1	Mössbauer parameters of iron in sulfate minerals
2	
3	M. Darby Dyar ¹ , Elly Breves ¹ , Erica Jawin ^{1,*} , Gerard Marchand ¹ , Melissa Nelms ¹ , Vanessa
4	O'Connor ² , Samantha Peel ^{1,†} , Yarrow Rothstein ¹ , Elizabeth C. Sklute ^{1,‡} , Melissa D. Lane ³ ,
5	Janice L. Bishop ⁴ , and Stanley A. Mertzman ⁵
6 7 8 9	
10	¹ Dept. of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.
11	² Dept. of Geosciences, Smith College, Northampton, Massachusetts 01063
13 14	³ Planetary Science Institute, Tucson, Arizona 85719, U.S.A.
15 16	⁴ SETI Institute/NASA-Ames Research Center, Mountain View, California, 94043, U.S.A.
17 18 19 20 21	⁵ Dept. of Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania 17603, U.S.A.
22 23 24	*Present address: Department of Geological Sciences, Brown University, Providence, Rhode Island 02912, U.S.A.
25 26 27	†Present address: Department of Earth and Planetary Science, University of Tennessee, Knoxville, Tennessee 37996, U.S.A.
28 29 30 31	[*] Present address: department of Geosciences, Stony Brook University, Stony Brook, New York 11794, U.S.A.
32	
33	Submitted to American Mineralogist
34	
35	REVISION 1

36

Abstract

7/30

37	Although Fe-sulfate minerals occur only rarely on Earth as alteration products of sulfidic
38	basalts or in hydrothermal systems, multiple lines of evidence point to the importance of Fe- (and
39	other) sulfate minerals on the surface of Mars. One such Martian data set comes from the
40	MIMOS II Mössbauer spectrometers on the Mars Exploration Rovers, which acquired hundreds
41	of spectra from the martian surface at two locations. Interpretation of those spectra has been
42	limited by the lack of a comprehensive set of laboratory analog spectra of the broad range of
43	naturally-occurring sulfate minerals. Accordingly, this study reports Mössbauer data of 99
44	samples representing 47 different sulfate mineral species, all containing six- or higher-
45	coordinated Fe. The resultant Mössbauer parameters are related to the local polyhedral
46	environment around the Fe cation in each mineral to explain variations in spectral characteristics.
47	Results show that the size of the coordination polyhedron is the best predictor of quadrupole
48	splitting, which increases with both octahedral volume and mean bond length. Species within
49	groups of structurally-similar minerals are shown to have comparable spectral peaks that
50	generally fall within small ranges. Although coordination polyhedron geometry is not necessarily
51	unique to any particular mineral species or group, Mössbauer data can be used to help constrain
52	mineral identifications from martian spectra. However, the number of mineral species is large
53	but the range of crystal structures and hyperfine parameters may be small, so that in many cases,
54	individual minerals cannot be uniquely fingerprinted. Examples would include quenstedtite,
55	coquimbite, kornelite, and lausenite, which have indistinguishable spectra, as do apjohnite,
56	bilinite, dietrichite, and römerite. Overlap of Mössbauer parameters is a particular complication
57	for identification of Fe^{3+} -rich phases because the range of Mössbauer parameters for Fe^{3+} in any
58	coordination number is so small. Previous analyses of martian Mössbauer spectra reported the

59	presence of jarosite (Klingelhöfer et al. 2004; Morris et al., 2004) and an unspecific ferric sulfate
60	(Morris et al. 2008). New data presented here indicate that botryogen, metasideronatrite, and
61	slavikite exhibit Mössbauer spectra similar to those attributed to jarosite at Meridiani Planum.
62	Fibroferrite and rhomboclase have parameters similar to those observed at Arad Samra, and
63	copiapite and parabutlerite could be present at Tyrone Mount Darwin and Berkner Island.
64	Unique mineral identifications are generally not possible from Mössbauer data alone, particularly
65	for paramagnetic phases, although combining Mössbauer results with other datasets enables a
66	greater level of confidence in constraining mineralogy. This study provides a new expansive
67	dataset for future interpretation of iron sulfates on Mars.
68	
69	I. INTRODUCTION
70	Iron sulfates, many of which form as alteration products of sulfides, are relatively rare on
71	Earth, particularly as hydrous species. They may form as a result of chemical interaction of
72	acidic groundwater with mafic rocks (basalts) under ambient (and cold) conditions or in
73	hydrothermal systems (Tosca et al. 2004). However, elsewhere in our solar system, sulfur may
74	be a more common and significant element in crustal rocks and thus conditions may be more
75	favorable for the formation of sulfate minerals. This is especially true on Mars, where the low
76	temperatures and pH found in the martian permafrost create ideal conditions for the formation of
77	this group of minerals (Burns 1987), which includes such phases as coquimbite,
78	Fe ³⁺ ₂ (SO ₄) ₃ ·9H ₂ O, and amarantite, FeSO ₄ (OH)·3H ₂ O. Viking, Mars Pathfinder, Mars
79	Exploration Rover, and remotely sensed data (e.g., Clark et al. 1982, Blaney and McCord 1995,
80	Rieder et al. 2004, Bonello et al. 2004, McAdam et al. 2013, and Yen et al. 2013) have all
81	suggested that sulfur is a relatively abundant element on the surface of Mars, but the mineralogy

of the sulfur-rich phases is not well constrained. Lane et al. (2004) suggests that hydrous iron
sulfates (HIS) might contribute to the Martian thermal emission, reflectance, and Mössbauer
spectra.

85 Before the Mars Science Laboratory landed its CheMin instrument (Blake et al. 2012), 86 the most pivotal tool for in-situ identification of sulfate mineralogy on Mars was the MIMOS II 87 Mössbauer spectrometer, which was part of the payload of both the Spirit and Opportunity 88 rovers. Klingelhöfer et al. (2004) identified jarosite at Meridiani Planum, Mars, based on an 89 isomer shift of 0.37±0.02 mm/s and quadrupole splitting of 1.20±0.02 mm/s. These Mössbauer 90 parameters are the best match with jarosite of all the samples in the Mössbauer Effect Data 91 Center database of published spectra and at that time there were no "reasonable alternatives for 92 jarosite" (Morris et al. 2006). They further noted that the "jarosite" doublet seen in the Mars 93 spectra was a perfect match to those previously reported for jarosite by Leclerc (1980). 94 Moreover, the existence of jarosite and other sulfates had been predicted by Roger Burns in 95 several papers (1986, 1987, 1988, 1993; Burns and Fisher, 1990). For these reasons, the idea of 96 jarosite on Mars became generally accepted, and has been commonly used to constrain phase 97 equilibria and aqueous processes on Mars (Tosca et al. 2004). 98 The exciting discovery of iron sulfate on Mars (Klingelhöfer et al., 2004; Morris et al. 99 2006), along with subsequent discovery of an unspecific ferric sulfate (Morris et al., 2008) 100 illuminated the need for further Mössbauer data on this important class of minerals. At that time,

The manimuted the need for further wosseduer data on this important class of minerals. At that time

101 little was known about the Mössbauer parameters that are characteristic of related sulfate

102 minerals. Only a handful of sulfate Mössbauer spectra had been reported in 2004 (mostly those

103 of jarosite), and nearly all were acquired at room temperature, and thus not optimal for matching

104 with ~220K spectra from Mars. In subsequent years, several new studies have sought to

7/30

105 characterize sulfate minerals (e.g., Majzlan et al. 2011, Van Alboom et al., 2009, Kovacs et al. 106 2008, Ertl et al. 2008, and Hyde et al., 2011), but most focused only on a few examples of a 107 single mineral group. There remained a need for a robust survey of iron sulfate minerals acquired 108 under consistent conditions, which is fulfilled by the current paper. These new data are expected 109 to lead to new discoveries about iron sulfate minerals on Mars. 110 To address this deficiency, this study reports Mössbauer data of 99 samples representing 111 45 different sulfate mineral species. To put the data in a crystal chemical context, this paper 112 seeks to relate the resultant Mössbauer parameters to both the local polyhedral environment 113 around the Fe cations in these minerals and the overall structural characteristics of each species. 114 The groundwork for these comparisons has been laid by the thorough discussion and 115 classification of sulfate minerals presented by Hawthorne et al. (2000). It seems logical to 116 assume that minerals of the same structure classes will have similar spectral features. Similarly, 117 mineral species that belong to the same hydration sequence might also be assumed to have 118 similar spectra. However, little work has been done to explore or test this hypothesis. This 119 project was designed to look at the big picture and examine general trends in Mössbauer 120 spectroscopy of sulfate minerals at 295K. Mars temperature measurements will be considered in 121 a future paper. 122

123

II. BACKGROUND

There are \sim 370 sulfate mineral species, and structures are known for about 80% of them (Hawthorne et al. 2000). Sulfates are similar to silicates (and phosphates and arsenates) in that the structures are based on a tetrahedral unit, SO₄, that is analogous to the familiar SiO₄ building blocks of most silicates. However, the charge of the S⁶⁺ cation is greater than that of Si⁴⁺, so the 128 oxygen atoms in the SO_4^{-2} tetrahedra must be linked to satisfy charge balance in a manner that is 129 different from what is observed in SiO_4^{-4} -based silicates.

130 For example, framework silicates such as guartz and feldspar are the most common 131 minerals in the Earth's crust. They are based upon corner-sharing tetrahedra in which charge balance is satisfied by sharing all four corners of SiO_4^{-4} tetrahedra (with substitution of Al for Si 132 133 accommodated by Na, Ca, and K in the case of feldspars). In the sulfate minerals, the structures 134 are fundamentally different because this type of complete polymerization among solely SO_4^{-2} tetrahedra (or in combination with other tetrahedral oxyanions such as PO₄, AsO₄, VO₄, SiO₄) is 135 136 unstable (Hawthorne et al. 2000). Another distinction of sulfate minerals is that substitution of other cations for S^{6+} is not as common, though it does occur in gypsum and beudantite (As⁵⁺ \leftrightarrow 137 S^{6+} ; Lin et al. 2013, Szymanski 1988) vergasvaite (Mo⁶⁺ \leftrightarrow S⁶⁺; Berlepsch et al. 1999), and 138 hashemite ($Cr^{6+} \leftrightarrow S^{6+}$: Duesler and Foord 1986). It is questionable whether $Fe^{3+} \leftrightarrow S^{6+}$ 139 140 substitution even occurs because there are (to date) no Mössbauer studies that report tetrahedral Fe^{3+} in a sulfate mineral species. It is thus expected that Fe^{3+} in sulfate minerals will be generally 141 confined to six-coordinated sites, which may also be occupied by Fe^{2+} . However, this study will 142 143 examine the validity of this assumption. So sulfate structures are commonly composed of SO_4^{-2} tetrahedra bonded with cations in 144

So sulfate structures are commonly composed of SO_4^{-1} tetrahedra bonded with cations in octahedral (the vast majority) or larger coordination polyhedra (Figure 1). Thus tetrahedral Fe³⁺ occupancy (i.e., in S-deficient structures) is highly unlikely. Interpretation of the Mössbauer spectra of these structures is greatly simplified, and is generally a matter of distinguishing between octahedral Fe³⁺ and Fe²⁺ (and rarely dodecahedra, as when Fe²⁺ might substitute into dodecahedral or larger sites in Ca sulfates such as anhydrite). These distinctions are described using the positions of the peaks in doublets of a Mössbauer spectrum using the terms isomer shift

151 (IS, δ , or sometimes center shift) and quadrupole splitting (QS, ΔE_0 , or Δ), expressed in velocity 152 units by convention in this field. Isomer shift is caused by overlap between the nucleus and the s-153 electron charge distributions that causes a shift in the nuclear energy levels in the Fe atom. 154 Isomer shift is most sensitive to oxidation state and less sensitive to distortions in the 155 surrounding site geometry. Isomer shift is measured as the offset of the doublet's centroid from zero velocity, and its value in silicates is generally low (0.25-0.5 mm/s) for octahedral Fe^{3+} and 156 much higher (>1.10 mm/s) for octahedral Fe²⁺. Its error is usually given as ± 0.02 mm/s (Dyar 157 158 1984, Dyar et al., 2008).

Quadrupole splitting results from interactions between the nuclear quadrupole moment 159 160 and the gradient of the surrounding electric field, which cause the I = 3/2 level to split into two 161 sublevels. QS is the separation between the two component peaks. QS is sensitive to both oxidation state and site geometry. As an example, consider Fe^{2+} in perfectly octahedral (6-fold) 162 coordination. The electronic configuration of Fe^{2+} , $3d^6$, is in general high spin for minerals, i.e., 163 $t_{2x}^4 e_e^2$. The sixth electron populates the three degenerate (all the same energy) t_{2g} levels equally, 164 so spherical symmetry is maintained and, ignoring lattice terms, there is no quadrupole splitting. 165 However, a distortion of the octahedral environment lifts the degeneracy of the t_{2g} levels, leading 166 167 to unequal occupancy of the d orbitals and a large contribution to Δ from the electronic field. In high-spin Fe³⁺, which has electronic configuration $t_{2g}^3 e_g^2$, the *d* orbitals remain equally populated 168 169 even when the octahedral environment is distorted, and the electronic field remains spherical. Of course, in both cases, asymmetry in the lattice field causes ${}^{[6]}Fe^{2+}$ and ${}^{[6]}Fe^{3+}$ to split the I = 3/2 170 level, but in general, Δ for Fe²⁺ (>1.5 mm/s) >> Δ for Fe³⁺ (<1.3 mm/s). In general, the larger the 171 172 Δ value, the more distorted the coordination polyhedron surrounding the Fe atom (Burns and

173 Solberg 1990, Dyar et al. 2006a). The error of Δ on fitted spectra is usually given as ± 0.02 mm/s 174 (Dyar 1984, Dyar et al., 2008).

175Given that the parameters have wide ranges, it may be possible to assign certain ranges of176parameters to particular types of bonding environments or coordination polyhedra. Thus this177paper presents Mössbauer spectra of well-characterized sulfate minerals and determine178characteristic parameters for minerals with different structure types. In many cases, these are the179first Mössbauer measurements of Fe^{3+}/Fe^{2+} ratios for these mineral species. The results shed light180on stoichiometry and charge-balancing substitutions in these phases as well as the parageneses181and redox environments in which these mineral form.

- 182
- 183

III. EXPERIMENTAL AND ANALYTICAL PROCEDURES

184 Samples for this project (Table 1) were selected from the collections of the coauthors; 185 others were purchased from collectors or came from E. Cloutis (U. Winnepeg), the National 186 Museum of Natural History (Smithsonian) and the Harvard Mineralogical Museum. Diversity of 187 samples from multiple localities was sought so that compositional variability within each group 188 could be assessed. All samples were kept in dry air in a desiccator when not being analyzed. 189 Samples were first hand-picked to purify them, a step that was critical because many of these 190 phases occur as intergrowths with other minerals. This job was made more difficult by the fact 191 that many sulfates are yellow in color, making it necessary to distinguish coexisting phases on 192 the bases of morphology and subtle color variations. However, it is important to note that in 193 some cases, individual species were mingled with other species at such a small scale that it is 194 unrealistic to expect that pure separates could be created. In such cases, minor contributions in 195 spectra from the impurities would be expected. One of the advantages of the current study is that 196 more than one example of most species was analyzed, and so the diagnostic spectral

characteristics that various samples have in common can be identified in spite of the presence ofpotential impurities.

199	A majority of the separates was then analyzed by XRD to confirm their purity and make
200	unequivocal phase identifications. This task was potentially complicated by the fact that several
201	of these minerals are extremely rare, and thus not represented in XRD databases (e.g., ilesite and
202	bilinite). For this reason, it was sometimes necessary in a few instances to make educated
203	guesses about the identity of some minerals, drawing on the fact that many of the samples
204	studied here came from their type localities. Each of these is detailed in the footnotes to Table 1.
205	During the drawn-out collection and culling phase of the samples, various XRD analyses were
206	conducted at Franklin and Marshall College, Smith College, Indiana University, and the
207	University of New Mexico.
208	Samples were then prepared by mixing the sulfates with sucrose, gently mixing them into
209	a homogeneous powder to fill the sample holder for Mössbauer spectroscopy. Then 295K
210	Mössbauer spectra were acquired using a source of 100-40 mCi ⁵⁷ Co in Rh, which was used on a
211	WEB Research Co. (now See Co.) model W100 spectrometer. Run times ranged from 12-96
212	hours, and results were calibrated against α -Fe foil.
213	Spectra were fit with Lorentzian doublets using the MEX_FielDD program acquired from
214	the University of Ghent courtesy of E. De Grave. Isomer shifts (IS, or δ), and quadrupole
215	splittings (QS, or Δ) of the doublets were allowed to vary, and widths (full width at half
216	maximum) of all peaks were coupled to vary in pairs. All major Fe species were represented by

217	well-resolved quadrupole pairs so the fits were straightforward, though it was sometimes
218	necessary to fit small doublets representing impurities (Table 2 ¹).
219	
220	IV. RESULTS: MÖSSBAUER PARAMETERS
221	Mössbauer parameters for all samples studied at room temperature are given in full in
222	Table 2 and for all doublets with areas greater than 5% of the total peak area in Tables 3-6,
223	where minerals with similar parameters are grouped together to compare and contrast features.
224	Because Fe ³⁺ and Fe ²⁺ have quite distinct parameters, it is convenient to discuss the results and
225	spectral features separately, beginning with the Fe ³⁺ -bearing sulfates, which are the most
226	numerous.
227	One of the most striking things about the data set for Fe ³⁺ parameters is the consistency
228	of the isomer shift (δ), which ranges from 0.37-0.52 mm/s, but is most commonly in the range
229	from 0.41-0.43 mm/s (Figure 2). Error bars associated with isomer shift are commonly quoted as
230	± 0.01 -0.05 mm/s, so many of the isomer shift values for Fe ³⁺ sulfates are essentially the same.
231	However, as noted at the onset, quadrupole splitting (Δ) varies considerably among the various
232	sulfates studied here. It is thus convenient to group and discuss the Fe ³⁺ doublets in sulfates
233	according to quadrupole splitting.
234	A. Lowest ∆ Sulfates

Some of the most unusual Mössbauer spectra found in the sulfates belong to members of the hydration series $Fe_2(SO_4)_3 \cdot nH_2O$, which includes quensted tite, coquimbite, kornelite, and

¹Deposit item AM-13-xxxx, Table 2 Deposit items are available two ways: For a paper copy contact the Business Office of the Mineralogical Society of America (see inside front cover of recent issue for price information). For an electronic copy visit the MSA web site at http://www.minsocam.org, go to The American Mineralogist Contents, find the table of contents for the specific volume/issue wanted, and then click on the deposit link there.

237	lausenite (Table 3). All these minerals have Mössbauer spectra (Figure 3) that closely resemble
238	singlets because of their low quadrupole splitting, which in turn implies that there is only a
239	negligible electric field gradient at the nucleus of the Fe^{3+} cation.
240	In <u>quenstedtite</u> , $Fe_{2}^{3+}(SO_{4})_{3}$ ·11H ₂ O, there are two types of clusters: <i>cis</i> -
241	$[Fe^{3+}(SO_4)_2(H_2O)_4]$ and $[Fe^{3+}(SO_4)(H_2O)_5]$, along with H_2O groups (Thomas et al. 1974;
242	Hawthorne et al. 2000). However, the coordination polyhedra occupied by Fe^{3+} cations in these
243	clusters are still very similar despite the difference between five vs. four O^{2-} anions (Figure 3).
244	Thus the Mössbauer spectrum of quenstedtite consists of two highly-overlapping doublets with
245	very small Δ values, one of which is nearly a singlet. Its parameters are $\delta = 0.47$ and 0.40 mm/s
246	and $\Delta = 0.13$ and 0.24 mm/s.
247	Perhaps the most commonly occurring (on Earth) sulfate species in this group is
248	<u>coquimbite</u> (Fe ³⁺ ₂ (SO ₄) ₃ ·9H ₂ O). The major feature in four of the samples studied here is again
249	nearly a singlet, with parameters of roughly $\delta = 0.46$ mm/s and $\Delta = 0.09$ mm/s. Its structure,
250	along with its polytype paracoquimbite (Fang and Robinson 1970), is composed of isolated
251	clusters of $[Fe^{3+}_{3}(SO_{4})_{6}]$ along with $\{Fe^{3+}(H_{2}O)_{6}\}$ octahedra and $(H_{2}O)$ groups. The Fe octahedra
252	are slightly different in geometry. As seen in Figure 3, the Al1 and Fe2 sites are nearly identical,
253	though the Fe1 site is distinct. This implies that there may be two different Fe^{3+} doublets in
254	coquimbite, and this is indeed observed. The doublet with very low Δ just noted is most likely
255	assigned to the $[Fe^{3+}_{3}(SO_{4})_{6}]$ site because that site is most similar to that in quensted tite. The
256	other group of samples containing coquimbite (SPT131, SPT132, and S63) has spectra
257	dominated by a doublet with larger Δ and will be discussed later. Note that the sample of
258	paracoquimbite studied here is mostly Fe^{2+} but its Fe^{3+} doublet matches one of the doublets in
259	coquimbite ML-S63.

260	When these clusters depolymerize, they form the same chains found in two closely-
261	related hydration states of <u>kornelite</u> and <u>lausenite</u> . Kornelite ($Fe^{3+}_{2}(SO_4)_3 \cdot 7H_2O$) is composed of
262	spiral chains of $\{Fe^{3+}(H_2O)_6\}$ octahedra and SO_4 tetrahedra, cross-linked by additional SO_4
263	tetrahedra. The structure also includes partially-occupied sites between the chains, making
264	kornelite a heptahydrate. Early workers believed that lausenite $(Fe^{3+}_{2}(SO_{4})_{3} \cdot 5H_{2}O)$ had the
265	kornelite structure with none of these extra water molecules (Robinson and Fang, 1973), but
266	more recent work by Majzlan et al. (2005) shows that a different arrangement is likely. In
267	lausenite, the chains are tilted to free up one of the H ₂ O molecules, with bridging oxygens
268	coordinating S^{6+} and Fe^{3+} (Majzlan et al. 2005). Two symmetrically distinct Fe^{3+} sites exist as
269	seen in Figure 3; Fe^{3+} is coordinated either by four O and two H ₂ O (the Fe1 site) or three O and
270	three H ₂ O (the Fe2 site). The Mössbauer spectra of kornelite and lausenite are quite similar. In
271	three of the four samples, a doublet with $\delta = 0.48$ mm/s and $\Delta = 0.13$ mm/s dominates, quite like
272	those found in coquimbite. The fourth sample, 104175, is mostly Fe^{2+} with a Fe^{3+} doublet with
273	higher δ and Δ , probably due to an impurity. By way of comparison, Huggins and Huffman
274	(1979) reported $\delta = 0.44$ mm/s and $\Delta = 0.15$ mm/s for kornelite.
275	Another related structure is that of ungemachite, $K_3Na_8[Fe^{3+}(SO_4)_6](NO_3)_2(H_2O)_6$, which
276	is also based on clusters. Ungemachite belongs to the glaserite crystal structure type, in which an
277	octahedron shares six corners with (SO ₄) tetrahedra, forming pinwheels (Moore 1973). The
278	pinwheels are then linked into tetrahedra to form layers. Many sulfate, phosphate, chromate, and
279	silicate minerals are based on this structure, including millosevichite (Al ₂ (SO ₄) ₃), glaserite
280	$(K_3Na(SO_4)_2)$, and mikasaite $(Fe_2(SO_4)_3)$. An early paper by DeBenedetti et al. (1961) gave
281	parameters for mikasaite of δ = 0.46 mm/s and Δ = 0.00 mm/s, while Nomura et al. (2005)
282	reported values of $\delta = 0.47$ mm/s and $\Delta = 0.34$ mm/s. Sgarlata (1985) reported only a singlet at

283 0.44 mm/s for millosevichite $(Al_2(SO_4)_3)$. These data suggest that the glaserite structure-type 284 minerals will all also have low Δ values. Clearly, more work on a broader range of species would 285 be useful to confirm this trend in the Mössbauer parameters of this structure type, which is 286 largely unexplored.

Ferrinatrite, $Na_3(H_2O)_3[Fe^{3+}(SO_4)_3]$, is formally classified as a chain sulfate, but the 287 linkages between $[Fe^{3+}(SO_4)_3]$ octahedral-tetrahedral chains create octahedra that are very 288 289 similar to the clusters in coquimbite (Hawthorne et al. 2000), as can be seen in Figure 3. 290

Mössbauer parameters of ferrinatrite (Table 3) are also indistinguishable from those of the

291 $Fe(SO_4)_3 \cdot nH_2O$ hydration series.

