This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4469

1	Revision 2
2	
3	Title:
4	
5	Aluminum speeds up the hydrothermal alteration of olivine
6	Muriel Andreani, Isabelle Daniel, Marion Pollet-Villard
7 8 9 10 11 12	Laboratoire de Géologie de Lyon : Terre, Planètes, Environnement, UMR 5276 CNRS, Université Claude Bernard et Ecole Normale Supérieure de Lyon, 2 rue Raphael Dubois, 69622 Villeurbanne France Corresponding author: muriel.andreani@univ-lyon1.fr
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	

28 Abstract

29

30 The reactivity of ultramafic rocks under hydrothermal conditions controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On 31 Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction 32 33 zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also 34 35 has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine 36 37 hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. 38 Here, we use in situ diamond anvil cell experiments and show that the presence of 39 aluminum in hydrothermal fluids increases the rate of olivine serpentinization by one to 40 two orders of magnitude. Aluminum increases the solubility of olivine and enhances the 41 precipitation of aluminous serpentine. After two days, olivine crystals were fully 42 transformed to aluminous serpentine under conditions typical of natural hydrothermal 43 environments, i.e., 200°C and 300°C, 200 MPa. This result motivates a re-evaluation of the natural rates of olivine serpentinization and of olivine hydrolysis in general in a wide 44 45 range of settings. This discovery also opens the potential of the serpentinization reaction for industrial scale production of hydrogen at economically feasible timescales and 46 47 temperature.

48

49 **Keywords**: olivine, hydrothermal, serpentinization, aluminium

50 1) Introduction

52	The hydrothermal alteration of olivine is a widespread process that occurs in many
53	geological settings wherever warm aqueous fluids react with ultramafic mantle rocks or
54	olivine-rich magmatic rocks (e.g. wherlite, troctolites, gabbros). Most of the time, olivine
55	is transformed into the hydrous sheet silicate serpentine, plus variable amounts of iron
56	oxides and magnesium hydroxides as illustrated by the olivine serpentinization
57	reaction:
58	$(Mg_{0.9}Fe_{0.1})_2SiO_4 + 1.37 H_2O \rightarrow 0.5 Mg_3Si_2O_5(OH)_4 + 0.3 Mg(OH)_2 + 0.067 Fe_3O_4 + 0.07 H_2$ (Eq1)
59	olivine (Fo ₉₀) Mg-serpentine brucite magnetite
60	If the system chemistry differs from that locally imposed by olivine, the hydrated
61	product minerals can differ. A silica input from either dissolving neighbouring minerals
62	or the hydrothermal fluid would inhibit brucite formation, and even lead to talc
63	precipitation for higher Si activity. Chlorite and tremolite may also form at olivine-
64	plagioclase contact within olivine-rich magmatic rocks. Talc-chlorite-tremolite-
65	serpentine is actually observed within oceanic detachment faults as a result of Si-Al-Ca
66	metasomatism by fluid arising from distant mafic units (Boschi et al. 2006; Jons et al.
67	2010).
68	
69	The hydrothermal alteration of olivine (e.g. Eq1) presents several fundamental and
70	societal implications. It alters the physical, mechanical and chemical properties of
71	ultramafic rocks and it is accompanied by a redox reaction producing hydrogen coupled
72	to reduction of water and oxidation of olivine ferrous component. The ferric iron is

- 73 integrated into iron oxides and/or into the hydrous phase. Indeed, chlorite and
- serpentine can both incorporate important amounts of ferric iron in their structure (e.g.

75	O'Hanley and Dyar 1993; Muñoz et al. 2006; Andreani et al. 2013). Hydrogen, resulting
76	from serpentine and/or chlorite formation, has been identified within fluids venting at
77	ultramafic-hosted hydrothermal sites along mid-ocean ridges (Charlou et al. 2002;
78	Seyfried et al. 2011) as well as in experiments performed in large-volume reactor (Allen
79	and Seyfried 2003; Seyfried et al. 2007; Marcaillou et al. 2011). Production of abiotic ${ m H}_2$
80	is also thermodynamically predicted using reaction path modelling (Klein et al. 2009). It
81	provides a source of metabolic energy for deep chemoautotrophic ecosystems and could
82	also act as an industrial-scale energy source. In the presence of CO ₂ , the availability of
83	molecular hydrogen also controls the balance between ${ m CO}_2$ -mineralisation and abiotic
84	CO ₂ -reduction, including Fischer Tropsch-type reactions (McCollom and Seewald 2007;
85	Proskurowski et al. 2008). Ultramafic-hosted hydrothermal systems have thus been
86	proposed as a site for the emergence of the earliest ecosystems (Martin et al. 2008), as
87	well as for CO_2 storage and remediation both at industrial and geological time scales
88	(Kelemen and Matter 2008; Nakamura and Kato 2004; Andreani et al. 2009).
89	Serpentinized or metasomatized ultramafic rocks are common in the oceanic
90	lithosphere particularly along slow and ultra-slow spreading ridges (Cannat, 1993), in
91	subduction zones within and above the downgoing slab (Peacock 1990; Reynard et al.
92	2007), along active continental faults (Andreani et al. 2005; Solum et al. 2006) and
93	within Archean supracrustal terranes (Blais and Auvray 1990; Arndt et al. 2008). In
94	extraterrestrial environments, serpentines have been identified in meteorites (Tomeoka
95	and Tanimura 2000), and on the surface of Mars together with chlorite (Ehlmann et al.
96	2010). The presence of serpentine has also been hypothesized in the core of icy satellites
97	like Titan (Choukroun et al. 2010).

