l	Experimental Determination of Solubilities of Sodium Tetraborate (Borax) in NaCl
2	Solutions, and A Thermodynamic Model for the Na–B(OH) ₃ –Cl–SO ₄ System to High
3	Ionic Strengths at 25 °C, Revision 1 Corrections
4	
5	Yongliang Xiong ¹ , Leslie Kirkes, and Terry Westfall
5	Sandia National Laboratories (SNL)*
7	Carlsbad Programs Group
3	4100 National Parks Highway, Carlsbad, NM 88220, USA
`	

 $^{1}\ Corresponding\ author,\ e-mail:\ yxiong@sandia.gov.$

This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

^{*} Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

ABSTRACT

reaction,

11

16

17

19

23

25

- In this study, solubility experiments on sodium tetraborate (NaB₄O₇•10H₂O, borax) are conducted in NaCl solutions up to 5.0 m at room temperature (22.5 \pm 1.5°C). In combination with solubility data of sodium tetraborate in Na₂SO₄ solutions from literature, the solubility constant (log K_{sp}) for sodium tetraborate for the following
- 18 $Na_2B_4O_7 \cdot 10H_2O = 2Na^+ + 4B(OH)_4^- + 2H^+ + H_2O(1)$ (1)
- is determined as -24.80 ± 0.10 based on the Pitzer model. In conjunction with the relevant Pitzer parameters, based on the above log K_{sp} for borax, and log β_I (0.25 \pm 0.01) evaluated from the literature for the following complex formation reaction,

24
$$Na^{+} + B(OH)_{4}^{-} = NaB(OH)_{4}(aq)$$
 (2)

a thermodynamic model with high precision is established for the Na⁺-B(OH)₃-Cl⁻
SO₄²⁻ system at high ionic strengths up to saturation of halite (NaCl), mirabilite

(Na₂SO₄•10H₂O) and thenardite (Na₂SO₄). The model is validated by comparison of

model predicted equilibrium compositions for the assemblages of borax alone, borax +

halite, borax + mirabilite, borax + halite + thenardite, and borax + mirabilite + thenardite

in the mixtures of NaCl + Na₂SO₄ to ionic strengths of 8.0 m, with independent

experimental values from the literature. The differences in concentrations of major ions,

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

e.g., Na⁺, Cl⁻, and SO₄²⁻, between model predicted and experimental values are generally less than 0.5%. The difference for total boron concentrations is less than 0.05 m with an error less than 25%. The revised thermodynamic model is applied to the potential recovery of borax from boron-enriched brines via evaporation at 25°C, using the two brines from China as examples. The reaction path calculations suggest that the brine from the Zhabei Salt Lake in Xizang (Tibet) Autonomous Region, is suitable to recovery of borax via evaporation at 25°C, whereas the brine from the western Sichuan Province, although it is enriched in boron, is not suitable to extraction of boron as borax, but is suitable to extraction of potassium as sylvite, via evaporation at 25°C. INTRODUCTION Numerous actinide borates have been recently successfully synthesized (e.g., Wang et al., 2010, 2011, and references therein), including a Pu(III) borate, $Pu_2[B_{12}O_{18}(OH)_4Br_2(H_2O)_3] \bullet 0.5H_2O$. Furthermore, a recent experimental study has suggested that borate could potentially complex with Nd(III), an analog to Am(III) (Borkowski et al., 2010). Therefore, a comprehensive thermodynamic model involving interactions of borate with major ions in brines is needed to accurately describe the contributions of borate to the solubility of Am(III) in brines in salt formations, as they contain significant concentrations of borate. In brines associated with salt formations, they contain high concentrations of sodium along with significant concentrations of boron. For instance, at the Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic

(TRU) waste (U.S. DOE, 1996), the Generic Weep Brine (GWB) and Energy Research and Development Administration Well 6 (ERDA-6), contain high concentrations of sodium and borate. Therefore, in geological repositories in salt formations, the interactions between sodium and borate will be important to the accurate description of the contributions of borate to the solubility of Am(III) in brines in salt formations.