Voltaite $(K_2[Fe^{2+}_5Fe^{3+}_3(H_2O)_{12}(SO_4)_{12}]$ {Al $(H_2O)_6$ }) and the related Mg-rich species 292 pertlikite (Ertl et al. 2008) have multiple Mössbauer doublets because there are two distinct 293 octahedral sites occupied by Fe^{3+} and Fe^{2+} : 32 M1 and 96 M2 sites per unit cell. Ideally, Fe^{3+} 294 295 occupies all of the M1 sites and the M2 sites are shared by both valence states of Fe. However, 296 this mineral shows a great deal of variation among the eight samples studied here. Voltaite has 297 one group of large doublets at $\delta = 0.44$ -0.54 mm/s and $\Delta = 0.35$ -0.40 mm/s, as well as a second group of smaller doublets at $\delta = 0.10-0.16$ mm/s and $\Delta = 0.47-0.69$ mm/s. All the samples 298 studied here contained roughly equal distributions of Fe^{2+} and Fe^{3+} . Their spectra are similar in 299 appearance to those of Long et al. (1980), but they did not publish δ and Δ for their Fe³⁺ 300 doublets. Hermon et al. (1976) also had trouble resolving contributions from different Fe³⁺ 301 302 doublets, but concluded that multiple doublets must be present on the basis of increasing linewidth at low temperatures. They suggested that the larger $\Delta \text{ Fe}^{3+}$ doublet corresponds to the 303 304 M2 site, while the less distorted M1 doublet had a smaller Δ . They also suggest that there may be 305 some divalent cations in the smaller M1 site, even when there are trivalent cations in the larger

306 M2 site. Majzlan et al. (2011) measured three samples, and obtained consistent parameters for 307 two doublets with $\delta = 0.59$ and 1.42 mm/s and $\Delta = 0.26$ and 2.52-2.68 mm/s respectively. These 308 do not agree well with current results, but the reason for the discrepancy may lie in the fact that 309 they only modeled two doublets. Majzlan et al. (2013) studied a large suite of synthetic voltaites 310 and found parameters of $\delta = 0.45 \cdot 0.47$ mm/s and $\Delta = 1.29 \cdot 1.31$ mm/s that are closer to those 311 from the current study and previous workers. Support for the fits used in the current study lies in 312 the fact that doublets with the same parameters are also found in rhomboclase, where they are 313 clearly resolved at >75% of the total spectral area. <u>Rhomboclase</u>, (H_5O_2) [Fe³⁺ $(H_2O)_2(SO_4)_2$], has a structure somewhat related to kornelite. 314

in that it is also a sheet of SO₄ tetrahedra and $Fe^{3+}O_6$ octahedra. Two-dimensional linkages

between adjacent clusters link them into sheets, with hydrogen bonding of interstitial $(H_5O_2)^+$

dimers (Hawthorne et al. 2000). Mössbauer parameters of $\delta = 0.54$ and $\Delta = 0.59$ mm/s were

reported by Majzlan et al. (2011) and all five samples in the current study had those quite similar

319 parameters: ca. $\delta = 0.44$ mm/s and $\Delta = 0.51-0.54$ mm/s. The Fe site in rhomboclase is apparently

- quite similar to the Fe1 site in voltaite, as is apparent in Figure 3.
- 321 **B.** Minerals with $\Delta = 0.31-0.81$ mm/s

322 The Mössbauer spectrum of <u>vavapaiite</u> (K[Fe³⁺(SO₄)₂]) is a single doublet with $\delta = 0.48$

323 mm/s and $\Delta = 0.31$ mm/s (Table 4 and Figure 4a). Those parameters match those reported for

- three samples by Nomura et al. (2005) almost exactly. Its structure is based upon sheets of SO₄
- tetrahedra and $Fe^{3+}O_6$ octahedra that are created by corner sharing of $[Fe^{3+}(SO_4)O_2]$ chains

326 (Hawthorne et al. 2000). The same sheet geometry is also found in kröhnkite

327 $(Na_2[Cu^{2+}(H_2O)_2(SO_4)_2), \text{ merwinite } (Ca_3Mg(SiO_4)_2), \text{ and brianite } (Na_2CaMg(PO_4)_2), \text{ as well as } (Na_2(SiO_4)_2), \text{ and brianite } (Na_2(SiO_4)_2), \text{ and briani$

328 members of the fairfieldite sub-group of hydrated phosphates, so Fe^{3+} substitution in those

329	structures should result in yavapaiite-like Mössbauer parameters. Krausite, K[Fe ³⁺ (H ₂ O) ₂ SO ₄) ₂],
330	has a related structure based on infinite double chains like those found in kröhnkite (Graeber et
331	al., 1965); its Mössbauer parameters of $\delta = 0.41$ mm/s and $\Delta = 0.41$ mm/s are similar to (though
332	slightly higher than) those of yavapaiite. The Fe octahedra from the crystal structure refinements
333	of these two minerals, as shown in Figure 4a, are slightly different. Note that the Fe site in
334	krausite is slightly more distorted than the Fe site in yavapaiite, which would cause the higher Δ .
335	<u>Goldichite</u> (KFe ³⁺ (SO ₄) ₂ ·4H ₂ O) is a slightly higher hydration state of potassium ferric
336	sulfate, such that the Fe ³⁺ coordination polyhedron now has two <i>trans</i> -OH. Thus its Mössbauer
337	spectrum is not the same as those of yavapaiite and the other structures based on infinite double
338	chains. Rather, goldichite has two Fe ³⁺ doublets with parameters, one with $\delta = 0.19$ mm/s and Δ
339	= 0.61 mm/s as seen in coquimbite, and one with δ = 0.48 mm/s and Δ = 0.29 mm/s comparable
340	to yavapaiite and krausite. The structure of <u>kainite</u> $(K_4[Mg_4(H_2O)_{10}(SO_4)_4](H_2O)Cl_4)$ is also
341	based on kröhnkite-like chains, and probably has Mössbauer parameters like krausite. All these
342	minerals have quite similar Mössbauer spectra (Figure 4a).
343	Copiapite group minerals share the general formula
344	$[Fe_{2}^{3+}(OH)(H_{2}O)_{4}(SO_{4})_{3}]_{2}\{A(H_{2}O_{6}\}(H_{2}O)_{6}, where A = Fe_{2}^{2+}, Fe_{3}^{3+}, Al, Mg, Cu, Ca, and/or Zn$
345	(Hawthorne et al., 2000). Their structures are composed of layers of the $\{A(H_2O_6)\}$ octahedra that
346	are linked to layers of $[Fe^{3+}_2(OH)(H_2O)_4(SO_4)_3]$, forming $[M_2(SO_4)_2(O,H_2O)_7]$ clusters that
347	resemble those in phosphates (Hawthorne 1979). Only one sample studied here (168257) had an
348	Fe^{2+} doublet with 51% of the total area, defining it to be copiapite rather than ferricopiapite. All
349	the other copiapite samples in the data set studied here have only Fe ³⁺ , and so are really
350	ferricopiapite despite the species names given to them, and the single zincocopiapite sample has
351	identical Mössbauer parameters to those of the ferricopiapites. The ferricopiapites have two

352	distinct distributions of Mössbauer parameters with the same $\delta = 0.42$ -0.43 mm/s but different
353	quadrupole splittings: $\Delta = 0.35$ -0.40 mm/s for one group and 0.77-0.88 mm/s for the other. These
354	probably correspond to sites in the two different layers mentioned above but it is unclear at this
355	point which doublet represents which site. Two similar sites were observed in Mössbauer spectra
356	of samples from the Río Tinto basin in Spain by Fernández-Remolar et al. (2005): $\delta = 0.37$ and
357	0.39 mm/s and $\Delta = 0.34$ mm/s and 0.74 mm/s, respectively. Majzlan et al. (2011) also reported
358	copiapite data with parameters of $\delta = 0.53$ mm/s and $\Delta = 0.30-0.38$ and 0.79-0.80 mm/s.
359	<u>Halotrichite</u> group minerals share a structure with $[M(SO_4)_2(H_2O)_4]$ clusters of M^{2+} and
360	M^{3+} octahedral cations. The two $\{M^{3+}({\rm H_2O})_6\}$ octahedra are charge-balanced by the presence of
361	$[M^{2+}(SO_4)(H_2O)_5]$ octahedra, with an additional five H_2O molecules held in place by hydrogen
362	bonding (Hawthorne 1985). Three Fe ³⁺ -rich halotrichite group minerals were studied here,
363	apjohnite, bilinite, and dietrichite, and their Mössbauer spectra (Figure 4b) are somewhat similar.
364	The main feature in the apjohnite spectrum is a large doublet with $\delta = 0.43$ mm/s and $\Delta = 0.58$
365	mm/s, similar to that of rhomboclase. The bilinite spectrum has a broad doublet at $\delta = 0.49$ mm/s
366	and $\Delta = 0.37$ mm/s, identical to one of the doublets in copiapite. <u>Dietrichite</u> has two doublets
367	with $\delta = 0.42$ and 0.43 mm/s and $\Delta = 0.35$ and 0.79 mm/s.

In the very-similar <u>römerite</u> structure, Fe occupies octahedral sites that are parts of an analogous $Fe(SO_4)_2(H_2O)_4$ cluster (Figure 1). As in the halotrichite group, the clusters have a *cis* arrangement of polyhedra (Figure 4b). In addition to the cluster, Fe in römerite is also found in isolated {Fe²⁺(H₂O)₆} octahedra. Several different examples of römerite were obtained, and nearly all the samples contain both Fe²⁺ and Fe³⁺. These minerals should have Fe³⁺ parameters similar to those for the halotrichite minerals, and this is indeed what is observed: $\delta_{Bil} = 0.49$ mm/s and $\Delta_{Bil} = 0.37$ mm/s, while $\delta_{Rom} = 0.43-0.47$ mm/s and $\Delta_{Rom} = 0.23-0.55$ mm/s. Huggins

375	and Huffman (1979) found similar parameters for two doublets in römerite of $\delta = 0.38$ and 0.53
376	mm/s and $\Delta = 0.37$ and 0.25 mm/s, respectively, while Majzlan et al. (2011) reported $\delta = 0.52$
377	and 0.59 mm/s, with $\Delta = 0.38$ and 0.17 mm/s (note again that their δ values are slightly high).
378	They also observed the Fe ²⁺ doublet with $\delta = 1.38$ and $\Delta = 3.49$ mm/s.
379	<u>Metavoltine</u> (K ₂ Na ₆ [Fe ³⁺ ₃ O(SO ₄) ₆ (H ₂ O) ₃] ₂ {Fe ²⁺ (H ₂ O) ₆ }(H ₂ O) ₆) is related to römerite
380	because it is also based on isolated clusters, in this case with composition $[Fe^{3+}_{3}(SO_{4})_{6}O(H_{2}O)_{3}]$,
381	and the clusters are linked by hydrogen bonding (Hawthorne 1985). There are three Fe sites: two
382	for Fe^{3+} that occur within the clusters (Fe(1) and Fe(2)), and those in isolated Fe(3) octahedra
383	that the formula suggests should be strictly Fe^{2+} (Giacovazzo et al. 1976). As would be
384	appropriate for the formula given above, the spectra have predominantly Fe^{3+} features. One
385	doublet has $\delta = 0.33$ -0.44 mm/s and $\Delta = 0.24$ -0.46 mm/s, a second has parameters of $\delta = 0.38$ -
386	0.42 mm/s and Δ = 0.37-0.53 mm/s, and a third has δ = 0.43 mm/s and Δ = 0.74-0.76 mm/s. All
387	have comparable areas, suggesting that some Fe^{3+} is occupying the Fe sites in the structure
388	equally. Sgarlata (1985) reported parameters of $\delta = 0.43$ mm/s and $\Delta = 0.36$ mm/s for Fe ³⁺ in
389	metavoltine, similar to those observed for the first doublet.
390	As noted above, there are two different types of sites in coquimbite: isolated clusters of
391	$[Fe^{3+}_{3}(SO_{4})_{3}]$ and $\{Fe^{3+}(H_{2}O)_{6}\}$ octahedra. In some samples, only a doublet with very small
392	quadrupole splitting (~0.10 mm/s) is observed, and stoichiometry suggests that this must
393	represent Fe ³⁺ in both sites. However, several of the samples studied here instead have a doublet
394	with higher Δ that is very similar to the Fe ³⁺ doublet in römerite (which also has two distinct
395	octahedral sites), with parameters of δ = 0.42 mm/s and Δ = 0.44-0.47 mm/s. This higher Δ
396	doublet is found in multiple samples from different parageneses that have been positively
397	identified by XRD, so the existence of an impurity is unlikely. It was also reported by Pankhurst

398	et al. (1986), who gave $\delta = 0.35$ -0.36 mm/s and $\Delta = 0.56$ -0.60 mm/s. It is likely that substitution
399	of other cations (such as Mg and Al) may be lowering the symmetry of the site, thus increasing
400	its quadrupole splitting. Both XRD and reflectance spectroscopy (Lane et al. 2013) confirm that
401	all the samples studied contain coquimbite, so the observed variations in site occupancy must be
402	due to formation conditions or other unknown crystal chemical constraints.
403	Taken together with the very low Δ doublets observed in all coquimbite samples studied
404	here, the coquimbite data corroborate the work of Huggins and Huffman (1979), who found
405	doublets with δ = 0.51 and 0.43 mm/s and Δ = 0.00 and 0.26 mm/s, respectively. Fernández-
406	Remolar et al. (2005) could not easily distinguish a doublet assigned to coquimbite and reported
407	slightly high parameters of δ = 0.44 mm/s and Δ = 0.22 mm/s. The higher values of Δ from these
408	workers may represent unresolved contributions from a doublet with higher Δ , or they may
409	represent variations in Mössbauer parameters as a function of some unrecognized compositional
410	effect.
411	The isostructural rozenite group minerals (rozenite, FeSO4·4H2O, starkeyite, ilesite,
412	aplowite, and boyleite) are based on clusters, which might suggest that their Mössbauer
413	parameters should be similar to those of halotrichite, metavoltine, and coquimbite. Each cluster
414	is composed of two tetrahedra each sharing two corners with two octahedra; the resultant
415	formula is $M_2(SO_4)_2O_8$, where M = Fe, Mg, Mn, Co, and/or Zn. In the sample suite studied here
416	minerals in this group are dominantly Fe^{2+} -rich and will thus be discussed below in section G;
417	only a few tiny doublets (<2% of the total spectral area) with very scattered parameters are
418	observed for Fe ³⁺ in rozenite. However, the Mössbauer spectrum of a low-Fe starkeyite gave

419 parameters like those of römerite, with $\delta = 0.16$ and 0.06 mm/s and $\Delta = 0.64$ and 0.49 mm/s.

Within this group of sulfates based on linked clusters (Figures 3, 4a, 4b), it should be apparent that no mineral species has a diagnostic or truly characteristic Mössbauer spectrum. Due to the similarities in their crystal structures and the resultant effect on the geometries of the Fe coordination polyhedra, none of these mineral species could be uniquely identified on the basis of their Mössbauer spectra alone.

427 C. Octahedral Corner-Sharing Chain Structures

428 A large group of sulfates with related structures is represented by a continuum of 429 Mössbauer parameters with Δ ranging from ~0.80-1.2 mm/s. Their spectra are all quite similar, 430 as seen in Figures 5a and b. This group includes butlerite and parabutlerite, slavikite, fibroferrite, 431 botryogen, sideronatrite, metasideronatrite, metahohmannite, and the alunite group. What do all 432 these minerals have in common?

433 All but alunite have structures composed of infinite chains of SO₄ tetrahedra and

 $M(O,H_2O)_6$ octahedra, as noted by and described in Moore (1970). The chains have a repeat

435 distance of ~7 Å (see butlerite in Figure 1). In <u>butlerite</u> and <u>parabutlerite</u>, the tetrahedra alternate

436 along the chain, linking to vertices of the octahedra (Hawthorne et al. 2000). The structure of

437 <u>slavikite</u> is based on open sheets of corner-sharing octahedra and tetrahedra that are similar to

438 fragments of the chains found in butlerite (Hawthorne et al. 2000); the Mössbauer spectra could439 thus be indistinguishable.

- 440 Sakai et al. (1981) reported the 300K spectrum of butlerite to have $\delta = 0.42$ mm/s and Δ
- 441 = 0.94 mm/s, and parameters for three samples from this study are an excellent match: $\delta = 0.41$
- 442 mm/s and $\Delta = 0.95-0.98$ mm/s. One of the parabutlerite samples in this study is consistent, with δ

443	= 0.41 mm/s and Δ = 0.98 mm/s, but sample 157716 is not. The latter has three distributions with
444	parameters of δ = 0.22, 0.58, and 0.34 mm/s and Δ = 0.55, 0.54, and 1.14 mm/s. X-ray
445	diffraction confirms that this sample is indeed parabutlerite, so these three doublets must
446	represent a different cation ordering than is found in the other samples.
447	Moore (1970) notes the structural similarity of the chains in butlerite to those in the
448	phosphate mineral laueite $(Mn^{2+}Fe^{3+}_{2}(OH)_{2}(H_{2}O)_{6}(PO_{4})_{2}\cdot 2H_{2}O)$ and its isotypes. Coincidentally,
449	data on laueite from Monmouth County, New Jersey (Segeler et al., 2012) have a broad doublet
450	corresponding to Fe ³⁺ parameters of $\delta = 0.41$ and $\Delta = 0.66$ mm/s for the unresolved contributions
451	of Fe in the M1 (M ²⁺ (H ₂ O) ₄ (PO ₄) ₂) and M3 (Fe ³⁺ (H ₂ O) ₂ (OH) ₂ (PO ₄) ₂) sites and $\delta = 0.40$ and $\Delta =$
452	1.29 mm/s for the M2 site (Fe ^{$3+$} (OH ₂)(PO ₄) ₄). Several other phosphate minerals such as tancoite,
453	paravauxite, wavellite, eosphorite, and strunzite share this same chain structure, and should also
454	have the same Mössbauer parameters.
455	The slavikite structure (Parafiniuk et al. 2010) is composed of open sheets of corner-
456	sharing octahedra and tetrahedra (Hawthorne et al. 2000) but the fragments are similar to those in
457	the butlerite 7 Å chain (compare in Figure 5a). Both Mössbauer spectra of slavikites have a
458	doublet at $\delta = 0.36$ mm/s and $\Delta = 1.14$ mm/s like those in butlerite. Sample 140229 also contains
459	Fe ³⁺ in copiapite-like sites, with δ = 0.22 and 0.58 mm/s and Δ = 0.55 and 0.54 mm/s, while the
460	second slavikite, VZO122/123, is dominated by a doublet with $\delta = 0.37$ and $\Delta = 0.57$ mm/s.
461	Similar chains are found in fibroferrite, though the linkages are with the cis-corners
462	(compare parabutlerite and fibroferrite in Figure 5a) rather than the <i>trans</i> -corners of the
463	octahedra in butlerite. This difference must not affect the geometry of the Fe coordination
464	polyhedra very much, because the fibroferrite samples in this study have parameters quite similar

to those of slavikite and parabutlerite.

7/30

466	The structures of the botryogen group minerals and sideronatrite are also based on 7 Å
467	chains (Hawthorne et al. 2000). It is thus no surprise that Fe^{3+} in these octahedra all give rise to
468	similar Mössbauer parameters, even though they are noticeably different than those from
469	butlerite and related phases just discussed. All the botryogen, sideronatrite, and metasideronatrite
470	spectra are dominated by the same doublet with $\delta = 0.41$ mm/s and $\Delta = 1.14$ -1.21 mm/s.
471	Botryogen is also related to and in the same Strunz classification group as copiapite; recall from
472	discussion above that copiapite also has a doublet with parameters of δ = 0.42-0.43 mm/s and Δ
473	= 0.77-0.80 mm/s. In addition to the doublets with $\Delta \approx 1.15$ mm/s, other samples of botryogen
474	also have a second doublet in their Mössbauer spectra with an unusually high $\Delta = 1.63$ mm/s.
475	This probably represents Fe ³⁺ occupancy in the "branching" octahedra that link to the sides of
476	the 7 Å chains. The botryogen and sideronatrite structures are again based on 7 Å chains, and the
477	Fe coordination polyhedra are nearly identical (compare Figures 5a and 5b).
478	Metahohmannite, hohmannite, and amarantite are all members of the amarantite group,
479	and are intimately related by dehydration (hohmannite in particular is not stable under ambient
480	conditions). Metahohmannite has Mössbauer parameters of δ = 0.43 mm/s and Δ =0.94 mm/s
481	exactly like those found in butlerite, parabutlerite, and fibroferrite. Amarantite, on the other
482	hand, most closely matches botryogen ($\delta = 0.40$ mm/s and $\Delta = 1.19$ mm/s). The difference is that
483	metahohmannite and amarantite include an OH ⁻ group substituting for O ²⁻ in the structure
484	(Scordari et al., 2004), but both are still based on the aforementioned 7 Å chains.
485	D. Alunite Group

The alunite group minerals, which include both alunite and jarosite, are composed of 486 $[M^{3+}(OH)_6(SO_4)_2]$ sheets, where M is most commonly Fe³⁺ and/or Al³⁺; monovalent and divalent 487 cations such as K, Na, or H₃O⁺ lie between the sheets. The Fe atoms occupy octahedra arranged 488

489 in six-membered, corner-sharing rings as well as three-membered rings (Hawthorne et al. 2000).

490 Mössbauer spectra of alunite group minerals have been studied extensively by numerous workers

- 491 (Grinkevich et al. 1963, Hrynkiewicz et al. 1965, Herzenberg et al. 1966, Takano et al. 1968,
- 492 Afanasev et al. 1974, Johnston 1973; Leclerc 1980, Huggins et al. 1983, Taneja et al. 1984, van
- der Kraan et al. 1984, Audley et al. 1986, Pax et al. 1988, Gracia et al. 1990, Gancedo et al.
- 494 1992, Music et al. 1994, Morris et al. 1996, Herbert 1997, Ahmed et al. 1999, 2003, Fajardo et
- 495 al. 1999, Ristić et al. 2005, Verma et al. 2000, Waanders et al. 2003, Reyes et al. 2003, Ribiero et
- 496 al., 2003, Eneroth et al. 2004, Rodriguez et al. 2005). Reported parameters range from $\delta = 0.30$ -

497 0.45 mm/s and $\Delta = 1.00-1.22$ mm/s, with most Δ values between 1.18 and 1.21 mm/s. The work

498 of Rothstein (2006) and Dyar et al. (2006b) suggests that synthetic compositions across the

499 compositional range of K-Na-H₃O⁺ for jarosite have indistinguishable Mössbauer parameters,

solution although there may be a relationship between isomer shift and Fe³⁺/Al, with $\delta = 0.39$ mm/s for

501 Fe³⁺ end-members and $\delta = 0.37$ mm/s for Al-rich ones. The jarosite spectra are nearly

502 indistinguishable from sideronatrite and match those of botryogen and metasideronatrite very

- 503 closely even though the structures are not specifically related.
- 504 E. Other Ferric-Bearing Sulfates

This study also included two samples of anhydrite and one of celestine. As Ca- and Badominated sulfates, respectively, they do not fall in the same hierarchy as those previously discussed here. The relatively large size of the Ca and Ba cations requires large sites in the structures, which are usually 8-12-coordinated. Anhydrite is based on chains of alternating edgesharing SO₄ tetrahedra and CaO₆ dodecahedra (Hawthorne et al. 2000) linked by edge and corner sharing between chains (Figure 1). Celestine consists of isolated SO₄ tetrahedra cross-linked by 12-coordinated Sr and Ba atoms (Brigatti et al. 1997). Thus these structures would seem unlikely

to incorporate Fe^{3+} in their structures, although Fe^{2+} might substitute. However, their Mössbauer 512 spectra are both dominated by Fe³⁺. For sample SPT132, the identification of the impurity as 513 514 coquimbite by XRD is consistent with the Mössbauer parameters of the largest doublet. XRD of 515 the celestine ML-S13 and anhydrite 159132 showed no impurities, but given the crystal structural constraints, it is unlikely that this Fe^{3+} is not actually in the anhydrite or celestine; 516 rather, it is reasonable to assume that it arises from an impurity of another Fe^{3+} phase. The 517 518 anhydrite localities studied both include phosphates, so it is also possible that the impurity could be some Fe^{3+} phosphate. The phase assemblage of the Michigan locality of the celestine is 519 520 unreported. However, celestine from the Moldanubian Zone of the Bohemian Massif in the 521 Czech Republic has been reported with anhydrite, pyrite, pyrite, and chalcopyrite, and 522 parameters in this study are consistent with those possibilities.

