1 Lessons from a lost technology: the secrets of Roman concrete

2	Jan Elsen ^{1,*} , Ozlem Cizer ² and Ruben Snellings ³
3 4 5 6	¹ Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, B- 3001 Leuven, Belgium.
6 7 8 9	² Department of Civil Engineering, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium.
9 10 11	³ Construction Materials Laboratory, Institute of Materials, EPFL, CH-1015 Lausanne, Switzerland.
12 13 14	* Present address: Department of Earth and Environmental Sciences, K.U.Leuven, Geo- instituut-Postbus 2410, Celestijnenlaan 200E, B-3001 Heverlee, Email: jan.elsen@ees.kuleuven.be
15	
16	'Roman concrete' was used as building material during Roman Imperial times for a great
17	number of famous constructions with different functions. Well-known examples are
18	aqueducts, for example the Pont du Gard in France and the Aqua Alexandrina in Rome,
19	and numerous monuments such as the famous Coliseum and Pantheon in Rome. While
20	visually less apparent today, ancient harbors also were an important part of
21	constructions supporting the power of the Roman imperial system and were invaluable
22	to control the Mediterranean Sea trade. The article 'Unlocking the secrets of Al-
23	tobermorite in Roman seawater concrete' by Jackson et al. (2013) describes the
24	investigation of a number of extremely interesting samples drilled from 2000-year-old
25	Roman maritime concretes in 11 harbors along the Mediterranean coast (the
26	ROMACONS project 2002-2009 (Oleson et al. 2004)).
27	This article delivers an outstanding contribution because the described research
28	integrates interdisciplinary findings from mineral physics, geochemistry, engineering

29 and archaeometry to investigate and explain reasons for the exceptional quality of these

Roman constructions even after two thousand years exposure to an aggressive seawater environment. The article also gives novel results regarding the role of Altobermorite as the main cementitious binder in Roman concrete. These results offer a
source of new perspectives in future research on new binder types in the context of
more sustainable and more durable concrete structures.

Ancient 'Roman concretes' are complex composite cementitious materials with a 35 hydraulic binder ('hydraulic' refers to the ability of the binder to harden under water) 36 composed of a mixture of hydrated lime with volcanic material. Both the ancient Greeks 37 and Romans knew that certain volcanic deposits when finely ground and mixed with 38 39 lime and aggregates yielded hydraulic mortars and concrete with superior compressive strength (Blézard 1998). The Greek knowledge of the use of highly siliceous volcanic 40 Santorini Earth (volcanic ash) goes back to 500-300 B.C., and around the third century 41 42 B.C. the Romans discovered the effective use of 'Pulvis Puteolanus' (meaning earthy 43 material from the region of Puteoli and currently named pozzolana) near Mount Vesuvius. The use of these natural pozzolana and other SCMs (Supplementary 44 Cementitious Materials (Snellings et al. 2012)) will help in achieving improved 45 durability of modern concretes and sustainable binder systems. 46

The advanced experimental methods utilized by the multidisciplinary authored team demonstrate that sharing knowledge and technical expertise from different scientific areas opens up fertile grounds for breakthrough research. In this case especially scanning transmission X-ray microscopy shed new light on the distribution of Al in the Al-tobermorite and C-A-S-H (calcium-aluminosilicate-hydrate) minerals, which form the main reaction products of Roman seawater concrete. The application of Al and Si X-ray absorption spectroscopy on dedicated instruments using synchrotron radiation at a

