1	Revision 1
2	
3	Nizamoffite, $Mn^{2+}Zn_2(PO_4)_2(H_2O)_4$, the Mn analogue of hopeite from the Palermo No. 1
4	pegmatite, North Groton, New Hampshire.
5	
6	ANTHONY R. KAMPF ¹ *, ALEXANDER U. FALSTER ² , WILLIAM B. SIMMONS ² , AND ROBERT W.
7	WHITMORE ³
8	
9	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900
10	Exposition Boulevard, Los Angeles, CA 90007, U.S.A.
11	² Department of Earth and Environmental Science, University of New Orleans, 2000
12	Lakeshore Drive, New Orleans, LA 70148 U.S.A.
13	³ 934 S. Stark Highway, Weare, NH 03281, U.S.A.
14	*E-mail: akampf@nhm.org
15	
16	
17	Abstract
18	Nizamoffite, ideally $Mn^{2+}Zn_2(PO_4)_2(H_2O)_4$, is a new mineral from the Palermo No.1
19	pegmatite in North Groton, Grafton County, New Hampshire, U.S.A. It formed as the result
20	of secondary alteration of primary triphylite and associated sphalerite. The crystals occur as
21	colorless prisms up to 1 mm in length and 0.5 mm in diameter. The prisms are elongated and
22	lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and
23	{111}. The mineral is transparent and has a white streak, vitreous luster, Mohs hardness of
24	about $3\frac{1}{2}$, brittle tenacity, irregular fracture, and three cleavages: perfect on $\{010\}$, good on
25	$\{100\}$, and fair on $\{001\}$. The measured and calculated densities are $3.00(1)$ and 2.961 g/cm ³ ,

26	respectively. It is optically biaxial (–), $\alpha = 1.580(1)$, $\beta = 1.590(1)$, $\gamma = 1.591(1)$ (white light),
27	$2V_{\text{meas}} = 28(1)^{\circ}$ and $2V_{\text{calc}} = 35^{\circ}$. Nizamoffite exhibits strong dispersion, $r < v$. The optical
28	orientation is $X = \mathbf{a}$, $Y = \mathbf{c}$, $Z = \mathbf{b}$ and the mineral is nonpleochroic. Electron-microprobe
29	analyses (average of 10), with H_2O calculated on structural grounds, provided: CaO 0.20,
30	MgO 0.61, MnO 15.80, ZnO 33.34, Fe ₂ O ₃ 2.81, Al ₂ O ₃ 0.10, P ₂ O ₅ 32.05, H ₂ O 15.95, total
31	100.23 wt%. The empirical formula (based on 12 O atoms) is:
32	$(Mn^{2+}_{0.99}Ca_{0.02})_{\Sigma 1.01}(Zn_{1.82}Fe^{3+}_{0.12}Mg_{0.07})_{\Sigma 2.01}(P_{1.00}O_4)_2(H_{1.96}O)_4.$ The mineral dissolves readily
33	in cold, dilute HCl. Nizamoffite is orthorhombic, $Pnma$, with the unit-cell parameters: $a =$
34	10.6530(4), $b = 18.4781(13)$, $c = 5.05845(15)$ Å, $V = 995.74(8)$ Å ³ , and $Z = 4$. The eight
35	strongest lines in the X-ray powder diffraction pattern are $[d_{obs} \text{ in } Å(I)(hkl)]$: 9.27(71)(020);
36	4.62(37)(040,220); 4.43(24)(111); 3.424(52)(240,221); 2.873(100)(241); 2.644(36)(400,331);
37	2.540(33)(420,161,002); and 1.953(36)(281). Nizamoffite is isostructural with hopeite. The
38	structure ($R_1 = 1.7\%$ for 1014 $F_0 > 4\sigma F$) contains corner-sharing zigzag chains of ZnO ₄
39	tetrahedra along [001]. The chains are connected by corner sharing with PO ₄ tetrahedra to
40	form sheets parallel to $\{010\}$. Three of the four PO ₄ vertices link to ZnO ₄ tetrahedra in the
41	sheet, while the fourth links to an octahedron between the sheets. Each octahedron links to
42	one tetrahedron from each of two adjacent sheets, thereby linking the sheets in the [010]
43	direction. The octahedron contains Zn in hopeite and Mn in nizamoffite.
44 45	Keywords: nizamoffite; new mineral; crystal structure; hopeite; secondary phosphate;
46	Palermo No. 1 pegmatite, New Hampshire, U.S.A.
47	
48	Introduction
49	The new mineral described herein was discovered at the Palermo No.1 pegmatite

- 50 (Segeler et al. 1981; Whitmore and Lawrence 2004) in North Groton, Grafton County, New
- Hampshire, U.S.A. (43° 45.038'N 71° 53.378'W), by James Nizamoff and one of the authors 51

