1	Experimental Determination of Solubilities of Sodium Tetraborate (Borax) in NaCl
2	Solutions, and A Thermodynamic Model for the Na–B(OH) ₃ –Cl–SO ₄ System to High
3	Ionic Strengths at 25 °C, Revision 1 Corrections
4	
5	Yongliang Xiong ¹ , Leslie Kirkes, and Terry Westfall
6	Sandia National Laboratories (SNL)*
7	Carlsbad Programs Group
8	4100 National Parks Highway, Carlsbad, NM 88220, USA
9	

¹ Corresponding author, e-mail: yxiong@sandia.gov.

^{*} Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

10

11 ABSTRACT

12	In this study, solubility experiments on sodium tetraborate (NaB ₄ O ₇ •10H ₂ O,
13	borax) are conducted in NaCl solutions up to 5.0 m at room temperature ($22.5 \pm 1.5^{\circ}$ C).
14	In combination with solubility data of sodium tetraborate in Na ₂ SO ₄ solutions from
15	literature, the solubility constant (log K_{sp}) for sodium tetraborate for the following
16	reaction,
17	
18	$Na_{2}B_{4}O_{7} \bullet 10H_{2}O = 2Na^{+} + 4B(OH)_{4}^{-} + 2H^{+} + H_{2}O(I) $ (1)
19	
20	is determined as -24.80 ± 0.10 based on the Pitzer model. In conjunction with the
21	relevant Pitzer parameters, based on the above log K_{sp} for borax, and log β_l (0.25 ± 0.01)
22	evaluated from the literature for the following complex formation reaction,
23	
24	$Na^{+} + B(OH)_{4}^{-} = NaB(OH)_{4}(aq) $ ⁽²⁾
25	
26	a thermodynamic model with high precision is established for the Na^+ –B(OH) ₃ –Cl ⁻ –
27	SO_4^{2-} system at high ionic strengths up to saturation of halite (NaCl), mirabilite
28	$(Na_2SO_4 \bullet 10H_2O)$ and thenardite (Na_2SO_4) . The model is validated by comparison of
29	model predicted equilibrium compositions for the assemblages of borax alone, borax +
30	halite, borax + mirabilite, borax + halite + thenardite, and borax + mirabilite + thenardite
31	in the mixtures of $NaCl + Na_2SO_4$ to ionic strengths of 8.0 m, with independent
32	experimental values from the literature. The differences in concentrations of major ions,

e.g., Na⁺, Cl⁻, and SO₄²⁻, between model predicted and experimental values are generally less than 0.5%. The difference for total boron concentrations is less than 0.05 m with an error less than 25%.

The revised thermodynamic model is applied to the potential recovery of borax from boron-enriched brines via evaporation at 25°C, using the two brines from China as examples. The reaction path calculations suggest that the brine from the Zhabei Salt Lake in Xizang (Tibet) Autonomous Region, is suitable to recovery of borax via evaporation at 25°C, whereas the brine from the western Sichuan Province, although it is enriched in boron, is not suitable to extraction of boron as borax, but is suitable to extraction of potassium as sylvite, via evaporation at 25°C.

43

44 INTRODUCTION

45 Numerous actinide borates have been recently successfully synthesized (e.g., 46 Wang et al., 2010, 2011, and references therein), including a Pu(III) borate, 47 $Pu_2[B_{12}O_{18}(OH)_4Br_2(H_2O)_3] \bullet 0.5H_2O$. Furthermore, a recent experimental study has 48 suggested that borate could potentially complex with Nd(III), an analog to Am(III) 49 (Borkowski et al., 2010). Therefore, a comprehensive thermodynamic model involving 50 interactions of borate with major ions in brines is needed to accurately describe the 51 contributions of borate to the solubility of Am(III) in brines in salt formations, as they 52 contain significant concentrations of borate. In brines associated with salt formations, they contain high concentrations of sodium along with significant concentrations of 53 54 boron. For instance, at the Waste Isolation Pilot Plant (WIPP), a U.S. Department of 55 Energy geological repository for the permanent disposal of defense-related transuranic

56	(TRU) waste (U.S. DOE, 1996), the Generic Weep Brine (GWB) and Energy Research
57	and Development Administration Well 6 (ERDA-6), contain high concentrations of
58	sodium and borate. Therefore, in geological repositories in salt formations, the
59	interactions between sodium and borate will be important to the accurate description of
60	the contributions of borate to the solubility of Am(III) in brines in salt formations.
61	A thermodynamic model for borate at high ionic strengths was developed more
62	than two decades ago by Felmy and Weare (1986). In addition to the newly generated
63	data at Sandia National Laboratories, there have also been numerous experimental data
64	concerning borate in concentrated brines generated in China (e.g., Sang et al., 2011),
65	since the discovery of enormous amounts of highly concentrated brines with high
66	concentrations of B (up to 4994 mg/L) and Li (up to 90 mg/L), termed as "liquid ores", in
67	Sichuan Province, China (e.g., Lin et al., 2000). Therefore, in light of new experimental
68	data, the revision of the Felmy and Weare model is in order. There will be a series of
69	upcoming publications in this area, and this paper is the first one in this series.
70	
71 72	EXPERIMENTAL METHODS
72 73	In our solubility experiments, about 5 grams of the solubility controlling
74	material—ACS reagent grade sodium tetraborate (Na ₂ B ₄ O ₇ •10H ₂ O), i.e., borax, from
75	Fisher Scientific was weighed out and placed into 150 mL plastic bottles. Then, 100 mL
76	of supporting solutions were added into those bottles. Once filled, the lids of the bottles
77	were sealed with parafilm. The supporting electrolytes are a series of NaCl solutions
78	ranging from 0.010 m to 5.0 m. Undersaturation experiments are conducted at the
79	laboratory room temperature (22.5 \pm 1.5 °C), and the duration of our experiments is