54	nanometer spatial resolution is a first in the field and will certainly find more
55	widespread application in construction materials science, applied mineralogy and
56	archaeometry. This analytical combination, with established characterization techniques
57	in the field of historic mortars and concrete, such as solid state Al and Si NMR
58	spectroscopy, and EMPA and SEM-EDX microanalysis, allowed the novel results to be
59	compared and interpreted within the current state-of-the-art on cementitious binders.
60	The result is that the investigated ancient Roman seawater concrete is a highly complex
61	and composite cementitious system with a remarkably heterogeneous structure. Its mix
62	design needed no more than 10 wt% lime (quicklime, CaO) hydrated purposely in
63	seawater after mixing with the key ingredient of alumina-rich volcanic ash. This notably
64	unique combination formed the fundamental cementitious binding component, the glue,
65	which, when mixed with pozzolanic coarse aggregates of zeolitic tuff, composed a
66	unique concrete mixture that could set quickly under seawater, become extremely
67	strong, and remain cohesive and intact in aggressive seawater for over 2000 years. The
68	extraordinary durability of this massive seawater concrete is exceptional and must be
69	related to the stability of the binder phase in an aggressive marine environment. Among
70	the most interesting findings of the paper is the high content and differential
71	distribution of Al in the C-A-S-H and Al-tobermorite binder phases. The chemical action
72	of alkali cations, both from the volcanic ash and seawater, and the self-elevated
73	moderate temperatures (< 85 $^{\circ}$ C) reached during the hydration of quicklime and
74	formation of poorly crystalline C-A-S-H were identified to be critical to the formation of
75	Al-tobermorite. Another eye-catching finding is related to the presence of sulfate which
76	is known to cause severe damages (i.e. delayed ettringite formation, expansion and
77	cracking) in today's concrete when it experiences internal temperatures above 70°C, but
78	surprisingly has no harm to this ancient seawater concrete. This particular performance

79	is because sulfate ions are not bound in C-A-S-H but produce individual clusters of
80	ettringite integrated soundly in the overall cementitious matrix. In this respect, the role
81	of Al in stabilizing the phase assemblage, prohibiting dissolution, and deleterious
82	expansive reactions is becoming clear (Chappex and Scrivener 2013), and connects to
83	insights on mineral dissolution gained in the field of mineralogy and geochemistry
84	(Schott et al. 2009). Furthermore, the work of Jackson et al. (2013) delivers an
85	important fact that pozzolanic aggregates rich in silica, alumina and alkalis undoubtedly
86	contribute to the extended durability of this pozzolana-containing concrete without
87	causing any damage from alkali-silica reaction, as opposed to today's common
88	perception of concrete durability.
89	These findings clearly demonstrate successful ancient practice of Al- and alkali-rich
90	binders which are now appearing as sustainable and durable alternatives to Portland
91	cement (Juenger et al. 2008). The well-recognised but overlooked superiority of the
92	ancient seawater concrete containing natural pozzolan is obviously a tribute to the
93	ingenuity of Roman scientists some 2000 years ago, as well as a proven model of
94	extended durability and sustainability from which we should learn in order to achieve
95	improved durability of modern concrete structures and sustainable binder systems
96	incorporating Al-tobermorite.

97 REFERENCES CITED

Blezard, R.G. (1998) The history of calcareous cements. In: Lea's chemistry of cement
and concrete, fourth edition (P.C. Hewlett, editor). Butterworth Heinemann,
London.

10/23

101	Chappex, T. and Scrivener, K.L. (2013) The effect of aluminum in solution on the
102	dissolution of amorphous silica and its relation to cementitious systems. Journal of
103	the American Ceramic Society, 96, 592-597.
104	Jackson, M.D., Chae, S.R., Mulcahy, S.R., Meral, C., Taylor, R., Li, P., Emwas, A.M., Moon,
105	J., Yoon, S., Vola, G., Wenk, HR. and Monteiro, P.J.M. (2013) Unlocking the Secrets
106	of Al-Tobermorite in Roman Seawater Concrete. American Mineralogist, in press.
107	Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H. (2011) Advances in alternative
108	cementitious binders. Cement and Concrete Research, 41, 1232-1243.
109	Oleson, J. P., Brandon, C., Cramer, S. M., Cucitore, R., Gotti, E. and Hohlfelder, R. L. (2004)
110	The ROMACONS Project: A contribution to the historical and engineering analysis of
111	hydraulic concrete in Roman maritime structures. International Journal Nautical
112	Archaeology, 33, 199–229.
113	Schott, J., Pokrovsky, O.S. and Oelkers, E.H. (2009) The link between mineral
114	dissolution/precipitation kinetics and solution chemistry. Reviews in Mineralogy
115	and Geochemistry, 70, 207-258.
116	Snellings, R., Mertens, G. and Elsen, J. (2012) Supplementary Cementitious
117	Materials. Reviews in Mineralogy and Geochemistry, 74, 211-278.
118	

- 119
- 120