99	Despite the ubiquity of fully to partially altered olivine in nature, the thermochemical
100	conditions and kinetics of this combined hydration and redox reaction are not yet well
101	established. Serpentine as a result of olivine hydration is widespread. The stability field
102	of serpentine in the MgO-SiO $_2$ -H $_2$ O (MSH) system extends up to a maximum temperature
103	of 730°C at 2.1 GPa, i.e., the invariant point of the dehydration curve of antigorite. At
104	lower pressure (< 1 GPa) the stability field of serpentine is enlarged toward high
105	temperature as a function of Al content in the MgO-Al $_2O_3$ -SiO $_2$ -H $_2O$ (MASH) system
106	(O'Hanley 1996). Serpentinization is active at T < 150°C near ridge axes (Proskurowski
107	et al. 2006), and is suspected at even lower temperature within ophiolites (Barnes and
108	O'Neil 1978). Experimental studies have reproduced the serpentinization reaction of
109	olivine, pyroxene or bulk peridotite at temperatures between 188 and 560°C, and
110	pressures from 20 to 300 MPa (e.g. Allen and Seyfried 2003; Seyfried et al. 2007;
111	Marcaillou et al. 2011, McCollom and Seewald 2007; Martin and Fyfe 1970; Wegner and
112	Ernst 1983; Luquot et al. 2010). These experiments were performed in either pure
113	water or an aqueous fluid closer to seawater composition. They have mostly focused on
114	the chemical evolution of the fluid phase or on the rate of gas or organic compound
115	production. Serpentinization rates were measured in four of these studies only and were
116	found to be very low (Martin and Fyfe 1970; Wegner and Ernst 1983; Luquot et al. 2010;
117	Marcaillou et al. 2011). None of the above-mentioned experiments has used an aqueous
118	fluid with a seawater-modified chemistry, as expected in open natural settings, e.g. after
119	it has interacted with magmatic units or sediments. Although aluminumaluminum is one
120	of the common elements associated with the metasomatism of ultramafic rocks (e.g.
121	Boschi et al. 2006; Jons et al. 2010), its role in the hydrolysis of olivine has only been
122	investigated at low pH (2 < pH < 5) and low T conditions, T=65° (Chen and Brantley
123	2000). This is probably due to the fact that aluminum is often considered as an immobile

124	element because of the very low solubility of aluminous minerals in pure water.
125	Nevertheless, several studies of metamorphic rocks describing ubiquitous Al-bearing
126	mineralization in veins have highlighted the mobility of Al within fluids (e.g. Kerrick
127	1990). Experimental works have also shown that the presence of Si or Na in solution
128	leads to the formation of Si-Al or Na-Al complexes respectively, for pH >4 to 5 (Diakonov
129	et al. 1996; Manning 2006). This complexation considerably enhances the solubility of
130	alumino-silicates and the mobility of aluminum in metamorphic or metasomatic fluids
131	despite current thoughts on the low solubility of corundum in pure water (Manning
132	2007). Moreover, abundant aluminum supply exceeding provision by pyroxenes in
133	ultramafic rocks is expected in fluids released from the dehydration of metapelites in
134	subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean
135	ridges. Aluminum was also abundant in primitive environments of both the Earth and
136	Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas
137	like Munro-type or other high Al_2O_3/TiO_2 komatiites (Arndt et al. 2008).
138	In order to investigate the influence of Al on the hydrothermal alteration of olivine in
139	those contexts, we have performed a series of experiments using a low-pressure
140	diamond anvil cell (lp-DAC, Supporting Figure S1 and Oger et al. 2005) under P-T
141	conditions representative of lower crust while following the reaction progress in situ by
142	optical imaging and by confocal Raman spectroscopy.
143	

144 **2) Methods**

Temperature in the low-pressure diamond anvil cell (lp-DAC, Supporting Figure S1) was
monitored with a thermocouple in contact with the gasket. Aluminum was introduced
either as a gel of aluminum hydroxide formed by reaction of AlCl₃ with water and
sodium hydroxide for experiments run at 200°C (pH set at 7, at 25°C), or as Al₂O₃ ruby

