere near the ATR assembly.
460	With the shroud, we used both our normal dry-air, low-CO ₂ , purge (CO ₂ measured at \sim
461	5ppm) and purified-N ₂ (< 1 ppm CO ₂) from a pressurized tank. We found that the shroud
462	significantly decreased the effect of H_2O vapor, and that the N_2 -purge also allowed us to
463	clearly identify the CO_2 -peak (2350 cm ⁻¹) in some samples. We are currently working to
464	calibrate the ATR-FTIR for analysis of CO ₂ in both basaltic and rhyolitic glass
465	(Lowenstern et al., in preparation). Regardless of the quality of the purge, it seems
466	unlikely that usable spectra can be obtained for the weak-absorbing near-IR $\mathrm{H_2O}$ peaks at
467	5200 and 4500 cm ⁻¹ , which will be much too small for quantification.
468	
469	Interlaboratory Comparison and Caveats
470	Use of the α , ω and <i>b</i> values in Table 2 are likely to be valid as long as the ATR
471	crystal is similar to that used in the present study (Ge with Θ = 31°). When using
472	different ATR crystal types or Ge crystals with a different geometry, calibration values
473	for H ₂ O could vary from those cited herein. Workers seeking to use ATR micro-FTIR

474 techniques to quantify H₂O in hydrous glasses are recommended to verify our calibration

475 values in Table 2 with several standard glasses. We also recommend against using our

476 values of α , ω and b for alkali-rich samples such as phonolite or nephelinite until it can

477 be verified that those compositions also fall upon this calibration.

478

479

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

480 481 482	FINAL THOUGHTS
482 483	ATR micro-FTIR is an easy-to-use, easy-to-quantify technique that can be applied toward
484	the study of experimental glasses, obsidians, and melt inclusions. It is best-suited toward
485	samples prepared in epoxy mounts. As with transmission FTIR, reproducibility is
486	excellent and typically $\sim 1\%$ for a given spot, provided that the sample is flat and the ATR
487	crystal makes complete contact. For the compositions studied (calc-alkaline basalts
488	through dacites and rhyolites), a single standardization permits quantification of H ₂ O,
489	provided that the sample density can be estimated. High-resolution maps of H_2O
490	concentrations within natural and experimental samples can be obtained with spot size
491	down to $\sim 5 \mu m.$ When combined with brighter infrared sources such as synchrotron
492	FTIR (Guilhaumou et al., 2005; Castro et al. 2008), the ATR should be an extremely
493	powerful technique for mapping H_2O variations in natural and experimental samples.
494	There are numerous options for quantitative analysis of H_2O in silicate glass. None are
495	clearly superior in all aspects, and we expect that users will make their preferred
496	analytical choice based on a combination of availability, cost, and the logistics of sample
497	preparation and analysis.
498 499 500	Acknolwledgements
501 502	Dawnika Blatter provided the basaltic glass standards. Sally Newman provided
503	three obsidian clasts from Mono Craters. Tom Sisson donated three of the rhyolite glass
504	standards and a sample of Huckleberry Ridge Tuff. Margaret Mangan provided the three
505	dacites and four basaltic andesites. Cal McCulloch assisted with sample polishing and
506	analysis. We appreciate helpful reviews by Sisson, Heather Wright, W. Mailfait, and C.

- 507 LeLosq. Manuel Nathenson provided insight on data reduction and statistics. The iN10
- 508 FTIR spectrometer was purchased in 2011 with funds provided by the Volcano Science
- 509 Center. BP came to the USGS through a National Association of Geoscience Teachers
- 510 internship. Most other funding comes from the USGS Volcano Hazards Program.

511

513 514 515	References
515	Befus, K.S., Gardner, J.E. and Zinke, R.W. (2012) Analyzing water contents in
517	unexposed glass inclusions in quartz crystals. American Mineralogist 97, 1898–1904.
518	Blank, J.G., Stolper, E.M., Carroll, M.R. (1993) Solubilities of carbon-dioxide and water
519	in rhyolitic melt at 850°C and 750 bars. Earth and Planetary Science Letters 119, 27-
520	36.
521	Castro, J.M., Beck, P., Tuffen, H., Nichols, A.R.L., Dingwell, D.B., and Martin, M.C.
522	(2008) Timescales of spherulite crystallization in obsidian inferred from water
523	concentration profiles. American Mineralogist, 93, 1816-1822.
524	Compton, S.V., and Compton, D.A.C. (1993) Optimization of data recorded by internal
525	reflectance spectroscopy. In P.B. Coleman, Ed. Practical sampling techniques for
526	infrared analysis, 55–92. CRC Press, 301 pp.
527	Della Ventura, G., Belatreccia, F., Marcelli, A., Cestelli Guidi, M., Piccinini, M.,
528	Cavallo, A., and Piochi, M. (2010) Application of micro-FTIR imaging in the Earth
529	sciences. Analytical and Bioanalytical Chemistry, 397, 2039–2049.
530	Dixon, J.E., Stolper, E.M., and Holloway, J.R. (1995) An experimental study of water
531	and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part 1: Calibration
532	and solubility models. Journal of Petrology 36, 1607–1631.
533	Dobson, P.F., Epstein, S., and Stolper, E.M. (1989) Hydrogen isotope fractionation
534	between coexisting vapor and silicate glasses and melts at low pressure. Geochimica et
535	Cosmochimica Acta. 53, 2723–2730.

- 536 Guilhaumou, N., Sautter, V., and Dumas, P. (2005) Synchrotron FTIR microanalysis of
- 537 volatiles in melt inclusions and exsolved particles in ultramafic deep-seated garnets.
- 538 Chemical Geology, 223, 82-92.
- 539 Hervig, R.L., Mazdab, F.K., Moore, G., McMillan, P.F. (2003) Analyzing hydrogen
- 540 (H₂O) in silicate glass by secondary ion mass spectrometry and reflectance Fournier
- 541 transform infrared spectroscopy. In: De Vivo, B., Bodnar, R.J. (eds.) Melt inclusions
- 542 in volcanic systems: methods, applications and problems. Elsevier, pp. 83–103.
- 543 Hauri, E., Wang, J.H., Dixon, J.E., King, P.L., Mandeville, C., and Newman, S. (2002)
- 544 SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and
- comparisons with FTIR. Chemical Geology, 183, 99–114.
- 546 Hodder, A. P. W. (1978) Refractive index and hydration of rhyolitic glass from
- 547 Holocene tephras, North Island, New Zealand. New Zealand Journal of Geology and
- 548 Geophysics, 21,155–166.
- 549 Ihinger, P.D., Zhang, Y., and Stolper, E.M. (1999) The speciation of dissolved water in
- 550 rhyolitic melt. Geochimica et Cosmochimica Acta, 63, 3567–3578.
- 551 King, P.L., and Larsen, J.F. (in press) A micro-reflectance IR spectroscopy method for
- analyzing volatile species in basaltic, andesitic, phonolitic and rhyolitic glasses.
- 553 American Mineralogist.
- 554 King, P.L., McMillan, P.F., and Moore, G.M. (2004a) Laboratory Fournier transform
- infrared spectroscopy methods for geologic samples. In King, P.L., Ramsey, M.S., and
- 556 Swayze, G.A., Eds., Infrared Spectroscopy in Geochemistry, Exploration
- 557 Geochemistry, and Remote Sensing, 33, 57–91. Short Course Series Volume,
- 558 Mineralogical Association of Canada, London, Ontario.

- 559 King, P.L., McMillan, P.F., and Moore, G.M. (2004b) Infrared spectroscopy of silicate
- 560 glasses with applications to natural systems. In King, P.L., Ramsey, M.S., and
- 561 Swayze, G.A., Eds., Infrared Spectroscopy in Geochemistry, Exploration
- 562 Geochemistry, and Remote Sensing, 33, 93–133. Short Course Series Volume,
- 563 Mineralogical Association of Canada, London, Ontario.
- 564 Lange, R.A., and Carmichael, I.S.E. (1987) Densities of Na₂O-K₂O-CaO-MgO-FeO-
- Fe_2O_3 -Al₂O₃-TiO₂-SiO₂ liquids: New measurements and derived molar properties.
- 566 Geochimica et Cosmochimica Acta, 51, 2931–2946.
- 567 Le Losq, C., Neuville, D.R., Moretti, R., and Roux, J. (2012) Determination of water in
- silicate glasses using Raman spectrometry: Implications for the study of explosive
- 569 volcanism. American Mineralogist, 97, 779-790.
- 570 Mangan, M., and Sisson, T. (2005) Evolution of melt-vapor surface tension in silicic
- volcanic systems: Experiments with hydrous melts. Journal of Geophysical Research,110, B01202.
- 573 Mercier, M., DiMuro, A., Metrich, N., Giordano, D., Belhadj, O. and Mandeville, C.W.
- 574 (2010) Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate
- 575 glasses and glass inclusions. Geochimica et Cosmochimica Acta, 74, 5641–5656.
- 576 Newman, S., Stolper, E.M. and Epstein, S. (1986) Measurement of water in rhyolitic
- 577 glasses: Calibration of an infrared spectroscopic technique. American Mineralogist,
- 578 71, 1527–1541.
- 579 Newman, S., Epstein, S., and Stolper, E. (1988) Water, carbon dioxide and hydrogen
- isotopes in glasses from the ca. 1340 A.D. eruption of the Mono Craters, California:

- 581 Constraints on degassing phenomena and initial volatile content. Journal of
- 582 Volcanology and Geothermal Research, 35, 75–96.
- 583 Nichols, A.R.L. and Wysoczanski, R. (2007) Using micro-FTIR spectroscopy to measure
- volatile contents in small and unexposed inclusions hosted in olivine crystals.
- 585 Chemical Geology, 242, 371–384.
- 586 Ochs, F.A. III, and Lange, R.A. (1999) The density of hydrous magmatic liquids.
- 587 Science, 283, 1314–1317.
- 588 Ohlhorst, S., Behrens, H., and Holtz, F. (2001) Compositional dependence of molar
- absorptivities of near-infrared OH- and H2O bands in rhyolite to basaltic glasses.
- 590 Chemical Geology, 74, 5–20.
- 591 Stolper, E.M. (1982) Water in silicate glass: An infrared spectroscopic study.
- 592 Contributions to Mineralogy and Petrology, 81, 1–17.
- 593 Thomas, R. (2000) Determination of water contents of granite melt inclusions by
- 594 confocal laser Raman microprobe spectroscopy. American Mineralogist, 85, 868–872.
- 595 Thomas, S., Thomas, R., Davidson, P., Reichart, P., Koch-Müller, M. and Dollinger, G.
- 596 (2008) Application of Raman spectroscopy to quantify trace water concentrations in
- 597 glasses and garnets. American Mineralogist 93, 1550–1557.
- 598 Uchino, T., Sakka, T., Hotta, K., and Iwasaki, M. (1989) Attenuated total reflectance
- 599 Fourier-transform infrared spectra of a hydrated sodium silicate glass. Journal of the
- 600 American Ceramics Society, 72, 2173-75.
- 601 Westrich, H.R. (1987) Determination of water in volcanic glasses by Karl Fischer
- titration. Chemical Geology 63, 335–340.

- 603 Wright, H.M., Bacon, C.R., Vazquez, J.A. and Sisson, T.W. (2012) Sixty thousand years
- of magmatic volatile history before the caldera-forming eruption of Mount Mazama,
- 605 Crater Lake, Oregon. Contributions to Mineralogy and Petrology, DOI 10.1007/s00410-
- 606 012-0787-8.
- 607 Wysoczanski, R. and Tani, K. (2006) Spectroscopic FTIR imaging of water species in
- 608 silicic glasses and melt inclusions: An example from the Izu-Bonin arc. Journal of
- 609 Volcanology and Geothermal Research, 156, 302–314.
- 610 York, D. (1966) Least-squares fitting of a straight line. Canadian Journal of Physics, 44,
- 611 1079–1086.
- 612 Zajacz, Z., Halter, W., Malfait, W.J., Bachmann, O., Bodnar, R.J., Hirschmann, M.M.,
- 613 Mandeville, C.W., Morizet, Y., Muntener, O., Ulmer, P. and Webster, J.D. (2005) A
- 614 composition-independent quantitative determination of the water content in silicate
- 615 glasses and silicate melt inclusions by confocal Raman spectroscopy. Contributions to
- 616 Mineralogy and Petrology, 150, 631–642.
- 617 Zhang, Y., Belcher, R., Ihinger, P.D., Wang, L., Xu Z., and Newman, S. (1997) New
- 618 calibration of infrared measurement of dissolved water in rhyolitic glasses. American
- 619 Mineralogist, 61, 3089–3100.
- 620 Zhang, Y. (1999) H₂O in rhyolitic glasses and melts: Measurement, speciation, solubility
- and diffusion. Reviews of Geophysics, 37, 493–516.
- 622

623 624	FIGURE CAPTIONS
625	FIGURE 1. Schematic cross-sectional diagram of the ATR setup. The Ge ATR crystal
626	makes contact with the sample along a 350-µm-diameter spherical interface.
627	Magnification within the crystal provides a spot on the sample that is 4X smaller than
628	the size of the initial optical aperture. Thus, a 40x40 μ m beam will sample a 10x10
629	μm area on the sample surface. With the 31° incident angle and Ge crystal, the depth
630	of penetration of the evanescent wave into rhyolite glass is $< 1 \mu m$ at relevant
631	wavelengths.
632	
633	FIGURE 2. Wavenumber vs. absorbance for FTIR spectra of hydrous rhyolite #51 (4.4 wt.
634	% H ₂ O; Table 1). (a) Original spectrum prior to correction. Note negative CO_2
635	doublet ~2350 cm ⁻¹ due to slightly higher CO_2 in the reference spectrum and
636	associated abundant H ₂ O-vapor spikes from 1500 to 1900 cm ⁻¹ . (b) Atmosphere-
637	corrected spectrum from ATR. Dissolved H_2O in the hydrous glass can be quantified
638	through measurement of the height of the peaks at 3450 cm ⁻¹ (e.g., A_{3450}) and 1630
639	cm^{1} , after drawing appropriate baselines. (c) Transmission spectrum for a doubly
640	polished wafer of the same sample shows abundant H_2O and dissolved CO_2 (singlet)
641	and far higher absorbances than are achieved with ATR. In this spectrum the peak at
642	3500 cm ⁻¹ is truncated due to very high water concentrations and/or excessive
643	thickness and cannot be used to quantify dissolved H ₂ O.
644	
645	FIGURE 3. ATR-generated map of a melt inclusion in quartz (AK48-10 with $H_2O_t = 3.5$

646 wt.%) from the 1912 eruption at the Valley of Ten Thousand Smokes. (a) Reflected

647	light image of melt inclusion in quartz. Some scratches are evident on the sample
648	surface. (b) Clarification of outline of melt inclusion in a. The letters f, g, and h,
649	represent the figure parts depicting spectra for those regions. The associated pink
650	squares show the approximate spot size of $10\mu m$. (c) Unsmoothed map depicting A_{3450}
651	of area shown in a and b . The map is an array of $47x34$ pixels, each 8 μ m on a side,
652	each representing a separate analysis; i.e., the stage moves 8µm in between analyses.
653	The spot size (10 μ m) is slightly larger than the pixel. Each spectrum averages 8
654	scans, collected in < 1 second. (d) Same as c but with a spline smoothed representation
655	of the data. Height of A_{3450} and wt.% H ₂ O _t is shown in color bar pertains to both c and
656	d . (e) Transect from A to B (shown in c) that depicts consistency of A_{3450} within the
657	inclusion and the excellent spatial resolution such that only one pixel at the inclusion
658	edge is a mixed spectrum of glass and quartz. The inclusion contains an apparently
659	homogenous glass with ~3.5 wt.% H ₂ O. (f) Representative spectrum of quartz. Each
660	spectrum is the average of 8 scans at 16 cm ^{-1} spectral resolution. (g) Spectrum of pixel
661	within glass/melt inclusion. (h) Spectrum of pixel at boundary of melt inclusion, thus
662	incorporating absorbance-related peaks from both quartz and glass.
663	
664	FIGURE 4. Calibration curves for ATR spectra. All data and errors from Table 1. (a) ATR
665	peak height at 3450 cm ⁻¹ (A_{3450}) versus H ₂ O concentration as determined by

- transmission spectroscopy (Zhang et al., 1997). The best-fit line is based on the
- 667 rhyolite standards alone and accommodates errors in both variables (York, 1966). (b)
- 668 Normalization for density allows a single correction factor (ω) to accommodate
- 669 compositions from rhyolite to basaltic glass.