A thermodynamic model for borate at high ionic strengths was developed more than two decades ago by Felmy and Weare (1986). In addition to the newly generated data at Sandia National Laboratories, there have also been numerous experimental data concerning borate in concentrated brines generated in China (e.g., Sang et al., 2011), since the discovery of enormous amounts of highly concentrated brines with high concentrations of B (up to 4994 mg/L) and Li (up to 90 mg/L), termed as "liquid ores", in Sichuan Province, China (e.g., Lin et al., 2000). Therefore, in light of new experimental data, the revision of the Felmy and Weare model is in order. There will be a series of upcoming publications in this area, and this paper is the first one in this series.

EXPERIMENTAL METHODS

In our solubility experiments, about 5 grams of the solubility controlling material—ACS reagent grade sodium tetraborate (Na₂B₄O₇•10H₂O), i.e., borax, from Fisher Scientific was weighed out and placed into 150 mL plastic bottles. Then, 100 mL of supporting solutions were added into those bottles. Once filled, the lids of the bottles were sealed with parafilm. The supporting electrolytes are a series of NaCl solutions ranging from 0.010 m to 5.0 m. Undersaturation experiments are conducted at the laboratory room temperature (22.5 \pm 1.5°C), and the duration of our experiments is

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

exceedingly long in comparison with the similar studies previously conducted (see RESULTS section). In the following, sodium tetraborate and borax will be interchangeably used. The pH readings were measured with an Orion-Ross combination pH glass electrode, coupled with an Orion Research EA 940 pH meter that was calibrated with three pH buffers (pH 4, pH 7, and pH 10). In solutions with an ionic strength higher than 0.10 m, hydrogen-ion concentrations on molar scale (pcH) were determined from pH readings by using correction factors (Rai et al., 1995). Based on the equation in Xiong et al. (2010), pcHs are converted to hydrogen-ion concentrations on molal scale (pmH). Solution samples were periodically withdrawn from experimental runs. Before solution samples were taken, pH readings of experimental runs were first measured. The sample size was usually 3 mL. After a solution sample was withdrawn from an experiment and filtered with a 0.2 µm syringe filter, the filtered solution was then weighed, acidified with 0.5 mL of concentrated TraceMetal® grade HNO₃ from Fisher Scientific, and finally diluted to a volume of 10 mL with DI water. If subsequent dilutions were needed, aliquots were taken from the first dilution samples for the second dilution, and aliquots of the second dilution were then taken for the further dilution. Boron concentrations of solutions were analyzed with a Perkin Elmer dual-view inductively coupled plasma-atomic emission spectrometer (ICP-AES) (Perkin Elmer DV 3300). Calibration blanks and standards were precisely matched with experimental matrices. The linear correlation coefficients of calibration curves in all

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

measurements were better than 0.9995. The analytical precision for ICP-AES is better than 1.00% in terms of the relative standard deviation (RSD) based on replicate analyses. RESULTS Experimental results are tabulated in Table 1. In Figure 1, solubilities of sodium tetraborate as a function of experimental time are displayed. From Figure 1, it is clear that steady-state concentrations are achieved in the first sampling, which was taken at 132 days (Table 1). It is assumed that steady-state concentrations represent equilibrium concentrations, as the duration of experiments, up to 567 days, is significantly longer than previous studies under similar conditions. For example, the equilibrium for the quaternary Na₂B₄O₇—Na₂SO₄—K₂B₄O₇—K₂SO₄—H₂O system at 15°C was attained in 3-7 days (Sang et al., 2011). In Figure 2, concentrations of boron as a function of molalities of NaCl are displayed. Figure 2 indicates that concentrations of boron in equilibrium with sodium tetraborate have a strong dependence on concentrations of NaCl, with substantial decrease in concentration of boron with increasing concentrations of NaCl. For instance, the solubilities of sodium tetraborate are ~0.50 m in terms of total boron concentrations in a 0.01 m NaCl solution, whereas the concentrations of boron decrease to ~0.15 m in a 5.0 m NaCl solution. THERMODYNAMIC MODEL, DISCUSSIONS, AND APPLICATIONS Felmy and Weare (1986) developed a thermodynamic model concerning borate in the system Na—K—Ca—Mg—H—Cl—SO₄—CO₂—B(OH)₄—H₂O, based on literature

data. This model will be abbreviated as the FW86 model hereafter. Their model is an extension of the Harvie et al. (1984) model to include borate species. In the FW86 model, the species, NaB(OH)₄(aq), was not explicitly considered. However, numerous researchers have suggested the existence of this complex in solutions containing sodium (e.g., Reardon, 1976; Corti et al., 1980; Rowe et al., 1989; Pokrivski et al., 1995; Akinfiev et al., 2006). Therefore, this complex could be important in Na-rich solutions.