149	microspheres for experiments run at 300°C (pH measured at 25 °C = 6.8). The most
150	appropriate source of aluminum has been used for the two different temperatures in
151	order to always ensure an excess of aluminum in the fluid and keep similar cations in the
152	initial fluid for all experiments. Indeed, the reactivity and dissolution kinetics of Al_2O_3 in
153	a 0.5 m NaCl aqueous fluid was tested separately in a temperature-step experiment,
154	which showed an almost instantaneous dissolution of Al_2O_3 microspheres at a
155	temperature above 280°C only. Therefore, another source of Al, minimizing chemical
156	changes, has thus been chosen for the 200°C experiments. Al $_2O_3$ ruby microspheres also
157	allowed pressure measurement and pressure cell calibration. Pressure was set and
158	maintained constant throughout experiments by having a tight control of the gas
159	membrane pressure of the lp-DAC. The sample was sealed with a Ni-gasket lined with
160	gold to prevent reaction between the sample chamber and the gasket. Dimensions of the
161	reacting cell are 380 μm in diameter and 300 μm thickness (Figure S1).
162	The progress of reaction was monitored by optical microscopy and confocal Raman
163	microspectrometry using a Horiba Jobin-Yvon LabRAM HR800 Raman spectrometer at
164	the ENS (Lyon, France) using green laser at 514 cm $^{-1}$ with a beam size of ${\sim}3~\mu\text{m}.$
165	X-Ray Diffraction (XRD) spectra have been acquired under an angle-dispersive mode
166	using a monochromatic radiation (33 keV, λ =0.3738 Å), focused into a spot of 8x8 μm in
167	size.
168	

169 3) Experimental results

170

171 Experiments were run for 4.5 to 7.5 days with two olivine (Ol) grains reacted in saline

water (0.5 mol NaCl /kg) at 200°C and 300°C, and P=200 ±30 MPa. To ensure an excess

of Al in the fluid under the experimental conditions, aluminum was introduced either as

a gel of aluminum hydroxide for experiments at 200°C, or as Al₂O₃ ruby microspheres
for experiments at 300°C. The importance of nucleation in the kinetics of olivine
serpentinization has also been tested by adding lizardite (Mg-serpentine) nuclei in a
subset of experimental runs. Table 1 summarizes the experimental conditions and main
results of the experiments reported hereafter.

179

180 Aluminum-free experiments N°1 and N°2 do not show any visible reaction progress 181 even after one-week duration, whereas reaction starts rapidly when Al is added to the 182 system in experiments N°3 and N°4 at 300°C and in experiments N°5 and N°6 at 200°C. 183 The first grains of reaction products appear on olivine within 2 hours (Table 1) in the absence of lizardite nuclei and the reaction goes to completion in 2 days. The 184 progressive coating of initially transparent olivine and Al₂O₃ microspheres by brown 185 crystals is illustrated in Figure 1. Figure 2 shows the corresponding evolution of the 186 Raman spectra of olivine with time. It indicates the total disappearance of olivine after 187 188 t=47h, that is confirmed by the XRD characterization of final reaction products (Figure 3C). The softness of the material noticed during its extraction from the lp-DAC also 189 confirms the absence of any relict of olivine crystal in the core of the aggregate and the 190 completion of the reaction. Figure 3A and 3B show the ghost olivine grain fully replaced 191 by micrometric grains of a sheet silicate enriched in aluminum as evidenced by EDS-SEM 192 193 analyses. X-Ray Diffraction shows that this silicate belongs to the serpentine group of 194 minerals (Figure 3C). It was identified as the Al-rich serpentine amesite by Raman 195 spectroscopy (Figure 2) in all the Al-bearing experiments void of lizardite nuclei (Exp. 196 N°3a, 3b, 5, and 6). Serpentine is the only reaction product observed. Magnetite or 197 brucite predicted by equation 1 for a pure MSH system have not been detected. The 198 serpentine grains are enriched in iron and accommodate the iron released from olivine.