523 **F. Ferrous Iron**

It is again convenient to group and discuss the Fe^{2+} doublets in sulfates according to 524 525 quadrupole splitting, which arises from a distribution of surrounding charges with less than cubic symmetry. Some samples in which Fe^{3+} features dominate merit revisiting because of their 526 significant Fe^{2+} contents. The lowest values of Fe^{2+} quadrupole splitting in this study belong to 527 528 voltaite (Table 3), with doublets at $\delta = 1.15 \cdot 1.35$ mm/s and $\Delta = 1.58 \cdot 1.82$ mm/s. Multiple 529 doublets are found due to the presence of two M sites in the structure (both octahedral), as noted above in the section on Fe^{3+} in voltaite. The M1 site is coordinated to six O atoms from adjacent 530 531 SO₄ tetrahedra, and has a slight trigonal distortion. It is the smaller of the two sites, with an average Fe-O distance of 2.004 Å (Mereiter 1972). This site may contain either Fe²⁺ or Fe³⁺, 532 533 according to the work of Long et al. (1980). The larger of the sites is designated the M2 site (with a multiplicity of three relative to one M1). It is coordinated to $FeO_4(H_2O)_2$, with Fe-O 534

535 distances of 2.097 Å and Fe-H₂O distances of 2.075 Å (Mereiter 1972). Because of its size, only Fe²⁺ and larger cations occupy this site. Mössbauer results from this study agree very well with 536 537 work by Long et al. (1980), who report values of $\delta_{M2} = 1.17 \cdot 1.27$ mm/s and $\Delta_{M2} = 1.59 \cdot 1.80$ mm/s. They also identified a second peak assigned to the ${}^{[M1]}Fe^{2+}$ site as well as a ${}^{[M2]}Fe^{3+}$ peak, 538 539 but neither one was sufficiently resolved to determine parameters. 540 There is no other closely-related structure to voltaite among the sulfate minerals studied 541 to date, so no similar Mössbauer parameters would be expected except as coincidence. Perhaps 542 other species with frameworks of SO_4 tetrahedra and $Fe(H_2O)_6$ octahedra, as listed in Table 12 of

543 Hawthorne et al. (2000), might have similar spectra. Small doublets with similar Mössbauer

544 parameters were found in some of other spectra in this work. However, it is likely that these may

545 represent small amounts of voltaite impurities – especially because the impurities occur in

546 mineral species known to coexist with voltaite.

547 As noted in the earlier discussion of Fe^{3+} species, the structure of <u>metavoltine</u> contains

548 isolated $\{Fe^{2+}(H_2O)_6\}$ octahedra in the Fe(3) site; there should be one Fe^{2+} for every \sim six Fe^{3+}

549 (Giacovazzo et al., 1976). Wet chemical analyses reported by Scordari (1975) suggest that Fe^{2+}

550 in three different occurrences of metavoltine are only $\sim 10\%$ of the total Fe, with the balance

made up by Cu, Ni, Co, and Zn. Sample G2677 has 81% of the total Fe as Fe^{2+} , with doublet

parameters of $\delta = 1.27$ mm/s and $\Delta = 3.23$ mm/s. These parameters are consistent with those

553 observed by Sgarlata (1985).

None of the sulfates measured to date has *significant* Mössbauer doublets with quadrupole splittings between ~1.9 and 2.7 mm/s (Figure 2). Above 2.70 mm/s, <u>szomolnokite</u> (FeSO₄·H₂O) is the Fe end-member of the six kieserite group minerals, which have butlerite-like chains cross-linked by sharing of corners between adjacent tetrahedra and octahedra. The Fe (and

558	Mg, Mn, Cu, etc.) cations occupy octahedra with four corners shared with SO_4 and two with
559	H_2O . Because they are isostructural, Fe^{2+} in all kieserite group phases (Figure 1) would have the
560	same or similar Mössbauer parameters. The main doublet in szomolnokite (Table 6 and Figure
561	6a) occurs at $\delta = 1.26-1.31$ mm/s and $\Delta = 2.73-2.89$ mm/s. <u>Szmikite</u> and <u>gunningite</u> spectra are
562	similar to their szomolnokite relative, with a doublet with $\delta = 1.24-1.25$ mm/s and $\Delta = 2.59-2.74$
563	mm/s. These compare well with results of the many workers who have studied szomolnokite,
564	including Van Alboom et al. (2009), Huggins and Huffman (1979), Montano (1981), Stiller et al.
565	(1978), Russell and Montano (1978) and Giester et al. (1994). In general, these studies report
566	Mössbauer parameters of δ = 1.18-1.26 mm/s and Δ = 2.67-2.71 mm/s for szomolnokite.
567	Of particular note is the work of Giester et al. (1994), who studied synthetic compositions
568	along FeSO ₄ ·H ₂ O – CuSO ₄ ·H ₂ O solid-solution series. They found values for δ = 1.24-1.26 mm/s
569	for $^{[M1]}\text{Fe}^{2+}$ and 1.35-1.25 mm/s for $^{[M2]}\text{Fe}^{2+}$, with $\Delta = 2.60-2.71$ mm/s for $^{[M1]}\text{Fe}^{2+}$ and 2.89-2.90
570	mm/s for $^{[M2]}Fe^{2+}$. Their work predicted a site preference of Cu^{2+} for the more distorted M1
571	octahedra, due to the Jahn-Teller effect. Their assignment of the lower Δ doublet to M1 and the
572	higher Δ doublet to M2 was necessary to allow consistent interpretation of their cation ordering
573	results and x-ray results. Although this trend is counter to what would be predicted by theory, it
574	might represent a difference between sulfates and silicates. An alternate interpretation might be
575	that differential recoil-free fractions on the two sites are giving anomalous doublet areas,
576	complicating interpretation of their results.
577	However, those same parameters are also shared by other types of sulfate structures. The
578	four chalcanthite group minerals, chalcanthite, siderotil, pentahydrite, and jokokuite, have solid
579	solution between the species, and are closely related to their dehydration product, <u>rozenite</u> . They

581	= 2.88 mm/s), pentahydrite (δ = 1.26 mm/s and Δ = 3.00 mm/s), and jokokuite (δ = 1.26 mm/s
582	and $\Delta = 3.00$ mm/s) as seen in Figure 6b are similar as expected, and reflect Fe ²⁺ occupancy of
583	octahedra linked to two SO ₄ and four H ₂ O in corner-sharing chains.
584	Because halotrichite group minerals and römerite share very similar structures, the
585	Mössbauer parameters of their Fe^{2+} doublets should be as similar as they were for Fe^{3+} , and this
586	is again observed: $\delta_{Hal} = 1.28$ mm/s and $\Delta_{Hal} = 2.76$ mm/s, while $\delta_{R\ddot{o}m} = 1.26$ -1.34 mm/s and
587	$\Delta_{R\ddot{o}m} = 2.59-2.78$ mm/s. The Fe ²⁺ doublets in the related species apjohnite and bilinite are
588	slightly higher: $\delta_{Apj} = 1.27$ mm/s and $\Delta_{Apj} = 3.31$ mm/s, while $\delta_{Bil} = 1.06$ mm/s and $\Delta_{Bil} = 3.69$
589	mm/s (but note that the latter doublet is only 5% of the area in a dominantly-Fe ^{$3+$} sample, so the
590	Fe^{2+} peaks are poorly resolved because they are so small).
591	Römerite also has a small doublet at $\delta = 1.24$ mm/s and $\Delta = 2.38$ mm/s which probably
592	represents Fe^{2+} in the isolated $\{Fe^{2+}(H_2O)_6\}$ octahedra (Figure 1). Work by Huggins and
593	Huffman (1979) found one Fe ²⁺ doublet in römerite at δ = 1.27 and Δ = 3.27 mm/s (along with
594	two Fe ³⁺ doublets as mentioned in the preceding section), while Sgarlata (1985) observed $\delta =$
595	1.31 mm/s and $\Delta = 3.25$ mm/s for halotrichite.
596	The next higher hydration state above chalcanthite is the hexahydrite group of minerals
597	(Mg,Zn,Fe,Co,Ni,Mn)·6H ₂ O, which is not represented in the currently-studied suite of spectra.
598	Their structures are composed of $M(H_2O)_6$ octahedra linked by weak hydrogen bonds to SO_4
599	tetrahedra. Their Mössbauer parameters would be predicted to be intermediate between those of
600	chalcanthite and the melanterite group minerals, (Fe,Cu,Zn,Co,Mn)·7H ₂ O, because melanterite
601	has a somewhat similar structure with only slightly higher $\Delta = 3.20$ mm/s (and $\delta = 1.27$ mm/s).
602	The probably-isostructural <u>melanterite</u> group minerals melanterite ($Fe^{2+}_2SO_4$ ·7H ₂ O),
603	boothite, zinc-melanterite, bieberite, and mallardite are composed of isolated M(H ₂ O) ₆ octahedra

7/30

604 605 related to the epsomite group, which would be expected to have similar Mössbauer parameters. 606 Melanterite 2070 in this study has parameters of $\delta = 1.27$ mm/s and $\Delta = 3.21$ mm/s, similar to 607 those reported by Cheetham et al. (1981), Grant et al. (1966), Sakai et al. (1981), Montano 608 (1981), Eissa et al. (1994a,b), and Sallam et al. (1994) with a collective range of $\delta = 1.16-1.31$ 609 mm/s and $\Delta = 3.17$ -3.24 mm/s.

610 The isostructural rozenite group minerals (rozenite, $FeSO_4 \cdot 4H_2O_2$, starkevite, ilesite,

611 aplowite, and boyleite) are based on clusters (cf. Anderson et al. 2012), which might suggest that

612 their Mössbauer parameters should be similar to those of the halotrichite group. Each cluster is

613 composed of two tetrahedra each sharing two corners with two octahedra; the resultant formula

is $M_2(SO_4)_2O_8$, where M = Fe, Mg, Mn, Co, and/or Zn. Rozenite SPT130 has prameters of δ = 614

1.27 mm/s and $\Delta = 3.21$ mm/s, comparable to those of the halotrichite group. Because they are 615

isostructural, Fe²⁺ in all species within the rozenite group should have similar Mössbauer 616

617 parameters. Parameters given in the literature for rozenite are $\delta = 1.23 - 1.32$ mm/s and $\Delta = 3.17$

618 mm/s (Montano 1981).

619

```
620
      VI. Relationships Among Coordination Polyhedra Geometries and Mössbauer Parameters
```

621 As noted earlier, Mössbauer parameters are related to the geometries of the individual 622 coordination polyhedra surrounding the Fe cations in each site. In particular, distortion of the 623 octahedral environment may lead to unequal occupancy of the d orbitals and a large contribution 624 to Δ from the electronic field. Thus, it should be possible to directly correlate Δ values with the 625 characteristics of the octahedral sites in each mineral studied.

626 For this comparison, single crystal structure refinements (SREF) of sulfate species were 627 collected from the American Mineralogist Crystal Structure Database using data from the same 628 species (though not the exact same samples) studied here. References to the SREF studies 629 employed are given in captions to Figures 3-6. Using those crystal structure data and the 630 CrystalMaker® software package, parameters describing the six-coordinated sites in each of the 631 sulfates studied (except bilinite, for which no refinement has been published) were evaluated. On 632 the basis of the atomic coordinates, calculated mean bond length, mean octahedral quadratic 633 elongation (λ), and angular variance (σ) of each cation site where Fe may reside in these 634 minerals were calculated. The latter two parameters were devised by Robinson et al. (1971) to 635 summarize variations in bond length and bond angle. The quadratic elongation parameter (λ) 636 provides a quantitative measurement of polyhedral distortion that is independent of polyhedral 637 size:

$$\lambda = \sum_{i=1}^{n} \left(\frac{i_i}{i_p}\right)^2 / n, \tag{1}$$

639 where l_i is the measured bond distance (where n = 6 for 6-coordination) and l_0 is the bond 640 distance in a perfect (undistorted, equal volume) octahedron. Angular variance (σ) is calculated 641 using the expression:

642
$$\sigma = \sum_{t=1}^{n} \left(\theta_t - \theta_{avg_t}\right)^2 / (n-1), \qquad (2)$$

643 where θ_i is the measured angle in the crystal structure (there are n = 12 angles in a six-644 coordinated site) and θ_{avg} is the bond angle for a perfect octahedron (all angles are 90°). These 645 structural data were compared with Δ values for the samples studied. In cases where there are 646 multiple sites possible for Fe atoms, Mössbauer doublets were assigned on the basis of 647 consistency with related structures and relative distortion. Refinements where the composition

648	was low in Fe were not used, because those site characteristics are more reflective of the other
649	cation than of Fe occupancy. The refinement of apjohnite by Mechetti and Sabelli (1976) was not
650	used because its parameters lay far off the trends of all other samples, suggesting a possible
651	problem with the Crystallographic Interchange File format.
652	Results of these comparisons are shown for Fe^{3+} in Figure 7. The plot of angular variance
653	shows no systematics with Δ , but the other polyhedral parameters show some interesting trends
654	despite the varying quality and sophistication of the structure refinements. There is an increase in
655	quadrupole splitting with octahedral volume and mean bond length. Quadratic elongation
656	decreases slightly with increasing Δ . This observation may seem counter to the assumption that Δ
657	generally increases with distortion, but λ is just one of the possible formulations that could be
658	used to describe that distortion and λ is also insensitive to polyhedral size. No trend is seen for
659	angular variance. Thus it appears that for sulfate minerals, the best predictor of quadrupole
660	splitting (and thus peak location) is the size of the coordination polyhedron in any given mineral
661	species. Comparable plots for Fe^{2+} are not shown because there are only a few data points and
662	they all fall within two small groups of quadrupole splitting.
663	
664	V. Implications: Uniqueness of Sulfate Mössbauer Parameters
665	As noted at the onset, the MIMOS II Mössbauer spectrometers on the Mars Exploration
666	Rovers identified jarosite at the Meridiani Planum landing site based on the presence of a peak
667	with $\Delta = 1.22$ mm/s at T = 240±40K. Errors on the Mars fit parameters are quoted as ±0.02
668	mm/s. The same Mars spectra were also fit using the software from the current study (Dyar et al.,
669	2006c), resulting in more variability in peak positions, with $\delta = 0.28$ -0.41 and $\Delta = 1.19$ -1.27
670	mm/s. The extrapolation of the low and variable temperature to 295K was estimated by

671 Klingelhöfer et al. (2004) to be -0.07 mm/s, though Rothstein (2006) found only a -0.02 mm/s 672 offset in laboratory spectra. In any case, based on the data available to them in 2004, the team assigned that doublet to jarosite, later suggested to be hydronium jarosite (Morris et al. 2007). 673 674 Results from the current study (blue squares and green circles) are plotted with the Mars data 675 (orange and red circles) in Figure 8, and support the assignment to jarosite but show that many 676 sulfate minerals have parameters close to those of jarosites, as measured under optimal 677 laboratory conditions with state of the art equipment, including botryogen, metasideronatrite, 678 slavikite, etc. A small deviation in peak position of the Mars data could easily result in overlap 679 with many different possible sulfate mineral species. As seen in Figure 9, the Fe polyhedra in 680 these sulfates are strikingly similar, so it is not surprising that the Mössbauer peaks should be so 681 similar as well. At the Gusev Crater site, there are two different features that might be assigned to Fe^{3+} 682 683 sulfate. The first is a doublet designated Fe3D1, which is assigned by Morris et al. (2008) to a generic Fe³⁺ alteration product nanophase Fe oxide, though Morris et al. (2007) suggest that the 684 685 higher Δ doublets in that range might be attributed to hydronium jarosite. The parameters of the Fe3D1 doublet do not overlap with those from any of the Fe³⁺ sulfates from this paper, in support 686 of the assignment to nanophase Fe oxides. The second feature noted by Morris et al. (2008) is 687 assigned to an Fe³⁺ sulfate designated as Fe3D2 (Figure 10) that is not specified. On the basis of 688 689 the current study, optimal candidates for the feature at Arad Samra would be fibroferrite and 690 rhomboclase and likely copiapite or parabutlerite at Tyrone Mount Darwin and Berkner Island 691 (Figure 10). It must be stressed, however, that such assignments presume that the phase in 692 question is one of those studied here, and that it is indeed a sulfate.

693	In making these conclusions, it is important to note the importance of independent
694	corroboration from other techniques, without which Mössbauer results cannot be used to
695	distinguish sulfates from other common Fe ³⁺ -bearing phases (even sulfides). The current study
696	was focused on hydrous sulfates, and sample selection was biased in that direction. However,
697	there are other sulfate, sulfide, and S-containing minerals that should be considered as candidates
698	for Mars. For example, the related phase schwertmannite $(Fe^{3+}_{16}O_{16}(OH)_{12}(SO_4)_2)$ is formally
699	considered to be a hydroxide containing hydroxyl (Dana class 6). Mössbauer spectra of
700	schwertmannite have been extensively studied by many workers, including Bigham et al. (1994),
701	Schwertmann et al. (1995), Bishop and Murad (1996), and Bigham and Murad (1997). Typical
702	parameters are $\delta = 0.37$ mm/s and $\Delta = 0.61$ -0.81 mm/s, which overlap with those of other
703	hydrous Fe ³⁺ sulfates discussed above. Mössbauer spectra of sulfide minerals also overlap with
704	several species in this study, including pyrite (Silva et al. 2011: $\delta = 0.27$ -0.30 and $\Delta = 0.55$ -0.62
705	mm/s) and sphalerite (unpublished data: $\delta = 0.30$ mm/s and $\Delta = 0.46$ mm/s).
706	For Fe ²⁺ sulfates, identification on the basis of Mössbauer spectra is complicated by the
707	potential for overlap with olivine peaks (Lane et al. 2004). The range of measured Mössbauer
708	parameters for Fe^{2+} in synthetic olivines has been well-studied (Sklute et al. 2005; Sklute 2006):
709	δ = 1.13-1.17 mm/s and Δ = 2.80-3.05 mm/s. Fe ²⁺ sulfates (Table 6) have comparable Δ but
710	higher δ values (ca. 1.25-1.33 mm/s), allowing olivine to be distinguished from Fe ²⁺ sulfates
711	under optimal experimental conditions. When these parameters are converted to peak positions,
712	it is apparent that an error of 0.1 mm/s in velocity would be enough to make sulfates and olivines
713	indistinguishable.

- This discussion highlights both the strengths and weaknesses of Mössbauer spectroscopy.
- 715 Highly reproducible spectra can be acquired under a range of conditions and instrument

716 geometries from transmission to backscatter mode, in the laboratory or on the surface of Mars. 717 Species within groups of naturally-occurring minerals have spectral peaks that generally fall 718 within small velocity ranges. Spectral parameters can be qualitatively related to the geometries of 719 the individual Fe coordination polyhedra. In cases where independent constraints on phase 720 identity are available, this capability allows Mössbauer spectroscopy to assist in understanding 721 the distribution of Fe and its valence states among different coexisting phases. On Mars, the 722 MIMOS spectrometers were pressed into service for mineral identification in conjunction with 723 bulk chemical results from the alpha particle x-ray spectrometer instrument and deductions based 724 on phase equilibria of likely martian assemblages. The success of the MER missions owes much 725 to constraints placed on mineral identification by the Mössbauer spectrometers based on 726 comparisons to contemporary databases of spectra.

727 However, for paramagnetic minerals, it must be acknowledged that the range of Mössbauer parameters is small (particularly for Fe^{3+}), and many phases have overlapping 728 parameters (Figure 11). For example, Fe^{2+} doublets in orthopyroxene will be unrecognizable 729 from Fe^{2+} in clinopyroxene (Dyar et al. 2013) and analogous to several different Fe^{3+} sulfates 730 (among many other possibilities). Pyroxene, amphibole, and mica (including clay mineral) 731 732 spectra will be generally indistinguishable because the structures are all so similar. In other 733 words, the number of mineral species is large and the range of hyperfine parameters is small, so that in many cases, phases cannot be uniquely identified. This is particularly true for Fe³⁺-rich 734 phases, because the absolute range of Mössbauer parameters for Fe³⁺ in any coordination number 735 736 is so small.

Evaluating the crystal structures of these minerals provides explanations for the
similarities in Mössbauer parameters. Because mineral structures based on varying linkages

739 among tetrahedra are universal (cf. Figure 1), silicate and sulfate (and phosphate, perchlorate, 740 etc.) structures will have much in common. The resultant octahedral sites between those 741 tetrahedra will occur in a variety of geometries, but crystal chemistry shows that many groups 742 will be similar because their structural frameworks are the same. In turn, Fe cations in those 743 similar crystallographic sites will give rise to Mössbauer doublets with comparable parameters. 744 and thus the range of observed Mössbauer parameters is relatively small for most minerals. For 745 this reason. Mössbauer spectroscopy is rarely used in terrestrial labs for mineral identification 746 because so many other more appropriate techniques are widely available (e.g. x-ray diffraction). 747 The true strength of the Mössbauer technique lies in its ability to measure valence states and site 748 occupancies of Fe and identify magnetic phases. This study shows that Mössbauer data can also 749 inform our understanding of the local environment around the Fe polyhedra, and thus provide 750 distinctions among different phases that, when combined with other types of information, can 751 assist with mineral identification even in paramagnetic materials. 752 753 Acknowledgments: We are grateful to Ed Cloutis, the Harvard Mineralogical Museum, and the 754 NMNH for the loan of samples, and for support from NSF grants EAR-043907 and EAR-

755 0439161 and NASA grants NNG04GG12G, NAG5-12687, and NNX11AF11G. Student support

756 for this project was provided by the Massachusetts Space Grant Consortium. Thoughtful

suggestions from two anonymous reviewers and Juraj Majzlan were greatly appreciated. We

thank David Palmer for help with the CrystalMaker[®] models. This is PSI Contribution Number

759 605.

760

REFERENCES

7/30

761	Afanasev, A.M., Gorobchenko, V.D., Kulgawczuk, D.S., and Lukashevich, I.I. (1974). Nuclear
762	γ-Resonance in Tron Sulphates of the Jarosite Group. Physica Status Solidi, 26,697-701.
763	Ahmed, M. A., Blesa, M.J., Juan, R., and Vandeberghe, R.E. (2003) Characterization of an
764	Egyptian coal by Mössbauer and FT-IR spectroscopy. Fuel, 82, 1825-1829.
765	Ahmed, M. A., Vandenberghe, R.E., De Grave, E., Eissa, N.A., and Ibarra, J.V. (1999)
766	Characterisation of Spanish coal by means of Mössbauer spectroscopy. Fuel, 78, 453-
767	457.
768	Anderson, J.L., Peterson, R.C., and Swainson, I. (2012) The atomic structure of deuterated
769	boyleite ZnSO ₄ ·4D ₂ O, ilesite MnSO ₄ ·4D ₂ O, and bianchite ZnSO ₄ ·6D ₂ O. American
770	Mineralogist, 97, 1905-1914.
771	Audley, G. J., Pyne, G.S., Tricker, M.J., Cranshaw, T.E., and Laundy, B.J. (1986) A New
772	Approach to the Determination of Pyrite in Coals by Mössbauer Spectroscopy. Fuel, 65,
773	1103-1107.
774	Bacon, G.E., and Titterton, D.H. (1975) Neutron-diffraction studies of CuSO ₄ ·5(H ₂ O) and
775	CuSO ₄ ·5(D ₂ O). Zeitschrift fur Kristallographie, 141, 330-341.
776	Ballirano P, Bellatreccia F, Grubessi O (2003) New crystal-chemical and structural data of
777	dietrichite, ideally ZnAl ₂ (SO ₄) ₄ ·22H ₂ O, a member of the halotrichite group. European
778	Journal of Mineralogy, 15, 1043-1049.
779	Basciano, L.C., and Peterson, R.C. (2007) Jarosite - hydronium jarosite solid solution series with
780	full iron occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92, 1464-
781	1473.
782	Baur, W.H. (1962) Zur kristallchemie der salzhydrate. Die kristallstrukturen von MgSO4·4H2O
783	(leonhardtit) und FeSO ₄ ·4H ₂ O (rozenit). Acta Crystallographica, 15, 815-826.

784	Berlepsch, P., Armbruster, T., Brugger, J., Bykova, E.Y., and Kartashov, P.M. (1999) The
785	crystal structure of vergasovaite Cu ₃ O[(Mo,S)O ₄ SO ₄] and its relation to synthetic
786	Cu ₃ O[MoO ₄] ₂ . European Journal of Mineralogy, 11, 101-110.
787	Bigham, J.M., and Murad, E. (1997) Mineralogy of ocher deposits formed by the oxidation of
788	iron sulfide minerals. In Advances in GeoEcology, K. Auerswald, H. Stanjek, and J.M.
789	Bigham, eds., Catena Verlag, Reiskirchen, 35447, Germany, pp. 193-225.
790	Bigham, J.M., Carlson, L., and Murad, E. (1994) Schwertmannite: A new iron
791	oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineralogical
792	Magazine, 58, 641-648.
793	Bishop, J.L., and Murad, E. (1996) Schwertmannite on Mars? Spectroscopic analyses of
794	schwertmannite, its relationship to other ferric minerals, and its possible presence in the
795	surface material on Mars. In Mineral Spectroscopy: A Tribute to Roger G. Burns,
796	Geochemical Society Special Publication, 5, 337-358.
797	Blake, D., Vaniman, D., Achilles, C., Anderson, R., Bish, D., Bristow, T., Chen, C., Chipera, S.,
798	Crisp, J., Des Marais, D., Downs, R.T., Farmer, J., Feldman, S., Fonda, M., Gailhanou,
799	M., Ma, H., Ming, D.W., Morris, R.V., Sarrazin, P., Stolper, E., Treiman, A., and Yen, A
800	(2012) Characterization and calibration of the CheMin mineralogical instrument on Mars
801	Science Laboratory. Space Science Reviews, 170, 341-399.
802	Blaney, D L. and McCord, T.B. (1995) Indications of sulfate minerals in the Martian soil from
803	Earth-based spectroscopy. Journal of Geophysical Research, 100, 14433-14441.
804	Bonello, G., Bibring, J.P., Poulet, F., Gendrin, A., Gondet, B., Langevin, Y., and Fonti, S.
805	(2004) Visible and infrared spectroscopy of minerals and mixtures with the OMEGA-
806	Mars-EXPRESS instrument. Planetary and Space Sciences, 52, 133-140.

- 807 Borene, J. (1970) Structure cristalline de la parabutlerite. Bulletin de la Societe Francaise de
- 808 Mineralogie et de Cristallographie, 93, 185-189.
- 809 Bregeault, J., Herpin, P., Manoli, J., and Pannetier, G. (1970) Affinement de la structure de la
- 810 kieserite Mg(SO₄) (H₂O). Bulletin de la Societe Chimique de France, 1970, 4243-4248.
- 811 Brigatti, M.F., Gali, E., and Medici, L. (1997) Ba-rich celestine: new data and crystal structure
- 812 refinement. Mineralogical Magazine, 61, 447-451.
- 813 Burns, R.G. (1986) Terrestrial analogues of the surface rocks of Mars?, Nature, 320, 55–56.
- 814 Burns, R.G. (1987) Ferric sulfates on Mars, Proc. Lunar Planet. Sci. Conf.17th, Part 2, Journal of
- 815 Geophysical Research, 92, suppl., E570–E574.
- 816 Burns, R.G. (1988) Gossans on Mars. Proceedings of the Lunar and Planetary Science
- 817 Conference, 18, 713–721.
- Burns, R.G. (1993) Rates and mechanisms of chemical weathering of ferromagnesian silicate
 minerals on Mars. Geochimica et Cosmochimica Acta, 57, 4555–4574.
- 820 Burns, R.G., and Fisher, D.S. (1990) Evolution of sulfide mineralization on Mars. Journal of
- 821 Geophysical Research, 95, 14,169–14,173.
- 822 Burns, R.G., and Solberg, T.C. (1990) ⁵⁷Fe-bearing oxide, silicate, and aluminosilicate minerals,
- 823 crystal structure trends in Mossbauer spectra, in Spectroscopic Characterization of
- 824 Minerals and Their Surfaces, pp. 262–283, American Chemical Society, Washington,
- 825 D.C.
- 826 Caminiti, R., Marongiu, G., and Paschina, G. (1982) A comparative X-ray diffraction study of
- 827 aqueous MnSO4 and crystals of MnSO₄·5H₂O. Zeitschrift fur Naturforschung, A37, 581828 586.
- 829 Cheetham, A.K., Cole, A.J., and Long, G.J. (1981) Investigation of the mixed-metal sulfide
- 830 (Mn,Fe)S₂ by analytical electron microscopy and Mössbauer spectroscopy. Inorganic
 831 Chemistry, 20, 2747-2750.
- 832 Clark, B.C., Baird, A.K., Welcon, R.J., Tsusaki, D.M., Schnabel, L., and Candelaria, M.P.
- 833 (1982) Chemical composition of Martian fines. Journal of Geophysical Research, 87,
 834 10059-10067.
- BeBenedetti, S., Lang, G., and Ingalls, R. (1961) Electric quadrupole splitting and the nuclear
 volume effect in the ions of Fe⁵⁷. Physical Review Letters, 6, 60-62.
- Buesler, E.N., and Foord, E.E. (1986) Crystal structure of hashemite, BaCrO₄, a barite structure
 type. American Mineralogist, 71, 1217-1220.
- 839 Dyar, M.D. (1984) Precision and interlaboratory reproducibility of measurements of the

840 Mössbauer effect in minerals. American Mineralogist, 69, 1127-1144.

841 Dyar, M.D. Agresti, D.G., Schaefer, M., Grant, C.A., and Sklute, E.C. (2006a) Mössbauer

spectroscopy of earth and planetary materials. Annual Reviews of Earth and Planetary

- 843 Science, 34, 83-125.
- 844 Dyar, M.D., Podratz, L., Sklute, E.C., Rusu, C., Rothstein, Y., Tosca, N., Bishop, J.L., and Lane,
- 845 M.D. (2006b). Mössbauer spectroscopy of synthetic alunite group minerals. Workshop on
- 846 Martian Sulfates as Recorders of Atmospheric-Fluid-Rock Interactions, #7053.
- 847 Dyar, M.D., Rothstein, Y., Schaefer, M.W., and Agresti, D. (2006c) Mössbauer spectroscopy of
- 848 outcrop at the Merdiani Planum site. Lunar and Planetary Science XXXVII, Abstract
- 849 #2382.

850	Dyar, M.D., Schaefer, M.W., Sklute, E.C., and Bishop, J.L. (2008) Mössbauer spectroscopy of
851	phyllosilicates: Effects of fitting models on recoil-free fractions and redox ratios. Clay
852	Minerals, 43, 3-33.
853	Dyar, M.D., Klima, R.L., Fleagle, A., and Peel, S.E. (2013) Fundamental Mössbauer parameters
854	of synthetic Ca-Mg-Fe pyroxenes. American Mineralogist, 98, 1172-1186.
855	Eissa, N.A., Sallam, H.A., Sheta, N.H., Radwan, Sh.N., and Soliman, M.A. (1994b) Mössbauer
856	study of the role of Fe^{2+}/Fe^{3+} ratio and water of hydration on the optical and electrical
857	properties of gamma-irradiated melanterite. Arab Journal of Nuclear Sciences and
858	Applications, 27, 143-154.
859	Eissa, N.A., Sheta, N.H., El-Mossallamy, S.M., Soliman, M.A., and El-Fouly, M.H. (1994a)
860	Study of the dehydration process of melanterite under heat treatment and gamma
861	irradiation effects using Mössbauer spectroscopy and thermal analysis measurements.
862	Arab Journal of Nuclear Sciences and Applications, 27, 33-45.
863	Eneroth, E., and Koch, C.B. (2004) Fe-Hydroxysulphates from bacterial Fe ²⁺ oxidation.
864	Hyperfine Interactions, 156, 423-429.
865	Ertl, A., Dyar, M.D., Hughes, J.M., Brandstätter, F., Gunter, M., Prem, M., and Peterson, R.C.
866	(2008) Pertlikite, a new netragonal Mg-rich member of the voltaite group from Madeni
867	Zakh, Iran. Canadian Mineralogist, 46, 661-669.
868	Fajardo, M., Mojica, J., Barraza, J., Perez Alcazar, G.A., and Tabares, J.A. (1999) Mineral
869	identification in Colombian coals using Mössbauer spectroscopy and X-ray diffraction.
870	Hyperfine Interactions, 122, 129-138.
871	Fanfani, L., Nunzi, A., and Zanazzi, P.F. (1970) The crystal structure of römerite. American
872	Mineralogist, 55, 78-89.

- Fanfani, L., Nunzi, A., and Zanazzi, P.F. (1971) The crystal structure of butlerite. American
 Mineralogist, 56, 751-757.
- Fanfani, L., Nunzi, A., Zanazzi, P.F., and Zanzari, A.R. (1973) The copiapite problem: The
 crystal structure of a ferrian copiapite. American Mineralogist, 58, 314-322.
- Fang, J.H., and Robinson, P.D. (1970) Crystal structures and mineral chemistry of hydrated
 ferric sulfates. I. The crystal structure of coquimbite. American Mineralogist, 55, 15341540.
- 880 Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., and Knoll, A.H. (2005) The
- 881 Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology, and implications or
- interpretation of outcrop rocks at Meridiani Planum, Mars. Earth and Planetary Science
 Letters, 240, 149-167.
- Foley, C.N., Economou, T., and Clayton, R.N. (2004) Final chemical results from the Mars
 Pathfinder alpha proton X-ray spectrometer. Journal of Geophysical Research, 108,
- doi:10.1029/2002JE002019.
- 687 Gancedo, J. R., Gracia, M., Martinez-Alonso, A., Miranda, J.L., and Tascon, J.M.D. (1992)
- 888 Mössbauer study of the effect of acidic treatment on iron minerals during the 889 demineralization of coals. Hyperfine Interactions, 71, 1403-1406.
- Giacovazzo, C., Scordari, F., Todisco, A., and Menchetti, S. (1976) Crystal structure model for
 metavoltine from Sierra Gorda. Tschermaks Mineralogische und Petrographische
- 892 Mitteilungen, 23, 155-166.
- 893 Giester, G., Lengauer, C.I., and Redhammer, G. (1994) Characterization of the FeSO₄·H₂O-
- 894 $CuSO_4 \cdot H_2O$ solid solution series and the nature of poitevinite, $(Cu,Fe)SO_4 \cdot H_2O$. The
- 895 Canadian Mineralogist, 32, 873-884.

- 896 Gracia, M., Gancedo, J.R., Martinez-Alonso, A., and Tascon, J.M.D. (1990) Comparative
- 897 Mössbauer study of the oxidation of pyrite under different conditions. Hyperfine
 898 Interactions, 58, 2581-2588.
- 899 Graeber, E.J., and Rosenzweig, A. (1971) The crystal structures of yavapaiite, KFe(SO₄)₂, and
- 900 goldichite, KFe(SO₄)₂.4H₂O. American Mineralogist, 56, 1917-1933.
- 901 Graeber, E.J., Morosin, B., and Rosenzweig, A. (1965) The crystal structure of krausite,

902 KFe(SO₄)₂.H₂O. American Mineralogist, 50, 1929-1936.

- 903 Grant, R.W., Wiedersich, H., Muir, A.H. Jr., Gonser, U., and Delgass, W.N. (1966) Sign of the
- 904 nuclear quadrupole coupling constants in some ionic ferrous compounds. The Journal of
 905 Chemical Physics, 45, 1015-1019.
- 906 Grinkevich, A. Z. and Kul'gavchik., D.S. (1963) The fine structure of Mössbauer spectra in
- 907 mineral compounds of iron. Proceedings of the Dubna Conference on the Mössbauer908 Effect, 18-EOA.
- Hawthorne, F.A. (1985) Toward a structural classification of minerals: the ^{VI}M^{IV}T₂ Φ_n minerals.
- 910 American Mineralogist, 70, 455-473.
- Hawthorne, F.C. (1979) The crystal structure of morinite. Canadian Mineralogist, 17, 93-102.
- Hawthorne, F.C., and Ferguson, R.B. (1975) Anhydrous sulphates. II. Refinement of the crystal
- 913 structure of anhydrite. The Canadian Mineralogist, 13, 289-292.
- 914 Hawthorne, F.C., Krivovichev, S.V., and Burns, P.C. (2000) The crystal chemistry of sulfate
- 915 minerals. Reviews in Mineralogy, 40, 1-112.
- 916 Held, P., and Bohaty, L. (2002) Manganese(II) sulfate tetrahydrate (ilesite). Acta
- 917 Crystallographica, E58, i121-i123.

7/30

918	Herbert, R.B.J. (1997) Properties of goethite and jarosite precipitated from acidic groundwater,
919	Dalarana, Sweden. Clays and Clay Minerals, 45, 261-273.
920	Hermon, E., Haddad, R., Simkin, D., Brandão, and Muir, W.B. (1976) Magnetic properties and
921	the distribution of iron ions in voltaites. Canadian Journal of Physics, 54, 1149-1156.
922	Herzenberg, C. L., and Toms, D. (1966). Mössbauer Absorption Measurements in Iron-
923	containing Minerals. Journal Of Geophysical Research, 71, 2661-2677.
924	Hrynkiewicz, A.Z., Kubisz, J., and Kulgawczuk, D.S. (1965). Quadrupole splitting of the 14.4
925	keV gamma line of ⁵⁷ Fe in iron sulphates of the jarosite group. Journal of Inorganic
926	Nuclear Chemistry, 27, 2513- 2517.
927	Huggins, F.E., Huffman, G.P., and Lin, M.C. (1983) Observations on low-temperature oxidation
928	of minerals in bituminous coals. International Journal of Coal Geology, 3, 157-182.
929	Huggins, G.P. and Huffman, F.E. (1979) Mössbauer analysis of iron-bearing phases in coal,
930	coke, and ash. Analytical Methods for Coal and Coal Products, 3, 371-423.
931	Hyde, B.C., King, P.L., Dyar, M.D., Spilde, M.N., Ali, AM.S., and Kinkel, T. (2011) Methods
932	to analyze metastable and microparticulate hydrated and hydrous iron sulfate minerals.
933	American Mineralogist, 96, 1856-1869.
934	Johnston, J.H. (1977). Jarosite and akagenite from White Island Volcano, New Zealand- an x-ray
935	and Mossbauer study. Geochimica et Cosmochimicia Acta, 41, 539-544.
936	Klingelhöfer, G., R.V. Morris, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. deSouza, A. Yen,
937	R. Gellert, E.N. Evlanov, B. Zubkov, J. Foh, U. Bonnes, E. Kankeleit, P. Gutlich, D.W.
938	Ming, F. Renz, T. Wdowiak, S.W. Squyres, and R.E. Arvidson (2004), Jarosite and
939	hematite at Meridiani Planum from Opportunities Mossbauer spectrometer, Science, 306,
940	1740-1745.

- 941 Kovács, K., Kuzmann, E., Homonnay, Z., Vértes, A., Gunneriusson, L.and Sandstron, A. (2008)
- 942 Mössbauer study of synthetic jarosites. Hyperfine Interactions, 186, 69-73.
- Lane, M.D. Bishop, J.L., Hiroi, T., Dyar, M.D., Bish, D.L., Mertzman, S.A. (submitted) Mid-
- 944 infrared emission spectroscopy and visible-near infrared reflectance spectroscopy of iron
- sulfate minerals. American Mineralogist, submitted.
- Lane, M.D., M.D. Dyar, and J.L. Bishop (2004), Spectroscopic evidence for hydrous iron sulfate
- 947 in the martian soil, Geophy. Res. Lett., 31, L19702, doi: 10.1029/2004GL021231.
- 948 Leclerc, A. (1980) Room temperature Mössbauer analysis of jarosite-type compounds. Physics
- and Chemistry of Minerals, 6, 327-334.
- Lin, J., Chen, N., Nilges, M.J., and Pan, Y. (2013) Arsenic speciation in synthetic gypsum
- 951 (CaSO₄·2H₂O): A synchrotron XAS, single-crystal EPR, and pulsed ENDOR study.
- 952 Geochimica et Cosmochimica Acta, 106, 524-540.
- Long, G.J., Longworth, G., Day, P., and Beveridge, D. (1980) A Mössbauer effect study of the
- 954 electronic and magnetic properties of voltaite, a mixed-valence mineral. Inorganic
- 955 Chemistry, 19, 821-829.
- Lovas, G.A. (1986) Structural study of halotrichite from Recsk (Matra Mts., N. Hungary). Acta
 Geologica Hungarica, 29, 389-398.
- Majzlan, J, Alpers, C.N., Bender Koch, C., McCleskey, R.B., Myneni, S.C.B., and Neil, J.M.
- 959 (2011) Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the
- 960 weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284,
- 961 296-305.

\mathcal{I}	962	Majzlan, J.	, Botez, C	C., and Steph	nens, PW.	(2005) Tł	ne crystal	structures of	f synthetic
---------------	-----	-------------	------------	---------------	-----------	-----------	------------	---------------	-------------

- 963 $Fe_2(SO_4)_3(H_2O)_5$ and the type specimen of lausenite. American Mineralogist, 90, 411-
- 964 416.
- 965 Majzlan, J., Schlicht, H., Wierzbicka-Wieczorek, M., Giester, G., Pollman, H., Brömme, B.,
- 966 Doyle, S., Buth, S., and Bender Koch, C. (2013) A contribution to the crystal chemistry
- 967 of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous
- anisotropy. Mineralogy and Petrology, 107, 221-233.
- 969 McAdam, A.C., Franz, H., Archer, P., Jr., freissiner, C., Sutter, B., Glavin, D., Eigenbrode, J.,
- 970 Bower, H., Stern, J., Mahaffy, P.R., Morris, R., Ming, D., Rampe, E., Brunner, A., Steele,
- 971 A., Navarro-Gonzolez, R., Bish, D., Blake, D., Wray, J., Grotzinger, J., and the MSL
- 972 Science Team (2013) Insights into the sulfur mineralogy of martian soil at Rocknest,
- Gale Crater, enabled by evolved gas analysis. Lunar and Planetary Science, 44, Abstract
 44, 1751.
- 975 Menchetti, S., and Sabelli, C. (1976) The halotrichite group: The crystal structure of apjohnite.
- 976 Mineralogical Magazine, 40, 599-608.
- 977 Mereiter, K. (1972) Die kristallstruktur des voltaits, $K_2Fe^{2+}{}_5Fe^{3+}{}_3Al[SO_4]_{12}$ ·18H₂O. Tschermaks
- 978 Mineralogische und Petrographische Mitteilungen, 18, 185-202.
- 979 Mereiter, K. (1974) Die kristallstruktur von rhomboklas, $H_5O_2^+$ {Fe[SO₄]₂·2H₂O}. Tschermaks 980 Mineralogische und Petrographische Mitteilungen, 21, 216-232.
- Miyake, M., Minato, I., Morikawa, H., and Iwai, S.I. (1978) Crystal structure and sulphate force
 constants of barite, celestite, and anglesite. American Mineralogist, 63, 506-510.
- 983 Montano, P.A. (1981) Transformations and role of iron sulfides in coal liquefaction. Bulletin of
- the American Physical Society, 26, 201-201.

985	Moore, P.B. (1970) Structural hierarchies among minerals containing octahedrally coordinating
986	oxygen. Neues Jahrbuch für Mineralogie Monatshefte, 1970, 163-173.
987	Moore, P.B. (1973) Bracelets and pinwheels – Topological geometrical approach to calcium
988	orthosilicate and alkali sulfate structures. American Mineralogist, 58, 32-42.
989	Morris, R.V., Ming, D.W., Golden, DC., and Bell, J.F. (1996) An occurrence of jarositic tephra
990	on Mauna Kea, Hawaii; implications for the ferric mineralogy of the Martian surface.
991	Mineral spectroscopy; a tribute to Roger G. Burns Special Publication - Geochemical
992	Society, 5, 327-336.
993	Morris, R.V., Klingelhöfer, G., Bernhardt, B., Schröder, C., Rodionov, D.S., deSouza, P.A., Yen,
994	A., Gellert, R., Evlanov, E.N., Foh, J., Kankeleit, E., Gütlich, P., Ming, D.W., Renz, F.,
995	Wdowiak, T., Squyres, S.W., and Arvidson, R.E. (2004) Mineralogy at Gusev Crater
996	from the Mossbauer spectrometer on the Spirit rover. Science, 305, 833-836.
997	Morris, R.V., Klingelhöfer, G., Schröder, C., Fleischer, I., Ming, D.W., Yen, A.S., Gellert, R.,
998	Arvidson, R.E., Rodionov, D.S., Crumpler, L.S., Clark, B.C., Cohen, B.A., McCoy, T.J.,
999	Mittlefehldt, D.W., Schmidt, M.E., de Souza, P.A. Jr., and Squyres, S.W. (2008) Iron
1000	mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev
1001	Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration
1002	Rover. Journal of Geophysical Research, 113, E12S42, doi:10.1029/2008JE003201.
1003	Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., de Souza,
1004	P.A. Jr., Wdowiak, T., Fleischer, I., Gllert, R., Bernhardt, B., Bonnes, U., Cohen, B.A.,
1005	Evlanov, E.N., Foh, J., Gütlich, P., Kankeleit, E., McCoy, T., Mittlefehldt, D.W., Renz,
1006	F., Schmidt, M.E., Zubkov, B., Squyres, S.W., and Arvidson, R.E. (2006) Mössbauer
1007	mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey

7/30

1008 across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. Journal of 1009 Geophysical Research, 111, E12S15, doi:10.1029/2006JE002791. 1010 Morris, R.V., Ming, D.W.m Yen, A., Arvidson, R.E., Gruener, J., Humm, D., Klingelhöfer, G., 1011 Murchie, S., Schroder, C., Seelos, F. IV, Squyres, S., Wiseman, S., Wolff, M., and the 1012 MER and CRISM Science Teams (2007) Possible evidence for iron sulfate, iron sulfides. 1013 and elemental sulfur at Gusev Crater, Mars, from MER, CRISM, and analog data. 7th 1014 International Conference on Mars, Abstract 3393. 1015 Musíc, S., Orehovec, Z., Popovic, S., and Czako-Nagy, I. (1994) Structural properties of precipitates formed by hydrolysis of Fe^{3+} ions in $Fe_2(SO_4)_3$ solutions. Journal of 1016 1017 Materials Science, 29, 1991-1998. 1018 Nomura, K., Takeda, M., Iiyama, T., and Sakai, H. (2005) Mössbauer studies of jarosite, 1019 mikasaite, and vavapaiite, and implication to their martian counterparts. Hyperfine 1020 Interactions, 166, 657-664. 1021 Pankhurst, O.A., McCann, V.H., and Newman, N.A. (1986) Identification of the iron-bearing 1022 minerals in some bituminous coals using Mössbauer spectroscopy. Fuel, 65, 880-883. 1023 Parafiniuk, J., Bobrzycki, L., and Wozniak, K. (2010) Slavikite - revision of chemical 1024 composition and crystal structure. American Mineralogist, 95, 11-18. 1025 Pax, R.A., and Clark, P.E. (1988) Application of Mössbauer spectroscopy to the coals of central 1026 Queensland. Hyperfine Interactions, 41, 839-842. 1027 Peterson, R.C. (2003) The relationship between Cu content and distortion in the atomic structure 1028 of melanterite from the Richmond mine, Iron Mountain, California. The Canadian 1029 Mineralogist, 41, 937-949.

- 1030 Peterson, R.C., Hammarstrom, J.M., and Seal, R.R. (2006) Alpersite (Mg,Cu)SO₄·7H2O, a new
- mineral of the melanterite group, and cuprian pentahydrite: Their occurrence within minewaste. American Mineralogist, 91, 261-269.
- 1033 Reyes, F. A.G., Barraza, J.M., Bohorquez, A., Tabares, J.A., Speziali, N.L. (2003) Mössbauer
- and XRD characterization of the mineral matter of coal from the Guachinte mine in
- 1035 Colombia. Hyperfine Interactions, 148, 39-46.
- 1036 Ribeiro, F.R., Mussel, W.N., Fabris, J.D., Novais, R.F., and Garg, V.K. (2003) Identification of
- 1037 iron-beraing minerals in solid residues from industrial kaolin processing. Hyperfine
- 1038 Interactions, 148/149, 47-52.
- 1039 Rieder, R., R. Gellert, R.C. Anderson, J. Brückner, B.C. Clark, G. Dreibus, E. Economou, G.
- 1040 Klingelhöfer, G.W. Lugmair, D.W. Ming, S.W. Squyres, C. d'Uston, H. Wänke, A. Yen,
- and J. Zipfel (2004) Chemistry of rocks and soil at Meridiani Planus from the alpha
- 1042 particle X-ray spectrometer. Science, 306, 1746-1768.
- 1043 Ristić, M., Musić, S., and Orehovec, Z. (2005) Thermal decomposition of synthetic ammonium
 1044 jarosite. Journal of Molecular Structure, 744-747, 295-300.
- Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: A quantitative measure
 of distortion in coordination polyhedra. Science, 172, 567-570.
- Robinson, P.D., and Fang, J.H. (1971) Crystal structures and mineral chemistry of hydrated
 ferric sulphates: II. The crystal structure of paracoquimbite. American Mineralogist, 56,
 1567-1572.
- 1050 Robinson, P.D., and Fang, J.H. (1973) Crystal structures and mineral chemistry of hydrated
- 1051 ferric sulphates. III. The crystal structure of kornelite. American Mineralogist, 58, 535-1052 539.

- 1053 Rodríguez, N., Menéndez, N., Tornero, J., Amils, R., and de la Fuente, V. (2005) Internal iron
- 1054 biomineralization in Imperata cylindrical, a perennial grass: chemical composition,
- speciation and plant localization. New Phytologist, 165, 781-789.
- 1056 Rothstein, Y. (2006) Spectroscopy of jarosite and implications for the mineralogy of Mars. B.A.
- 1057 thesis, Mount Holyoke College.
- 1058 Russell, P.E., and Montano, P.A. (1978) Erratum: Magnetic hyperfine parameters of iron

1059 containing minerals in coals. Journal of Applied Physics, 49, 4615-4617.

- 1060 Sakai, N., Sekizawa, H., and Ono, K. (1981) Mössbauer spectroscopic identification of the
- 1061gamma-ray radiolytic product of $FeSO_4 \cdot 7H_2O$ as $FeSO_4OH \cdot 2H_2O$. Journal of Inorganic1062and Nuclear Chemistry, 43, 1731-1734.
- 1063 Sallam, H.A., Eissa, N.A., Sheta, N.H., Soliman, M.A., and El-Fouly M.H. (1994) Mössbauer
- 1064 effect, x-ray diffraction, and infrared studies of the effect of gamma irradiation on the
- 1065 molecular bonding of melanterite. Physics and Chemistry of Solids, 55, 1175-1180.
- 1066 Schwertmann, U., Bigham, J.M., and Murad, E. (1995) The first occurrence of schwertmannite
- 1067 in a natural stream environment. European Journal of Mineralogy, 7, 547-552.
- 1068 Scordari, F. (1975) The metavoltine problem: metavoltine from Madeni Zakh and Chuquicamata,
- and a related artificial compound. Minrralogical Magazine, 41, 371-374.
- 1070 Scordari, F. (1977) The crystal structure of ferrinatrite, Na₃(H₂O)₃ [Fe(SO4)₃] and its
- 1071 relationship to Maus's salt, $(H_3O)_2K_2\{K_{0.5}(H_2O)_{0.5}\}_6[Fe_3O(H_2O)_3(SO_4)_6](OH)_2$.
- 1072 Mineralogical Magazine, 41, 375-383.
- 1073 Scordari, F. (1981) Fibroferrite: A mineral with a {Fe(OH)(H₂O)₂SO₄} spiral chain and its
- 1074 relationship to Fe(OH)SO₄, butlerite and parabutlerite. Tschermaks Mineralogische und
- 1075 Petrographische Mitteilungen, 28, 17-29.

1076 Scordari, F. and Ventruti, G. (2009) Sideronatrite, Na₂Fe(SO₄)₂ (OH)·3H₂O: Crystal structure of 1077 the orthorombic polytype and OD character analysis. American Mineralogist, 94, 1679-1686. 1078 1079 Scordari, F., Ventruti, G., and Gualtieri, A.F. (2004) The structure of metahohmannite, 1080 $Fe_2[O(SO_4)_2]$, 4H₂O, by in situ synchrotron powder diffraction. American Mineralogist 1081 89, 365-370. 1082 Segeler, C.G., Moore, P.B., Dvar, M.D., Leans, F., and Ferraiolo, J.A. (2012) Ferrolaueite, a new 1083 mineral from Monmouth County, New Jersey, USA. Australian Journal of Mineralogy 1084 16, 69-76. 1085 Sgarlata, F. (1985) The role of iron in halotrichite and in an osumilite. In Applications of the 1086 Mossbauer Effect, vol. 5, Yu.M. Kagan and I.S. Lyubutin, eds., 1775-1778. 1087 Silva, L.F.O., Izquierdo, M., Ouerol, X., Finkelman, R.B., Oliveira, M.L.S., Wollenschlager, M., 1088 Towler, M., Pérez-López, R., Macias, F. (2011) Leaching of potential hazardous elements of 1089 coal cleaning rejects. Environmental Monitoring Assessment, 175, 109-26. 1090 Sklute, E.C. (2006) Mössbauer spectroscopy of synthetic olivine across the Fe-Mg solid 1091 solution. B.A. Thesis, Mount Holyoke College. 1092 Sklute, E.C., Y. Rothstein, M.W. Schaefer, O.N. Menzies, P.A. Bland, and F.J. Berry (2005), 1093 Temperature dependence and recoil-free fraction effects in olivines across the Mg-Fe 1094 solid solution, Lunar and Planetary Science Conference, 36, Abstract #1888. 1095 Stiller, A.H., Renton, J.J., Montano, P.A., and Russell, P.E. (1978) Application of Mössbauer 1096 spectroscopy to monitor acidmine drainage potentials of coal seams. Fuel, 57, 447-448. 1097 Süsse, P. (1967) Die kristallstruktur des botryogens. Naturwissenschaften, 54, 139-139. 1098 Süsse, P. (1968a) Die kristallstruktur des botryogens. Acta Crystallographica, B24, 760-767.

- 1099 Süsse, P. (1968b) The crystal structure of amarantite, Fe₂(SO₄)₂O·7H₂O. Zeitschrift fur
- 1100 Kristallographie, 127, 261-275.
- Szymanski, J.T. (1988) The crystal structure of plumbojarosite Pb(Fe,Al)₃((As,S)O₄)₂(OH)₂.
 Canadian Mineralogist, 23, 659-668.
- 1103 Takano, M., Shinio, T., Kiyama, M., and Takada, T. (1968). Magnetic Properties of Jarosites,

1104 RFe₃(OH)₆(SO₄)₂(R=NH₄, Na or K). Journal of Physical Science of Japan, 25, 902.

- 1105 Taneja, S. P., and Jones, C.H.W. (1984) Magnetic hyperfine parameters of iron containing
- phases in coal and coal ash. Nuclear Physics and Solid State Physics Symposium, 26,288-289.
- 1108 Thomas, J.N., Robinson, P.D., and Fang, J.H. (1974) Crystal structures and mineral chemistry of
- hydrated ferric sulfates. IV. The crystal structure of quenstedtite. American Mineralogist,59, 582-586.
- 1111 Tosca, N.J., S.M. McLennan, D.H. Lindsley, and M.A.A. Schoonen (2004) Acid-sulfate

1112 weathering of synthetic martian basalt: The acid fog model revisited, Journal of

1113 Geophysical Research, 109, E05003, doi: 10.1029/2003JE002218.

- 1114 Van Alboom, A., De Resende, V.G., De Grave, E., and Gomez, J.A.M. (2009) Hyperfine
- 1115interactions in szomolnokite (FeSO $_4$ ·H2O). Journal of Molecular Structure, 924-926, 448-1116456.
- van der Kraan, A. M., Niemantsverdriet, J.W., and Gerkema, E. (1984) Mössbauer spectroscopy
 used in energy studies. Energiespectrum, 84, 104-111.
- 1119 Ventruti, G., Stasi, F., and Scordari, F. (2010) Metasideronatrite: crystal structure and its relation
 1120 with sideronatrite. American Mineralogist, 85, 329-334.

- 1121 Verma, H.C., and Tripathi, R.P. (2000) Characterization of iron-bearing minerals in Giril lignite
- from Rajasthan and study of their decomposition during combustion using Fe-57
- 1123 Mössbauer spectroscopy. Fuel, 79, 599-606.
- 1124 Waanders, F. B., Vinken, E., Mans, A., and Mulaba-Bafubiandi, A.F. (2003) Iron minerals in
- 1125 coal, weathered coal and coal ash SEM and Mössbauer results. Hyperfine Interactions,
- 1126 148, 21-29.
- 1127 Wildner, M., and Giester, G. (1991) The crystal structures of kieserite-type compounds. I.
- 1128 Crystal structures of $Me(II)SO_4 \cdot H_2O$ (Me = Mn,Fe,Co,Ni,Zn). Neues Jahrbuch fur
- 1129 Mineralogie, Monatshefte, 1991, 296-306.
- 1130 Yen, A.A., Gellert, R., Clark, B.C., Ming, D.W., King, P.L., Schmidt, M.E., Leshin, L., Morris,
- 1131 R.V., Squyres, S.W., Spray, J., Campbell, J.L., and the MSL Science Team. (2013)
- 1132 Evidence for a global martian soil composition extends to Gale Crater. Lunar and
- 1133 Planetary Science Conference, 44, Abstract #2495.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4604

1135	FIGURE CAPTIONS
1136	Figure 1. Contrasting structures within the sulfate minerals that combine SO ₄ tetrahedra
1137	and M(O,OH,OH ₂) ₆ octahedra in various ways (Hawthorne et al. 2000): melanterite (structure
1138	from Peterson et al. 2003) has unconnected groups of SO ₄ tetrahedra, römerite (Fanfani et al.,
1139	1970) has SO ₄ tetrahedra linked to Fe2 octahedra in a <i>cis</i> arrangement on adjacent corners,
1140	butlerite (Fanfani et al. 1971) has infinite chains, rhomboclase (Mereiter 1974) has infinite
1141	sheets, and kieserite (Bregault et al. 1970) has an infinite framework. Anhydrite (Hawthorne and
1142	Ferguson 1975) has a structure with SO ₄ tetrahedra linked to larger cation sites that can
1143	accommodate Ca.
1144	
1145	Figure 2. Mössbauer parameters of sulfates measured in this study. The top panel shows
1146	peak positions plotted in terms of isomer shift and quadrupole splitting. The bottom panel shows
1147	the actual positions of the peaks, which follow a continuum across velocity space.
1148	
1149	Figure 3. Mössbauer spectra and Fe coordination polyhedra in sulfates with very small Δ
1150	values less than ~ 0.35 mm/s. Data points are plotted are ±standard deviations but are cropped at
1151	the baseline, which is defined to be 100% absorption. Polyhedra were created using
1152	CrystalMaker® software and data from the American Mineralogist Crystal Structure Database:
1153	quenstedtite (Thomas et al. 1974), coquimbite (Fang and Robinson 1970), kornelite (Robinson
1154	and Fang 1973), lausenite (Majzlan et al. 2005), ferrinatrite (Scordari 1977), voltaite (Mereiter
1155	1972), and rhomboclase (Mereiter 1974). Oxygen atoms are shown in red, OH in gray, Al in
1156	blue, and Fe in orange. Note that XRD suggests that the R6214 ferrinatrite contains minor
1157	amounts of coquimbite that cannot be distinguished because the spectra are so similar.

1159	Figure 4a. Mössbauer spectra and Fe coordination polyhedra in sulfates with Δ values
1160	between ~0.31 and 0.74 mm/s. Polyhedra were created using CrystalMaker® software and data
1161	from the American Mineralogist Crystal Structure Database: yavapaiite (Graeber and
1162	Rosenzweig 1971), krausite (Graeber et al. 1965), goldichite (Graeber and Rosenzweig 1971),
1163	copiapite, ferricopiapite, and zincocopiapite (Fanfani et al., 1973). Oxygen atoms are shown in
1164	red, OH in gray, and Fe in orange.
1165	
1166	Figure 4b. Mössbauer spectra and Fe coordination polyhedra in sulfates with Δ values
1167	between 0.58 and 0.79 mm/s. Polyhedra were created using CrystalMaker® software and data
1168	from the American Mineralogist Crystal Structure Database: apjohnite (Menchetti and Sabelli
1169	1976), dietrichite (Ballirano et al. 2003), metavoltine (Giacovazzo et al. 1976), starkeyite (Baur
1170	1962) and ilesite (Held and Bohaty 2002). No crystal structure is available for bilinite. Oxygen
1171	atoms are shown in red, OH in gray, H in pink, Mg in yellow, Al in blue, and Fe in orange.
1172	Metavoltine G2677 has a römerite impurity (large QS doublet); its Fe ³⁺ feature is nearly a
1173	singlet, as also seen in bilinite.
1174	
1175	Figure 5a. Mössbauer spectra and Fe coordination polyhedra in sulfates with Δ values
1176	between ~0.80 and 1.12 mm/s. Polyhedra were created using CrystalMaker® software and data
1177	from the American Mineralogist Crystal Structure Database: butlerite (Fanfani et al. 1971),
1178	parabutlerite (Borene 1970a), slavikite (Parafiniuk et al. 2010), fibroferrite (Scordari 1981),
1179	botryogen (Süsse 1967), and zincobotryogen (Süsse 1968a). Oxygen atoms are shown in red, OH
1180	in gray, H in pink, Mg in yellow, and Fe in orange.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4604

7/30

1181

1182	Figure 5b. Mössbauer spectra and Fe coordination polyhedra in sulfates with Δ values
1183	between 0.94 and 1.22 mm/s. Polyhedra were created using CrystalMaker® software and data
1184	from the American Mineralogist Crystal Structure Database: sideronatrite and metasideronatrite
1185	(Ventruti et al. 2010; metasideronatrite has the same structural unit topology as sideronatrite;
1186	Scordari and Ventruti 2009), metahohmannite (Scordari et al., 2004), amarantite (Süsse 1968b),
1187	jarosite (Basciano and Peterson 2007), and plumbojarosite (Szymanski 1988). Note the presence
1188	of a magnetic phase impurity in plumbojarosite. Oxygen atoms are shown in red, H in pink, Mg
1189	in yellow, and Fe in orange.
1190	
1191	Figure 5c. Mössbauer spectra and Fe coordination polyhedra in sulfates without nominal
1192	Fe in their structures. Polyhedra were created using CrystalMaker® software and data from the
1193	American Mineralogist Crystal Structure Database: anhydrite (Hawthorne and Ferguson 1975)
1194	and celestine (Miyake et al. 1978). Oxygen atoms are shown in red, Ca in blue, and Sr in green.
1195	Neither of these minerals is likely to contain much Fe because of the large size of the
1196	coordination polyhedra as seen here; these are configured to accommodate the Ca ²⁺ cation,
1197	which is significantly larger than Fe^{3+} . Thus although the hand sample of SPT132 is mostly
1198	anhydrite, XRD reveals a significant component of coquimbite, which dominates the spectrum of
1199	the mixture because it is so much more Fe-rich. Celestine ML-S13 is pure by XRD, but some Fe-
1200	rich phase is present there, too, at low concentrations. These data cannot discriminate between Fe
1201	in the celestine structure and Fe in an impurity.
1202	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4604

1203	Figure 6a. Mössbauer spectra and Fe ²⁺ coordination polyhedra in sulfates with Δ values
1204	larger than 2.70 mm/s. Polyhedra were created using CrystalMaker® software and data from the
1205	American Mineralogist Crystal Structure Database: szomolnokite, szmikite, gunningite (Wildner
1206	and Giester 1991), chalcanthite (Bacon and Titterton 1975), and pentahydrite (Peterson et al.
1207	2006). Oxygen atoms are shown in red, H in pink, Mg in yellow, Cu in purple, and Fe and Zn in
1208	orange.
1209	
1210	Figure 6b. Mössbauer spectra and Fe ²⁺ coordination polyhedra in sulfates with highest Δ
1211	values. Polyhedra were created using CrystalMaker® software and data from the American

1212 Mineralogist Crystal Structure Database: halotrichite (Lovas 1986), jokokuite (Carminiti et al.

1213 1982), römerite (Farfani et al. 1970), melanterite (Peterson 2003), rozenite (Baur 1962), and

starkeyite (Baur 1962). Oxygen atoms are shown in red, OH in gray, H in pink, Mg in yellow, Alin blue, and Fe in orange.

1216

1217 Figure 7. Quadrupole splitting plotted against various characteristics of the geometry of the Fe³⁺ coordination polyhedra: octahedral volume, mean octahedral bond length, mean 1218 1219 quadratic elongation, and angular variance. See text for definitions. Purple circles represent 1220 parameters of structures with only one possible Fe cation site. Orange squares are mineral 1221 species in which Fe occupies more than one site; Mössbauer parameters were matched with sites 1222 by inspection. Error bars are ± 0.03 -0.05 mm/s for quadrupole splitting and highly variable for 1223 the structure refinements, depending on the accuracy of the original measurements. The few 1224 labeled outliers are so far out of range from the majority of the measurements that they may 1225 likely be attributed to problems with the original refinements or their transcription into CIF files.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4604 The parameters for Fe^{2+} sites are not shown because there are too few data points and the 1226 1227 parameters group together in two clumps. 1228 1229 Figure 8. Mössbauer parameters of several sulfates with very similar peak positions (close-up of Figure 2). Blue squares represent Fe^{3+} -bearing sulfates from this study, not 1230 1231 including jarosites. Green circles are jarosite data from this study. Circles display parameters and 1232 locations for Mars data from Morris et al. (2006) offset by -0.07 mm/s or -0.02 mm/s to correct 1233 Mars data to room temperature. The error bar for both plots is shown at lower right in upper 1234 panel. 1235 Figure 9. Comparison of the crystal structures surrounding the Fe^{3+} cations in several 1236 sulfates that have similar Mössbauer spectra (see Figure 8). Red spheres represent O^{2-} , grav are 1237 OH, pink are H^+ , and the central gold cations are Fe^{3+} . Note that both slavikite (Fe1 at upper left, 1238 and Fe2 at top center) and metavoltine (Fe $^{3+}$ 1,2 at lower left and Fe $^{2+}$ 3 at bottom center) have 1239 1240 multiple different Fe sites with slightly differing geometries. 1241 1242 Figure 10. Mössbauer parameters of several sulfates with very similar peak positions (close-up of Figure 2). Blue squares represent Fe^{3+} -bearing sulfates from this study. Red 1243 1244 triangles are data from Mars (Morris et al. 2008) using a temperature-correcting offset of -0.07 1245 mm/s. The error bar shown for apjohnite applies to all samples.

1246

1247 Figure 11. Mössbauer data from this study (blue circles) with data for silicates and oxides 1248 from Burns and Solberg (1990) superimposed. These results highlight the small range of

- 1249 Mössbauer parameters that occur in minerals, and underscore the non-uniqueness of the
- 1250 parameters to specific mineral groups.

Table 1. Samples Studied							
Dana Number	Mineral species	Locality	Sample Number				
28.3.1.2	Celestine	Maybee, Michigan	ML-S13				
28.3.2.1	Anhydrite	Lavender Pit, Bisbee, Cochise Co., AZ	159266				
28.3.2.1	Anhydrite	Borate, San Bernardino Co., CA	SPT132 ¹				
28.4.3.1	Yavapaiite	synthetic sample, courtesy Ferren Forray	ML-S79				
29.1.1.1	Rhomboclase	Cerre de Pasco, Peru	81268				
29.1.1.1	Rhomboclase	Alcaparra, Chile	ML-S85				
29.1.1.1	Rhomboclase	Alcaparra, Chile	ML-S89				
29.1.1.1	Rhomboclase	Near Cerritos Bay, Alcaparrosa, Chile	ML-S84				
29.4.4.1	Ferrinatrite	Sierra Gorda, Cahacoles, Chile	R6214				
29.4.4.1	Ferrinatrite	Sierra Gorda, Antofagaste, Chile	VZO105/106				
29.4.6.1	Metavoltine	Mina Alcaparrosa, Calama, Atacama Desert, Chile	G2677				
29.4.6.1	Metavoltine	Cetine Mine, Siena, Tuscany, Italy	VZO114 ²				
29.5.1.1	Krausite	Sulfur Hole, Mule Canyon, San Bernard, CA	156916 ³				
29.5.2.1	Goldichite	Pozzuoli, Solfatara (1969), Italy	123922				
29.5.3.2	Amarantite	Los Pintados, Chile	G3775 ⁴				
20 (10 1	Malantarita	Locality unknown; Mount Holyoke College collection;	2070^4				
29.6.10.1	Melanterite	sample labeled as boothite (Cu-melanterite)	2070				
29.6.2.2	Szomolnokite	Island Mountain, Trinity Co., CA	92942				
29.6.2.2	Szomolnokite	Tintic Standard Mine, Dividend, UT	104276				
29.6.2.2	Szomolnokite	Cuprian sample, Alma Pyrite mine, Alameda Co., CA	156925				
29.6.2.2	Szomolnokite	Lavender Pit, Bisbee, Cochise Co., AZ	159266 ⁵				
29.6.2.2	Szomolnokite	Rio Tinto Mine, Hyelva, Spain	136685-2				
29.6.2.2	Szomolnokite	Joe Bishop Mine, San Juan Co., UT	ML-S103				
29.6.2.2	Szomolnokite	Markey Mine, Red Canyon, San Juan Co., UT	ML-S60				
29.6.2.2	Szomolnokite	Orovile. Washington	ML-S77				
29.6.2.3	Szmikite	Toyoha Mine, Sapporo, Ishikari, Hokkaido, Japan	159189 ⁶				
29.6.2.5	Gunningite	Alma Pyrite Mine, Alameda Co., CA	156925				
29.6.6.1	Rozenite	Island Mountain, Trinity Co., CA	JB626B				
29.6.6.1	Rozenite	Oage Mine, Ominato, Aomori-ken, Honshu, Japan	SPT130				
29.6.6.2	Starkevite	Habachtal, Pinzgau, Salzburg, Austria	137725				
29.6.6.2	Starkevite	Veneables Valley, Basque, British Columbia, Canada	ML-S65				
29.6.6.3	Ilesite	McDonnell Mine, Park Co., CO	123277^{7}				
29.6.7.1	Chalcanthite	Smolnik, Eastern Slovakia, Slovak Republic	DD100 green				
29.6.7.3	Pentahydrite	2700 Level, Cambell Shaft, Bisbee, AZ	VZO121 ⁸				
29.6.7.4	Jokokuite	Locality unknown: Mount Holyoke College collection	G3536 ⁴				
29721	Römerite	Island Mountain Trinity Co. CA	93825				
29.7.2.1	Römerite	Cerre de Pusco. Peru	113733				
29.7.2.1	Römerite	Alcaparrosa Chile	159098-2 ⁹				
29.7.2.1	Römerite	near Skauriatissa Island of Cyprus Greece	R8415				
29.7.2.1	Römerite	Sulphur Hole, near Borate, San Bernardino Co., CA	SPT110				
29.7.2.1	Römerite	Alcanarrosa Chile	SPT122/126				
29732	Halotrichite	The Gevsers Sonoma Co. CA	104135^{10}				
29.7.3.2	Halotrichite	Golden Queen Mine, Soledad Mountain, Kern Co., CA	G1616 ⁴				
29.7.3.2	Halotrichite	Sulfur Hole Prospect near Vermo CA	V70128				
29.7.3.2	Aniohnite	Alum Cave Sevier Co. TN	1213564				
29.7.3.5	Dietrichite	unknown	$G_{-}2429^{4}$				
29.7.3.4	Bilinite	Arco ID	169017^{11}				
29.8.1.1	Lausenite	United Verde Mine, Jerome, AZ	102923				

¹Sample has minor coquimbite impurity. ²Sample has a known Fe²⁺ römerite impurity. ³XRD reports that this sample is geigerite but the locality is consistent with metavoltine. ⁴No XRD; sample too small. ⁵XRD of this sample suggests it is anhydrite but its parameters are an exact match to those of szomolnokite, which may be an impurity in the sample. ⁶XRD suggests this sample is a complex solid solution between kieserite and szimikite. ⁷XRD identification on this sample was spangolite, but ilesite is not correctly represented in the XRD database. Note that this sample comes from the Smithsonian and is from the ilesite type locality. ⁸Minor impurities from pickeringite, starkeyite, botryogen, and boussingaultite, ⁹No XRD on this sample but NMNH identification was römerite. ¹⁰XRD found small copiapite contaminant. ¹¹XRD suggests alunogen and wupatkiite in this sample but bilinite is not represented in XRD database, and so NMNH ID is used here.

Dana Number	Mineral species	Locality	Sample Number
29.8.2.1	Kornelite	Smolnik Slovenko Czechoslavakia	95830 ¹
29.8.3.1	Coquimbite	Borate Calton Hills San Bernardino CA	R7661
29.8.3.1	Coquimbite	Atacama Chile	ML-S63
29.8.3.1	Coquimbite	Dexter #7 Mine San Rafael Swell UT	SPT119
29.8.3.1	Coquimbite	Alcanarrosa Chile	SPT126
29.8.3.1	Coquimbite	Borate San Bernardino Co. CA	SPT131
29.8.3.1	Coquimbite	Borate, San Bernardino County CA	SPT132
29.8.3.1	Coquimbite	Helper Carbon Co. UT	VZO101/102
29.8.5.1	Quensdedtite	Tierra Amarilla Conjano Chile	B8255 ²
29.9.1.1	Voltaite	Jerome District AZ	85679
29.9.1.1	Voltaite	Smolnik eastern Slovakia Slovak Republic	95830
29.9.1.1	Voltaite	United Verde Mine Jerome A7	115035
29.9.1.1	Voltaite	Boron Kern Country, CA	129313
29.9.1.1	Voltaite	Boron Kern Country, CA	137958
29.9.1.1	Voltaite	Minas Rio Tinto Hyelva Andalucia Snain	158795
29.9.1.1	Voltaite	Mina Alcaparrosa Cerritos Bayos Calama Chile	DD104
29.9.1.1	Pertlikite	Madeni Iran	Mg-Voltaite
30.2.5.1	Iarosite	Sierra Pena Blanca Aldina, Chihuahua, Mexico	132060
30.2.5.1	Jarosite	Sierra Gorda, Chile	SPT113
30.2.5.1	Jarosite	Arabia District Pershing Co. NV	SPT115
30.2.5.1	Jarosite	Conjana Jarosite Mine, Dona Ana Co., NM	SPT116
30.2.5.1	Jarosite	Rustler Mine, Topele Co., UT	SPT120
30.2.5.6	Plumbojarosite	Lomo de Toro Mine, Zimanan, Hidalgo, Mexico	ML_S15
21 8 2 1	Sideronatrita	Chuquicomete Chile	115164
21 8 2 2	Sideronatrite	Crascent Velley, CA	SDT122 ³
21.8.7.1	Matasidaropatrita	Chugulaamata Antofagasta Chila	$V70112^4$
21.0.4.1	Metasideronatrite	Chuquicamata, Antofagasta, Chile	$\sqrt{20112}$
21.0.4.1	Putlarita	L constitution and the second se	630^2
21.0.1.1	Butlerite	Mina Quatana, Calama, Chila	039
21.0.1.1	Butlerite	Poroto Colico Hillo Son Dornordino CA	D7652
21.0.1.1	Butlerite	Bolate, Calico Hills, Sali Bellalullo, CA Biotorto, Tugoany, Italy Balph Diotz Collection	NT 599
21.0.2.1	Dutiente	Chuquiaamata Antofagasta Chila	157716 ²
21.0.2.1	Parabutlerite	Sachand Vazd, Iran	$V70115/116^2$
21.0.5.1	Matabahmannita	Ouetene Antofageste Chile	P12405 ⁶
21.9.5.1	Detruggen	Mine Sente Elene La Alegnerrosa Argentine	N12495
21.0.6.1	Botryogen	wild Santa Elena, La Alcapariosa, Argentina	$C2775^2$
21.0.6.1	Botryogen	ulikilowii Radinatan Mina, Knaywilla, Nana Ca, CA	G5775 SDT124
21.0.6.2	Zinaahatruagan	Mine Quetane, Calema, Chile	SF 1 124 C5525-2
21.0.12.1	Slavilrita	Valashay, Crash Banyhlia	140220
31.9.12.1	Slavikite	Shauniatiana Cammua	140229 SDT121
31.9.12.1	Fibroferrite	Skoullaussa, Cyplus Dometer Colice Hills Son Domending, CA	$\frac{SP1121}{V70107/100^3}$
31.9.12.1	Floroienne Slovilvito/ormoum	Borate, Canco Hills, San Bernardino, CA	VZO107/108 VZO122/122
31.9.12.1	Slavikite/gypsum	unknown Alma Parita Mina Oakland Alamada Ca. CA	VZ0122/125
31.10.5.1	Copiapite	Alma Pyrite Mine, Oakland, Alameda Co., CA	ML-580
51.10.5.1 21.10.5.4	Copiapite	Anna rynne Wine, Oakland, Alameda Co., CA	5F111/ 169257 ⁷
31.10.5.4	Ferricopiapite	Sulfur Mine, Contrary Creek, Mineral, Louisa Co., VA	108257 ML S25
51.10.5.4	Ferricopiapite	Sterra Gorda, Unite Denote Sen Demonstra Co. CA	ML-835 SDT 100 ⁸
51.10.5.4	Ferricopiapite	Borate, San Bernardino Co., CA	SPT 109°
51.10.5.4	Ferricopiapite	Sterra Gorda, Unite	SP1125
51.10.5.4	rerricopiapite	Alcaparrosa, Unile	SP1155
30.10.3.6	∠incocopiapite	UNKNOWN	$G-3037^{\circ}$
AKD not availabl	e on this sample, so f	NIVING IDENTIFICATION WAS used. TAKD not available on this sidentified this sample as semicrite \pm metasideconstrict. ⁵ VDE	sample. Sample

Table 1. Samples Studied, continued

¹XRD not available on this sample, so NMNH identification was used. ²XRD not available on this sample. ³Sample has small unidentified impurity. ⁴XRD identified this sample as serpierite + metasideonatrite. ⁵XRD found this sample to be 50% metasideronatrite and ~50% kanemite; the latter is nominally Fe-free. Metasideronatrite is not in the XRD database. ⁶XRD of very small sample showed mixture of unspecified phases. ⁷XRD not available on this sample. ⁸XRD suggests presence of minor metavoltine impurity.

Mineral	Sample ID	Sample #	δ (ISO)	Δ(QUADR)	Г (WID)	Ar	ea (%) X ²	2	Normalized X ²
Amarantite	G3775	8102901	0	43 0	.35	0.33	8	2744.11	5.36
Amarantite	G3775	8102901	0	44 0	.98	0.30	8		
Amarantite	G3775	8102901	0	40 1	.19	0.30	54		
Amarantite	G3775	8102901	0	39 1	.60	0.30	30		
Anhydrite	159266	05030801	0	14 0	.58	0.26	24	364.50	0.71
Anhydrite	159266	05030801	0	44 0	.41	0.60	76		
Anhydrite	SPT132	02062101	0	40 0	.46	0.47	93	211.03	0.41
Anhydrite	SPT132	02062101	0	38 1	.02	0.23	7		
Apjohnite	121356	7012901	0	43 0	.58	0.60	70	723.97	1.41
Apjohnite	121356	7012901	0	19 0	.75	0.23	12		
Apjohnite	121356	7012901	1	27 3	.31	0.27	18		
Bilinite	169017	06100302	0	49 0	.37	0.74	71	1400.06	2.73
Bilinite	169017	06100302	0	09 0	.79	0.40	17		
Bilinite	169017	06100303	1	37 1	.78	0.40	7		
Bilinite	169017	06100304	1	06 3	.69	0.23	5		
Botryogen	SPT124	02061601	0	08 0	.52	0.24	3	242.15	0.47
Botryogen	SPT124	02061601	0	42 1	.18	0.24	49		
Botryogen	SPT124	02061601	0	40 1	.63	0.24	43		
Botryogen	SPT124	02061601	1	.30 1	.74	0.30	4		
Botryogen	G3775	9012001	0	41 0	.35	0.29	30	510.40	1.00
Botryogen	G3775	9012001	0	41 0	.80	0.30	31		
Botryogen	G3775	9012001	0	.37 1	.25	0.31	34		
Botryogen	G3775	9012001	1	.34 2	.58	0.45	5		
Botryogen	DD112	06091501	0	41 1	.16	0.30	63	711.48	1.39
Botryogen	DD112	06091501	0	40 1	.60	0.23	33		
Botryogen	DD112	06091501	1	28 1	.68	0.30	3		
Botryogen	C5525-3	06091201	0	41 1	.21	0.25	62	1094.70	2.13
Botryogen	C5525-3	06091201	0	39 1	.65	0.23	38		. =-
Butlerite	C5534	06090703	0	41 0	.96	0.26	100	931.37	1.79
Butlerite	R7653	06091302	0	41 0	.95	0.33	100	29/8./8	5.62
Butlerite	639 ML 600	8101401	0	41 0	.98	0.25	100	13411.21	24.92
Fibroferrite	IVIL-S88	12020303a	0.	42 0	.99	0.24	19	566.90	1.10
Fibroferrite	IVIL-588	12020303a	0	41 0	.80	0.51	81	CC0 20	1 21
Celestine	S13	06091801	0	15 0	.54	0.23	05	668.30	1.31
Celesune	515 DD100 groop	050311012	0	.24 0 10 0	.87	0.22	30	225 55	0.66
Chalcanthite	DD100 green	05031101a	0	10 0 26 0	.51	0.24	29	555.55	0.00
Chalcanthite	DD100 green	05031101a	1	20 0 26 2	27	0.40	20		
Chalcanthite	DD100 green	05031101a	1	30 2	.32 88	0.35	19		
Chalconvrite	CHA101	06092302	0	25 -0	.00	0.33	68	1205 17	2 35
Chalconvrite	CHA101	06092302	0	70 0	03	0.23	4	1205.17	2.55
Chalconvrite	CHA101	06092302	0	31 0	63	0.23	- 78		
Conjanite	SPT117	02060701	0	43 0	79	0.33	41	220.06	0 43
Copiapite	SPT117	02060701	0	42 0	.35	0.24	43	220.00	0.10
Copiapite	SPT117	02060701	0	21 0	.34	0.30	6		
Copiapite	SPT117	02060701	0	.34 1	.00	0.42	10		
Copiapite	G596-1	8101501	0	.37 1	.18	0.26	100	1007.32	1.93
Copiapite	HSC-128 JB-834	8121001	0	41 0	.36	0.38	45	493.05	0.96
Copiapite	HSC-128 JB-834	8121001	0	41 0	.73	0.30	44		
Copiapite	HSC-128 JB-834	8121001	1	29 2	.13	0.30	39		
Copiapite	HSC-128 JB-834	8121001	1	26 3	.00	0.30	8		
Copiapite	MAC-2 JB-835	8120901	0	40 0	.38	0.38	60	538.44	1.05
Copiapite	MAC-2 JB-835	8120901	0	40 0	.81	0.30	40		
Copiapite	MAC-5 JB-836	8121601	0	42 0	.37	0.42	56	498.67	0.97

Copiapite	MAC-5 JB-836	8121601	0.43	0.68	0.26	44		
Copiapite	MAC-7 JB-837	8121201	0.41	0.36	0.35	54	625.65	1.22
Copiapite	MAC-7 JB-837	8121201	0.42	0.80	0.30	46		
Copiapite	MAC-11 JB-838	8121301	0.40	0.36	0.43	51	603.82	1.18
Copiapite	MAC-11 JB-838	8121301	0.42	0.88	0.30	49		
Copiapite	FAC-1 JB-839	8121501	0.41	0.36	0.40	42	832.73	1.62
Copiapite	FAC-1 JB-839	8121501	0.42	0.65	0.30	58		
Copiapite	FAC-3 JB-840	8120801	0.40	0.36	0.32	43	631.70	1.23
Copiapite	FAC-3 JB-840	8120801	0.41	0.70	0.30	57		
Copiapite	FAC-5 JB-841	8121801	0.42	0.37	0.37	44	749.95	1.46
Copiapite	FAC-5 JB-841	8121801	0.43	0.66	0.30	56		
Copiapite	FAC-7 JB842	9011301	0.07	0.45	0.30	7	422.92	0.83
Copiapite	FAC-7 JB842	9011301	0.42	0.37	0.30	98		
Copiapite	FAC-7 JB842	9011301	0.42	0.76	0.30	55		
Copiapite	FAC-10 JB-843	8121701	0.42	0.37	0.41	50	665.77	1.30
Copiapite	FAC-10 JB-843	8121701	0.43	0.65	0.30	50		
Copiapite	ML-S86	12020201c	0.42	0.44	0.37	91	885.65	1.70
Copiapite	ML-S86	12020201c	0.42	0.81	0.03	9		
Coquimbite	VZO101/102	05030501	0.18	0.58	0.24	7	543.98	1.06
Coquimbite	VZO101/102	05030501	0.46	0.10	0.91	93		
Coquimbite	SPT132	02062101	0.18	0.71	0.24	6	214.89	0.42
Coquimbite	SPT132	02062101	0.42	0.47	0.46	94		
Coquimbite	SPT131	02062001	0.19	0.72	0.24	9	218.67	0.43
Coquimbite	SPT131	02062001	0.43	0.44	0.38	91		
Coquimbite	SPT126/127	02061801	0.16	0.66	0.24	5	267.71	0.52
Coquimbite	SPT126/127	02061801	0.45	0.08	0.64	95	-	
Coquimbite	SPT119	02061101	0.16	0.77	0.24	5	311.17	0.61
Coquimbite	SPT119	02061101	0.47	0.09	0.82	95		
Coquimbite	S63	05030401	0.44	0.25	0.63	86	398.08	0.78
Coquimbite	S63	05030401	0.31	0.58	0.24	7		
Coquimbite	S63	05030401	0.35	1.09	0.24	7		
Coquimbite	R7661	05030601	0.19	0.52	0.24	7	451.29	0.88
Coquimbite	R7661	05030601	0.46	0.11	0.82	93		
Dietrichite	G-2429	7011903	0.43	0.79	0.32	52	562.98	1.10
Dietrichite	G-2429	7011903	0.42	0.35	0.29	44		
Dietrichite	G-2429	7011903	1.28	3.28	0.26	4		
Ferricopiapite	SPT125	02061701	0.42	0.40	0.27	38	257.67	0.50
Ferricopiapite	SPT125	02061701	0.43	0.77	0.23	38		
Ferricopiapite	SPT125	02061701	0.38	1.18	0.24	25		
Ferricopiapite	S35	04030301a	0.43	0.39	0.23	35	388.54	0.76
Ferricopiapite	S35	04030301a	0.43	0.78	0.23	48		
Ferricopiapite	S35	04030301a	0.37	0.52	0.86	16		
Ferricopiapite	168257	08102201	0.42	0.37	0.37	26	1770.19	3.45
Ferricopiapite	168257	08102201	1.25	2.71	0.30	51		
Ferricopiapite	168257	08102201	0.43	0.78	0.30	17		
Ferricopiapite	168257	08102201	1.25	1.78	0.50	6		
Ferricopiapite	SPT 109	2052501	0.42	0.36	0.25	38	250.98	0.49
Ferricopiapite	SPT 109	2052501	0.42	0.74	0.33	62		
Ferricopiapite	SPT133	02062201	0.43	0.76	0.23	33	193.75	0.38
Ferricopiapite	SPT133	02062201	0.42	0.40	0.28	40		
Ferricopiapite	SPT133	02062201	0.38	0.53	0.55	27		
Ferrinatrite	VZO105/106	06090801	0.44	0.40	0.42	88	1387.87	2.69
Ferrinatrite	VZO105/106	06090801	0.40	1.13	0.24	12	-	
Ferrinatrite	R6214	06090802	0.47	0.05	0.57	100	1998.28	3.78
Fibroferrite	SPT121	02061301	0.41	0.52	0.23	37	218.07	0.42

Fibroferrite	SPT121	02061301	0.42	0.96	0.23	63		
Fibroferrite	VZO107/108	06091301	0.41	0.50	0.25	100	1098.34	2.12
Fibroferrite	R7653	6091302	0.41	0.96	0.30	100	2514.68	4.73
Goldichite	123922	7011901	0.19	0.61	0.42	29	547.98	1.07
Goldichite	123922	7011901	0.48	0.29	0.37	71		
Gunningite	156925	7012401	0.26	0.40	0.50	32	577.10	1.13
Gunningite	156925	7012401	0.37	1.26	0.23	10		
Gunningite	156925	7012401	1.25	2.74	0.29	58		
Halotrichite	VZO128	05032101a	0.13	0.49	0.24	10	322.99	0.63
Halotrichite	VZO128	05032101a	0.36	0.31	0.43	14		
Halotrichite	VZO128	05032101a	1.45	1.56	0.56	13		
Halotrichite	VZO128	05032101a	1.28	2.76	0.26	43		
Halotrichite	VZO128	05032101a	1.30	3.29	0.24	20		
Halotrichite	104135 30mg	06090902	0.42	0.37	0.34	44	703.36	1.37
Halotrichite	104135 30mg	06090902	0.42	0.81	0.30	31		
Halotrichite	104135 30mg	06090902	1.25	2.69	0.48	16		
Halotrichite	104135 30mg	06090902	1.26	3.29	0.23	9		
Halotrichite	104135 28mg	06091603	0.42	0.40	0.35	46	510.11	1.00
Halotrichite	104135 28mg	06091603	0.43	0.80	0.25	28		
Halotrichite	104135 28mg	06091603	1.36	1.68	0.54	4		
Halotrichite	104135 28mg	06091603	1.24	2.66	0.30	8		
Halotrichite	104135 28mg	06091603	1.27	3.27	0.30	13		
Halotrichite	G1616	08081201	1.27	3.29	0.24	92	648.53	1.27
Halotrichite	G1616	08081201	0.30	0.35	0.30	3		
Halotrichite	G1616	08081201	0.36	1.25	0.29	5		
llesite	123277	06091601a	0.31	0.62	0.27	97	666.89	1.30
llesite	123277	06091601a	0.55	0.94	0.30	32		
Jarosite	132060	03010802	0.38	1.30	0.29	100	414.88	0.77
Jarosite	SPT113	02060101	0.38	1.18	0.23	100	299.97	0.58
Jarosite	SPT116	02060501	0.38	1.23	0.23	100	834.35	1.54
Jarosite	SPT115	02060301	0.38	1.29	0.23	100	659.61	1.24
Jarosite	SPT120	02061201	0.38	1.14	0.23	44	198.89	0.39
Jarosite	SPT120	02061201	0.37	0.70	0.28	56		
Jokokuite	G3536	8090801	1.13	2.63	0.30	6	1260.00	2.46
Jokokuite	G3536	8090801	1.26	2.51	0.30	65		
Jokokuite	G3536	8090801	0.15	0.56	0.39	26		
Jokokuite	G3536	8090801	0.40	0.74	0.30	4		
Kornelite	95830	05022401a	0.51	0.15	0.27	44	437.13	0.85
Kornelite	95830	05022401a	0.40	1.13	0.30	7		
Kornelite	95830	05022401a	1.20	1.60	0.39	34		
Kornelite	95830	05022401a	1.14	2.08	0.24	15		
Kornelite	140175	06082501	0.39	0.71	0.57	16	634.58	1.24
Kornelite	140175	06082501	1.27	3.26	0.24	84		
Kornelite	R16185	06082404	0.44	0.11	0.47	100	1555.82	2.98
Krausite	156916	06090901	0.41	0.41	0.30	100	1398.18	2.73
Lausenite	102923	06091602	0.47	0.12	0.71	89	828.08	1.60
Lausenite	102923	06091602	1.03	2.53	0.30	2		
Lausenite	102923	06091602	1.25	2.63	0.30	6		
Lausenite	102923	06091602	1.31	3.23	0.30	3	4707 74	2 5 2
	2070	06092901	1.27	3.21	0.27	100	1/9/./1	3.50
	136/2/	5030101	0.50	0.63	0.45	5	330.00	0.65
ivielanterite	130/2/	5030101	1.25	2.83	0.40	50		
ivielanterite	130/2/	5030101	1.28	3.28	0.26	21		
weianterite	130/2/	5030101	1.27	3.66	0.32	19		
welanterite	130/2/	5030101	0.18	0.43	0.24	5		