80 exceedingly long in comparison with the similar studies previously conducted (see 81 RESULTS section). In the following, sodium tetraborate and borax will be 82 interchangeably used. 83 The pH readings were measured with an Orion-Ross combination pH glass 84 electrode, coupled with an Orion Research EA 940 pH meter that was calibrated with 85 three pH buffers (pH 4, pH 7, and pH 10). In solutions with an ionic strength higher than 86 0.10 m, hydrogen-ion concentrations on molar scale (pcH) were determined from pH 87 readings by using correction factors (Rai et al., 1995). Based on the equation in 88 Xiong et al. (2010), pcHs are converted to hydrogen-ion concentrations on molal scale 89 (pmH). 90 Solution samples were periodically withdrawn from experimental runs. Before 91 solution samples were taken, pH readings of experimental runs were first measured. The 92 sample size was usually 3 mL. After a solution sample was withdrawn from an 93 experiment and filtered with a 0.2 μ m syringe filter, the filtered solution was then weighed, acidified with 0.5 mL of concentrated TraceMetal[®] grade HNO₃ from Fisher 94 95 Scientific, and finally diluted to a volume of 10 mL with DI water. If subsequent 96 dilutions were needed, aliquots were taken from the first dilution samples for the second 97 dilution, and aliquots of the second dilution were then taken for the further dilution. 98 Boron concentrations of solutions were analyzed with a Perkin Elmer dual-view 99 inductively coupled plasma-atomic emission spectrometer (ICP-AES) 100 (Perkin Elmer DV 3300). Calibration blanks and standards were precisely matched with 101 experimental matrices. The linear correlation coefficients of calibration curves in all

102	measurements were better than 0.9995. The analytical precision for ICP-AES is better
103	than 1.00% in terms of the relative standard deviation (RSD) based on replicate analyses.
104	
105	RESULTS
106	Experimental results are tabulated in Table 1. In Figure 1, solubilities of sodium
107	tetraborate as a function of experimental time are displayed. From Figure 1, it is clear
108	that steady-state concentrations are achieved in the first sampling, which was taken at 132
109	days (Table 1). It is assumed that steady-state concentrations represent equilibrium
110	concentrations, as the duration of experiments, up to 567 days, is significantly longer than
111	previous studies under similar conditions. For example, the equilibrium for the
112	quaternary Na ₂ B ₄ O ₇ —Na ₂ SO ₄ —K ₂ B ₄ O ₇ —K ₂ SO ₄ —H ₂ O system at 15°C was attained in
113	3-7 days (Sang et al., 2011).
114	In Figure 2, concentrations of boron as a function of molalities of NaCl are
115	displayed. Figure 2 indicates that concentrations of boron in equilibrium with sodium
116	tetraborate have a strong dependence on concentrations of NaCl, with substantial
117	decrease in concentration of boron with increasing concentrations of NaCl. For instance,
118	the solubilities of sodium tetraborate are ~ 0.50 m in terms of total boron concentrations
119	in a 0.01 m NaCl solution, whereas the concentrations of boron decrease to ~ 0.15 m in a
120	5.0 m NaCl solution.
121	
122	THERMODYNAMIC MODEL, DISCUSSIONS, AND APPLICATIONS
123	Felmy and Weare (1986) developed a thermodynamic model concerning borate in
124	the system Na—K—Ca—Mg—H—Cl—SO ₄ —CO ₂ —B(OH) ₄ —H ₂ O, based on literature

125	data. This model will be abbreviated as the FW86 model hereafter. Their model is an
126	extension of the Harvie et al. (1984) model to include borate species. In the
127	FW86 model, the species, $NaB(OH)_4(aq)$, was not explicitly considered. However,
128	numerous researchers have suggested the existence of this complex in solutions
129	containing sodium (e.g., Reardon, 1976; Corti et al., 1980; Rowe et al., 1989; Pokrivski et
130	al., 1995; Akinfiev et al., 2006). Therefore, this complex could be important in Na-rich
131	solutions.
132	In the work of Reardon (1976), the formation constants for the reaction,
133	
134	$Na^{+} + B(OH)_{4}^{-} = NaB(OH)_{4}(aq) $ (1)
135	
136	were determined in a NaCl medium with ionic strengths ranging from 0.165 m to
137	0.499 m at temperatures from 10 $^{\circ}$ C to 50 $^{\circ}$ C. To obtain the thermodynamic formation
138	constants at infinite dilution, Reardon (1976) used the activity coefficients of HCO_3^- and
139	$H_3BO_3(aq)$ to approximate those of $B(OH)_4^-$ and $NaB(OH)_4(aq)$, respectively. The
140	thermodynamic formation constant at 25 °C for Reaction (1) obtained by Reardon (1976)
141	was 0.22 ± 0.10 .
142	In this study, conditional formation constants for Reaction (1) generated by
143	Reardon (1976) are re-evaluated by using the SIT model, following the methodology of
144	Grenthe et al. (1992). The log β_I at 25 °C obtained is 0.25 ± 0.01 (Figure 3 and Table 2).
145	Based on $\Delta \varepsilon = -0.04 \pm 0.02$, the log β_I at 10 °C, 40 °C and 50 °C are also obtained
146	(Table 2). These values are in agreement with those of Pokrowski et al. (1995).