670

671	FIGURE 5.	Calibration curves	for ATR spectra.	All data and errors	from Table	1 except for
-----	-----------	--------------------	------------------	---------------------	------------	--------------

- H_2O_m for the three samples from Mono Craters (Newman et al., 1986, 1988). (a) ATR
- 673 peak height at 1630 cm⁻¹ (A_{1630}) versus H₂O_m concentration as determined by
- transmission spectroscopy at 5200 cm⁻¹ (Zhang et al., 1997). The best fit is based on
- the rhyolite standards alone and accommodates errors in both variables (York, 1966).
- 676 Symbols as in Figure 4. (b) Same plot normalized for density. As with A_{3450} , the
- 677 calibration applies to a variety of natural glass compositions.
- 678
- 679
- 680
- 681

				Ν	Nanometry		Transmis	sion FTIR				ATR-FTIR			Specular I	Reflectance
			Density	•		H_2O_m wt%	OH wt%	H_2O_t wt%	H_2O_t wt%			wt% H ₂ O _t	wt% H ₂ O _t	wt% OH⁻by	DR ₃₅₀₀	‡H₂O wt%
Sample	Comp*.	Type**	g/cc	Peaks†		(Znang)	(Zhang)	(Znang)	(fixed e)	A ₃₄₅₀	A ₁₆₃₀	from $A_{3450}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	from $A_{1630}^{$ §	difference [§]	/R ₄₀₀₀	
MT3	Rhy.	Chip	2.35	MID					0.133 (7)	0.0025 (3)	0.0018 (2)	0.39 (8)	0.21 (4)	0.19 (13)	0.0064	0.0 (1)
C10D2	Rhy.	Chip	2.33	NIR		0.09 (1)	0.62 (6)	0.71 (7)	0.69 (7)	0.0057 (8)	0.0020 (3)	1.15 (20)	0.29 (7	0.86 (27)	0.0199	0.59 (12)
IDDP	Rhy.	Chip	2.31	NIR		0.62 (7)	1.20 (14)	1.80 (21)	1.77 (20)	0.0090(13)	0.0044 (7)	1.94 (33)	0.81 (15)	1.13 (48)	0.0395	1.49 (26)
88YS7_3	Rhy.	Chip	2.27	NIR		2.35 (18)	0.52 (4)	2.88 (22)	3.29 (25)	0.0125 (5)	0.0112 (3)	2.84 (18)	2.39 (14)	0.46 (32)		
EXP2170	Rhy.	Chip	2.21	NIR		4.90 (15)	1.34 (23)	6.24 (38)	7.15 (42)	0.0262 (2)	0.0209 (1)	6.34 (28)	4.77 (23)	1.57 (51)	0.1683	7.62 (18)
EXP51	Rhy.	Chip	2.25	NIR		2.64 (21)	1.78 (15)	4.42 (36)	4.72 (38)	0.0195 (9)	0.0132 (2)	4.57 (40)	2.9 (17)	1.67 (57)	0.1232	5.49 (25)
EXP54	Rhy.	Chip	2.30	NIR		0.72 (11)	1.46 (23)	2.18 (34)	2.07 (33)	0.0094 (3)	0.0035 (1)	2.07 (13)	0.62 (5)	1.45 (18)	0.0580	2.40 (2)
N. Coulee	Rhy.	Chip	2.34	MAN	0.271 (2)					0.0020 (1)	0.0009 (1)	0.28 (5)	0.01 (2)	0.26 (7)		
MC84-df	Rhy.	Chip	2.35	MAN	0.696 (4)					0.0036 (3)	0.0015 (1)	0.65 (8)	0.14 (3)	0.51 (12)		
MC84-t	Rhy.	Chip	2.33	MAN	0.779 (5)					0.0040 (2)	0.0020 (1)	0.76 (8)	0.25 (3)	0.51 (12)		
SB872-4	Bas.	Chip	2.73	NIR					4.66 (40)	0.0229 (7)	0.0084 (3)	4.42 (25)	1.43 (11)	2.99 (35)	0.0737	3.87 (7)
SB872-3	Bas.	Chip	2.81	NIR					1.95 (18)	0.0124 (4)	0.0023 (3)	2.24 (15)	0.24 (5)	2.00 (19)	0.0272	1.55 (4)
SB2329	Bas.	Chip	2.84	NIR					1.05 (10)	0.0094 (6)		1.63 (15)			0.0165	1.02 (6)
88YS7_MI_2	Rhy.	MI	2.27	NIR		2.73 (20)	0.58 (5)	3.31 (25)	3.80 (28)	0.0149 (1)	0.0133 (1)	3.43 (16)	2.89 (15)	0.53 (31)		
88YS7_MI_3	Rhy.	MI	2.27	NIR		2.33 (16)	1.20 (9)	3.53 (25)	3.85 (27)	0.0143 (1)	0.0117 (2)	3.27 (16)	2.52 (14)	0.75 (30)		
PGAF40	Rhy.	MI	2.19	NIR		6.29 (40)	0.49 (4)	6.78 (44)	8.05 (53)	0.0212 (1)	0.0230 (1)	5.13 (23)	5.31 (26)	-0.18 (48)		
PGAF_MI_2	Rhy.	MI	2.19	NIR		5.65 (40)	1.09 (9)	6.74(49)	7.90 (57)	0.0243 (6)	0.0176 (4)	5.90 (30)	4.02 (22)	1.88 (51)		
LAS1842-3	Rhy.	MI	2.25	NIR		3.14 (15)	0.99 (6)	4.13 (21)	4.68 (24)	0.0163 (2)	0.0122 (2)	3.79 (19)	2.66 (15)	1.14 (34)		
LAS1842-4	Rhy.	MI	2.31	NIR		0.84 (3)	0.71 (4)	1.55 (7)	1.66 (8)	0.0076 (1)	0.0067 (1)	1.61 (10)	1.33 (8)	0.28 (19)		
BA2065	BasAnd.	Chip	2.62	MAN	2.8 (1)					0.0138 (6)		2.70 (18)				
BA2066	BasAnd.	Chip	2.63	MAN	2.5 (1)					0.0143 (5)		2.79 (18)				
BA2068	BasAnd.	Chip	2.59	MAN	3.9 (1)					0.0212 (5)		4.31 (22)				
BA2070	BasAnd.	Chip	2.59	MAN	3.9 (1)					0.0216 (2)		4.40 (20)				
F14	Dac.	Chip	2.45	NIR					1.11 (7)	0.0061 (3)	0.0016 (1)	1.17 (11)	0.15 (3)	1.02 (14)		
F33	Dac.	Chip	2.38	NIR					3.49 (19)	0.0147 (1)	0.0088 (2)	3.21 (16)	1.74 (10)	1.47 (26)		
F40	Dac.	Chip	2.40	NIR					2.71 (15)	0.0136 (2)	0.0075 (2)	2.93 (15)	1.44 (10)	1.49 (24)		