199 The very fast precipitation of Al-rich serpentine may inhibit magnetite nucleation here. 200 However, this does not rule out the H_2 production since serpentines classically incorporate non negligible amount of ferric iron in their structure that contributes to H_2 201 202 production (e.g. O'Hanley and Dyar 1993; Marcaillou et al. 2011; Andreani et al. 2013). 203 Unfortunately, H_2 could not be detected in situ since expected concentrations in the fluid 204 are below detection limit by Raman spectroscopy. Indirect estimation of H_2 by quantifying the ferric iron in microscopic serpentine using synchrotron-based X-ray 205 206 absorption was beyond the scope of this work. When lizardite nuclei are added to the 207 starting materials at 300°C (Exp. N° 4), new serpentine grains formed after 1.5 days (Supporting Figure S2) with a chemical composition and Raman spectra close to that of 208 209 the lizardite nuclei. The reaction, however, did not go to completion during the duration of the experiment. We documented a fast partial transformation of olivine into 210 serpentine visible over 3 days and the reaction stopped or slowed down to a rate that 211 precluded further observation. The latter experiment illustrates the importance of 212 213 removing Al from the fluid or from the reactive interface in order to continue the reaction. Experiment N°3b includes a first temperature step at 250°C for 3 days followed 214 by a second and final step of 300°C for 6 days. The latter experiment confirms that the 215 Al_2O_3 microspheres do not dissolve at 250°C and that, as a consequence, the 216 serpentinization reaction fails to start. Optical observations demonstrate that the onset 217 218 of serpentinization is correlated with the dissolution of Al_2O_3 microspheres at 300°C and 219 that the first grains of serpentine appear simultaneously on the surface of both olivine 220 grains and Al_2O_3 microspheres (Figure 1B). This supports the critical role of dissolved Al 221 to speed up both the dissolution kinetics of olivine and the nucleation and growth of Al-222 rich serpentine. It also demonstrates that olivine dissolution is the limiting parameter of

the serpentinization reaction and that olivine solubility is considerably enhanced by thepresence of dissolved Al in the fluid.

225

4) Mutually enhanced dissolution of olivine and alumina

227

Since Al is not a major component of olivine, it was not expected to directly control 228 229 olivine's solubility. At 300°C, 86 bars in aqueous solution, Salvi et al. (1998) nevertheless 230 found that Al(OH)₃(H₃SiO₄)⁻ is the dominant aluminous silica species at pH <2 and pH > 231 4.5. They also observed that the formation of Al-Si complexes increases the solubility of 232 some aluminosilicates or oxide minerals such as kaolinite or boehmite, similar to that 233 was observed at higher P-T conditions (Manning, 2007). Under the conditions of the present experiments, the best pH estimate is 6 at $T = 300^{\circ}C$ (CHESS code (Van der Lee et 234 al. 2002)). Thus, dissolved Al in our experiments should be complexed to the Si released 235 by dissolving olivine (Salvi et al. 1998). This may be responsible for the observed 236 237 increase in olivine solubility in our Al-bearing experiments and the fast serpentine precipitation. Such a mutually enhanced dissolution of olivine and alumina leads to the 238 precipitation of amesite under the present experimental conditions (Figure 3) but may 239 also lead to the formation of other Al-rich hydrated silicate, like chlorite for instance, 240 under slightly different chemical conditions. When lizardite is initially present in the 241 242 system (Exp. N°4), aluminum still accelerates olivine dissolution. Serpentine growth 243 starts on olivine as well as on available lizardite nuclei which leads to a more magnesian 244 chemical composition of the newly formed serpentine. This slows down the reaction 245 since the Al released by the alumina microspheres is less efficiently removed from the 246 solution by serpentine precipitation. Thus, the equilibrium solubility of alumina under 247 those conditions is more rapidly reached. This effect certainly does not apply to open

248	natural systems where local chemical gradients and fluid renewal at mineral interface
249	are expected to refresh the fluid and thus remove excess Al from the reacting zone.
250	The results of experiments N°3a, 3b, 5 and 6 are compared in Figure 4 to those of the Al-
251	free experiment N°1 and to previously published serpentinization rates of olivine
252	(Martin and Fyfe 1970; Wegner and Ernst 1983; Luquot et al. 2010) and of peridotite
253	(Marcaillou et al. 2011). Assuming a linear conversion rate of olivine into serpentine, we
254	obtain a mean serpentinisation rate of 49 % per day in the present study. This is c.a. 7 to
255	50 times higher than the rates reported under very similar conditions (3.7 - 7.5 $\%$ per
256	day (Martin and Fyfe 1970); 1 - 3 %/day (Wegner and Ernst 1983)). It is also 30 to 50
257	times higher than the rates of 1-2 $\%$ /day reported for peridotite at lower pressure (P =
258	30 MPa) with a smaller grain size of 1 μm (Marcaillou et al. 2011). The latter work also
259	shows that after 77% of serpentinization the conversion rate decreases down to 0.3
260	%/day and approaches that reported at 200°C, 20 MPa during dynamic percolation
261	experiments which was of 0.2-0.4%/day (Luquot et al. 2010); i.e. two orders of
262	magnitude lower than those in the Al-bearing experiment reported here.
263	
264	5) Implications
265	

In natural open systems where a sustained H₂O flow allows hydration reactions, the rate
of olivine alteration may be increased at any time depending on the inlet fluid flux and
its Al content. Indeed, Al is always present in variable amount in serpentine minerals
ranging from 1 to 27 wt. % of Al₂O₃ (O'Hanley 1996; Beard et al. 2009), and it is a major
component of chlorite. Consequently our experimental results suggest that the
hydrothermal alteration of olivine is probably much faster in natural settings where
peridotites are intimately associated with Al-suppliers such as the common magmatic