147	With the above log β_l for NaB(OH) ₄ (aq), experimental solubility data of borax in
148	NaCl produced in this study, and solubility data of borax in Na ₂ SO ₄ from
149	Sborgi et al. (1924), are utilized to model the Pitzer parameters and log K_{sp} for borax with
150	the aid of the computer code EQ3/6 Version 8.0a (Wolery et al., 2010; Xiong, 2011).
151	The essence of the modeling is to minimize the difference between experimental and
152	model predicted values. The log K_{sp} for borax dissolution refers to the following
153	reaction,
154	
155	$Na_{2}B_{4}O_{7} \bullet 10H_{2}O = 2Na^{+} + 4B(OH)_{4}^{-} + 2H^{+} + H_{2}O(I) $ (2)
156	
157	In Figure 4, experimental data along with model predicted values are plotted. In
158	this plot, solubilities of Na ₂ B ₄ O ₇ •10H ₂ O in a Na ₂ SO ₄ medium from Sborgi et al. (1924;
159	compiled in Linke, 1965, p. 826; and Silcock, 1979, Part 2, p. 582) are also included. It
160	should be mentioned that while the data of Sborgi et al. (1924) were tabulated in both of
161	the above compilations, Silcock (1979) cited an incorrect source. Notice that the values
162	predicted by the FW86 model are based on the parameters listed in Table 2. Similarly,
163	the values predicted by the model developed in this study are based on the parameters
164	tabulated in Table 3. It is clear from Figure 4 that the revised model developed in this
165	study performs very well in a wide range of ionic strength.
166	In Table 4, solution compositions of the assemblage of sodium tetraborate alone
167	or in equilibrium with other phases such as halite (NaCl), mirabilite (Na ₂ SO ₄ •10H ₂ O),
168	and then ardite (Na ₂ SO ₄), in mixtures of NaCl + Na ₂ SO ₄ predicted by the revised model
169	and by the FW86 model are compared with independent experimental data from the

170	literature up to ionic strengths of 8.0 m, which are not used in model development in this
171	study. The experimental data are from Van't Hoff and Blasdale (1905; compiled in
172	Silcock, 1979) and Grushvitski and Flerinskava (1932; cited by Bukshtein et al., 1953-
173	1954, and compiled in Silcock, 1979). The comparison demonstrates that while these
174	two models have similar precisions in prediction of concentrations of major ions, i.e.,
175	Na^+ , Cl^- , and SO_4^{2-} (Table 4), there is a significant improvement associated with the
176	current model in predicting solubilities of sodium tetraborate. The validation test
177	indicates that the differences between boron concentrations predicted by the current
178	model and experimental solubilities are less than 0.05 m with an error less than 25%
179	(Table 4 and Figure 5). In comparison, the differences between boron solubilities
180	predicted by the FW86 model and experimental solubilities are generally higher than 0.05
181	m, and can be as high as 0.17 m with an error up to 146%.
182	The revised model indicates that sodium tetraborate has solubilities much lower in
183	high ionic strength solutions in comparison with those predicted by the previous model.
184	This would have a wide range of implications. As an example, in the following, we
185	apply the current model to investigate the evolution of some boron-enriched brines in
186	China as a function of evaporation at 25°C.
187	The mildly alkaline brine in the Zhabei Salt Lake in Xizang (Tibet) Autonomous
188	Region, China, is enriched in boron (Gao et al., 2012) (Table 5). Similarly, as mentioned
189	in Introduction, the brine from the gas field in the western Sichuan Province, China, is
190	also enriched in boron (Table 6). Therefore, based on the thermodynamic model on
191	sodium tetraborate developed in this study, using EQ3/6 Version 8.0a, we can
192	quantitatively model by performing reaction path calculations the evolution of those

- boron-enriched brines as a function of evaporation to provide insight into the potential
- 194 recovery of boron as sodium tetraborate via evaporation. In the reaction path
- 195 calculations, degrees of evaporation (DE) is defined as follows:

196
$$DE = (1 - \frac{RMS}{OMS}) \times 100\% = (1 - \frac{RMS}{1000}) \times 100\%$$
(3)

- 197
- where *RMS* is residual mass of solvent in grams, *OMS* is original mass of solvent. In the
 reaction path calculations, *OMS* is scaled to 1000 grams of water.

200 In our reaction path calculations, the original aqueous solution masses for the

201 Zhabei Salt Lake and western Sichuan gas field brines are 1146 and 1433 grams,

202 respectively. As the original pH for the western Sichuan gas field brine was slightly

acidic (pH = 6.18), and borax will not precipitate, its pH was adjusted to 9.0 before

204 reaction path calculations. As the Zhabei Salt Lake brine is mildly alkaline, its pH was

205 not adjusted for reaction path calculations.