In the work of Reardon (1976), the formation constants for the reaction,

134
$$Na^{+} + B(OH)_{4}^{-} = NaB(OH)_{4}(aq)$$
 (1)

were determined in a NaCl medium with ionic strengths ranging from 0.165 m to 0.499 m at temperatures from 10 °C to 50 °C. To obtain the thermodynamic formation constants at infinite dilution, Reardon (1976) used the activity coefficients of HCO_3^- and $H_3BO_3(aq)$ to approximate those of $B(OH)_4^-$ and $NaB(OH)_4(aq)$, respectively. The thermodynamic formation constant at 25 °C for Reaction (1) obtained by Reardon (1976) was 0.22 ± 0.10 .

In this study, conditional formation constants for Reaction (1) generated by Reardon (1976) are re-evaluated by using the SIT model, following the methodology of Grenthe et al. (1992). The log β_I at 25 °C obtained is 0.25 ± 0.01 (Figure 3 and Table 2). Based on $\Delta \epsilon = -0.04 \pm 0.02$, the log β_I at 10 °C, 40 °C and 50 °C are also obtained (Table 2). These values are in agreement with those of Pokrowski et al. (1995).

With the above $\log \beta_I$ for NaB(OH)₄(aq), experimental solubility data of borax in Na₂SO₄ from Sborgi et al. (1924), are utilized to model the Pitzer parameters and $\log K_{sp}$ for borax with the aid of the computer code EQ3/6 Version 8.0a (Wolery et al., 2010; Xiong, 2011). The essence of the modeling is to minimize the difference between experimental and model predicted values. The $\log K_{sp}$ for borax dissolution refers to the following reaction,

 $Na_2B_4O_7 \bullet 10H_2O = 2Na^+ + 4B(OH)_4^- + 2H^+ + H_2O(1)$ (2)

In Figure 4, experimental data along with model predicted values are plotted. In this plot, solubilities of Na₂B₄O₇•10H₂O in a Na₂SO₄ medium from Sborgi et al. (1924; compiled in Linke, 1965, p. 826; and Silcock, 1979, Part 2, p. 582) are also included. It should be mentioned that while the data of Sborgi et al. (1924) were tabulated in both of the above compilations, Silcock (1979) cited an incorrect source. Notice that the values predicted by the FW86 model are based on the parameters listed in Table 2. Similarly, the values predicted by the model developed in this study are based on the parameters tabulated in Table 3. It is clear from Figure 4 that the revised model developed in this study performs very well in a wide range of ionic strength.

In Table 4, solution compositions of the assemblage of sodium tetraborate alone or in equilibrium with other phases such as halite (NaCl), mirabilite (Na₂SO₄•10H₂O), and thenardite (Na₂SO₄), in mixtures of NaCl + Na₂SO₄ predicted by the revised model and by the FW86 model are compared with independent experimental data from the

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

literature up to ionic strengths of 8.0 m, which are not used in model development in this study. The experimental data are from Van't Hoff and Blasdale (1905; compiled in Silcock, 1979) and Grushvitski and Flerinskava (1932; cited by Bukshtein et al., 1953-1954, and compiled in Silcock, 1979). The comparison demonstrates that while these two models have similar precisions in prediction of concentrations of major ions, i.e., Na^+ , Cl^- , and SO_4^{2-} (Table 4), there is a significant improvement associated with the current model in predicting solubilities of sodium tetraborate. The validation test indicates that the differences between boron concentrations predicted by the current model and experimental solubilities are less than 0.05 m with an error less than 25% (Table 4 and Figure 5). In comparison, the differences between boron solubilities predicted by the FW86 model and experimental solubilities are generally higher than 0.05 m, and can be as high as 0.17 m with an error up to 146%. The revised model indicates that sodium tetraborate has solubilities much lower in high ionic strength solutions in comparison with those predicted by the previous model. This would have a wide range of implications. As an example, in the following, we apply the current model to investigate the evolution of some boron-enriched brines in China as a function of evaporation at 25°C. The mildly alkaline brine in the Zhabei Salt Lake in Xizang (Tibet) Autonomous Region, China, is enriched in boron (Gao et al., 2012) (Table 5). Similarly, as mentioned in Introduction, the brine from the gas field in the western Sichuan Province, China, is also enriched in boron (Table 6). Therefore, based on the thermodynamic model on sodium tetraborate developed in this study, using EQ3/6 Version 8.0a, we can quantitatively model by performing reaction path calculations the evolution of those