273	bodies in slow-spreading oceanic crust (Cannat 1993). This is actually well illustrated at
274	oceanic detachments where fault material results from peridotite-gabbro metasomatism
275	and where active hydrothermal fields are observed (McCaig et al. 2007). The
276	composition of fluids released at these hydrothermal vents is enriched in H_2 , CH_4 and
277	complex organic compounds and is mainly controlled by serpentinization at depth. The
278	local abundance of Al issued from magmatic rocks certainly affects the fluxes of products
279	released during serpentinization, and in consequence the development of the ecosystem
280	associated with these hydrothermal fields (Schrenk et al. 2004). The effect of joined
281	alteration of olivine and Al-bearing mineral, like plagioclase, on H_2 production in a
282	natural system has indeed been described by Seyfried et al. (2011), based on the
283	chemistry of the fluids that escape the Rainbow hydrothermal field (36°N, Mid-Atlantic
284	Ridge).
285	
286	The effect of Al on lower crust and upper mantle metamorphism and metasomatism is
287	expected to be even stronger at high pressure in subduction zones where those
288	reactions control the rheology and physical properties of the subducting plate and
289	mantle wedge (Peacock and Hyndman 1999; Reynard et al. 2007). Indeed, the solubility
290	of Al related to the stability of Na-Si-Al complexes in solution is greater at high pressure

291 (Manning 2007), and may exceed the solubility of Mg or Fe in fluids equilibrated with

292 mafic and felsic bulk compositions (Manning 2006).

293

294 Whatever the setting, the rate of metamorphic reaction is also a key parameter for

295 determining the contribution of reaction-enhanced processes at the micrometer-scale,

- such as reaction-driven cracking, that can affect, in turn, macroscopic rock properties
- like permeability (Jamveit et al. 2008; Rudge et al. 2010). Reaction-driven cracking has

298	been proposed as an important positive feedback of the olivine hydration reaction that
299	creates permeability for fluid supply and increases the reactive surface area (Kelemen
300	and Hirth 2012). A well documented example is the case of fractured plagioclase grains
301	between serpentinized or chloritized olivine crystals in troctolites or olivine gabbros,
302	respectively. The present results suggest that the presence of Al in solution should, at
303	least locally, increase the contribution of reaction-induced cracking during retrograde
304	metamorphism of olivine-rich rocks.

306 The present results also provide a way to accelerate serpentinization reactions towards an economically feasible time-scale for industrial H_2 production and/or CO_2 remediation 307 through the production of carbon compounds with a higher added value like CH₄ and 308 hydrocarbons. In comparison with available technologies for H₂ production that mainly 309 rely on fossil fuels (> 90% of H_2 production by steam reforming and < 1% via 310 311 electrolysis), olivine serpentinization is a carbon-free process. Energy minimization is 312 also obtained here by the exothermic character of the serpentinization reaction and by lowering the temperature of the reaction to 200°C, as long as Al is available in solution. 313 314

- 315 6) Acknowledgments
- 316

The authors thank Bertrand Van de Moortèle for performing SEM imaging supported by the CLYM (Lyon University, France), and Hervé Cardon and Gilles Montagnac for their assistance during HP experiments and Raman spectroscopy at the Ecole Normale Supérieure de Lyon. Raman spectroscopy is supported by the Institut National des Sciences de l'Univers. We also want to thank M. Godard, S. Mojzis, and B. Reynard for discussion and comments on the manuscript. This work was supported by the

323	Programme Interdiscipliniare Energie of the CNRS (to MA) and by the Institut
324	Universitaire de France (to ID).
325	
326	
327	References
328	
329	Allen, D.E and Seyfried, W. E. (2003), Compositional controls on vent fluids from
330	ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at
331	400 °C, 500 bars, Geochimica et Cosmochimica Acta, 67, 1531-1542.
332	
333	Andreani, M., Boullier, A-M., Gratier, J-P. (2005) Development of schistosity by
334	dissolution-crystallization in a californian serpentinite gouge. Journal of Structural
335	Geology, 27, 2256-2267
336	
337	Andreani, M., Luquot, L., Gouze, P, Godard, M., Hoisé, E., Gibert, B. (2009) Experimental
338	study of carbon sequestration reactions controlled by the percolation of CO_2 -rich brine
339	through peridotites. Environmental Science and Technology, 43, 1226-1231
340	
341	Andreani, M., Muñoz, M., Marcaillou, C., Delacour, A. (2013) µXANES study of iron redox
342	state in serpentine during oceanic serpentinization. Lithos, in press.
343	
344	Arndt, N., Lescher, C.M., Barnes, S.J., (2008) Komatiite. Cambridge University Press, New
345	York, 488 p.
346	
347	Barnes, I., O'Neil, J.R. (1978) Present-day serpentinization in New Caledonia, Oman and
348	Yougoslavia. Geochimica et Cosmochimica Acta, 42, 144-145.
349	
350	Beard, J.S., Frost, B.R., Fryer, P., McCaig, A., Searle, R., Ildefonse, B., Zinin, P., Sharma, S.K.
351	(2009) Onset and progression of serpentinization and magnetite formation in olivine-
352	rich troctolite from IODP hole U1309D. Journal of Petrology, 50, 387-403.
353	

354	Blais, S. and Auvray, B., (1990) Serpentinization in the archean komatiitic rocks of the
355	Kuhmo greenstone belt, Eastern Finland. Canadian Mineralogist, 28.
356	
357	Boschi, C., Früh-Green, G.L., Delacour, A., Karson, J., Kelley, D. (2006) Mass transfer and
358	fluid flow during detachment faulting and development of an oceanic core complex,
359	Atlantis Massif (MAR 30°N). Geochemistry Geophysics Geosystems, 7, Q01004.
360	
361	Cannat, M. (1993) Emplacement of mantle rocks in the seafloor at Mid-Atlantic Ridges.
362	Journal of Geophysical Research, 98, 4163-4172.
363	
364	Charlou, J-L., Donval, J-P., Fouquet, Jean-Baptiste, A., Holm, N. (2002) Geochemistry of
365	high H_2 and CH_4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal
366	field (36°14'N, MAR). Chemical Geology, 191, 345-359.
367	
368	Chen, Y. and Brantley, S.L. (2000) Dissolution of forsteritic olivine at 65° C and 2 <ph<5.< td=""></ph<5.<>
369	Chemical Geololgy 165, 267-281.
370	
371	Choukroun, M., Grasset, O., Tobie, G., Sotin, C. (2010) Stability of methane clathrate
372	hydrates under pressure: Influence on outgassing processes of methane on Titan. Icarus,
373	205, 581-593.
374	
375	Diakonov, I., Pokrovski, G., Schott, J., Castet, S., Gout, R. (1996) An experimental and
376	computational study of sodium-aluminum complexing in crustal fluids. Geochimica et
377	Cosmochimica Acta, 60, 197-211.
378	
379	Ehlmann, B. L., Mustard, J. F., Murchie, S. L. (2010) Geologic setting of serpentine
380	deposits on Mars, Geophysical Research Letters, 37, doi: 10.1029/2010GL042596.
381	
382	Jamveit, B., Malthe-Sørensen, A., Kostenko, O. 2008. Reaction enhanced permeability
383	during retrogressive metamorphism. Earth and Planetary Science Letters, 267, 220-627.
384	
385	Jons, N., Bach, W., Klein, F. (2010) Magmatic influence on reaction paths and element
386	transport during serpentinization. Chemical Geology, 274, 196-211.

387	
388	Kelemen, P.B. and Matter, J. (2008) In situ carbonation of peridotite for CO2 storage,
389	Proceedings of the National Academy of Sciences, 105, 17295-17300.
390	
391	Kelemen, P.B. and Hirth, G. (2012). Reaction-driver cracking during retrograde
392	metamorphism: olivine hydration and carbonation. Earth and Planetary Science Letters,
393	345-348, 81-89.
394	
395	Kerrick, D.M. (1990) The Al ₂ SiO ₅ polymorphs. Reviews in Mineralogy, 22, 406 pp.
396	
397	Klein, F., Bach, W., Jons, N., McCollom, T., Moskowitz, B., Berquo, T. (2009) Iron
398	partitioning and hydrogen generation during serpentinization of abyssal peridotites
399	from 15 degrees N on the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, 73,
400	6868-6893.
401	
402	Luquot, L., Andreani M., Godard, M., Gouze, P., and Gibert, B. (2010) Serpentinization of
403	sintered olivine during seawater percolation experiments. In : Water-Rock Interaction
404	XIII. Ed. by P. Birkle and I. S. Torres-Alvarado. London : Taylor & Francis.
405	
406	Manning, C. (2006) Mobilizing aluminum in crustal and mantle fluids. Journal of
407	Geochemical Exploration, 89, 251-253.
408	
409	Manning, C. (2007) Solubility of corundum + kyanite in H_2O at 700°C and 10 kbars:
410	evidence for Al-Si complexing at high pressure and temperature. Geofluids, 7, 258-269.
411	
412	Marcaillou, C., Muñoz, M., Vidal, O., Parra, T., Harfouche, M. (2011) Mineralogical
413	evidences for H_2 degassing during serpentinization at 300°C/300 bars. Earth and
414	Planetary Science Letters, 303, 281-290.
415	
416	Martin, B. and Fyfe, W. S. (1970) Some experimental and theoretical observations on the
417	kinetics of hydration reactions with particular reference to serpentinization, Chemical
418	Geology, 6, 185-195.

420	Martin, W., Baross, J., Kelley, D., Russel, M. (2008) Hydrothermal vents and the origin of
421	life. Nature Review, Microbiology 6, 805-814.
422	
423	McCaig, A., Cliff, R.A., Escartin, J., Fallick, A.E., MacLeod, C.J. (2007) Oceanic detachment
424	faults focuses very large volumes of black smokers. Geology, 35, 935-938.
425	
426	McCollom, T.M. and Seewald, J.S. (2007) Abiotic synthesis of organic compounds in deep-
427	sea hydrothermal environments. Chemical Reviews, 107, 382-401.
428	
429	Muñoz, M., De Andrade, V., Vidal, O., Lewin, E., Pascarelli, S., Susini, J. (2006). Redox and
430	speciation micro-mapping using dispersive X-ray absorption spectroscopy: Application
431	to iron in chlorite mineral of a metamorphic rock thin section. Geochemistry Geophysics
432	Geosystems, 7, Q11020.
433	
434	Nakamura, K. and Kato, Y. (2004) Carbonatization of oceanic crust by the seafloor
435	hydrothermal activity and its significance as a CO_2 sink in the Early Archean. Geochimica
436	et Cosmochimica Acta 68, 4595-4618.
437	
438	Oger, P.M., Daniel, I., Picard, A. (2005). Development of a low-pressure diamond anvil
439	cell and analytical tools to monitor microbial activities in situ under controlled P and T.
440	BBA Proteins Proteomics, 1764, 434-442.
441	
442	O'Hanley, D.S. and Dyar, M.D. (1993). The composition of lizardite 1T and the formation
443	of magnetite in serpentinites. American Mineralogist, 78, 844-844.
444	
445	O'Hanley, D. S. (1996) Serpentinites: Records of tectonic and petrological history. Oxford
446	University Press.
447	
448	Peacock, S.M. (1990) Fluid processes in subduction zones. Science, 258, 329-337.
449	
450	Peacock, S.M. and Hyndman, R.D. (1999) Hydrous minerals in the mantle wedge and the
451	maximum depth of subduction thrust earthquakes. Geophys. Res. Lett., 26:2517-2520.
452	

453	Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J. (2006) Low temperature volatile
454	production at the Lost City hydrothermal field, evidence from a hydrogen stable isotope
455	geothermometer. Chemical Geology, 229, 331-343.
456	
457	Proskurowski, G., Lilley, M.D., Seewald, J.S., Fruh-Green, G.L., Olson, E.J., Lupton, J.E.,
458	Sylva, S.P., Kelley, D.S. (2008) Abiogenic hydrocarbon production at Lost City
459	hydrothermal field. Science, 319, 604-607.
460	
461	Reynard, B., Hilairet, N., Balan, E., Lazzeri, M. (2007) Elasticity of serpentines and
462	extensive serpentinization in subduction zones. Geophysical Research Letters, 34, doi:
463	10.1029/2007GL030176.
464	
465	Rudge, J.F., Kelemen, P.B., Spiegelman, M., 2010. A simple model of reaction-induced
466	cracking applied to serpentinization and carbonation of peridotite. Earth and Planetary
467	Science Letters, 291, 215-227.
468	
469	Salvi, S., Pokrovski, G.S., Schott, J. (1998) Experimental investigation of aluminum-silica
470	aqueous complexing at 300°C. Chemical Geology, 151, 51-67.
471	
472	Schrenk, M.O., Kelley, D.S., Baross, J.A., Delaney, J.R. (2004) Low archaeal diversity linked
473	to subseafloor geochemical processes at the lost City Hydrothermal Field, Mid-Atlantic
474	Ridge. Environmental Microbiology, 6, 1086–1095.
475	
476	Seyfried, W.E., Jr, Foustoukos, D.I., Fu, Q. (2007) Redox evolution and mass transfer
477	during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with
478	implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges.
479	Geochimica et Cosmochimica Acta, 71, 3872–3886.
480	
481	Seyfried, W.E., Pester, N.J., Ding, K., Rough, M. (2011) Vent fluid chemistry of the
482	Rainbow hydrothermal system (36°N, MAR) : phase equilibria and in situ pH controls on
483	subseafloor alteration processes. Geochimica et Cosmochimica Acta, 75, 1574-1593
484	

485	Solum, J.G., Hickman, S.H., Lockner, D.A., Moore, D.E., van der Pluijm, B.A., Schleicher,
486	A.M., Evans, J.P. (2006) Mineralogical characterization of protolith and fault rocks from
487	the SAFOD Main Hole. Geophysical Research Letters, 33,L21314.
488	
489	Tomeoka, K. and Tanimura, I. (2000) Phyllosilicate-rich chondrule rims in the Vigarano
490	CV3 chondrite: Evidence for parent-body processes. Geochimica et Cosmochimica Acta,
491	64, 1971-1988.
492	
493	Van der Lee, J., De Windt, L., Lagneau, V., Goblet, P. (2002) Presentation and application
494	of the reactive transport code CHESS-HYTEC, Developments in Water Science, 47, 599-
495	606.
496	
497	Wegner, W.W. and Ernst, W.G. (1983) Experimentally determined hydration and
498	dehydration reaction rates in the system MgO-SiO $_2$ -H $_2$ O. American Journal of Science,
499	283-A, 151-180.
500	
501	
502	Figure legends
302	
503	
504	Figure 1 : Optical images of the reaction progress in the lp-DAC. Development with
505	time (A to D) of aluminous serpentine at the expense of olivine and Al_2O_3 microspheres
506	during experiment N°3a (Table1).
507	
508	Figure 2: Monitoring reaction progress on the olivine grain with Raman
509	spectroscopy. Example of reaction N°3a. Confocal Raman spectroscopy allows scanning
510	the olivine grain in depth. The time steps are those illustrated on Figure 1. The final
511	product of the reaction at t=47h is identified as amesite by comparison to the reference
512	spectrum from RUFF database. Olivine is the only mineral detected at t=0 and 2h. Then

- Raman modes characteristic of amesite (arrows) are observed with relict olivine at
 t=16h. Olivine is fully replaced by amesite at t=47h.
- 515

516 **Figure 3 : SEM and XRD characterization of the serpentine grains at the end of**

- 517 **reaction.** Example of Exp. N°3a. A) SEM image of the serpentine grains formed at the
- 518 expense of olivine. B) Zoom in of serpentine grains with EDS-SEM analysis of their mean
- composition. C) XRD spectra of the serpentine grains with identification of the
- 520 characteristic peaks of serpentine minerals. No other phases are detected.
- 521

522 Figure 4 : Comparison of the present results with serpentinization rates available

- **in the litterature.** Results of experiments N°1, 3a, 3b, 5, 6, realized with olivine grain
- size $\sim 100-150 \ \mu\text{m}$, are plotted in comparison with the available data on serpentinization
- rate of olivine or peridotite obtained under similar P-T conditions and grain size, i.e. 60-
- 526 80 μm (Martin and Fyfe 1970) and 105-150 μm (Wegner and Ernst 1983). Available
- results obtained at lower P conditions (Luquot et al. 2010) and smaller grain sizes ~ 1
- 528 μm (Marcaillou et al. 2011) are also reported.
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537

Table 1 : Experimental conditions and main results 538

Solid reactants	Duration	First serpentine grain	Reaction completion at the end
0.5 m NaCl in deionized H ₂ O	(hours)	(hours from start)	r · · · ·
pH_{init} (25°C)= 7	, c		
reacted at T=300°C , P=200 MPa			
N°1 : Ol	168	No reaction observed	No
N°2 : Ol + Liz	182	No reaction observed	No
N°3			Yes, completion at
\mathbf{a} : Ol + Al ₂ O ₃	119	2 (± 0.25)	48h (± 8)
\mathbf{b}^* : Ol + Al ₂ O ₃	144	2 (±0.25)	65h (± 8)
$N^{\circ}4$: Ol + Al ₂ O ₃ + Liz	112	38 (±3)	No, reaction stopped or slowed
			down at t = 70h (±5)
Solid reactants			
0.5 m NaCl in deionized H_2O			
$pH_{init}(25^{\circ}C)=7$			
reacted at T=200°C , P=200 MPa			
$N^{\circ}5$: Ol + Al(OH) ₃ gel	70	1.5 (± 0.25)	Yes, completion at
			45h (± 4)
$N^{\circ}6$: Ol + Al(OH) ₃ gel	50	1 (± 0.25)	Yes, completion at
			37h (± 6)

539 540 *Experiment N°3b includes a first temperature step at 250°C for 3 days, that is not reported in the table, followed by a second and final step at 300°C for 6 days, reported in the table. No reaction was observed at 250°C since Al₂O₃ microspheres did not dissolve.

541

542

543

Figures 544

Figure 1

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4469

6/26

_ _ _

567 **SUPPORTING INFORMATION**

568

569 Figures

570

```
571 Supporting Figure S1. Scheme of the low-pressure diamond anvil cell. (1) diamond
```

- anvil, (2) diamond window, (3) Ni sample gasket lined with gold (inner diameter = 380
- μ m; thickness = 300 μ m), (4, 5) tungsten carbide seats. The experimental volume
- 574 (coloured in blue) is filled with reactants as illustrated by the optical image experiment
- load N°3a at t=0. For mode details on the lp-DAC, see Oger et al. (2005).

578 **Supporting Figure S2 : Optical images of the reacting cell**. Development with time of

serpentine at the expense of olivine and on inital lizardite nuclei during experiment $N^{\circ}4$

580 (Table1).

581

Figure 1

Figure 2

Figure 3