In Figure 6, amounts of mineral precipitated in mole are displayed as a function of DE. From Figure 6, we can see that above DE 10, about 0.08 moles of borax will be precipitated. Hydromagnesite (5424) $[Mg_5(CO_3)_4(OH)_2 \cdot 4H_2O]$ (Xiong and Lord, 2008; Xiong, 2011a) will also be precipitated. Trace amounts of calcite are also predicted to be

210 precipitated (Figure 6). In the evaporation experiments with the Zhabei Salt Lake brine

211 at 0°C performed by Gao et al. (2012), the precipitation of borax and magnesium

212 carbonate, possibly lansfordite (MgCO₃•5H₂O), is also observed, based on phase

- 213 identifications using a polarizing microscope. However, it is worth noting that their
- 214 identification of lansfordite based on the optical method may not be exact. In fact,
- 215 studies on the sediments in the similar lakes in Xizang (Tibet) Autonomous Region have

216	indicated the presence of hydromagnesite (5424) instead of lansfordite (Goto et al.,
217	2003). Therefore, the magnesium carbonate identified by Gao et al. (2012) using the
218	optical method could be hydromagnesite (5424). In their evaporation experiments at 0° C,
219	Gao et al. (2012) did not mention the presence of calcite. This may be due to the
220	presence of calcite in trace amount, or the kinetics of calcite crystallization. In addition,
221	because of lower solubilities for salts at lower temperatures, mirabilite (Na ₂ SO ₄ •12H ₂ O),
222	halite (NaCl), and sylvite (KCl) are also precipitated as major minerals in evaporation
223	experiments at 0°C of Gao et al. (2012). In contrast, because of undersaturation in
224	respect with mirabilite at 25°C, sulfate concentrations remain high during the evaporation
225	at 25°C (Figure 7A).
226	Evaporation of the brine from the gas field in the western Sichuan Province does
227	not precipitate borax and hydromagnesite (5424). Instead, halite, anhydrite (CaSO ₄),
228	brucite [Mg(OH) ₂], magnesium chloride hydroxide hydrate (phase 5)
229	$[Mg_3Cl(OH)_5 \bullet 4H_2O]$ (Xiong et al., 2010), and sylvite are precipitated (Figure 6). Notice
230	that brucite is stable up to DE ~40. Above DE ~40, brucite is replaced by phase 5
231	(Figure 6). The absence of borax during evaporation of the brine from the western
232	Sichuan Province is due to the fact that the brine has higher magnesium concentrations
233	when the brine is chemically evolved (Figures 7A and 7B). In the evaporation
234	experiments with the brines having significant concentrations of magnesium and boron
235	performed by Gao and Li (1982) at temperatures from 16°C to 27°C, the precipitation of
236	borax is not observed neither because of high concentrations of magnesium. In our own
237	solubility experiments, we also observe that borax has much higher solubilities in
238	magnesium chloride solutions, which will be published later. In other words, the absence

239	of borax in the brine from the western Sichuan Province is well explained by the fact that
240	borax has higher solubilities in solutions with significant concentrations of magnesium.
241	In terms of chemical evolution of the brines induced by evaporation, the brine
242	from the Zhabei Salt Lake is dominated by Na-SO ₄ -Cl-B ₄ O ₇ (Figure 7A), whereas the
243	brine from the western Sichuan Province is dominated by Na-K-Mg-Cl (Figure 7B).
244	The above reaction path calculations indicate that the brine from the Zhabei Salt
245	Lake is suitable for recovery of borax via evaporation at 25°C. The brine from the
246	western Sichuan Province is suitable for extraction of potassium as sylvite via
247	evaporation at 25°C.
248	
249	
250	
251	SUMMARY
252	In this study, a thermodynamic model with high precision is developed for the
253	$Na^+-B(OH)_3-Cl^SO_4^{2-}$ system, based on new experimental data. This model is
254	validated by independent experimental data in ternary mixtures of NaCl and Na ₂ SO ₄ .
255	With this model, solubilities of borax in concentrated NaCl, Na ₂ SO ₄ , and NaCl+Na ₂ SO ₄
256	solutions can be accurately modeled.
257	
258	

259 ACNOWLEDGEMENTS

260	Sandia National Laboratories is a multiprogram laboratory operated by Sandia
261	Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United
262	States Department of Energy's National Nuclear Security Administration under Contract
263	DE-AC04-94AL85000. This research is funded by WIPP programs administered by the
264	Office of Environmental Management (EM) of the U.S Department of Energy. We are
265	grateful to Shelly Nielsen, Taya Olivas, Tana Saul, Diana Goulding, Brittany Hoard,
266	Cassandra Marrs, Danelle Morrill, Mathew Stroble, and Kira Vincent, for their laboratory
267	assistance. We thank the journal reviewers for their reviews, Dr. Rick Wilkin, the
268	Associate Editor, Dr. Keith Putirka, the Editor, for their reviews and editorial efforts.

271	
271 272 273 274 275	Akinfiev, N.N., Voronin, M.V., Zotov, A.V., Prokof'ev, V.Y. (2006) Experimental investigation of the stability of a chloroborate complex and thermodynamic description of aqueous species in the B-Na-Cl-O-H system up to 350°C. Geochemistry International, 44, 867–878.
276 277 278	Borkowski, M., Richmann, M., Reed, D.T., and Xiong, YL. (2010) Complexation of Nd(III) with Tetraborate Ion and Its Effect on Actinide (III) Solubility in WIPP Brine. Radiochimica Acta, 98, 577–582.
279 280 281 282	Bukshtein, V.M., Valyashko, M.G., and Pel'sh, A.D. (1953-1954) Spravochnik po rastvorimosti solevykh system, A reference book of solubilities of salt systems (Spravochnik po rastvorimosti solevykh system). Vol. I and II Izd. Vses. Nauch- Issled. Inst. Goz., Goskhimizdat., Moscow-Leningrad.
283 284 285	Corti, H., Crovetto, R., and Fernandez-Prini, R. (1980) Mobilities and ion-pairing in Li(OH) ₄ and NaB(OH) ₄ aqueous solutions. A conductivity study. Journal of Solution Chemistry, 9, 617–625.
286 287 288	Felmy, A.R., and Weare, J.H. (1986) The prediction of borate mineral equilibria in natural waters: Applications to Searles Lake, California. Geochimica et Cosmochimica Acta, 50, 2771–2783.
289 290 291	Gao, F., Zheng, MP., Song, PS., Bu, LZ., Wang, YS. (2012) The 273.15-K- isothermal evaporation experiment of lithium brine from the Zhabei Salt Lake, Tibet, and its geochemical significance. Aquatic Geochemistry, 18, 343–356.
292 293 294	Gao, SY., and Li, GY. (1982) The chemistry of borate in salt lake brine. Part One, Behavior of borate during solar evaporation of brine (in Chinese with English abstract). Chemical Journal of Chinese Universities, 3(2), 141–148.
295 296 297 298	Goto, A., Arakawa, H., Morinaga, H., and Sakiyama, T. (2003) The occurrence of hydromagnesite in bottom sediments from Lake Siling, Central Tibet: implications for the correlation among δ^{18} O, δ^{13} C and particle density. Journal of Asian Earth Science, 21, 979–988.
299 300 301	Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung. C., Wanner, H. (1992) Chemical Thermodynamics of Uranium New York: Elsevier Science Publishers; 714 pp.
302 303	Grushvitski, V.E., and Flerinskava, E.M. (1932) Tr. Vses. NauchIssled. Inst. Gal., cited in Silcock, H. (1979) Solubilities of Inorganic and Organic Compounds, Volume 3,

304 Part 2, Page 585, Pergamon Press, New York.

305 306 307	 Harvie, C.E., Møller, N., and Weare, J.H. (1984) The Prediction of Mineral Solubilities in Natural Waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₂-H₂O System to High Ionic Strengths at 25 °C. Geochimica et Cosmochimica Acta, 48, 723-751.
308 309 310	Lin, YT., Yan, YJ., and Wu, YL. (2000) Geochemical characteristics of gas field water in one field in west Sichuan and its development evaluation (in Chinese). Natural Gas Industry (TIANRANQI GONGYE), 20, 9–14.
311 312 313	Linke, W.F. (1965) Solubilities of Inorganic and Metal-Organic Compounds, A Compilation of Solubility Data from the Periodical Literature, Volume II, K-Z, 4 th Edition, American Chemical Society, Washington, D.C., 1914 pp.
314 315 316 317	Pokrovski, G.S., Schott, J., Sergeyev, A.S. (1995) Experimental determination of the stability constants of NaSO ₄ ⁻ and NaB(OH) ₄ ^o in hydrothermal solutions using a new high-temperature sodium-selective glass electrode—Implications for boron isotopic fractionation. Chemical Geology, 124, 253–265.
318 319 320	Rai, D., Felmy, A.R., Juracich, S.I., Rao, F.F. (1995) Estimating the Hydrogen Ion Concentration in Concentrated NaCl and Na ₂ SO ₄ Electrolytes. SAND94–1949 Sandia National Laboratories, Albuquerque, NM.
321 322	Reardon, E.J., (1976) Dissociation constants for alkali earth and sodium borate ion pairs from 10 to 50 °C. Chemical Geology, 18, 309–325.
323 324 325	Rowe, L.M., Tran, L.B., and Atkinson, G., (1989) The effect of pressure on the dissociation of boric acid and sodium borate ion pairs at 25 °C. Journal of Solution Chemistry, 18, 675–689.
326 327 328	Sang, SH., Li, H., Sun, ML., Peng, J. (2011) Solid—liquid stable equilibria for the quaternary Na ₂ B ₄ O ₇ —Na ₂ SO ₄ —K ₂ B ₄ O ₇ —K ₂ SO ₄ —H ₂ O system at 288 K. Journal of Chemical and Engineering Data, 56, 1956–1959.
329 330 331 332	 Sborgi, U., Bovalini, E., and Cappellini, L. (1924) Per lo stuio della doppia decomposizione (NH₄)₂ + Na₂SO₄ □ Na₂B₄O₇ + (NH₄)₂SO₄ in soluzione acqusa. Parte III. Sistema ternario Na₂B₄O₇, Na₂SO₄, H₂O. Gazzetta chimica Italiana, 54, 298–322.
333 334	Silcock, H. (1979) Solubilities of Inorganic and Organic Compounds, Volume 3, Pergamon Press, New York.
335 336 337	U.S. DOE (1996) Compliance Certification Application 40 CFR Part 191 Subpart B and C U.S. Department of Energy Waste Isolation Pilot Plant. Appendix SOTERM. DOE/CAO 1996-2184. Carlsbad, NM: U.S. DOE Carlsbad Area Office.
338 339	Van't Hoff, I.H., and Blasdale, W.C. (1905) Examination on the formation conditions of oceanic salt deposits. XLV. The occurrence of tincal and octaedric borax.

340 341	SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 252, 1086–1090. Cited in Silcock, H., 1979. Solubilities of
342	Inorganic and Organic Compounds, Volume 3, Part 2, Page 584, Pergamon Press,
343	New York.
344	Wang, SA., Alekseev, E.V., Depmeier, W., and Albrecht-Schmitt, T.E. (2010)
345 346	Surprising coordination for plutonium in the first plutonium(III) borate. Inorganic Chemistry, 50, 2079–2081.
347 348 349	Wang, SA., Alekseev, E.V., Depmeier, W., Albrecht-Schmitt, T.E. (2011) Recent progress in actinide borate chemistry. Chemical Communications, 47, 10874– 10885.
350 351	Wolery, T.W., Xiong, YL., and Long, J. (2010) Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry,
352 353	Document Version 8.10. Carlsbad, NM: Sandia National laboratories. ERMS 550239.
354 355 356	Xiong, YL. (2011a) Experimental determination of solubility constant of hydromagnesite(5424) in NaCl solutions up to 4.4 m at room temperature. Chemical Geology, 284, 262–269.
357 358 359 360	Xiong, YL. (2011b) WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20. Supersedes ERMS 550239. Carlsbad, NM. Sandia National Laboratories. ERMS 555358.
361	Xiong, YL., and Lord, A.C.S. (2008) Experimental investigations of the reaction path
362	in the MgO–CO ₂ –H ₂ O system in solutions with ionic strengths, and their applications to pucker wasta isolation. Applied Geochemistry $23, 1634, 1650$
303	applications to nuclear waste isolation. Applied Geochemistry, 25, 1054–1059.
364	Xiong, YL., Deng, HR., Nemer, M., and Johnsen, S. (2010) Experimental
365	determination of the solubility constant for magnesium chloride hydroxide hydrate
366	(Mg ₃ Cl(OH) ₅ ·4H ₂ O), phase 5) at room temperature, and its importance to nuclear
367	waste isolation in geological repositories in salt formations. Geochimica et
368	Cosmochimica Acta, 74, 4605-46011.

- 369
- 370

371

372

373

Table 1. Experimental results produced in this study at 22.5 ± 1.5 °C.

Experimental Number	Supporting Medium, NaCl	l, Experimental	nmH	Molal total boron concentrations, $m_{\Sigma B}$, in equilibrium with sodium tetraborate
Na ₂ B ₄ O ₇ -NaCl-0 01-1	0.010	132	9 10	0.515
$Na_2B_4O_7$ -NaCl-0.01-2	0.010	132	9.03	0.509
$Na_2B_4O_7$ -NaCl-0.1-1	0.10	132	8.97	0.435
$Na_2B_4O_7$ -NaCl-0.1-2	0.10	132	8.95	0.417
$Na_2B_4O_7$ -NaCl-1.0-1	1.0	132	8.70	0.179
$Na_2B_4O_7$ -NaCl-1.0-2	1.0	132	8.72	0.194
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	132	8.66	0.157
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	132	8.81	0.147
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	132	8.81	0.139
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	132	8.77	0.143
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	132	8.88	0.165
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	132	8.89	0.151
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	132	8.80	0.145
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	132	8.79	0.146
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	278	9.28	0.488
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	278	9.28	0.495
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	278	9.26	0.411
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	278	9.24	0.415
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	278	9.04	0.190
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	278	9.03	0.099
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	278	9.00	0.155
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	278	8.98	0.152
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	278	8.96	0.143
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	278	8.93	0.140
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	278	9.06	0.139
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	278	9.05	0.142
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	278	8.96	0.141
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	278	8.96	0.142
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	327	9.33	0.482
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	327	9.28	0.508
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	327	9.26	0.436

Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	327	9.22	0.430
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	327	9.09	0.207
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	327	9.10	0.210
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	327	8.99	0.160
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	327	9.00	0.161
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	327	9.00	0.151
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	327	8.95	0.157
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	327	9.10	0.151
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	327	9.11	0.147
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	327	8.97	0.151
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	327	9.01	0.158
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	377	9.39	0.513
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	377	9.38	0.509
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	377	9.32	0.468
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	377	9.33	0.482
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	377	9.09	0.214
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	377	9.09	0.231
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	377	9.03	0.168
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	377	9.03	0.171
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	377	9.01	0.153
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	377	9.00	0.149
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	377	9.08	0.152
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	377	9.09	0.146
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	377	9.00	0.152
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	377	9.02	0.149
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	425	9.35	0.514
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	425	9.31	0.532
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	425	9.26	0.531
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	425	9.25	0.458
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	425	9.04	0.221
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	425	9.03	0.222
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	425	8.96	0.171
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	425	8.97	0.171
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	425	8.95	0.161
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	425	8.93	0.156
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	425	9.02	0.158
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	425	9.04	0.154
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	425	8.96	0.159

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4398

Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	425	8.97	0.162
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	567	9.28	0.489
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	567	9.28	0.497
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	567	9.24	0.429
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	567	9.23	0.426
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	567	9.00	0.199
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	567	9.00	0.203
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	567	8.94	0.157
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	567	8.94	0.167
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	567	8.93	0.160
Na ₂ B ₄ O ₇ -NaCl-3.0-1R	3.2	567	8.92	0.155
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	567	8.90	0.154
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	567	8.99	0.148
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	567	9.01	0.152
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	567	8.93	0.158
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	567	8.93	0.154

374 375

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

376

377 Table 2. Felmy and Weare (1986) model for the Na–B(OH)₃–Cl–SO₄ system

Pitzer Binary Interaction Cofficients					
Species, i	Species, j	$\beta^{(0)}$	$\beta^{(1)}$	C^{ϕ}	
Na ⁺	B(OH) ₄ ⁻	-0.0427	0.089	0.0114	
Na ⁺	$B_{3}O_{3}(OH)_{4}^{-}$	-0.056	-0.910		
Na ⁺	$B_4O_5(OH)_4^{2-}$	-0.11	-0.40		
Pitzer Mixing Par	rameters and Intera	action Parameters 1	Involving Neutral	Species	
Species, i	Species, j	Species, k	θ_{ij} or λ_{ij}	Ψ_{ijk} or ζ_{ijk}	
$B(OH)_4^-$	Cl ⁻	Na ⁺	-0.065	-0.0073	
$B(OH)_4^-$	SO_4^{-2}		-0.012		
$B_{3}O_{3}(OH)_{4}^{-}$	Cl ⁻	Na ⁺	0.12	-0.024	
$B_{3}O_{3}(OH)_{4}^{-}$	$\mathrm{SO_4}^{-2}$		0.10		
$B_4O_5(OH)_4^{-2}$	Cl⁻	Na^+	0.074	0.026	
$B_4O_5(OH)_4^{-2}$	SO_4^{-2}		0.12		
B(OH) ₃ (aq)	Cl		0.091		
B(OH) ₃ (aq)	SO_4^{-2}	Na ⁺	0.018	0.046	
B(OH) ₃ (aq)	$B_{3}O_{3}(OH)_{4}^{-}$		-0.20		
B(OH) ₃ (aq)	Na ⁺		-0.097		
Equilibrium Constant for Solubility Reaction					
Reaction		log K			
$Na_{2}B_{4}O_{7}\bullet 10H_{2}O = 2Na^{+} + 4B(OH)_{4}^{-} + 2H^{+} + H_{2}O - 24.49$					

378

380

- 381
- 382

Table 3. The revised thermodynamic model for the Na–B(OH)₃–Cl–SO₄ system developed in this study*.

	uev	eloped in this stud	·y ·		
Pitzer Mixing Par	Pitzer Mixing Parameters and Interaction Parameters Involving Neutral Species				
Species, i	Species, j	Species, k	θ_{ij} or λ_{ij}	Ψ_{ijk} or ζ_{ijk}	
$B(OH)_4^-$	$\mathrm{SO_4}^{-2}$		0.17 ± 0.03		
NaB(OH) ₄ (aq)	Na ⁺		0.093 ± 0.005		
$B_4O_5(OH)_4^{-2}$	$\mathrm{SO_4}^{-2}$	Na ⁺		0.1 ± 0.2	
Equilibrium Cons	stants for Solubility	y and Complex Fo	rmation Reactions		
Reaction			$\log K$ or $\log \beta_l$ at 25 °C unless		
		otherwise noted			
$Na_2B_4O_7 \bullet 10H_2O$	$= 2\mathrm{Na}^{+} + 4\mathrm{B(OH)}$	$_{4}^{-} + 2H^{+} + H_{2}O$	-24.80 ± 0.10 (20	2)	
$Na^{+} + B(OH)_{4}^{-} =$	NaB(OH) ₄ (aq)		$0.29 \pm 0.01 (10^{\circ})$	C)	
			0.25 ± 0.01 (25 °	C) with	
			$\Delta \epsilon = -0.04 \pm 0.02$		
			0.24 ± 0.01 (40 °	C)	
			0.26 ± 0.02 (50 °	C)	

383 *Unless otherwise noted, other parameters, which are not listed, are the same as those in

384 Felmy and Weare (1986) model.

386 Table 4. Comparison of independent, experimental equilibrium compositions for

multiple equilibrium assemblages containing sodium tetraborate ($Na_2B_4O_7 \cdot 10H_2O$)

388 (borax) with predicted compositions in mixtures of NaCl and Na₂SO₄ at 25 °C Experimental data for equilibrium compositions

Experiment	iai uata 101 e	quinorium c	ompositions		
m _{Na}	m _{Cl}	m _{SO4}	$m_{\Sigma B}$	Equilibrium	References
				Assemblage*	
				BRX+HLT+THNDT	Van't Hoff
					and
					Blasdale
6.967	5.516	0.694	0.125		(1905)
				BRX+HLT	Grushvitski
					and
					Flerinskava
6.355	5.925	0.183	0.128		(1932)
6.527	5.408	0.526	0.134	BRX+HLT	ibid.
6.716	5.286	0.673	0.167	BRX+HLT	ibid.
6.939	5.441	0.716	0.132	BRX+HLT+THNDT	ibid.
6.603	4.723	0.903	0.149	BRX	ibid.
6.477	3.168	1.619	0.141	BRX+MRBLT+THNDT	ibid.
3.774	0.248	1.734	0.117	BRX+MRBLT	ibid.
Equilibriun	n compositio	ns predicted	by the Felmy	and Weare (1986) model	
m _{Na}	m _{Cl}	m _{SO4}	$m_{\Sigma B}$	Equilibrium	
				Assemblage*	
6.971	5.484	0.691	0.212	BRX+HLT+THNDT	
6.364	5.896	0.182	0.206	BRX+HLT	
6.532	5.381	0.523	0.209	BRX+HLT	
6.704	5.260	0.670	0.211	BRX+HLT	
6.943	5.413	0.712	0.212	BRX+HLT+THNDT	
6.602	4.699	0.898	0.214	BRX	
6.367	3.229	1.512	0.229	BRX+MRBLT+THNDT	
3.833	0.246	1.721	0.289	BRX+MRBLT	
Equilibriun	n compositio	ns predicted	by the model	l developed in this study	
m _{Na}	m _{Cl}	m _{SO4}	$m_{\Sigma B}$	Equilibrium	
				Assemblage*	
6.947	5.494	0.692	0.136	BRX+HLT+THNDT	
6.347	5.906	0.183	0.151	BRX+HLT	
6.512	5.393	0.524	0.141	BRX+HLT	
6.683	5.272	0.671	0.137	BRX+HLT	
6.922	5.426	0.714	0.136	BRX+HLT+THNDT	
6.577	4.711	0.900	0.131	BRX	
6.284	3.273	1.475	0.120	BRX+MRBLT+THNDT	
3.780	0.247	1.728	0.151	BRX+MRBLT	
Difference	in %** betw	een experim	ental values a	and those predicted by the F	W86 model
∆Na in %	∆Cl in %	ΔSO_4 in %	$\Delta\Sigma B$ in %	Equilibrium	
				Assemblage*	
0	1				

0.060	-0.586	-0.507	69.788	BRX+HLT+THNDT	
0.133	-0.483	-0.482	60.851	BRX+HLT	
0.084	-0.496	-0.497	55.925	BRX+HLT	
-0.170	-0.504	-0.503	26.362	BRX+HLT	
0.072	-0.508	-0.507	60.305	BRX+HLT+THNDT	
-0.016	-0.514	-0.515	43.776	BRX	
-1.701	1.941	-6.656	62.343	BRX+MRBLT+THNDT	
1.555	-0.725	-0.725	145.848	BRX+MRBLT	
Difference in %** between experimental values and those predicted by the model					
developed i	in this study				
∆Na in %	∆Cl in %	ΔSO_4 in %	$\Delta\Sigma B$ in %	Equilibrium	
				Assemblage*	
-0.290	-0.402	-0.274	9.240	BRX+HLT+THNDT	
-0.121	-0.309	-0.308	18.448	BRX+HLT	
-0.227	-0.284	-0.285	5.249	BRX+HLT	
-0.495	-0.275	-0.274	-18.006	BRX+HLT	
-0.245	-0.273	-0.272	2.587	BRX+HLT+THNDT	
-0.392	-0.259	-0.260	-11.967	BRX	
-2.974	3.327	-8.884	-14.637	BRX+MRBLT+THNDT	
0.145	-0.307	-0.307	28.758	BRX+MRBLT	

*Abbreviations for minerals: BRX, borax (Na₂B₄O₇•10H₂O); HLT, halite (NaCl);

390 MRBLT, mirabilite (Na₂SO₄•10H₂O); THNDT, thenardite (Na₂SO₄).

391 **Difference in % is defined as, using concentrations of sodium on molal scale as an392 example,

393
$$\Delta \text{Na in \%} = 100 \times \frac{m_{Na,Model} - m_{Na,Experimental}}{m_{Na,Experimental}}$$

394

396 Table 5. Chemical composition of the brine from the Zhabei Salt Lake, Xizang (Tibet)

397 Autonomous Region, China (from Gao et al., 2012)

398

Composition	Na ⁺	\mathbf{K}^+	Ca^{2+}	Mg^{2+}	Cl	ΣCO_3	SO_4^{2-}	$B_4O_7^{2-}$
mol•kg ⁻¹	0.738	0.0660	0.00203	0.188	0.404	0.124	0.933	0.0864
Other	рН		Density, g/cm^3			Total l	Dissolve	d Salts,
parameters							mg/L	
Value	9.19		1.046				61,740	

399 *Original compositions are converted to molal concentrations by this work, based on400 density and total dissolved salts.

401

402

403

404

405

406

407 Table 6. Chemical composition of the brine from the western Sichuan gas field, China

408 (from Lin et al., 2000)*

409

Composition	Na ⁺	\mathbf{K}^+	Ca ²⁺	Mg^{2+}	Cl^{-}	ΣCO_3	SO_4^{2-}	$B_4O_7^{2-}$
mol•kg ⁻¹	4.90	1.59	0.105	0.152	6.90	0.0215	0.0169	0.0184
Other	pН		Density, g/cm ³			Total Dissolved Salts,		
parameters	_						mg/L	
Value	6.18		1.2359				377,270	

410 *Original compositions are converted to molal concentrations by this work, based on

411 density and total dissolved salts.

412

414	Figure Captions
415	
416	Figure 1. A plot showing experimental total boron concentrations in equilibrium with
417	sodium tetraborate produced in this study as a function of experimental time.
418 419	
420	Figure 2. A plot showing experimental total boron concentrations in equilibrium with
421	sodium tetraborate produced in this study as a function of molalities of NaCl.
422	
423	
424	Figure 3. A plot showing $[\log \beta_1^I + 2D]$ as a function of ionic strengths, where
425	$\log \beta_1^I$ denotes conditional formation constants of NaB(OH) ₄ (aq) at certain ionic strengths
426	from Reardon (1976).
427	
428	
429	Figure 4. A plot showing a comparison of experimental total boron concentrations in
430	equilibrium with sodium tetraborate in NaCl and Na ₂ SO ₄ solutions with predicted total
431	boron concentrations as a function of ionic strengths.
432	
433	
434	Figure 5. A plot showing differences in total boron concentrations in equilibrium with
435	sodium tetraborate between experimental and predicted values in NaCl + Na ₂ SO ₄
436	solutions as a function of ionic strengths.
437	
438	
439	Figure 6. A plot showing mineral precipitation as a function of degree of evaporation
440	(DE).
441	
442	
443	Figure 7. A plot showing chemical evolution of the brine as a function of degree of
444	evaporation (DE). A. the brine from the Zhabei Salt Lake, China; B. the brine from the
445	western Sichuan Province, China
446	

lonic Strength on Molality Scale (m_{NaCl} or 3 m_{Na2SO4})

 $I_m (m_{NaCl} + 3m_{Na2SO4})$