52	(RWW) in 2003. The Palermo No. 1 pegmatite is the type locality for eleven new phosphate
53	species, not including the new mineral described herein: whitlockite (Frondel 1941), wolfeite
54	and xanthoxenite (Frondel 1949), palermoite (Frondel and Ito 1965), bjarebyite (Moore et al.
55	1973), whitmoreite (Moore et al. 1974), foggite, goedkenite, and samuelsonite (Moore et al.
56	1975), schoonerite (Moore and Kampf 1977), and falsterite (Kampf et al. 2012). The paper
57	describing the last of these includes a synopsis of the mineralogy and geology of the deposit.
58	The new species is named nizamoffite in honor of James W. Nizamoff (b. 1971) in
59	recognition of his research on pegmatite mineralogy in general, and especially on the
60	phosphate mineralogy of the Palermo pegmatites at North Groton, New Hampshire. Mr.
61	Nizamoff is one of the discoverers of the new mineral and provided the specimens used for its
62	characterization. He is a co-author of the descriptions of the new minerals falsterite, galliskiite
63	and zigrasite. He has agreed to the naming of the mineral in his honor. The new mineral and
64	name have been approved by the Commission on New Minerals, Nomenclature, and
65	Classification of the International Mineralogical Association (IMA 2012-076). Two cotype
66	specimens are deposited in the Natural History Museum of Los Angeles County under
67	catalogue numbers 64009 and 64010.
68	

69 Occurrence and paragenesis

Nizamoffite was found in a Zn- and Pb-rich phosphate–carbonate assemblage (Nizamoff et al. 2007) along the margin of a 1.5 m triphylite crystal in the core-margin of the Palermo No. 1 pegmatite. The triphylite crystal is rimmed on one side by a 10 to 30 cm thick rind of siderite, fluorapatite, and quartz. This carbonate-rich zone also contains minor amounts of sulfide minerals including pyrite, sphalerite, galena, and chalcopyrite. A significant portion of the sulfides have been altered by aqueous solutions, resulting in the formation of numerous secondary Zn- and Pb-bearing phosphate and carbonate species. Nizamoffite is a relatively

77	late-formed phase occurring as well-formed crystals in vugs in direct association with
78	childrenite-eosphorite, crandallite-goyazite, fairfieldite-messelite, falsterite, fluorapatite,
79	frondelite-rockbridgeite, mitridatite, phosphophyllite, pyrite, quartz, siderite, schoonerite,
80	sphalerite, and vivianite. Other secondary species observed in the assemblage include
81	cerussite, keckite, parascholzite, pyromorphite, and smithsonite.
82	The redox conditions for this assemblage span the boundary between Fe^{2+} and Fe^{3+}
83	stability, as indicated by the presence of minerals containing Fe^{2+} , minerals containing Fe^{3+} ,
84	and minerals containing both Fe^{2+} and Fe^{3+} . We have assumed all Fe in nizamoffite to be 3+
85	because that is most consistent with its presence in the tetrahedral Zn site in the structure.
86	Furthermore, the structural site occupancy calculations using the program OccQP (see below),
87	indicate that all Fe in nizamoffite is 3+.
88	
89	Physical and optical properties
89 90	Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter.
89 90 91	Physical and optical propertiesNizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter.The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and
89 90 91 92	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and
 89 90 91 92 93 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and
 89 90 91 92 93 94 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light.
 89 90 91 92 93 94 95 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about 3¹/₂, the tenacity is brittle, the fracture is irregular, and there are
 89 90 91 92 93 94 95 96 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about 3½, the tenacity is brittle, the fracture is irregular, and there are three cleavages: perfect on {010}, good on {100}, and fair on {001}. The density measured
 89 90 91 92 93 94 95 96 97 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about 3¹/₂, the tenacity is brittle, the fracture is irregular, and there are three cleavages: perfect on {010}, good on {100}, and fair on {001}. The density measured by sink-float in an aqueous solution of lithium metatungstate is 3.00(1). The calculated
 89 90 91 92 93 94 95 96 97 98 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about 3¹/₂, the tenacity is brittle, the fracture is irregular, and there are three cleavages: perfect on {010}, good on {100}, and fair on {001}. The density measured by sink-float in an aqueous solution of lithium metatungstate is 3.00(1). The calculated density based on the empirical formula and single crystal unit cell is 2.961 g/cm³. Nizamoffite
 89 90 91 92 93 94 95 96 97 98 99 	 Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about 3¹/₂, the tenacity is brittle, the fracture is irregular, and there are three cleavages: perfect on {010}, good on {100}, and fair on {001}. The density measured by sink-float in an aqueous solution of lithium metatungstate is 3.00(1). The calculated density based on the empirical formula and single crystal unit cell is 2.961 g/cm³. Nizamoffite
 89 90 91 92 93 94 95 96 97 98 99 100 	Physical and optical properties Nizamoffite crystals occur as colorless prisms up to 1 mm in length and 0.5 mm in diameter. The mineral is orthorhombic holosymmetric (point group <i>mmm</i>). Prisms are elongated and lightly striated parallel to [001] and exhibit the forms {100}, {010}, {230}, {011}, {031}, and {111} (Fig. 1). Nizamoffite is colorless and has a white streak. Crystals are transparent and have vitreous luster. Nizamoffite does not fluoresce in long or short wave ultraviolet light. The Mohs hardness is about $3\frac{1}{2}$, the tenacity is brittle, the fracture is irregular, and there are three cleavages: perfect on {010}, good on {100}, and fair on {001}. The density measured by sink-float in an aqueous solution of lithium metatungstate is $3.00(1)$. The calculated density based on the empirical formula and single crystal unit cell is 2.961 g/cm^3 . Nizamoffite dissolves readily in cold, dilute HCI. Optically, nizamoffite is biaxial negative, with $\alpha = 1.580(1)$, $\beta = 1.590(1)$, $\gamma =$