boron-enriched brines as a function of evaporation to provide insight into the potential recovery of boron as sodium tetraborate via evaporation. In the reaction path calculations, degrees of evaporation (DE) is defined as follows:

196
$$DE = (1 - \frac{RMS}{OMS}) \times 100\% = (1 - \frac{RMS}{1000}) \times 100\%$$
 (3)

where *RMS* is residual mass of solvent in grams, *OMS* is original mass of solvent. In the reaction path calculations, *OMS* is scaled to 1000 grams of water.

In our reaction path calculations, the original aqueous solution masses for the Zhabei Salt Lake and western Sichuan gas field brines are 1146 and 1433 grams, respectively. As the original pH for the western Sichuan gas field brine was slightly acidic (pH = 6.18), and borax will not precipitate, its pH was adjusted to 9.0 before reaction path calculations. As the Zhabei Salt Lake brine is mildly alkaline, its pH was not adjusted for reaction path calculations.

In Figure 6, amounts of mineral precipitated in mole are displayed as a function of DE. From Figure 6, we can see that above DE 10, about 0.08 moles of borax will be precipitated. Hydromagnesite (5424) [Mg₅(CO₃)₄(OH)₂•4H₂O] (Xiong and Lord, 2008; Xiong, 2011a) will also be precipitated. Trace amounts of calcite are also predicted to be precipitated (Figure 6). In the evaporation experiments with the Zhabei Salt Lake brine at 0°C performed by Gao et al. (2012), the precipitation of borax and magnesium carbonate, possibly lansfordite (MgCO₃•5H₂O), is also observed, based on phase identifications using a polarizing microscope. However, it is worth noting that their identification of lansfordite based on the optical method may not be exact. In fact, studies on the sediments in the similar lakes in Xizang (Tibet) Autonomous Region have

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

indicated the presence of hydromagnesite (5424) instead of lansfordite (Goto et al., 2003). Therefore, the magnesium carbonate identified by Gao et al. (2012) using the optical method could be hydromagnesite (5424). In their evaporation experiments at 0°C, Gao et al. (2012) did not mention the presence of calcite. This may be due to the presence of calcite in trace amount, or the kinetics of calcite crystallization. In addition, because of lower solubilities for salts at lower temperatures, mirabilite (Na₂SO₄•12H₂O), halite (NaCl), and sylvite (KCl) are also precipitated as major minerals in evaporation experiments at 0°C of Gao et al. (2012). In contrast, because of undersaturation in respect with mirabilite at 25°C, sulfate concentrations remain high during the evaporation at 25°C (Figure 7A). Evaporation of the brine from the gas field in the western Sichuan Province does not precipitate borax and hydromagnesite (5424). Instead, halite, anhydrite (CaSO₄), brucite [Mg(OH)₂], magnesium chloride hydroxide hydrate (phase 5) [Mg₃Cl(OH)₅•4H₂O] (Xiong et al., 2010), and sylvite are precipitated (Figure 6). Notice that brucite is stable up to DE ~40. Above DE ~40, brucite is replaced by phase 5 (Figure 6). The absence of borax during evaporation of the brine from the western Sichuan Province is due to the fact that the brine has higher magnesium concentrations when the brine is chemically evolved (Figures 7A and 7B). In the evaporation experiments with the brines having significant concentrations of magnesium and boron performed by Gao and Li (1982) at temperatures from 16°C to 27°C, the precipitation of borax is not observed neither because of high concentrations of magnesium. In our own solubility experiments, we also observe that borax has much higher solubilities in magnesium chloride solutions, which will be published later. In other words, the absence

of borax in the brine from the western Sichuan Province is well explained by the fact that
borax has higher solubilities in solutions with significant concentrations of magnesium.
In terms of chemical evolution of the brines induced by evaporation, the brine
from the Zhabei Salt Lake is dominated by Na-SO ₄ -Cl-B ₄ O ₇ (Figure 7A), whereas the
brine from the western Sichuan Province is dominated by Na-K-Mg-Cl (Figure 7B).
The above reaction path calculations indicate that the brine from the Zhabei Salt
Lake is suitable for recovery of borax via evaporation at 25°C. The brine from the
western Sichuan Province is suitable for extraction of potassium as sylvite via
evaporation at 25°C.
SUMMARY
In this study, a thermodynamic model with high precision is developed for the
Na^+ – $B(OH)_3$ – Cl^- – SO_4^{2-} system, based on new experimental data. This model is
validated by independent experimental data in ternary mixtures of NaCl and Na ₂ SO ₄ .
With this model, solubilities of borax in concentrated NaCl, Na ₂ SO ₄ , and NaCl+Na ₂ SO ₄
solutions can be accurately modeled.

ACNOWLEDGEMENTS

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. We are grateful to Shelly Nielsen, Taya Olivas, Tana Saul, Diana Goulding, Brittany Hoard, Cassandra Marrs, Danelle Morrill, Mathew Stroble, and Kira Vincent, for their laboratory assistance. We thank the journal reviewers for their reviews, Dr. Rick Wilkin, the Associate Editor, Dr. Keith Putirka, the Editor, for their reviews and editorial efforts.

REFERENCES

271	
272	Akinfiev, N.N., Voronin, M.V., Zotov, A.V., Prokof'ev, V.Y. (2006) Experimental
273	investigation of the stability of a chloroborate complex and thermodynamic
274	description of aqueous species in the B-Na-Cl-O-H system up to 350°C.
275	Geochemistry International, 44, 867–878.
276	Borkowski, M., Richmann, M., Reed, D.T., and Xiong, YL. (2010) Complexation of
277	Nd(III) with Tetraborate Ion and Its Effect on Actinide (III) Solubility in WIPP
278	Brine. Radiochimica Acta, 98, 577–582.
279	Bukshtein, V.M., Valyashko, M.G., and Pel'sh, A.D. (1953-1954) Spravochnik po
280	rastvorimosti solevykh system, A reference book of solubilities of salt systems
281	(Spravochnik po rastvorimosti solevykh system). Vol. I and II Izd. Vses. Nauch-
282	Issled. Inst. Goz., Goskhimizdat., Moscow-Leningrad.
283	Corti, H., Crovetto, R., and Fernandez-Prini, R. (1980) Mobilities and ion-pairing in
284	Li(OH) ₄ and NaB(OH) ₄ aqueous solutions. A conductivity study. Journal of
285	Solution Chemistry, 9, 617–625.
286	Felmy, A.R., and Weare, J.H. (1986) The prediction of borate mineral equilibria in
287	natural waters: Applications to Searles Lake, California. Geochimica et
288	Cosmochimica Acta, 50, 2771–2783.
289	Gao, F., Zheng, MP., Song, PS., Bu, LZ., Wang, YS. (2012) The 273.15-K-
290	isothermal evaporation experiment of lithium brine from the Zhabei Salt Lake, Tibet
291	and its geochemical significance. Aquatic Geochemistry, 18, 343–356.
292	Gao, SY., and Li, GY. (1982) The chemistry of borate in salt lake brine. Part One,
293	Behavior of borate during solar evaporation of brine (in Chinese with English
294	abstract). Chemical Journal of Chinese Universities, 3(2), 141–148.
295	Goto, A., Arakawa, H., Morinaga, H., and Sakiyama, T. (2003) The occurrence of
296	hydromagnesite in bottom sediments from Lake Siling, Central Tibet: implications
297	for the correlation among δ^{18} O, δ^{13} C and particle density. Journal of Asian Earth
298	Science, 21, 979–988.
299	Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung. C.,
300	Wanner, H. (1992) Chemical Thermodynamics of Uranium New York: Elsevier
301	Science Publishers; 714 pp.
302	Grushvitski, V.E., and Flerinskava, E.M. (1932) Tr. Vses. NauchIssled. Inst. Gal., cited
303	in Silcock, H. (1979) Solubilities of Inorganic and Organic Compounds, Volume 3,
304	Part 2, Page 585, Pergamon Press, New York.