Table 1. FTIR peak heights, calculated concentrations, and associated errors (one sigma) using transmission, ATR and SR techniques.

Note: Sample provenance, chemistry, and references provided in Supplementary Methods and Supplementary Table 1.

*Composition: Rhy. = Rhyolite; Bas. = Basalt; BasAnd. = Basaltic Andesite; Dac. = Dacite

**Type: Chip (doubly polished wafer of hydrated experimental or natural glass) or MI (doubly polished melt inclusion)

[†]MID = NSE using 3570 peak, NIR uses 5200 and 4500 peaks, MAN = manometry

‡Calculated with Eq. 3 and K1 and K2 for rhyolite (and andesite for SB samples) from King et al. (2004b)

[§]Calculated with Eq. 5 and coefficients in Table 2 (OH⁻ calculated by difference of H2Ot and H2Om).

Table 2. ATR correction factors derived from measured standards.

		Equation 4		Equation 5 Density-normalized correction factor				
		Correction Factor						
Peak	а	b	R ²		b	R ²		
A ₃₄₅₀	245 ± 9	-0.22 ±0.03	0.99	550 ± 21	-0.19 ± 0.03	0.99		
A ₁₆₃₀	235±11	-0.20 ± 0.02	0.99	525 ± 23	-0.19 ± .02	0.99		

ATR MOUNT Incident 40µm aperture (to detector) Ge ATR	~
Epoxy Sample/glass	scent

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI with port work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4466 а 0.025 $\alpha = 245 + 9$ $b = -0.22 \pm .03$ 0.020 $R^2 = 0.99$ $A_{_{3450}}$ 0.015 Rhyolite 0.010 Melt Inc. Dacite Bas. Andesite 0.005 Basalt 0.00 b $\omega = 550 \pm 21$ $b = -0.19 \pm .03$ 0.010 $R^2 = 0.99$ A₃₄₅₀/density 0.005 0.00 1.0 2.0 3.0 4.0 5.0 6.0 7.0 wt % H₂O

/ays consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWo

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press.

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.5466