Metasideronatrik03774-212020301a0.351.200.304.31325.872.45Metasideronatrik07011212020302e0.421.170.314.86.33.481.23MetasideronatrikV7011212020302e0.421.170.314.86.33.481.23MetasideronatrikV7011406100101a0.430.350.425.7727.151.42MetasideronatrikV7011406100101a1.162.010.64111.16 <th>Metahohmannite</th> <th>R12495</th> <th>06100701</th> <th>0.43</th> <th>0.94</th> <th>0.33</th> <th>100</th> <th>2349.52</th> <th>4.44</th>	Metahohmannite	R12495	06100701	0.43	0.94	0.33	100	2349.52	4.44
MetasideronattineV03774-212020301a0.441.180.305.7MetasideronattineV2011212020302e0.381.180.285.22.1MetasoltineV2011406100101a0.401.040.295.37.27.151.2MetasoltineV2011406100101a1.152.010.641.11.671.67MetavoltineC20778011021.273.230.2681853.091.67MetavoltineC26778011020.440.240.6119101.67MetavoltineSPT10902055010.430.740.2343223.570.44MetavoltineSPT10902055010.420.730.24331.67ParabuleriteSPT10902055010.420.730.261.77ParabuleriteSPT10902055010.420.700.330.61.97ParabuleriteSPT10902055010.420.700.330.61.77ParabuleriteSPT10902055010.420.700.300.731.200.2185.031.67ParabuleriteSPT10902055010.420.700.300.721.7785.711.77ParabuleriteSPT1006091020.420.700.300.721.777.751.71ParabuleriteSPT1006090030.580.410.50607.777.751.51	Metasideronatrite	105774-2	12020301a	0.35	1.20	0.30	43	1325.87	2.45
Metasideronative Metasideronati	Metasideronatrite	105774-2	12020301a	0.44	1.18	0.30	57		
Metasoline MetavolineV2011212020302e0.381.180.285252Metavoline MetavolineV2011406100101a0.400.400.2953727.51.42Metavoline MetavolineV2011406100101a1.162.010.640.121Metavoline MetavolineSF1109020525010.430.740.2343223.570.44Metavoline MetavolineSF1109020525010.420.370.243821.67Metavoline MetavolineSF1109020525010.420.370.243821.67Parabulerite DarabuleriteSF110902052010.320.410.860.2710.92.031.67Parabulerite DarabuleriteSF110660911020.420.400.27381.772.0391.77Parabulerite Darabulerite15771660901020.520.410.506.103.912.032.03Pentalydrite V2012106906031.273.680.25301.21.57.866.231.77Parabulerite Dutavidrite155061004010.761.220.30921.571.61Quassideritie Barbonices155061024010.740.330.24771.51Quassideritie Barbonices155061024010.740.330.24771.51Quassideritie Barbonices15506102401 </th <th>Metasideronatrite</th> <th>VZO112</th> <th>12020302e</th> <th>0.42</th> <th>1.17</th> <th>0.31</th> <th>48</th> <th>633.48</th> <th>1.23</th>	Metasideronatrite	VZO112	12020302e	0.42	1.17	0.31	48	633.48	1.23
MetavolitineV2011406100101a0.430.350.423572.7.151.42MetavolitineV2011406100101a1.162.010.6411MetavolitineG267780812021.273.230.6681853.091.67MetavolitineS71090.20525010.430.740.2343223.570.44MetavolitineS71090.20525010.430.740.2343223.570.44MetavolitineS71090.20525010.330.460.681919Parabuletite15771606091020.420.771200.22120926.091.77Parabuletite15771606091020.420.740.33501038.12.03Parabuletite15771606091020.420.760.33501038.12.03Parabuletite15771606091020.420.760.33501038.12.03Parabuletite15771606091020.420.760.3012315.78.02.03PutabydriteV2012106090831.263.000.28541038.12.03Putabydrite15506104010.761.220.36791.16Quesséditite8255061121040.470.330.372385.711.80Putabydrite825506112040.470.330.372385.8711.80<	Metasideronatrite	VZO112	12020302e	0.38	1.18	0.28	52		
MetavoltineVZ011406100101a0.401.040.2936MetavoltineQ267780812021.273.230.2681853.091.67MetavoltineS7109020525010.440.240.6113223.570.44MetavoltineS7109020525010.420.370.2443223.570.44MetavoltineS7109020525010.330.460.6819100	Metavoltine	VZO114	06100101a	0.43	0.35	0.42	53	727.15	1.42
MetavolitineV20140.610101a1.162.010.6411MetavolitineG267780812021.273.230.2681853.091.67MetavolitineS71090.20525010.430.740.2133323.570.44MetavolitineS71090.20525010.430.460.681919100ParabuteriteV2013/1150.6099030.410.980.27120926.091.77Parabuterite1577160.60911020.420.700.3350120926.091.77Parabuterite1577160.60911020.420.700.3350120	Metavoltine	VZO114	06100101a	0.40	1.04	0.29	36		
Metavoltine6267780812021.273.230.2681853.091.67MetavoltineSPT109020525010.440.240.211290.2438MetavoltineSPT109020525010.420.370.24380.27100926.091.77Parabulerite15771606091020.371.200.221280.27100926.091.77Parabulerite15771606091020.420.400.27380.27100926.091.77Parabulerite15771606091020.420.400.27380.271002.8540.281.270.30122.03121.253.501.263.000.28541.261.263.000.28541.261.263.000.28541.261.263.000.28541.261.263.000.28541.261.263.000.28541.261.263.000.28541.261.263.000.28541.261.263.001.21.57.986.2.01.263.000.28541.263.001.21.57.986.2.01.263.000.28541.263.001.21.57.9855.11.511.511.561.561.561.561.561.561.561.561.561.561.561.561.561.5	Metavoltine	VZO114	06100101a	1.16	2.01	0.64	11		
Netavoltine5267780812020.440.740.6119MetavoltineSPT109020525010.420.370.2438MetavoltineSPT109020525010.330.460.6819Parabuterite15771606090130.410.980.27100926.091.77Parabuterite157716060911020.420.750.330.661038.912.03Parabuterite157716060911020.420.750.330.61038.912.03Parabuterite15771606091020.420.750.330.61038.912.03Parabuterite15771606091020.420.750.330.2372.03PentahydriteV20121060908031.263.000.2854542.03PentahydriteV20121060908031.273.680.253562.20Plumbojarosite51506104010.371.220.301.2315.75.981.21Quessdedite8255061121040.400.240.372.3685.241.33RhomboclaseML584070117020.430.430.372.3685.241.33RhomboclaseML58512020904h0.440.510.2597592.441.31RhomboclaseML584070117020.430.530.2497595.711.08RhomboclaseML58512020	Metavoltine	G2677	8081202	1.27	3.23	0.26	81	853.09	1.67
MetavoltineSPT109020525010.430.740.2343223.570.44MetavoltineSPT109020525010.330.460.6819Parabutlerite15771606090930.410.980.22120926.091.77Parabutlerite15771606091020.420.400.2212861.131.69Parabutlerite15771606091020.420.400.23350Perabutlerite15771606091020.420.400.2539203Perabutlerite15771606090031.263.000.28342.23Perabutlerite15771606090031.263.000.28392.03Perabutlerite1571606090031.273.680.2539392.03Perabutlerite15506104010.761.220.300.923561.23Pumbajoriste51506104010.371.220.36773551.51Quesideritite8255061121040.470.130.2535353335Quesideritite8255061121040.470.130.2535353535Quesideritite825506121040.440.510.269755.711.08RhombodaseML-58412020304h0.440.510.269755.71.08RhombodaseML-585120	Metavoltine	G2677	8081202	0.44	0.24	0.61	19		
MetavoltineSPT109020532010.420.370.240.370.240.87MetavoltineSPT109020532010.330.460.6819Parabutlerite15771606091020.371.200.221286.1.31.70Parabutlerite15771606091020.420.770.330.500.2786.1.31.60Parabutlerite15771606091020.420.750.330.510.102.032.032.03PentalydriteVZ012106090031.263.000.280.250.210.000031.263.000.280.270.201.200.2	Metavoltine	SPT109	02052501	0.43	0.74	0.23	43	223.57	0.44
MetavoltineSPT109020525010.330.460.6819Parabutlerite15771606091020.410.980.27100926.091.77Parabutlerite157716060911020.420.400.27383836Parabutlerite157716060911020.420.400.27383836 <td< th=""><th>Metavoltine</th><th>SPT109</th><th>02052501</th><th>0.42</th><th>0.37</th><th>0.24</th><th>38</th><th></th><th></th></td<>	Metavoltine	SPT109	02052501	0.42	0.37	0.24	38		
ParabuleriteVZ0115/115060090030.410.980.27100926.091.77Parabulerite157716060911020.420.400.27381.20Parabulerite157716060911020.420.750.33501.20PentahydriteVZ0121060908031.263.000.285454PentahydriteVZ0121060908031.273.680.223953PentahydriteVZ0121060908031.273.680.223952PentahydriteVZ0121060908031.273.680.22395262.20Pumbojarosite515061004010.761.220.3099705262.20Pumbojarosite515061004010.761.220.309770.951.51Quessdetitte88255061121040.400.240.2723685.241.33RhomboclaseML-S84070117020.540.430.3723685.241.33RhomboclaseML-S8512020304h0.341.140.2497558.711.08RhomboclaseML-S8512020304h0.440.510.2597592.441.31RhomboclaseML-S8512020602h0.290.800.2433731.08RhomboclaseML-S8512020602h0.290.800.2435731.08 <t< th=""><th>Metavoltine</th><th>SPT109</th><th>02052501</th><th>0.33</th><th>0.46</th><th>0.68</th><th>19</th><th></th><th></th></t<>	Metavoltine	SPT109	02052501	0.33	0.46	0.68	19		
Parabulerite157716060911020.371.200.2212851.131.69Parabulerite157716060911020.420.750.3350PentahydriteV20121060908030.580.410.5061038.912.03PentahydriteV20121060908031.263.000.28545758 <th>Parabutlerite</th> <th>VZO115/116</th> <th>06090903</th> <th>0.41</th> <th>0.98</th> <th>0.27</th> <th>100</th> <th>926.09</th> <th>1.77</th>	Parabutlerite	VZO115/116	06090903	0.41	0.98	0.27	100	926.09	1.77
Parabutlerite157716060911020.420.400.750.3350PerabutleriteVZ0121060908030.580.410.5061038.912.03PentahydriteVZ0121060908031.263.000.285454PentahydriteVZ0121060908031.263.000.285455Plumbojarosite515061004010.290.700.30123157.9862.20PlumbojarositeS15061004010.371.220.3679701.51QuessdetitteB8255061121040.400.240.926577.951.51RomboclaseML-S84070117020.540.430.3723685.241.33RhomboclaseML-S84070117020.430.530.247777RhomboclaseML-S84070117020.440.510.2577558.711.16RhomboclaseML-S8412020602h0.240.530.24777RhomboclaseML-S8412020602h0.290.800.243371.15RhomboclaseML-S8412020602h0.290.800.24331.140.24331.140.2431.151.151.161.111.140.2431.151.151.151.161.111.141.2431.151.151.16 <t< th=""><th>Parabutlerite</th><th>157716</th><th>06091102</th><th>0.37</th><th>1.20</th><th>0.22</th><th>12</th><th>861.13</th><th>1.69</th></t<>	Parabutlerite	157716	06091102	0.37	1.20	0.22	12	861.13	1.69
Parabuyitherite1577/16060910020.420.750.3350PentahydriteVZ0121060908030.160.50641038.912.03PentahydriteVZ0121060908031.263.000.285454PentahydriteVZ0121060908031.273.680.253972Plumbojarosite515061004010.761.220.3099PlumbojarositeS15061004010.761.220.307970QuensdetiteB8255061121040.470.130.253577.951.51QuensdetiteB8255061121040.470.130.2532685.241.33RhomboclaseML-S84070117020.430.530.247771.68RhomboclaseML-S8512020304h0.440.510.2597592.441.15RhomboclaseML-S8912020602h0.440.510.2597592.441.31RhomboclaseML-S8912020602h0.440.510.243777RhomboclaseML-S8912020602h0.440.510.243777RhomboclaseML-S8912020602h0.440.510.24377571.61RhomboclaseML-S8912020602h0.440.510.2437571.611.3173.733 <th< th=""><th>Parabutlerite</th><th>157716</th><th>06091102</th><th>0.42</th><th>0.40</th><th>0.27</th><th>38</th><th></th><th></th></th<>	Parabutlerite	157716	06091102	0.42	0.40	0.27	38		
PentahydriteVZ0121060908030.580.410.5061038.912.03PentahydriteVZ0121060908031.263.000.285.4PlumbojarositeS15061004010.290.700.30123157.9862.20PlumbojarositeS15061004010.371.220.367970.951.51QuensdetiteB8255061121040.400.240.9265770.951.51RomboclaseML-S84070117020.540.430.3723685.241.33RhomboclaseML-S8512020304h0.341.140.24377RhomboclaseML-S8912020602h0.440.510.2897558.711.08RhomboclaseML-S8912020602h0.440.510.2897592.441.15RhomboclaseML-S8912020603h0.440.510.2895671.461.31RhomboclaseML-S8912020603h0.440.480.301.4263.580.51RomeriteSPT11002052901a0.410.510.270.24390.51RomeriteSPT11002052901a0.410.510.270.24301.4RomeriteSPT11002052901a0.310.610.24301.4263.580.51RomeriteSPT11002052901a0.310.610.2732494.66<	Parabutlerite	157716	06091102	0.42	0.75	0.33	50		
PentahydriteV20121060908031.263.000.285.4PentahydriteV20121060908031.273.680.2539PlumbojarositeS15061004010.761.220.30962.20PlumbojarositeS15061004010.761.220.3097QuensdeditieB8255061121040.400.240.9265770.951.51QuensdeditieB8255061121040.470.130.25353533RhomboclaseML-S84070117020.540.430.370.2497558.711.88RhomboclaseML-S8512020802h0.341.140.2493373536RhomboclaseML-S8512020802h0.440.510.2597558.711.81RhomboclaseML-S8512020802h0.440.540.2895671.461.31RhomboclaseML-S8512020802h0.440.540.2895671.461.31RhomboclaseML-S8512020802h0.440.540.2895671.461.31RhomboclaseML-S8512020802h0.440.540.2895671.461.31RhomboclaseML-S8512020802h0.310.610.24369636RhomboclaseML-S8512020802h0.310.610.2436963636Rhomboclase </th <th>Pentahydrite</th> <th>VZO121</th> <th>06090803</th> <th>0.58</th> <th>0.41</th> <th>0.50</th> <th>6</th> <th>1038.91</th> <th>2.03</th>	Pentahydrite	VZO121	06090803	0.58	0.41	0.50	6	1038.91	2.03
PentalydriteVZ0121060908031.273.680.2539PlumbojarositeS15061004010.761.220.301231575.9862.20PlumbojarositeS15061004010.761.220.3099QuensdetiteB8255061121040.470.130.25355QuensdetiteB8255061121040.470.130.253555RhomboclaseML-S84070117020.430.530.2497558.711.08RhomboclaseML-S8512020304h0.440.520.2497558.711.08RhomboclaseML-S8512020602h0.440.510.2597552.441.15RhomboclaseML-S8112020602h0.290.800.24311.31RhomboclaseML-S8112020603h0.440.480.3014263.580.51Rhomboclase8126812020603h0.440.480.3014263.580.51RomeriteSPT1100205201a0.310.510.243014263.580.51RomeriteSPT1100205201a0.310.510.243014263.580.51RomeriteSPT11004070902a0.230.370.243014263.580.51RomeriteSPT11004070902a1.232.870.243014263.580.51 </th <th>Pentahydrite</th> <th>VZO121</th> <th>06090803</th> <th>1.26</th> <th>3.00</th> <th>0.28</th> <th>54</th> <th></th> <th></th>	Pentahydrite	VZO121	06090803	1.26	3.00	0.28	54		
Plumbojarosite515061004010.290.700.301.231575.9862.20PlumbojarositeS15061004010.761.220.3679QuensdeditieB8255061121040.400.240.926577.0951.51QuensdeditieB8255061121040.470.130.2535351.33RhombolaseML-S84070117020.430.530.2477771.33RhombolaseML-S8512020304h0.440.520.2497558.711.08RhombolaseML-S8512020602h0.440.510.2597558.711.08RhombolaseML-S8912020602h0.440.540.2895671.461.31RhombolaseML-S8912020602h0.440.540.2895671.461.31RhombolaseML-S8912020602h0.440.540.2895671.461.31RhombolaseML-S8912020602h0.440.540.2895671.461.31RhombolaseML-S8912020602h0.440.540.2895671.461.31RhombolaseML-S8912020602h0.440.540.24350.747RomeriteSPT11002052901a0.310.610.24360.530.747RomeriteSPT11002052901a1.272.720.2435357 <th>Pentahydrite</th> <th>VZO121</th> <th>06090803</th> <th>1.27</th> <th>3.68</th> <th>0.25</th> <th>39</th> <th></th> <th></th>	Pentahydrite	VZO121	06090803	1.27	3.68	0.25	39		
Plumbojarosite515061004010.761.220.309PlumbojarositeS15061020100.371.220.3679Quensdetite88255061121040.470.130.2555770.951.51Quensdetite88255061121040.470.130.25353533RhomboclaseML-S84070117020.430.530.2477751.51RhomboclaseML-S8512020304h0.440.520.2497558.711.08RhomboclaseML-S8512020602h0.440.510.2597592.441.15RhomboclaseML-S8512020602h0.290.800.243733RhomboclaseML-S8512020602h0.290.800.2435671.461.31RhomboclaseML-S8512020602h0.290.800.2435671.461.31RhomboclaseML-S8512020602h0.290.800.2435671.461.31RhomboclaseML-S8512020602h0.290.800.2435671.461.31RhomboclaseML-S8512020602h0.290.800.2435671.461.31RhomboclaseML-S8512020501a1.681.910.2355671.461.31RhomboclaseSP11002052901a1.272.720.2435671.461.31Romerite	Plumbojarosite	S15	06100401	0.29	0.70	0.30	12	31575.98	62.20
Plumbojarosite S15 0610001 0.37 1.22 0.36 79 Quensdeditie B8255 06112104 0.40 0.24 0.92 65 770.95 1.51 Quensdeditie B8255 06112104 0.47 0.13 0.25 35 Rhomboclase ML-S84 07011702 0.43 0.53 0.24 77 558.71 1.08 Rhomboclase ML-S85 12020304h 0.44 0.51 0.25 97 592.44 1.16 Rhomboclase ML-S85 12020602h 0.24 0.24 3 - - Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 - Rhomboclase 81268 12020603n 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.41 0.43 0.61 0.24 30 - - - - - - - -	Plumbojarosite	S15	06100401	0.76	1.22	0.30	9		
Quensdeditie B8255 06112104 0.40 0.24 0.92 65 770.95 1.51 Quensdeditie B8255 06112104 0.47 0.13 0.25 35 Rhomboclase ML-S84 07011702 0.54 0.43 0.53 0.24 77 7 Rhomboclase ML-S85 12020304h 0.44 0.52 0.24 97 558.71 1.08 Rhomboclase ML-S85 12020304h 0.44 0.51 0.25 97 592.44 1.15 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 Rhomboclase B1268 12020603n 0.44 0.54 0.28 95 671.46 1.31 Rhomboclase SPT110 02052901a 0.21 0.23 5 7 Romerite SPT110 04070902a 0.29 0.61 0.24	Plumbojarosite	S15	06100401	0.37	1.22	0.36	79		
Quensdetitie B8255 06112104 0.47 0.13 0.25 35 Rhomboclase ML-S84 07011702 0.54 0.43 0.37 23 685.24 1.33 Rhomboclase ML-S85 12020304h 0.44 0.52 0.24 97 558.71 1.08 Rhomboclase ML-S85 12020302h 0.34 1.14 0.24 37 Rhomboclase ML-S89 12020602h 0.44 0.51 0.25 97 592.44 1.15 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 33 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 Rhomboclase 81268 12020603h 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 1.27 2.72 0.24 30 Romerite SPT110 04070902a 1.23 2.87 0.24 32	Quensdedtite	B8255	06112104	0.40	0.24	0.92	65	770.95	1.51
Rhomboclase ML-S84 07011702 0.54 0.43 0.57 23 685.24 1.33 Rhomboclase ML-S85 12020304h 0.44 0.52 0.24 97 558.71 1.08 Rhomboclase ML-S85 12020304h 0.34 1.14 0.24 3 Rhomboclase ML-S85 12020602h 0.44 0.51 0.25 97 592.44 1.31 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 Rhomboclase 81268 12020603n 0.44 0.54 0.28 95 671.46 1.31 Rhomboclase 81268 12020603n 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.31 0.61 0.24 36 Romerite SPT110 02052901a 1.27 2.72 0.24 50 Romerite SPT110 02052901a 1.27 2.72 0.24 12	Quensdedtite	B8255	06112104	0.47	0.13	0.25	35		
Rhomboclase ML-S84 07011702 0.43 0.53 0.24 77 Rhomboclase ML-S85 12020304h 0.44 0.52 0.24 97 558.71 1.08 Rhomboclase ML-S89 12020602h 0.44 0.51 0.25 97 592.44 1.15 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 3 Rhomboclase 81268 12020603n 0.44 0.51 0.23 5 5 Rhomboclase 81268 12020603n 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.31 0.61 0.24 36 95 671.46 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30 30 30 31 31 31 Romerite SPT110 04070902a 1.23 2.87 0.24 30 33 32 494.66 0.96 Romerite SPT120 04070902a 1.23 2.87	Rhomboclase	ML-S84	07011702	0.54	0.43	0.37	23	685.24	1.33
RhomboclaseML-S8512020304h0.440.520.2497558.711.08RhomboclaseML-S8512020602h0.341.140.243RhomboclaseML-S8912020602h0.290.800.243Rhomboclase8126812020603n0.440.510.2597592.441.15Rhomboclase8126812020603n0.440.510.23557RomeriteSPT11002052901a0.310.610.2436360.5136 <th< th=""><th>Rhomboclase</th><th>ML-S84</th><th>07011702</th><th>0.43</th><th>0.53</th><th>0.24</th><th>77</th><th></th><th></th></th<>	Rhomboclase	ML-S84	07011702	0.43	0.53	0.24	77		
Rhomboclase ML-S85 12020304h 0.34 1.14 0.24 3 Rhomboclase ML-S89 12020602h 0.44 0.51 0.25 97 592.44 1.15 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 1.14 0.25 97 592.44 1.15 Rhomboclase 81268 12020603n 0.44 0.54 0.28 95 671.46 1.31 Romerite SPT110 02052901a 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.41 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 1.27 2.72 0.24 50 50 Romerite SPT110 04070902a 0.23 2.87 0.24 12 70 70 70.64 70 70 70.64 70 70 70.64 70 70 70.64 70 70 70.64 70 70 70.64 70 70 70.64	Rhomboclase	ML-S85	12020304h	0.44	0.52	0.24	97	558.71	1.08
Rhomboclase ML-S89 12020602h 0.44 0.51 0.25 97 592.44 1.15 Rhomboclase ML-S89 12020602h 0.29 0.80 0.24 3 Rhomboclase 81268 12020603n 0.44 0.54 0.28 95 671.46 1.31 Rhomboclase 81268 12020603n 1.68 1.91 0.23 5 5 Romerite SPT110 02052901a 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.31 0.61 0.24 36 36 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30 37 23 494.66 0.96 Romerite SPT110 04070902a 1.28 3.01 0.27 35 37 35 37 35 36 36 36 36 36 31 Romerite SPT12/126 02061401a 1.39 2.09 0.64 23 176.06 0.34 Romerite <th>Rhomboclase</th> <th>ML-S85</th> <th>12020304h</th> <th>0.34</th> <th>1.14</th> <th>0.24</th> <th>3</th> <th></th> <th></th>	Rhomboclase	ML-S85	12020304h	0.34	1.14	0.24	3		
Rhomboclase MI-S89 12020602h 0.29 0.80 0.24 3 Rhomboclase 81268 12020603n 0.44 0.54 0.28 95 671.46 1.31 Rhomboclase 81268 12020603n 0.64 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.31 0.61 0.24 36 36 Romerite SPT110 02052901a 0.31 0.61 0.24 36 36 Romerite SPT110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30 30 Romerite SPT110 04070902a 1.23 2.87 0.24 12 30 316.60 31 Romerite SPT12/126 02061401a 1.39 2.09 0.64 23 176.06 0.34 Romerite SPT122/126 02061401a 1.37 2.74 0.24 44 4 Romer	Rhomboclase	ML-S89	12020602h	0.44	0.51	0.25	97	592.44	1.15
Rhomboclase 81268 12020603n 0.44 0.54 0.28 95 671.46 1.31 Rhomboclase 81268 12020603n 1.68 1.91 0.23 5 Romerite SPT110 02052901a 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 1.27 2.72 0.24 50 Romerite SPT110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SPT110 04070902a 1.23 2.87 0.24 30 30 30 30 30 30 30 31 30 30 30 30 30 30 30 31 30 <	Rhomboclase	ML-S89	12020602h	0.29	0.80	0.24	3		
Rhomboclase 81268 12020603n 1.68 1.91 0.23 5 Romerite SPT110 02052901a 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.31 0.61 0.24 36 Romerite SPT110 02052901a 1.27 2.72 0.24 50 Romerite SPT110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30 30 Romerite SPT110 04070902a 1.28 3.01 0.27 35 35 Romerite SPT12/126 02061401a 1.39 2.09 0.64 23 176.06 0.34 Romerite SPT122/126 02061401a 1.27 2.74 0.24 44 44 Romerite SPT122/126 02061401a 1.27 3.27 0.24 7 7 80 Romerite SPT122/126 02061401a 1.27 3.28	Rhomboclase	81268	12020603n	0.44	0.54	0.28	95	671.46	1.31
Romerite SPT110 02052901a 0.44 0.48 0.30 14 263.58 0.51 Romerite SPT110 02052901a 0.31 0.61 0.24 36 Romerite SPT110 02052901a 1.27 2.72 0.24 50 Romerite SPT110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30	Rhomboclase	81268	12020603n	1.68	1.91	0.23	5		
Romerite SP1110 02052901a 0.31 0.61 0.24 36 Romerite SP110 02052901a 1.27 2.72 0.24 50 Romerite SP110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SP110 04070902a 0.29 0.61 0.24 30 30 Romerite SP110 04070902a 1.23 2.87 0.24 12 30 Romerite SP1120 04070902a 1.28 3.01 0.27 35 35 Romerite SP1122/126 02061401a 1.39 2.09 0.64 23 176.06 0.34 Romerite SP1122/126 02061401a 1.27 3.27 0.24 7 76.06 7 Romerite SP1122/126 02061401a 0.32 0.45 0.64 26 26 Romerite SP122/126 02061401a 0.32 0.44 0.37 0.62 69 27 721.89 0.82 Romerite 113733 05022	Romerite	SPT110	02052901a	0.44	0.48	0.30	14	263.58	0.51
Romerite SP1110 02052901a 1.27 2.72 0.24 50 Romerite SPT110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30 12 Romerite SPT110 04070902a 1.23 2.87 0.24 12 12 Romerite SPT110 04070902a 1.28 3.01 0.27 35 35 Romerite SPT122/126 02061401a 1.39 2.09 0.64 23 176.06 0.34 Romerite SPT122/126 02061401a 1.27 2.74 0.24 44 44 Romerite SPT122/126 02061401a 1.27 3.27 0.24 7 7 Romerite SPT122/126 02061401a 0.32 0.45 0.64 26 6 Romerite SPT122/126 02061401a 0.32 0.45 0.64 26 6 7 7 8 Romerite 113733 05022701 <th>Romerite</th> <th>SPI110</th> <th>02052901a</th> <th>0.31</th> <th>0.61</th> <th>0.24</th> <th>36</th> <th></th> <th></th>	Romerite	SPI110	02052901a	0.31	0.61	0.24	36		
Romerite SP1110 04070902a 0.43 0.55 0.37 23 494.66 0.96 Romerite SPT110 04070902a 0.29 0.61 0.24 30 Romerite SPT110 04070902a 1.23 2.87 0.24 12 Romerite SPT110 04070902a 1.23 2.09 0.64 23 176.06 0.34 Romerite SPT122/126 02061401a 1.39 2.09 0.64 23 176.06 0.34 Romerite SPT122/126 02061401a 1.27 2.74 0.24 44 7 Romerite SPT122/126 02061401a 1.27 3.27 0.24 7 7 Romerite SPT122/126 02061401a 0.32 0.45 0.64 26 7 Romerite SPT122/126 02061401a 1.27 3.27 0.24 7 7 8.2 0.82 Romerite 13733 05022701 0.17 0.61 0.24 6 9 9 Romerite 13733 05022701	Romerite	SPI110	02052901a	1.27	2.72	0.24	50		
RomeriteSP1110040/0902a0.290.610.2430RomeriteSPT11004070902a1.232.870.2412RomeriteSPT11004070902a1.283.010.2735RomeriteSPT122/12602061401a1.392.090.6423176.060.34RomeriteSPT122/12602061401a1.272.740.24447RomeriteSPT122/12602061401a0.320.450.642626RomeriteSPT122/12602061401a0.320.450.642626RomeriteSPT122/12602061401a0.320.450.642626Romerite113733050227010.170.610.24626Romerite113733050227010.170.610.24626Romerite113733050227010.170.610.24626Romerite113733050227010.170.610.2467721.891.40Romerite159098-2050228010.150.640.247721.891.40Romerite159098-2050228011.262.730.272772.80Romerite159098-2050228011.263.300.2718770.9220.69Romerite159098-2050228011.263.300.2718770.9220.69Ro	Romerite	SPI110	04070902a	0.43	0.55	0.37	23	494.66	0.96
RomeriteSP111004070902a1.232.870.2412RomeriteSPT11004070902a1.283.010.2735RomeriteSPT122/12602061401a1.392.090.6423176.060.34RomeriteSPT122/12602061401a1.272.740.24447RomeriteSPT122/12602061401a1.273.270.2477RomeriteSPT122/12602061401a0.320.450.642626RomeriteSPT122/12602061401a0.320.450.642626RomeriteSPT122/12602061401a0.320.450.642626RomeriteSPT122/12602061401a0.320.450.642626Romerite113733050227010.170.610.24626Romerite113733050227010.170.610.24626Romerite113733050227011.273.280.27231.40Romerite159098-2050228010.150.640.247721.891.40Romerite159098-2050228011.262.730.2727721.891.40Romerite159098-2050228011.263.300.27187721.8920.69Romerite159098-2050228011.263.300.2718770.72.3020.69 <t< th=""><th>Romerite</th><th>SPI110</th><th>04070902a</th><th>0.29</th><th>0.61</th><th>0.24</th><th>30</th><th></th><th></th></t<>	Romerite	SPI110	04070902a	0.29	0.61	0.24	30		
RomeriteSP1110040/0902a1.283.010.2735RomeriteSPT122/12602061401a1.392.090.6423176.060.34RomeriteSPT122/12602061401a1.272.740.244444RomeriteSPT122/12602061401a1.273.270.247RomeriteSPT122/12602061401a0.320.450.6426RomeriteSPT122/12602061401a0.320.450.6426Romerite113733050227010.390.390.242419.220.82Romerite113733050227010.170.610.2467721.891.40Romerite113733050227010.150.640.247721.891.40Romerite113733050227010.150.640.247721.891.40Romerite159098-2050228010.150.640.2727721.891.40Romerite159098-2050228011.262.730.2727721.891.40Romerite159098-2050228011.262.730.2727721.891.40Romerite159098-2050228011.263.300.2718721.8920.69Romerite05602-1050318010.150.580.24710972.3020.69Romerite05602-1050318010.150.33	Romerite	SPI110	04070902a	1.23	2.87	0.24	12		
RomeriteSP1122/12602061401a1.392.090.6423176.060.34RomeriteSPT122/12602061401a1.272.740.2444RomeriteSPT122/12602061401a1.273.270.247RomeriteSPT122/12602061401a0.320.450.6426Romerite113733050227010.390.390.242419.220.82Romerite113733050227010.170.610.24677Romerite113733050227010.170.610.24677Romerite113733050227010.170.610.24677Romerite113733050227011.273.280.27231.40Romerite159098-2050228010.150.640.247721.891.40Romerite159098-2050228011.262.730.2727721.891.40Romerite159098-2050228011.263.300.271870972.3020.69Romerite159098-2050228011.263.300.24710972.3020.69Romerite159098-2050218010.150.580.24710972.3020.69Romerite159098-2050318010.150.580.24710972.3020.69Romerite159098-2050318010.150.580	Romerite	SP1110	04070902a	1.28	3.01	0.27	35	170.00	0.24
Romerite SPT122/126 02061401a 1.27 2.74 0.24 44 Romerite SPT122/126 02061401a 1.27 3.27 0.24 7 Romerite SPT122/126 02061401a 0.32 0.45 0.64 26 Romerite 113733 05022701 0.39 0.39 0.24 2 419.22 0.82 Romerite 113733 05022701 0.17 0.61 0.24 6 26 Romerite 113733 05022701 0.17 0.61 0.24 69 27 Romerite 113733 05022701 0.44 0.37 0.62 69 23 Romerite 113733 05022701 1.27 3.28 0.27 23 23 Romerite 159098-2 05022801 0.15 0.64 0.24 7 721.89 1.40 Romerite 159098-2 05022801 1.26 2.73 0.27 27 27 Romerite 159098-2 05022801 1.26 3.30 0.24 7 10972.3	Romerite	SPT122/120	02061401a	1.39	2.09	0.64	23	176.06	0.34
Komerite3F1122/12602061401a1.273.270.247RomeriteSPT122/12602061401a0.320.450.6426Romerite113733050227010.390.390.242419.220.82Romerite113733050227010.170.610.2467Romerite113733050227010.170.610.2467Romerite113733050227010.170.610.2467Romerite113733050227011.273.280.27237Romerite159098-2050228010.150.640.247721.891.40Romerite159098-2050228011.262.730.27277777777777777777777777771.40Romerite159098-2050228011.262.730.272777	Romerite	SPT122/120	02061401a	1.27	2.74	0.24	44		
Romerite 1122/120 02001401a 0.32 0.43 0.04 20 Romerite 113733 05022701 0.39 0.39 0.24 2 419.22 0.82 Romerite 113733 05022701 0.17 0.61 0.24 6 20 Romerite 113733 05022701 0.17 0.61 0.24 6 20 Romerite 113733 05022701 0.44 0.37 0.62 69 23 Romerite 113733 05022701 1.27 3.28 0.27 23 23 Romerite 159098-2 05022801 0.15 0.64 0.24 7 721.89 1.40 Romerite 159098-2 05022801 1.26 2.73 0.27 27 27 Romerite 159098-2 05022801 1.26 3.30 0.27 18 20 Romerite 159098-2 05022801 1.26 3.30 0.24 7 10972.30 20.69 Romerite 159098-2 05031801 0.45 0.33	Pomorito	SFT122/120	02001401a	1.27	0.45	0.24	7		
Romerite 113733 05022701 0.35 0.35 0.24 2 415.22 0.62 Romerite 113733 05022701 0.17 0.61 0.24 6 6 Romerite 113733 05022701 0.44 0.37 0.62 69 6 Romerite 113733 05022701 1.27 3.28 0.27 23 7 Romerite 159098-2 05022801 0.15 0.64 0.24 7 721.89 1.40 Romerite 159098-2 05022801 0.46 0.36 0.59 49 7 721.89 1.40 Romerite 159098-2 05022801 1.26 2.73 0.27 27 7 <th>Romerite</th> <th>112722</th> <th>020014018</th> <th>0.32</th> <th>0.43</th> <th>0.04</th> <th>20</th> <th>110 22</th> <th>0.82</th>	Romerite	112722	020014018	0.32	0.43	0.04	20	110 22	0.82
Romerite 113733 05022701 0.17 0.01 0.24 0 Romerite 113733 05022701 0.44 0.37 0.62 69 Romerite 113733 05022701 1.27 3.28 0.27 23 Romerite 159098-2 05022801 0.15 0.64 0.24 7 721.89 1.40 Romerite 159098-2 05022801 0.46 0.36 0.59 49 40 Romerite 159098-2 05022801 1.26 2.73 0.27 27 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite 05031801 0.45 0.33 0.55 50 Romerite 050221 05031801 1.27 3.30 0.27 11	Romerite	113733	05022701	0.39	0.59	0.24	6	419.22	0.82
Romerite 113733 05022701 1.27 3.28 0.27 23 Romerite 159098-2 05022801 0.15 0.64 0.24 7 721.89 1.40 Romerite 159098-2 05022801 0.46 0.36 0.59 49 140 Romerite 159098-2 05022801 1.26 2.73 0.27 27 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite 159098-2 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	113733	05022701	0.17	0.37	0.24	69		
Romerite 159098-2 05022701 0.17 5.20 0.17 25 Romerite 159098-2 05022801 0.15 0.64 0.24 7 721.89 1.40 Romerite 159098-2 05022801 0.46 0.36 0.59 49 49 Romerite 159098-2 05022801 1.26 2.73 0.27 27 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite C5602-1 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	113733	05022701	1 27	3.28	0.02	23		
Romerite 159098-2 05022801 0.46 0.36 0.59 49 Romerite 159098-2 05022801 1.26 2.73 0.27 27 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite C5602-1 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	159098-2	05022801	0.15	0.64	0.24		721 89	1 40
Romerite 159098-2 05022801 1.26 2.73 0.27 27 Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite C5602-1 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	159098-2	05022801	0.46	0.36	0.59	, 49	. 21.05	1.40
Romerite 159098-2 05022801 1.26 3.30 0.27 18 Romerite C5602-1 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	159098-2	05022801	1.26	2.73	0.27	27		
Romerite C5602-1 05031801 0.15 0.58 0.24 7 10972.30 20.69 Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	159098-2	05022801	1.26	3.30	0.27	18		
Romerite C5602-1 05031801 0.45 0.33 0.55 50 Romerite C5602-1 05031801 1.27 3.30 0.27 11	Romerite	C5602-1	05031801	0.15	0.58	0.24		10972.30	20.69
Romerite C5602-1 05031801 1 27 3 30 0 27 11	Romerite	C5602-1	05031801	0.45	0.33	0.55	50		
	Romerite	C5602-1	05031801	1.27	3.30	0.27	11		