- Harvie, C.E., Møller, N., and Weare, J.H. (1984) The Prediction of Mineral Solubilities
- in Natural Waters: The Na-K-Mg-Ca-H-Cl-SO₄-OH-HCO₃-CO₂-H₂O System
- 307 to High Ionic Strengths at 25 °C. Geochimica et Cosmochimica Acta, 48, 723-751.
- Lin, Y.-T., Yan, Y.-J., and Wu, Y.-L. (2000) Geochemical characteristics of gas field
- water in one field in west Sichuan and its development evaluation (in Chinese).
- 310 Natural Gas Industry (TIANRANQI GONGYE), 20, 9–14.
- Linke, W.F. (1965) Solubilities of Inorganic and Metal-Organic Compounds, A
- Compilation of Solubility Data from the Periodical Literature, Volume II, K-Z, 4th
- Edition, American Chemical Society, Washington, D.C., 1914 pp.
- Pokrovski, G.S., Schott, J., Sergeyev, A.S. (1995) Experimental determination of the
- stability constants of NaSO₄ and NaB(OH)₄ in hydrothermal solutions using a new
- 316 high-temperature sodium-selective glass electrode—Implications for boron isotopic
- fractionation. Chemical Geology, 124, 253–265.
- Rai, D., Felmy, A.R., Juracich, S.I., Rao, F.F. (1995) Estimating the Hydrogen Ion
- Concentration in Concentrated NaCl and Na₂SO₄ Electrolytes. SAND94–1949
- 320 Sandia National Laboratories, Albuquerque, NM.
- Reardon, E.J., (1976) Dissociation constants for alkali earth and sodium borate ion pairs
- 322 from 10 to 50 °C. Chemical Geology, 18, 309–325.
- Rowe, L.M., Tran, L.B., and Atkinson, G., (1989) The effect of pressure on the
- dissociation of boric acid and sodium borate ion pairs at 25 °C. Journal of Solution
- 325 Chemistry, 18, 675–689.
- Sang, S.-H., Li, H., Sun, M.-L., Peng, J. (2011) Solid—liquid stable equilibria for the
- quaternary Na₂B₄O₇—Na₂SO₄—K₂B₄O₇—K₂SO₄—H₂O system at 288 K. Journal
- of Chemical and Engineering Data, 56, 1956–1959.
- 329 Sborgi, U., Bovalini, E., and Cappellini, L. (1924) Per lo stuio della doppia
- decomposizione $(NH_4)_2 + Na_2SO_4 \square Na_2B_4O_7 + (NH_4)_2SO_4$ in soluzione acqusa.
- Parte III. Sistema ternario Na₂B₄O₇, Na₂SO₄, H₂O. Gazzetta chimica Italiana, 54,
- 332 298–322.
- 333 Silcock, H. (1979) Solubilities of Inorganic and Organic Compounds, Volume 3,
- Pergamon Press, New York.
- 335 U.S. DOE (1996) Compliance Certification Application 40 CFR Part 191 Subpart B and
- 336 C U.S. Department of Energy Waste Isolation Pilot Plant. Appendix SOTERM.
- DOE/CAO 1996-2184. Carlsbad, NM: U.S. DOE Carlsbad Area Office.
- Van't Hoff, I.H., and Blasdale, W.C. (1905) Examination on the formation conditions of
- oceanic salt deposits. XLV. The occurrence of tincal and octaedric borax.

340 341 342 343	SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 252, 1086–1090. Cited in Silcock, H., 1979. Solubilities of Inorganic and Organic Compounds, Volume 3, Part 2, Page 584, Pergamon Press, New York.
344 345 346	Wang, SA., Alekseev, E.V., Depmeier, W., and Albrecht-Schmitt, T.E. (2010) Surprising coordination for plutonium in the first plutonium(III) borate. Inorganic Chemistry, 50, 2079–2081.
347 348 349	Wang, SA., Alekseev, E.V., Depmeier, W., Albrecht-Schmitt, T.E. (2011) Recent progress in actinide borate chemistry. