Vorlanite, (CaU⁶⁺)O₄, from Jabel Harmun, Palestinian Autonomy, Israel

Evgeny V. Galuskin,¹* Joachim Kusz,² Thomas Armbruster,³
Irina O. Galuskina,¹ Katarzyna Marzec⁴, Yevgeny Vapnik⁵, Mikhail Murashko⁶

¹Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

*E-mail: evgeny.galuskin@us.edu.pl

²Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

³Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

⁴Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14, 30-348 Cracow, Poland

⁵Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel

⁶Systematic Mineralogy, 44, 11th line V.O, apt. 76, Saint-Petersburg 199178, Russia
ABSTRACT

Vorlanite (Ca$^{6+}$)O$_4$ ($Fm\overline{3}m$, $a = 5.3647(9)$ Å, $V = 154.40(4)$ Å3, $Z = 2$) was found in larnite pyrometamorphic rocks of the Hatrurim formation at the Jabel Harmun locality, Judean Desert, Palestinian Autonomy. Black vorlanite crystals from these larnite rocks are dark-grey with greenish hue in transmitted light. This color in transmitted light is in contrast to dark-red vorlanite ($Fm\overline{3}m$, $a = 5.3813(2)$ Å, $V = 155.834(10)$ Å3, $Z = 2$) from the type locality Upper Chegem caldera, Northern Caucasus. Heating above 750°C of dark-grey vorlanite from the Jabel Harmun, as well as dark-red vorlanite from Caucasus, led to formation of yellow trigonal uranate CaUO$_4$. The unusual color of vorlanite from Jabel Harmun is assumed to be related to small impurities of tetravalent uranium.

Keywords: vorlanite, structure, Raman spectroscopy, lakargiite, Hatrurim formation, Jabel Harmun, Judean Desert.
INTRODUCTION

Vorlanite, (CaU\(^{6+}\))O\(_4\), a mineral with radiation-induced disordered structure of the fluorite type, was originally discovered in altered xenoliths within ignimbrites of the Upper Chegem caldera, Vorlan Mountain, Northern Caucasus, Kabardino-Balkaria (Galuskin et al. 2009, 2011). Vorlanite occurs also as rare accessory mineral in larnite and spurrite pyrometamorphic rocks of the Hatrurim formation. Rocks of the Hatrurim formation are widely distributed in the region of the Dead Sea on the territory of Israel, Palestinian Autonomy and Jordan (Picard 1931; Kolodny and Gross 1974; Burg et al. 1991, 1999). We detected numerous black platy vorlanite crystals in larnite pyrometamorphic rocks from the Jabel Harmun locality, Judean Desert, Palestinian Autonomy, Israel. The remarkable property of vorlanite from the Jabel Harmun in contrast to Caucasian vorlanite is its dark-grey color with greenish hue in transmitted light (Fig. 1).

Vorlanite, (CaU\(^{6+}\))O\(_4\), from Caucasus (\(Fm\bar{3}m, a = 5.3813(2) \text{ Å}\)) formed out of the trigonal calcium uranate CaUO\(_4\) (\(R\bar{3}m, a = 3.878 \text{ Å}, b = 17.564 \text{ Å}\)) where \(\alpha\)-decay events of uranium caused disordering of Ca and U associated with randomly oriented uranyl-bonds (Galuskin et al. 2012). Vorlanite experienced 0.56 displacements per atom (dpa) during \(\alpha\)-decay events (Galuskin et al. 2011). Caucasian vorlanite is black in hand specimens but dark-red in transmitted light, which is highly surprising for minerals containing hexavalent uranium. In addition, the platy crystals inherited the morphology of “protovorlanite” – a trigonal uranate. Above 750°C dark-red disordered vorlanite transformed irreversibly to bright-yellow, ordered, trigonal uranate (Galuskin et al. 2012).

Most recently vorlanite was also described as tiny inclusions in uranium-bearing opals from Sierra Pieña Blanca, Mexico (Othmane et al. 2013). It was assumed that these nanocrystals formed under oxidizing conditions below 50ºC. However, this finding requires additional investigations because composition and structure of this unusual mineral may also be interpreted as Ca-rich uraninite. In addition, the nanocrystals did not form by radiation-induced transformation from the...
trigonal precursor “protovorlanite” CaUO$_4$ with ordered [UO$_2$]$^{2+}$ groups (Galuskin et al. 2011, 2012).

In this paper we present results of structure, composition and Raman spectroscopy experiments aiming at recovery of the primary structure of dark-grey vorlanite from the Judean Desert.

Methods of investigations

Crystal morphology and chemical composition of vorlanite and associated minerals were examined using optical microscopes, analytical electron scanning microscope Philips XL30 ESEM/EDAX (Faculty of Earth Sciences, University of Silesia, Poland) and electron microprobe CAMECA SX100 (Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Poland). Electron-microprobe analyses of vorlanite were performed at 15 kV and 40–50 nA using the following lines and standards: UM_{β} for Caucasian vorlanite, CaK_{α} for wollastonite and diopside; FeK_{α} for hematite.

The Raman spectra of vorlanite were recorded using a WITec confocal CRM alpha 300 Raman microscope (Jagiellonian Centre for Experimental Therapeutics, Cracow, Poland) equipped with an air-cooled solid-state laser operating at 488 nm and a CCD detector which was cooled to -82°C. The laser was coupled to the microscope via a single-mode optical fibre with a diameter of 50 μm. A dry Olympus MPLAN (1006/0.90NA) objective was used. The scattered radiation was focused onto a multi-mode fibre (50 μm diameter) and monochromator. The power of the laser at the sample position was 44 mW for measurement and 100-120 mW for heating and crater production. 150 scans with integration times of 0.3-0.5 s and a resolution of 3 cm$^{-1}$ were collected and averaged. The monochromator of spectrometer is calibrated using the Raman scattering line produced by a silicon plate (520.7 cm$^{-1}$).

Single-crystal X-ray studies of vorlanite from Israel were carried out using a SuperNova Dual diffractometer with a mirror monochromator (MoK$\alpha_1 = 0.71073$ Å) and Atlas CCD detector.
RESULTS OF INVESTIGATIONS OF DARK-GREY VORLANITE AND DISCUSSION

Crystals of dark-grey vorlanite were found in dark-brown larnite pebbles hosted in rock known as pseudoconglomerate. Larnite rocks have been originally formed by pyrogenic metamorphism due to caustobiolith combustion at temperatures above 1000°C (Kolodny and Gross 1974; Sokol et al. 2007, 2010). Their pebble-like shape can be explained by low-temperature hydrothermal processes with subsequent weathering of larnite rocks (Gross 1977). Larnite β-Ca$_2$SiO$_4$, ye’elimite Ca$_4$Al$_6$O$_{12}$(SO$_4$)$_4$, fluorine analogs of the mayenite-kyuygenite series Ca$_3$(SiO$_4$)$_2$(SO$_4$)$_2$–Ca$_3$(SiO$_4$)$_2$(SO$_4$)$_2$(H$_2$O)$_4$, fluorellestadite Ca$_5$(SiO$_4$)$_3$(SO$_4$)$_3$F, ternesite Ca$_5$(SiO$_4$)$_2$(SO$_4$)$_2$, brownmillerite Ca$_2$Fe$^{3+}$AlO$_5$–srebrodolskite Ca$_2$Fe$^{3+}$Fe$^{3+}$O$_5$, shulamitite Ca$_3$Ti$^{4+}$Fe$^{3+}$AlO$_8$–Fe$^{3+}$analog of shulamitite Ca$_3$Ti$^{4+}$Fe$^{3+}$Fe$^{3+}$O$_8$ are the main minerals of these pebbles. Kyuygenite with the end-member formula Ca$_{12}$Al$_{14}$O$_{32}$(Cl$_2$(H$_2$O)$_4$)$_4$ was recently discovered in high-temperature skarns of the Upper Chegem caldera in Caucasus (Galuskin et al. 2013a). Shulamitite detected in pyrometamorphic rocks of the Hatrurim Basin, Negev Desert (the Hatrurim formation) was recently approved by IMA-CNMNC (Sharygin et al. 2013). Rare oldhamite CaS, periclase MgO, magnesioferrite MgFe$_2$O$_4$, baryte BaSO$_4$, and the recently discovered minerals nabimusaite KCa$_{12}$(SiO$_4$)$_4$(SO$_4$)$_2$O$_2$F (Galuskin et al. 2013b) and harmunite CaFe$_2$O$_4$ (Galuskina et al. 2013) and also undiagnosed K-sulfides and potentially new minerals Ca$_3$UO$_6$ and CaCu$_2$S$_2$ are noted. Vorlanite forms typical poikilitic crystals (Fig. 1), related to its crystallization after larnite, mayenite and ye’elimite.

Composition and structure of dark-grey vorlanite from Jabel Harmun are analogous to composition and structure of dark-red vorlanite from Caucasus (Table 1-4, Galuskin et al. 2011).

The chemical composition of vorlanite corresponds to stoichiometric CaUO$_4$. Site occupancies
determined by using single crystal X-ray diffraction data are consistent with a fully occupied O site, with a Ca/U ratio = 1 confirming that practically all uranium has valence 6+ (Table 3). This conclusion was proven for vorlanite from Caucasus by XPS investigations (Galuskin et al. 2011). Raman spectra of dark-red vorlanite from Caucasus and dark-grey vorlanite from Israel are similar, the one strong broad band centered near 683 cm\(^{-1}\) is present in both spectra (Fig. 2, spectra 1 and 2). A Raman spectroscopic local heating experiment on dark-grey vorlanite from Jabel Harmun with a blue laser (488 nm) above 750\(^{\circ}\)C produced in close vicinity to the crater trigonal uranate CaUO\(_4\). This newly produced phase is indicated by appearance of a yellow ring around the crater (Fig. 1C). Heating of vorlanite from both localities above 750\(^{\circ}\)C led to the same result – ordered trigonal calcium uranate forms after vorlanite. The Raman spectra of the heat produced phases correspond exactly to the Raman spectrum of the known synthetic phase (Lieugeois-Duyckaerts 1977; Fig. 2, spectra 1* and 2*).

The accepted structural model for vorlanite suggests that U and Ca randomly occupy a single eightfold-coordinated site with mean metal (M) to oxygen (O) distances M-O of 8 × 2.33 Å. However, Raman investigations on vorlanite indicate that there are also short U-O bonds < 2Å characteristic of the uranyl group (UO\(_2\))\(^{2+}\) (Galuskin et al. 2011), i.e. the true local U-coordination is 6+2. It was assumed that in the real structure of vorlanite not only the positions of the cations Ca and U are disordered over a single site, but there is also “uranyl disorder”, i.e. O-U-O uranyl bonds are randomly aligned parallel to one of the four symmetry-equivalent cube diagonals (Galuskin et al. 2011).

A basic difference between vorlanite from Jabel Harmun and Caucasian vorlanite is the dark-grey color with greenish hue in transmitted light of the former vorlanite. This color could indicate that not all uranium is hexavalent. Color change of synthetic trigonal uranate CaUO\(_4\) from yellow to dark-green was observed on heating above 1100\(^{\circ}\)C, when the disordered phase with fluorite-type structure formed and the composition corresponded to CaU\(_2\)O\(_{5+y}\) (Terra et al. 2008). Takagawa et al. (1977) synthesized nonstoichiometric dark green or dark grey uranate SrUO\(_{3.18-3.20}\)
at 1000°C in hydrogen atmosphere. The color of these uranates changed to red when exposed to air
after three months and the corresponding X-ray diffraction pattern indicated that structure and cell
parameters of the red phase were in agreement with rhombohedral α-SrUO$_4$.

Tetravalent uranium may substitute in vorlanite according to the known isomorphmic scheme
for uraninite: CaU$^{6+}$ → 2U$^{4+}$ (Janeczek and Ewing 1992). In addition, precursor of vorlanite
corresponds to the O-deficient synthetic phase CaUO$_{4-x}$ with $x < 0.5$, in which uranium can be tetra-
or pentavalent and corresponding cell parameters are greater than those of stoichiometric CaUO$_4$
(Loopstra and Rietveld 1969; Prodan and Boswell 1986; Takachashi et al. 1993). However,
presence of significant oxygen vacancies in vorlanite can be excluded based on site occupation
refinements performed by us. Test refinements (not shown) converged at an O population of
0.98(4). Thus, in subsequent refinements the value was fixed at 1 (Tables 2-4). If the structures of
trigonal uranate and vorlanite are compared, it becomes obvious that disordered cubic vorlanite has
larger volume 77.92 Å3 (half unit cell volume for comparison with the trigonal uranate) and lower
density 7.29 g/cm3 compared to the ordered uranate: $V = 76.26$ Å3 and $\rho = 7.45$ g/cm3 of same
composition (Galuskin et al. 2011). The cell parameter and the unit volume $V = 2 \times 77.20(2)$ Å3 of
dark-grey vorlanite from Jabel Harmun are significantly lower (increased density of 7.36 g/cm3)
than those of Caucasian vorlanite.

Systematic survey of the color of vorlanite from different rocks of the Hatrurin formation
from the Jabel Harmun (the Judean Desert) and the Hatrurim Basin (the Negev Desert) showed, that
in larnite and spurrite rock all vorlanite crystals are dark-gray in transmitted light (Fig. 3A, B). In
larnite rocks vorlanite is usually presented by individual crystals (Fig. 1A). In spurrite rocks
micron-sized vorlanite crystals form spot-like aggregates (Fig. 3A, B) often overgrowing
pseudomorphs of uranium-bearing lakargiite after zircon (Fig. 3C). Lakargiite with UO$_3$ content up
to 20 wt. % was detected in rocks of the Hatrurim formation for the first time. Lakargiite CaZrO$_3$,
first discovered in altered xenoliths of the Upper Chegem caldera, was also associated with
In only one case, in small veins of paralavas of the Gurim anticline (the Negev Desert) rare vorlanite crystals were found (Fig. 3), which appear red-brown in transmitted light. The main minerals of Gurim paralavas are coarse-grained schorlomite, rankinite, melilite, parawollastonite, kalsilite, fluorapatite-fluorellestadite, Fe$^{3+}$- analog of dorrite, barioferrite and ferric spinel represented by the solid solution magnesioferrite-trevorite-franklinite-cuprospinel. Divalent iron is essentially absent in the composition of ferrites and garnets of paralavas indicating strongly oxidizing conditions. The presence of dorrite-like minerals and also previous investigations of melt inclusions suggest that these paralavas formed above 1100-1200°C (Sharygin et al. 2006a, b).

Temperature and pressure, at which “protovorlanite” formed in the different pyrometamorphic rocks, were similar and correspond to conditions of the sanidinite facies. “Protovorlanite”, an orthorhombic uranate CaUO$_4$, is stable below 1100°C (Pialoux and Touzelin 1998). In small xenoliths of the Caucasus rocks and paralava bodies of the Gurim anticline “protovorlanite” formed in open systems characterized by high oxygen fugacity, i.e. all uranium was hexavalent 6+. In pyrometamorphic rocks of the Hatrurim formation, characterized by a dense fine-grained larnite and spurrite matrix, crystallization of “protovorlanite” proceeded under the conditions of limited oxygen fugacity, i.e. U$^{4+}$ may enter the structure of “protovorlanite”. In the course of polymorphic transformation “protovorlanite – vorlanite” as a result of radioactive decay, vorlanite inherited insignificant U$^{4+}$, which may be responsible for its dark-gray color with greenish hue in transmitted light.

ACKNOWLEDGMENTS

We thank Robert Finch, Stuart Mills and associate editor Peter C. Burns for constructive and helpful reviews. The work was partly supported by the National Science Centre (NCN) of Poland, grant no. DEC 2012/05/B/ST10/00514.

REFERENCES

Takahashi, K., Fujino, T., and Morsse, L.R. (1993) Crystal chemical and thermodynamic study on \(\text{CaUO}_{4-x}, (\text{Ca}_{0.5}\text{Sr}_{0.5})\text{UO}_{4-x}, \) and \(\alpha\)-\(\text{SrUO}_{4-x} \) (\(x = 0 \sim 0.5 \)). Journal of Solid State Chemistry, 105, 234-246.

Fig. 1. A – Poikilitic crystals of vorlanite in larnite-brownmillerite-ye’elimite-mayenite rock.
Magnified crystal in Fig. 1B and C is framed. Oldhamite, CaS, phosphoresces under the electron beam. Fragments of the second crystal of vorlanite at the bottom on the right of the BSE image were used for single X-ray diffraction study; B, C – vorlanite crystal used in Raman spectroscopic experiment: B – BSE image, arrow points to a crater burned by laser, C – transmitted light picture with switched on condenser lens; around the crater vorlanite transformed to yellow rhombohedral uranate; inset at the bottom right: red grain of vorlanite from Caucasus (30×20×6 µm), distinguished in color from dark-grey Jabel Harmun vorlanite.
Vor - vorlanite, Ye - ye’elimite, Old - oldhamite, Lar - larnite, Ell - fluorellestadite, Brm - brownmillerite.

Fig. 2. Raman spectra of vorlanite: 1 – Jabel Harmun locality, 2 – Caucasus type locality and 1*, 2* - products of its thermal transformation, respectively.

Fig. 3. A, B – vorlanite in spurrite rock (A – BSE, B - transmitted light with switched on condenser lens); C – vorlanite crystals on U-bearing lakargiite pseudomorphs after zircon; D - Crystal of red-brown vorlanite overgrowing perovskite, sample from paralava of the Gurim anticline, the Hatrurim Basin, the Negev Desert. A – BSE, framed area is magnified in Fig. 3E; E – transmitted light with switched on condenser lens.
Vor - vorlanite, Rnk - rankinite, Wol - wollastonite, Mel - melilite, Prv - perovskite, Ell - fluorellestadite-fluorapatite series, Dor - Fe$^{3+}$-analog of dorrite.
Table 1. Chemical composition of vorlanite from Jabel Harmun locality.

<table>
<thead>
<tr>
<th>wt%</th>
<th>mean 13</th>
<th>s.d.</th>
<th>range</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO$_3$</td>
<td>83.79</td>
<td>0.37</td>
<td>83.17-84.40</td>
</tr>
<tr>
<td>CaO</td>
<td>16.77</td>
<td>0.04</td>
<td>16.68-16.81</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>0.04</td>
<td>0.04</td>
<td>0-0.14</td>
</tr>
<tr>
<td>Total</td>
<td>100.56</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

calculated on 2 cations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U$^{6+}$</td>
<td>0.989</td>
</tr>
<tr>
<td>Ca</td>
<td>1.009</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Table 2. Data collection and structure refinement details for vorlanite

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>6.59 for 41.48°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-10 ≤ h ≤ 9, -9 ≤ k ≤ 9, -10 ≤ l ≤ 9</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>1631</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>46 [R(int) = 0.0575; Rσ = 0.0114]</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.008 × 0.010 × 0.020 mm</td>
</tr>
<tr>
<td>Crystal system</td>
<td>cubic</td>
</tr>
<tr>
<td>Space group</td>
<td>Fm 3 m</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 5.3647(9) Å, α = 90°</td>
</tr>
<tr>
<td>V</td>
<td>154.40(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>D<sub>calc</sub></td>
<td>7.359 g cm<sup>-3</sup></td>
</tr>
<tr>
<td>Goodness-of-fit on F<sup>2</sup></td>
<td>1.212</td>
</tr>
<tr>
<td>Final R indices</td>
<td>46 data; I > 4σ(I), R1 = 0.0088</td>
</tr>
<tr>
<td></td>
<td>all data R1 = 0.0088, wR2 = 0.0174</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.260 and -0.358 eÅ⁻³</td>
</tr>
</tbody>
</table>
Table 3. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å²) for vorlanite

<table>
<thead>
<tr>
<th>Atom</th>
<th>x/a</th>
<th>y/b</th>
<th>z/c</th>
<th>sof</th>
<th>U_eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.01848(9)</td>
</tr>
<tr>
<td>Ca</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.01848(9)</td>
</tr>
<tr>
<td>O</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>1</td>
<td>0.0614(15)</td>
</tr>
</tbody>
</table>

isotropic displacement parameters for all sites because
U_{11}=U_{22}=U_{33} and U_{12}=U_{13}=U_{23}= 0
Table 4. Bond lengths (Å) and angles (°) for vorlanite

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Bond length (Å)</th>
<th>mult.</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1/Ca1</td>
<td>2.3230(4)</td>
<td>x 8</td>
</tr>
<tr>
<td>U1/Ca1</td>
<td>3.7934(6)</td>
<td>x 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Angle (°)</th>
<th>mult.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1</td>
<td>180.0</td>
<td>x 4</td>
</tr>
<tr>
<td>O1</td>
<td>109.47</td>
<td>x 12</td>
</tr>
<tr>
<td>O1</td>
<td>70.53</td>
<td>x 12</td>
</tr>
</tbody>
</table>