Romerite	C5602-1	05031801	1.28	2.76	0.29	32		
Romerite	93825	05031901	0.16	0.60	0.24	5	561.76	1.09
Romerite	93825	05031901	0.44	0.33	0.60	55		
Romerite	93825	05031901	1.29	3.31	0.24	15		
Romerite	93825	05031901	1.29	2.78	0.32	25		
Romerite	R8415	05032001	0.36	0.37	0.30	7	1120.00	2.18
Romerite	R8415	05032001	0.17	0.56	0.26	12		
Romerite	R8415	05032001	0.47	0.36	0.63	56		
Romerite	R8415	05032001	1.34	2.59	0.24	2		
Romerite	R8415	05032001	1.29	3.29	0.27	23		
Romerite	G2677	8081101	1.27	3.26	0.30	43	2687.16	5.22
Romerite	G2677	8081101	0.33	0.44	0.30	6		
Romerite	G2677	8081101	0.46	0.23	0.61	50		
Rozenite	JB626B	04061901a	0.13	0.56	0.24	2	1319.01	2.49
Rozenite	JB626B	04061901a	0.45	0.47	0.24	2		
Rozenite	JB626B	04061901a	0.38	1.06	0.24	2		
Rozenite	JB626B	04061901a	1.33	2.97	0.34	59		
Rozenite	JB626B	04061901a	1.33	3.39	0.25	34		
Rozenite	SPT130	02061901	0.39	0.95	0.35	8	298.06	0.58
Rozenite	SPT130	02061901	1.27	3.21	0.25	92		
Rozenite	SPT130	04040603	1.27	3.33	0.25	91	316.01	0.62
Rozenite	SPT130	04040603	0.20	0.48	0.31	4		
Rozenite	SPT130	04040603	0.37	1.15	0.30	5		
Sideronatrite	SPT123	02061501	0.42	1.15	0.23	100	1212.65	2.31
Sideronatrite	115164	8092201	0.41	1.15	0.25	100	3357.48	6.41
Sideronatrite	SPT126	8091701	0.41	1.14	0.25	100	3789.26	7.03
Slavikite	VZO122/123	06091303	0.38	1.15	0.36	24	782.22	1.53
Slavikite	VZO122/123	06091303	0.37	0.57	0.28	76		
Slavikite	140229	06091401	0.27	0.63	0.25	34	687.85	1.35
Slavikite	140229	06091401	0.38	1.23	0.27	27		
Slavikite	140229	06091401	0.55	0.52	0.24	39		
Sphalerite	R164122-1	06092402	0.30	0.46	0.28	90	1308.95	2.55
Sphalerite	R164122-1	06092402	1.29	2.66	0.24	10		
Stock Ferric Sulfate	MHC2046	06092802	0.45	0.26	0.34	96	702.11	1.37
Stock Ferric Sulfate	MHC2046	06092802	1.57	2.68	0.46	4		
Starkeyite	S65	06091101	0.06	0.49	0.25	39	593.69	1.16
Starkeyite	S65	06091101	0.16	0.64	0.27	61		
Starkeyite	137725	08081501	0.00	0.57	0.54	9	1791.84	3.45
Starkeyite	137725	08081502	1.14	2.65	0.23	91		
Szmikite	159189	7012201	0.52	0.93	0.48	18	7249.38	14.18
Szmikite	159189	7012201	1.24	2.59	0.39	82		
Szomolnokite	156925	05022101	0.11	0.62	0.24	70	882.71	1.72
Szomolnokite	156925	05022101	0.23	0.84	0.24	16		
Szomolnokite	156925	05022101	0.40	1.11	0.24	14		
Szomolnokite	S77	9011401	1.26	2.73	0.27	94	1164.17	2.23
Szomolnokite	S77	9011401	0.42	0.44	0.30	2		
Szomolnokite	S77	9011401	0.39	1.02	0.30	4		
Szomolnokite	92942	05030201a	0.60	0.61	0.45	4	2172.27	4.11
Szomolnokite	92942	05030201a	1.26	2.73	0.34	96		
Szomolnokite	136685-2	05030901a	0.23	0.69	0.24	12	1153.53	2.22
Szomolnokite	136685-2	05030901a	0.55	0.38	0.44	6		
Szomolnokite	136685-2	05030901a	1.29	2.74	0.26	82		
Szomolnokite	104276	05031401a	1.28	2.76	0.27	100	7785.66	14.58
Szomolnokite	S60	04041902a	1.31	2.89	0.24	57	1475.92	2.83
Szomolnokite	S60	04041902a	1.31	3.42	0.45	31		

Szomolnokite	S60	04041902a	0.23	0.76	0.24	5		
Szomolnokite	S60	04041902a	0.50	0.36	0.47	4		
Szomolnokite	S60	04041902a	0.55	0.85	0.24	2		
Szomolnokite	159098	05030701	0.49	0.18	0.51	12	400.56	0.78
Szomolnokite	159098	05030701	1.24	2.78	0.24	43		
Szomolnokite	159098	05030701	1.31	2.69	0.30	42		
Szomolnokite	159098	05030701	1.12	3.12	0.54	3		
Szomolnokite	159266	5030801	0.46	0.36	0.64	72	343.36	0.67
Szomolnokite	159266	5030801	0.14	0.56	0.30	28		
Szomolnokite	ML-S103	12020604g	0.43	0.42	0.48	7	741.82	1.44
Szomolnokite	ML-S103	12020604g	1.27	2.74	0.26	93		
Voltaite	DD104	05031501	1.35	1.82	0.30	43	726.16	1.41
Voltaite	DD104	05031501	1.42	2.28	0.30	8		
Voltaite	DD104	05031501	0.46	0.40	0.43	36		
Voltaite	DD104	05031501	0.13	0.47	0.25	13		
Voltaite	158795	05022201	1.20	1.58	0.36	24	381.48	0.75
Voltaite	158795	05022201	1.34	1.62	0.23	23		
Voltaite	158795	05022201	0.47	0.37	0.46	45		
Voltaite	158795	05022201	0.14	0.61	0.30	7		
Voltaite	137958	05022301	1.22	1.60	0.30	17	817.41	1.58
Voltaite	137958	05022301	1.33	1.77	0.24	29		
Voltaite	137958	05022301	1.26	2.83	0.24	21		
Voltaite	137958	05022301	0.46	0.37	0.44	34		
Voltaite	129313	04071501	1.26	1.79	0.29	58	706.18	1.37
Voltaite	129313	04071501	0.43	0.35	0.38	35		
Voltaite	129313	04071501	0.10	0.54	0.24	7		
Voltaite	115035	05022601	1.34	1.62	0.33	26	369.00	0.72
Voltaite	115035	05022601	1.20	1.63	0.29	16		
Voltaite	115035	05022601	0.47	0.38	0.51	48		
Voltaite	115035	05022601	0.11	0.59	0.30	10		
Voltaite	85679	04071601	1.30	1.79	0.33	32	713.05	1.39
Voltaite	85679	04071601	1.19	1.75	0.24	19		
Voltaite	85679	04071601	0.43	0.36	0.44	40		
Voltaite	85679	04071601	0.16	0.69	0.30	9	640.42	1.20
Voltaite	95830	05022401	1.09	2.46	0.24	/	648.43	1.26
Voltaite	95830	05022401	1.15	1.69	0.34	23		
Voltaite	95650	05022401	1.31	1.03	0.25	15		
Voltaite	95830	05022401	0.54	0.38	0.46	43		
Voltaite	93630 MDL 570	05022401	0.34	0.37	0.24	100	20/11 69	E 00
Tavapante		05010801	0.46	0.51	0.29	100	5041.00 1121 70	5.0Z
Zincobotryogen	C557E 2	06001201	0.41	1.21	0.25	/د د/	1121./9	2.1ð
Zincopoli yogen	G_3627	00091201	0.59	1.05	0.25	45 7	519 20	1 0 2
Zincocopiapite	G-3627	07012902	0.07	0.43	0.25	/ /2	313.33	1.02
Zincocopiapite	G-3627	07012902	0.43	0.30	0.25	42 50		
zincocopiapite	0-2027	07012302	0.45	0.00	0.20	50		

Mineral	Fig.	Sample	δ	Δ	area																		
Ouenstedtite	3	B8255				0.47	0.13	35	0.40	0.24	65												
Coquimbite		VZO101/102	0.18	0.58	7	0.46	0.10	93															
		SPT132	0.18	0.71	6				0.42	0.47	94												
		SPT131	0.19	0.72	9				0.43	0.44	91												
	3	SPT126/127	0.16	0.66	5	0.45	0.08	95															
		SPT119	0.16	0.77	5	0.47	0.09	95															
		ML-S63				0.44	0.25	86	0.35	1.09	7	0.31	0.58	7									
		R7661	0.19	0.52	7	0.46	0.11	93															
Kornelite	3	R16185				0.44	0.11	100															
Lausenite	3	102923				0.47	0.12	89										1.25	2.63	6			
Ferrinatrite		VZO105/106 ¹							0.44	0.40	88	0.40	1.13	12									
	3	R6214 ²				0.47	0.05	100															
Voltaite		DD104	0.13	0.47	13				0.46	0.40	36				1.35	1.82	43	1.42	2.28	8			
		137958							0.46	0.37	34				1.22	1.60	17	1.33	1.77	29	1.26	2.83	21
		158795	0.14	0.61	7				0.47	0.37	45				1.20	1.58	24	1.34	1.62	23			
	3	129313	0.10	0.54	7				0.43	0.35	35				1.26	1.79	58						
		115035	0.11	0.59	10				0.47	0.38	48				1.34	1.62	26	1.20	1.63	16			
		85679	0.16	0.69	9				0.43	0.36	40				1.30	1.79	32	1.19	1.75	19			
		95830^{\dagger}				0.34	0.37	12	0.54	0.38	43				1.15	1.69	23	1.31	1.63	15	1.09	2.46	7
Pertlikite	Ť	pertlikite							0.42	0.36	72				1.30	1.70	13	1.18	1.65	12			
Rhomboclase		ML-S84				0.54	0.43	23	0.43	0.53	77												
		ML-S85							0.44	0.52	97												
	3	ML-S89							0.44	0.51	97												
		81268							0.44	0.54	95												

Table 3. Mössbauer Parameters of Low Δ Sulfates Containing Dominantly Fe³⁺

Values for δ and Δ are given in mm/s and areas are given as percentage of the total spectra area. Errors bars are ± 0.02 mm/s for δ and Δ and $\pm 1-5\%$ on doublet areas.

*Doublets with peak areas <5% of the total area are not included in this table. Their parameters, peak widths and goodness of fit parameters for all spectra are given in Table 2, in supplementary materials. †Spectrum of this sample was published in Ertl et al. (2012).

¹ Sample also contains minor metavoltine. ²Sample also contains a coquimbite impurity.

Mineral	Fig.	Sample	δ	Δ	area	δ	Δ	area	δ	Δ	area	δ	Δ	area	δ	Δ	area	δ	Δ	area	δ	Δ	area
Yavapaiite	4a	ML-579				0.48	0.31	100															
Krausite	4a	156916				0.41	0.41	100															
Goldichite	4a	123922	0.19	0.61	29	0.48	0.29	71															
Copiapite	4a	SPT117	0.21	0.34	6	0.42	0.35	43				0.43	0.79	41	0.34	1.00	10						
		G596-1													0.37	1.18	100						
Ferricopiapite		SPT125				0.42	0.40	38				0.43	0.77	38	0.38	1.18	25						
		ML-S35				0.43	0.39	35	0.37	0.52	16	0.43	0.78	48									
		168257				0.42	0.37	26				0.43	0.78	17				1.25	2.71	51			
	4a	SPT 109				0.42	0.36	38				0.42	0.74	62									
		SPT133				0.42	0.40	40	0.38	0.53	27	0.43	0.76	33									
Zincocopiapite	4a	G-3637	0.07	0.45	7	0.43	0.38	42				0.43	0.88	50									
Apiohnite	4b	121356	0.19	0.75	12	0.43	0.58	70													1.27	3.31	18
Bilinite	4b	169017	0.09	0.79	17	0.49	0.37	71										1.37	1.78	7	1.06	3.69	5
Dietrichite	4b	G-2429				0.42	0.35	44	0.43	0.79	52												
Römerite		SPT110				0.43	0.55	23	0.29	0.61	30							1.23	2.87	12	1.28	3.01	35
		SPT122/126													1.39	2.09	23**	1.27	2.74	44	1.27	3.27	7
	6b	113733	0.17	0.61	6	0.44	0.37	69	0.39	0.39	2										1.27	3.28	23
		159098-2	0.15	0.64	7	0.46	0.36	49			_							1 26	2.73	27	1.26	3 30	18
		C5602-1	0.15	0.58	7	0.45	0.33	50										1.28	2.76	32	1.27	3 30	11
		93825	0.16	0.60	, 5	0.44	0.33	55										1 29	2.78	25	1 29	3 31	15
		R8415	0.17	0.56	12	0.47	0.36	56	0.36	0.37	7							1.29	2.70	20	1.29	3 29	23
Metavoltine		VZ0114	0.17	0.00	12	0.43	0.35	53	0.50	0.57	,				0.40	1.04	36	1.51	2.07	-	1.27	5.27	25
Wetavoltine		V20111				0.15	0.55	00							1 16	2.01	11						
		G2677				0.44	0.24	19							1.10	2.01					1 27	3 23	81
	4h	SPT109				0.33	0.24	19	0.42	0.37	38	0.43	0.74	13							1.27	5.25	01
Starkevite	40 //h	MI -865	0.16	0.64	61	0.55	0.40	17	0.72	0.57	50	0.45	0.74	- J									
Surkeyne	10	MIL-505	0.10	0.04	30																		
Ilesite	3b	123277	0.00	0.77	59				0.31	0.62	97												

Table 4. Mössbauer Parameters of Predominantly Fe^{3+} Sulfate Minerals with Δ of 0.31-0.81 mm/s*

Values for δ and Δ are given in mm/s and areas are given as percentage of the total spectra area. Errors bars are ± 0.02 mm/s for δ and Δ and $\pm 1-5\%$ on doublet areas. *Doublets with peak areas <5% of the total area are not included in this table. Their parameters, peak widths and goodness of fit parameters for all spectra are given in Table 2, in supplementary materials. **Likely an impurity.

Mineral	Fig.	Sample	δ	Δ	area															
Butlerite	5a	C5534										0.41	0.96	100						
		R7653										0.41	0.95	100						
		639										0.41	0.98	100						
		ML-S88							0.41	0.80	81	0.42	0.99	19						
Parabutlerite	5a	VZO115/116										0.41	0.98	100						
		157716				0.42	0.40	38	0.42	0.75	50	0.37	1.20	12						
Slavikite	5a	140229	0.27	0.63	34	0.55	0.52	39				0.38	1.23	39						
		VZO122/123				0.37	0.57	76				0.38	1.15	24						
Fibroferrite		SPT121				0.41	0.52	37	0.42	0.96	63									
	5a	VZO107/108				0.41	0.50	100												
Botryogen		SPT124													0.42	1.18	49	0.40	1.63	43
		G3775				0.41	0.35	30	0.41	0.80	31				0.37	1.25	34			
	5a	DD112													0.41	1.16	63	0.40	1.60	33
Zincobotryogen	5a	C5525-3													0.41	1.21	57	0.39	1.65	43
Sideronatrite	5b	SPT123													0.42	1.15	100			
		115164													0.41	1.15	100			
Metasideronatrite	5b	105774-2										0.35	1.20	43	0.44	1.18	57			
		VZO112										0.42	1.17	48	0.38	1.18	52			
Metahohmannite	5b	R12495										0.43	0.94	100						
Amarantite	5b	G3775				0.43	0.35	8				0.44	0.98	8	0.40	1.19	54	0.39	1.60	30
Jarosite	5b	132060													0.38	1.30	100			
		SPT113													0.38	1.18	100			
		SPT116													0.38	1.23	100			
		SPT115													0.38	1.29	100			
		SPT120										0.37	0.70	56	0.38	1.14	44			
Plumbojarosite*	5b	ML-S15	0.29	0.70	12							0.37	1.22	79				0.76	1.22	9
Anhydrite		159266**				0.44	0.41	76	0.14	0.58	24									
	5c	SPT132**				0.40	0.46	93				0.38	1.02	7						
Celestine	5c* *	ML-S13**				0.15	0.54	65				0.24	0.87	35						

Table 5. Mössbauer Parameters of Fe³⁺ Sulfate Minerals with Predominantly High Quadrupole Splitting*

Values for δ and Δ are given in mm/s and areas are given as percentage of the total spectra area. Errors bars are ± 0.02 mm/s for δ and Δ and $\pm 1-5\%$ on doublet areas.

*Doublets with peak areas <5% of the total area are not included in this table. Their parameters, peak widths and goodness of fit parameters for all spectra are given in Table 2, in

supplementary materials.

†This sample also contains a magnetic sextet from an unknown impurity.

**Mössbauer data cannot determine whether the Fe in these samples is actually part of the sulfate's structure, or if it is an impurity. SPT132 is known from XRD to be a mixture of anhydrite and coquimbite, but XRD of 159266 and ML-S13 show that they are "pure." However, it takes only a tiny amount of Fe-rich sulfate impurity to have a large influence on the spectrum of a low-Fe Ca sulfate.

¹XRD suggests this sample is gypsum but there is apparently some slavikite impurity here, given the similarity of this spectrum to the known slavikite 140229.

Mineral	Fig.	Sample	δ	۸	area	δ	٨	area	δ	Δ	area	δ	Δ	area	δ	Δ	area	δ	۸	area	δ	Δ	area
Szomolnokite	8'	MI -S77	Ŭ			Ū			Ū		ureu	Ŭ	_		Ũ			1.26	2 73	9/	Ũ	-	
Szomoniokite		02042																1.20	2.75	06			
		92942				0.54	0.14	-	0.00	0.00	10							1.20	2.75	90			
		136685-2				0.54	0.14	/	0.23	0.69	12							1.29	2.74	82			
	6a	104276																1.28	2.76	100			
	6a	ML-S60																1.31	2.89	57	1.31	3.42	31
		159098				0.49	0.18	12							1.31	2.69	42	1.24	2.78	43			
		159266				0.46	0.36	72	0.14	0.56	28												
		ML-S103				0.43	0.42	7										1.27	2.74	93			
Szmikite	6a	159189							0.52	0.93	18							1.24	2.59	82			
Gunningite	6a	156925				0.26	0.40	32				0.37	1.26	10				1.25	2.74	58			
Chalcanthite	6a	DD100	0.10	0.51	29				0.26	0.76	30							1.26	2.32	22	1.30	2.88	19
Pentahydrite ¹	6a	VZO121							0.50	0.83	8							1.26	3.00	53	1.27	3.68	38
Jokokuite	6b	G3536	0.15	0.56	26										1.13	2.63	6	1.26	2.51	65			
Halotrichite	6b	G1616																			1.27	3.29	92
		VZO128	0.13	0.49	10	0.36	0.31	14							1.45	1.56	13	1.28	2.76	43	1.30	3.29	20
Melanterite	6b	2070																			1.27	3.21	100
Rozenite		JB626B																1.33	2.97	59	1.33	3.39	34
	6b	SPT130										0.39	0.95	8							1.27	3.21	92
Starkeyite	6b	137725	0.00	0.57	9													1.14	2.65	91			

Table 6. Mössbauer Parameters of Predominantly Fe²⁺ Sulfate Minerals*

Values for δ and Δ are given in mm/s and areas are given as percentage of the total spectra area. Errors bars are ± 0.02 mm/s for δ and Δ and $\pm 1-5\%$ on doublet areas. *Doublets with peak areas <5% of the total area are not included in this table. Their parameters, peak widths and goodness of fit parameters for all spectra are given in Table 2, in supplementary materials. ¹Sample known to include minor impurities from pickeringite, starkeyite, botryogen, and boussingaultite,

kieserite