102 = 20(1). The calculated 2v is 55. Nizalionne exhibits sholls uppersion, $7 > v$. The opt	102	28(1)°.	. The calculated $2V$ is 35° .	Nizamoffite exhibits	strong dispersion	r < v. The opt
---	-----	---------	---	----------------------	-------------------	----------------

- 103 orientation is $X = \mathbf{a}$, $Y = \mathbf{c}$, $Z = \mathbf{b}$ and there is no pleochroism.
- 104

105 Chemical composition

- 106 Ten chemical analyses were carried out using an ARL-SEMQ electron microprobe in the
- 107 Department of Earth and Environmental Science, University of New Orleans (WDS mode, 15
- 108 kV, 10 nA, and 2–3 µm beam diameter). No other elements were detected by EDS. Other
- 109 likely elements were sought by EMPA, but none were found to be above the limit of
- 110 detection. Insufficient material is available for direct water determination. The H₂O content is
- 111 calculated by stoichiometry based upon the structure determination. Analytical data and
- 112 standards are given in Table 1.
- 113 The empirical formula (based on 12 O atoms) is
- 114 $(Mn^{2+}_{0.99}Ca_{0.02})_{\Sigma 1.01}(Zn_{1.82}Fe^{3+}_{0.12}Mg_{0.07})_{\Sigma 2.01}(P_{1.00}O_4)_2(H_{1.96}O)_4$. The simplified formula is
- 115 MnZn₂(PO₄)₂(H₂O)₄, which requires MnO 15.84, ZnO 36.35, P₂O₅ 31.71, H₂O 16.10, total
- 116 100.00 wt%.

117 The Gladstone-Dale compatibility index $1 - (K_P/K_C)$ as defined by Mandarino (1981)

118 provides a measure of the consistency among the average index of refraction, calculated

density, and chemical composition. For nizamoffite, the compatibility index is 0.033 based on

120 the empirical formula, within the range of excellent compatibility.

121

122 X-ray crystallography and structure refinement

123 Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis Rapid

124 II curved imaging plate microdiffractometer, with monochromatized Mo*K*α radiation. For the

- 125 powder-diffraction study, a Gandolfi-like motion on the φ and ω axes was used to randomize
- 126 the sample and observed *d*-spacings and intensities were derived by profile fitting using JADE

127 2010 software. The powder data are presented in Table 2. The orthorhombic (*Pnma*) unit-cell 128 parameters refined from the powder data using whole pattern fitting are: a = 10.647(4), b =129 18.451(8), c = 5.047(2) Å, and V = 991.4(7) Å³.

130 The Rigaku CrystalClear software package was used for processing the structure data, 131 including the application of an empirical multi-scan absorption correction using ABSCOR 132 (Higashi 2001). The structure was solved by direct methods using SIR2004 (Burla et al. 133 2005), after which the coordinates were transformed to conform with those reported for 134 hopeite in most earlier reports (Hill and Jones, 1976; Haussühl et al., 1991). SHELXL-97 135 software (Sheldrick 2008) was used, with neutral atom scattering factors, for the refinement of 136 the structure. The occupancies of the octahedral (Mn) and large tetrahedral (Zn) sites were 137 calculated using the program OccQP (Wright et al. 2001), which uses quadratic equations in a 138 constrained least-squares formulation to optimize occupancy assignments based upon site 139 scattering, chemical composition, charge balance, bond valence and cation-anion bond 140 lengths. The optimization indicates deficiencies at both cation sites and somewhat different 141 distributions of cations compared with what we deem most likely and have provided in the empirical formula; however, both are consistent with the ideal formula $Mn^{2+}Zn_2(PO_4)_2(H_2O)_4$. 142 143 The positions of H atoms in the three H₂O groups, OW1, OW2, and OW3, were 144 located in the difference-Fourier maps and were refined using soft O-H distance constraints 145 of 0.82(5) Å and no H–H distance constraints. The isotropic displacement parameters for the H sites were fixed at 0.05 \AA^2 and, because more than one configuration was indicated for two 146 147 of the H₂O groups (OW2 and OW3), the occupancies of the H sites were refined. One H site 148 (H1) on a general position is associated with the OW1 site on a mirror plane. This site refined 149 to nearly full occupancy. The OW2 site, also on the mirror plane, has two H sites associated 150 with it. One (H2a) is on the mirror plane and refined to nearly full occupancy, while the 151 second (H2b) is on a general position and refined to close to half occupancy. These H sites,

152	therefore, define two different configurations for the OW2 H_2O group. The third H_2O group
153	(OW3) is on a general position has four H sites (H3a, H3b, H3c, and H3d) also on general
154	positions associated with it. The H3a site refined to nearly full occupancy, while the H3b,
155	H3c, and H3d site occupancies refined roughly to $\frac{1}{2}$, $\frac{1}{4}$, and $\frac{1}{4}$, respectively. The OW3 H ₂ O
156	group, therefore, has three different configurations. In the final refinement, the occupancies of
157	the H sites were fixed at full, $\frac{1}{2}$, and $\frac{1}{4}$ occupancies, in accord with their refined occupancies.
158	The details of the data collection and the final structure refinement are provided in
159	Table 3. The final fractional coordinates and atom displacement parameters are provided in
160	Table 4. Selected interatomic distances are listed in Table 5 and bond valences in Table 6.
161	
162	Description of the structure
163	Nizamoffite is isostructural with hopeite (Whitaker, 1975; Hill and Jones, 1976;
164	Haussühl et al., 1991). The structure contains corner-sharing zigzag chains of ZnO ₄ tetrahedra
165	along [001]. The chains are connected by corner sharing with PO ₄ tetrahedra to form sheets
166	parallel to $\{010\}$ (Fig. 2). Three of the four PO ₄ vertices link to ZnO ₄ tetrahedra in the sheet,
167	while the fourth links to an octahedron between the sheets. Each octahedron links to one
168	tetrahedron from each of two adjacent sheets, thereby linking the sheets in the [010] direction
169	(Fig. 3). The octahedron contains Zn in hopeite and Mn in nizamoffite. The dominance of Mn
170	in the octahedral site in nizamoffite is confirmed by computations using the program OccQP,
171	which optimizes site occupancies based upon site scattering, chemical composition, charge
172	balance, bond valence and cation-anion bond lengths.
173	Synthetic hopeites, including those substituted with cations such as Mn^{2+} , Ni^{2+} , and
174	Mg, have been studied extensively because of their technological applications, particularly
175	with respect to corrosion resistant coatings on galvanized steel (c.f. Arnaud et al. 1988;
176	Haussühl et al. 1991; Herschke et al. 2004; Schofield et al. 2007). In Nature, there are two

177	polymorphs of $Zn_3(PO_4)_2$ ·4(H ₂ O), hopeite (orthorhombic) and parahopeite (triclinic). In
178	laboratory studies, two orthorhombic polymorphs with somewhat different properties have
179	been reported and have been designated α -hopeite and β -hopeite. As noted by Herschke et al.
180	(2004), α -hopeite is considered more stable and β -hopeite forms at lower temperature (20°C),
181	but the structures of the two polymorphs are apparently identical except for the orientation of
182	the H atoms of one of the H ₂ O groups. The differing properties of α -hopeite and β -hopeite
183	have been attributed to the resultant difference in hydrogen bonding.
184	The locations of the H atoms and the configuration of the hydrogen bonds in
185	nizamoffite are shown in Figure 4, and are compared to those determined for α -hopeite and β -
186	hopeite by Herschke et al. (2004). [It should be noted that Herschke et al. (2004) used a
187	different space group setting (Pbnm) and atom numbering scheme, so our foregoing
188	comments are based upon our scheme.] Herschke et al. (2004) showed that the configurations
189	of the H atoms of the OW2 and OW3 H_2O groups are essentially the same in the structures of
190	$\alpha\text{-hopeite}$ and $\beta\text{-hopeite},$ while they differ for the OW1 H2O group. For $\alpha\text{-hopeite},$ the H
191	atoms of the OW1 group correspond to a single site on a general position reflected across the
192	mirror plane containing the OW1 site, while for β -hopeite, the H atoms of this group lie on
193	the mirror plane [although Herschke et al. (2004) apparently located only one of these H atom
194	sites]. As seen in Figure 4, the H atom positions and hydrogen bonds for nizamoffite most
195	closely correspond with those in α -hopeite. The only significant difference is the ¹ / ₄ -occupied
196	H3c and H3d sites. The H3c atoms form hydrogen bonds to adjacent OW3 atoms in the same
197	octahedral coordination. The H3d atoms form hydrogen bonds to an OW2 atom in a different
198	octahedral coordination.

200 Acknowledgements

201	Reviewers André-Mathieu Fransolet and Radek Škoda are thanked for their constructive						
202	comments on the manuscript. This study was funded by the John Jago Trelawney Endowment						
203	to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.						
204							
205	References						
206	Arnaud, Y., Sahakian, E., Lenoir, J., and Roche, A. (1988) Study of hopeite coatings: II.						
207	Study of polycationic hopeite: structure and dehydration process. Applied Surface						
208	Science, 32, 296–308.						
209	Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of						
210	the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.						
211	Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L.,						
212	Giacovazzo, C., Polidori, G., and Spagna, R. (2005) SIR2004: an improved tool for crystal						
213	structure determination and refinement. Journal of Applied Crystallography, 38, 381-388.						
214	Frondel, C. (1941) Whitlockite: a new calcium phosphate, Ca ₃ (PO ₄) ₂ . American Mineralogist,						
215	26, 145–152.						
216	Frondel, C. (1949) Wolfeite, xanthoxenite and whitlockite from the Palermo mine, New						
217	Hampshire. American Mineralogist, 34, 692–705.						
218	Frondel, C. and Ito, J. (1965) Composition of palermoite. American Mineralogist, 50, 777-						
219	779.						
220	Haussühl, S., Middendorf, B. and Dörffel, M. (1991) Structure and properties of hopeites						
221	$(Mg_xZn_{1-x})_3(PO_4)_2 \cdot 4H_2O$. Journal of Solid State Chemistry, 93, 9–16.						
222	Herschke, L., Enkelmann, V., Lieberwirth, I., and Wegner, G. (2004) The role of hydrogen						
223	bonding in the crystal structures of zinc phosphate hydrates. Chemistry - A European						
224	Journal, 10, 2795–2803.						
225	Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.						

- Hill, R.J. and Jones, J.B. (1976) The crystal structure of hopeite. American Mineralogist, 61,
- *987-995.*
- 228 Kampf, A.R., Mills, S.J., Simmons, W.B., Nizamoff, J.W. and Whitmore, R.W. (2012)
- Falsterite, $Ca_2MgMn^{2+}_2Fe^{2+}_2Fe^{3+}_2Zn_4(PO_4)_8(OH)_4(H_2O)_{14}$, a new secondary phosphate
- 230 mineral from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American
- 231 Mineralogist, 97, 496-502.
- 232 Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept
- and its application. Canadian Mineralogist, 19, 441–450.
- 234 Moore, P.B. and Kampf, A.R. (1977) Schoonerite, a new zinc-manganese-iron phosphate
- 235 mineral. American Mineralogist, 62, 246–249.
- 236 Moore, P.B., Lund, D.H., and Keester, K.L. (1973) Bjarebyite,
- 237 (Ba,Sr)(Mn,Fe,Mg)₂Al₂(OH)₃(PO₄)₃, a new species. Mineralogical Record, 4, 282–285.
- 238 Moore, P.B., Kampf, A.R., and Irving, A.J. (1974) Whitmoreite, $Fe^{2+}Fe^{3+}(OH)_2(H_2O)_4(PO_4)_2$,
- a new species: Its description and atomic arrangement. American Mineralogist, 59, 900–
- 240 905.
- 241 Moore, P.B., Irving, A.J., and Kampf, A.R. (1975) Foggite, CaAl(OH)₂(H₂O)[PO₄];
- 242 Goedkenite, (Sr,Ca)₂Al(OH)[PO₄]₂; and Samuelsonite,
- 243 $(CaBa)Fe^{2+}Mn^{2+}Ca_8Al_2(OH)_2[PO_4]_{10}$: Three new species from the Palermo No. 1
- 244 pegmatite, North Groton, New Hampshire. American Mineralogist, 60, 957–964.
- 245 Nizamoff, J.W., Whitmore, R.W., Falster, A.U., and Simmons, W.B. (2007) Parascholzite,
- 246 keckite, gormanite and other previously unreported secondary species and new data on
- kulanite and phosphophyllite from the Palermo #1 mine, North Groton, New Hampshire.
- 248 Rocks and Minerals, 82, 145.
- 249 Schofield, P.F., Knight, K.S., Hodson, M.E., and Lanfranco, A.M. (2007) Thermal expansion
- of deuterated hopeite, $Zn_3(PO_4)_2 \cdot 4D_2O$. American Mineralogist, 92, 1038–1047.

- 251 Segeler, C.G., Ulrich, W., Kampf, A.R. and Whitmore, R.W. (1981) Phosphate minerals of
- the Palermo No. 1 pegmatite. Rocks & Minerals, 56, 197–214.
- 253 Sheldrick, G.M. (2008) SHELXL97—Program for the refinement of crystal structures.
- 254 University of Göttigen, Germany.
- 255 Whitaker, A. (1975) The crystal structure of hopeite, Zn₃(PO₄)₂·4H₂O. Acta
- 256 Crystallographica, B31, 2026–2035.
- 257 Whitmore, R.W. and Lawrence, R.C., Jr. (2004) The Pegmatite Mines Known as Palermo.
- 258 Friends of Palermo Mines, North Groton, New Hampshire, 219 p. Friends of Palermo
- 259 Mines.
- 260 Wright, S.E., Foley, J.A., and Hughes, J.M. (2001) Optimization of site occupancies in
- 261 minerals using quadratic programming. American Mineralogist, 85, 524–531.

264	FIGURE CAPTIONS
265	
266	Figure 1. Crystal drawing of nizamoffite; clinographic projection in standard orientation.
267	
268	Figure 2. The sheet of corner-sharing ZnO_4 and PO_4 tetrahedra in the structure of nizamoffite
269	viewed down b . Oxygen atoms are labeled with numbers.
270	
271	Figure 3. The structure of nizamoffite viewed down c. Oxygen atoms are labeled with
272	numbers.
273	
274	Figure 4. Hydrogen bonding in nizamoffite, hopeite- α , and hopeite- β . Hydrogen bonds are
275	shown as thin black lines. The gray spheres are the octahedrally coordinated cations and the
276	bonds to the O atoms surrounding them are shown as sticks. Oxygen atoms in the nizamoffite
277	structure are labeled with numbers and H atoms with letters as appropriate.
278	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4491

279	Table 1. Analytical results for nizamoffite (average of 10 analyses).
280	

Constituent	wt%	Range	SD	Standard					
CaO	0.20	0.18-0.23	0.02	Fluorapatite ($K\alpha$)					
MgO	0.61	0.45-0.71	0.08	Triphylite (<i>K</i> α)					
MnO	15.80	15.55–15.91	0.10	Lithiophilite ($K\alpha$)					
ZnO	33.34	33.01-33.66	0.22	ZnO (Ka)					
Al_2O_3	0.10	0.07-0.12	0.02	Amblygonite ($K\alpha$)					
Fe ₂ O ₃	2.18	1.90-2.33	0.15	Triphylite (<i>K</i> α)					
P_2O_5	32.05	31.88-32.30	0.13	Triphylite (<i>K</i> α)					
H_2O^*	15.95								
Total	100.23								
* Calculated from the structure									

Iobs	$d_{ m obs}$	$d_{ m calc}$	Icalc	hkl	$I_{\rm obs}$	$d_{ m obs}$	$d_{ m calc}$	<i>I</i> _{calc}	hkl
71	9.27(8)	9.2389	89	020	4	1.794(19)	1.7915	2	291
8	5.35(14)	5.3265	10	200			(1.7449	2	480
12	5.14(10)	5.1181	17	210	7	1.741(12)	{ 1.7436	4	620
21	4.88(5)	4.8788	19	011			1.7340	2	551
27	1 67(2)	∫ 4.6195	38	040	12	1 704(0)	∫ 1.7055	2	082
57	4.02(3)	4.6145	4	220	12	1.704(9)	1.7045	6	442
24	4.43(4)	4.4358	21	111			(1.6841	6	182
		4.0958	4	121	11	1.677(11)	{ 1.6769	3	391
19	4.05(4)	4.0289	19	230			1.6654	2	103
14	3.91(4)	3.9090	15	031			(1.6502	3	2.10.1
7	2 67(6)	∫ 3.6698	3	131	12	1.647(7)	1.6495	3	481
/	5.07(0)	3.6679	4	201	13	1.047(7)	1.6484	3	621
52	3 121(13)	∫ 3.4898	23	240			1.6390	2	123
52	5.424(15)	3.4091	40	221	0	1 611(0)	∫ 1.6263	3	033
5	3.15(5)	3.1514	6	231	0	1.011(9)	1.6047	5	522
5	3.01(5)	∫ 3.0363	3	250	18	1.576(5)	1.5749	12	641
5	5.01(5)	2.9840	6	051	17	1 538(6)	∫ 1.5398	8	0.12.0
100	2.873(8)	2.8725	100	241	17	1.556(0)	1.5382	9	660
		2.6661	4	260	23	1.517(5)	1.5182	15	243
36	2644(0)	∫ 2.6633	19	400	7	1.490(12)	1.4920	4	0.10.2
50	2.044(9)	2.6284	22	331			(1.4716	3	661
		(2.5590	14	420	8	1.465(11)	{ 1.4649	2	163
33	2.540(8)	{ 2.5538	5	161			(1.4541	4	4.10.1
		2.5292	17	002			(1.4465	2	343
17	2.440(11)	2.4394	12	022	13	1.444(7)	{ 1.4403	2	562
10	2.357(16)	2.3585	9	261			1.4363	5	482
		2.3097	5	080			(1.4250	4	263
		(2.2857	5	171	14	1.423(6)	{ 1.4204	2	413
22	2.286(8)	{ 2.2851	4	132			(1.4198	2	2.12.1
		2.2835	6	421	4	1.382(13)	1.3862	3	642
		(2.2184	2	042	10	1 361(6)	∫ 1.3653	5	363
8	2.215(19)	{ 2.2179	4	222	10	1.501(0)	1.3561	4	681
		(2.2010	2	431	5	1.332(13)	1.3330	3	4.12.0
9	2.170(17)	2.1718	7	142			(1.3194	4	283
12	2 116(11)	∫ 2.1191	3	280	8	1.316(11)	{ 1.3152	2	0.12.2
14	2.110(11)	2.1137	8	361			(1.3142	2	662
18	2 013(7)	∫ 2.0145	9	460	4	1.301(16)	1.3017	2	4.10.2
10	2.013(7)	(2.0107	8	322	7	1.277(6)	1.2754	4	821
36	1.953(5)	1.9545	30	281	10	1 241(4)	∫ 1.2443	4	124
22	1 834(6)	∫ 1.8349	5	262	10	1.211(7)	(1.2419	4	2.14.1
<u> </u>	1.054(0)	(1.8340	14	402					

283 Table 2. Powder X-ray data for nizamoffite.

	Diffractometer	Rigaku R-Axis Rapid II
	X-ray radiation / power	Mo <i>K</i> α (λ = 0.71075 Å)
	Temperature	298(2) K
)	Structural formula*	$(Mn^{2+}_{0.819}Fe^{3+}_{0.080}Mg_{0.063}Al_{0.008}Ca_{0.004})_{\Sigma 0.974}$
1		$(Zn_{1.796}Mn_{0.154}Fe^{3+}_{0.033})_{\Sigma1.983}(PO_4)_2(H_2O)_4$
2	Space group	Pnma
3	Unit cell dimensions	a = 10.6530(4) Å
4		b = 18.4781(13) Å
5		c = 5.05845(15) Å
6	V	995.74(8) Å ³
7	Ζ	4
8	Density (for above formula)	2.940 g cm ⁻³
9	Absorption coefficient	6.058 mm ⁻¹
0	<i>F</i> (000)	863.8
1	Crystal size	110 x 45 x 25 μm
2	θ range	3.83 to 27.47°
3	Index ranges	$-13 \le h \le 13, -23 \le k \le 23, -4 \le l \le 6$
4	Reflections collected/unique	$5260/1160 [R_{int} = 0.023]$
5	Reflections with $F_{\rm o} > 4\sigma F$	1014
6	Completeness to $\theta = 27.47^{\circ}$	98.8%
)7	Max. and min. transmission	0.863 and 0.556
8	Refinement method	Full-matrix least-squares on F^2
9	Parameters refined	102
0	GoF	1.072
1	Final <i>R</i> indices $[F_0 > 4\sigma(F)]$	$R_1 = 0.017, wR_2 = 0.037$
2	R indices (all data)	$R_1 = 0.022, wR_2 = 0.038$
3	Largest diff. peak/hole	$+0.32/-0.35 \ e \ A^{-3}$

285 Table 3. Data collection and structure refinement details for nizamoffite.

* Site occupancies calculated using the program OccQP (Wright et al. 2001).

319 Table 4. Fractional coordinates and atom displacement parameters $(Å^2)$ for nizamoffite.

320		x/a	y/b	z/c	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
321	Mn*	0.25984(3)	1/4	0.06749(8)	0.01561(10)	0.01387(19)	0.0193(2)	0.0136(2)	0.000	-0.00115(16)	0.000
322	Zn*	0.143185(19)	0.499051(11)	0.20876(4)	0.01274(7)	0.01190(11)	0.01533(11)	0.01099(11)	-0.00080(8)	0.00021(8)	-0.00030(8)
323	Р	0.39727(4)	0.40719(2)	0.22699(9)	0.01341(11)	0.0161(2)	0.0118(2)	0.0123(2)	0.00082(17)	-0.00014(17)	0.00119(17)
324	OW1	0.10778(19)	3/4	0.2453(4)	0.0234(4)	0.0234(10)	0.0272(11)	0.0198(10)	0.000	-0.0023(9)	0.000
325	H1	0.110(2)	0.7142(14)	0.159(5)	0.050						
326	OW2	0.1076(2)	1/4	0.3479(5)	0.0322(5)	0.0193(10)	0.0509(15)	0.0264(12)	0.000	0.0016(10)	0.000
327	H2a	0.037(3)	1/4	0.301(8)	0.050						
328	H2b*	0.116(4)	0.221(2)	0.471(9)	0.050						
329	OW3	0.34053(15)	0.66755(9)	0.3260(3)	0.0304(4)	0.0298(9)	0.0265(8)	0.0347(9)	0.0030(7)	0.0027(7)	0.0080(6)
330	H3a	0.392(2)	0.6355(15)	0.390(6)	0.050						
331	H3b*	0.282(5)	0.636(3)	0.280(11)	0.050						
332	H3c*	0.377(9)	0.706(4)	0.38(2)	0.050						
333	H3d*	0.349(10)	0.670(7)	0.158(10)	0.050						
334	O4	0.35988(13)	0.32957(7)	0.2834(3)	0.0228(3)	0.0322(8)	0.0169(7)	0.0193(7)	0.0023(5)	-0.0081(6)	-0.0059(6)
335	05	0.10004(15)	0.57806(7)	0.4318(3)	0.0302(3)	0.0555(9)	0.0201(7)	0.0149(7)	-0.0037(5)	-0.0065(7)	0.0120(6)
336	06	0.02485(12)	0.42282(7)	0.1428(3)	0.0220(3)	0.0147(6)	0.0181(6)	0.0334(8)	-0.0052(6)	0.0028(6)	-0.0020(5)
337	07	0.30179(11)	0.46036(7)	0.3610(2)	0.0181(3)	0.0151(6)	0.0234(7)	0.0158(6)	-0.0036(5)	-0.0028(5)	0.0048(5)
338 339	* Assi other s	gned site occup sites assigned for	oancies: Mn: M ull occupancy.	$n_{0.819}$ Fe _{0.080} N	Mg _{0.063} Al _{0.008} C	a _{0.004} ; Zn: Zn	0.898Mn _{0.077} Fe	0.017; H2b: 0.5;	; H3b: 0.5; H3	be: 0.25; H3d:	0.25. All

$Mn-O4(\times 2)$	2.1191(13) Zn	-05 1.9	9016(13)	P–O	4	1.5155(14)
Mn–OW2	2.1543(23) Zn-	-06 1.9	9196(13)	Р-О	5	1.5179(15)
Mn–OW1	2.1552(20) Zn-	-07 1.9	9896(12)	Р-О	6	1.5376(13)
Mn–OW3(×2)	2.2263(16) Zn	-07 2.0	0004(13)	Р-О	7	1.5681(13)
<mn-o></mn-o>	2.1762	< 7	Zn-O> 1.9	9528	<p-< td=""><td>0></td><td>1.5348</td></p-<>	0>	1.5348
Hydrogen bone	ds (D = don	or, $A = acc$	ceptor)				
D–H	d(D–H)	$d(H^{\dots}A)$	<dha< td=""><td>$d(D^{\dots}A)$</td><td>A <]</td><td>HDH</td><td>H–D–H</td></dha<>	$d(D^{\dots}A)$	A <]	HDH	H–D–H
OW1–H1 (×2)	0.79(2)	2.09(3)	146(3)	2.782(2)	04	113	H1–OW1–H1
OW2–H2a	0.79(3)	2.43(3)	142.5(6)	3.093(2)	04		
OW2–H2b (×2	2) 0.83(4)	2.10(4)	166(5)	2.911(3)	OW3	109	H2a–OW2–H
OW3–H3a	0.87(3)	1.89(3)	159(3)	2.723(2)	06		
OW3–H3b	0.89(4)	2.34(5)	143(5)	3.096(2)	05	95	Н3а–ОW3–Н
OW3-H3c	0.85(5)	2.38(8)	136(9)	3.047(3)	OW3	100	Н3а–ОW3–Н
OW3–H3d	0.85(5)	2.21(9)	140(11)	2.911(3)	OW2	110	Н3а–ОW3–Н

341 Table 5. Selected bond distances (Å) in nizamoffite.

	OW1	OW2	OW3	O4	05	06	07	Σ
Mn	0.32	0.32	$0.26 \times 2 \rightarrow$	$0.35 \times 2 \rightarrow$				1.86
Zn					0.58	0.55	0.45, 0.44	2.02
Р				1.32	1.31	1.24	1.14	5.01
H1	0.82×2↓			0.18				1.00
H2a		0.91		0.09				1.00
H2b		0.86	0.14					1.00
H3a			0.80			0.20		1.00
H3b			0.45		0.05			0.50
H3c			0.23, 0.02					0.25
H3d		0.03	0.22					0.25
Σ	1.96	2.12	2.12	1.94	1.94	1.99	2.03	

363 Table 6. Bond-valence analysis for nizamoffite. Values are expressed in valence units.

364

Note: Bond strengths are taken from Brown and Altermatt (1985) and are adjusted for site occupancies; hydrogen bond strengths are based on O^{...}O bond lengths and are also from Brown and Altermatt (1985).

365

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.47/95

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

6

Zn

С

а

4

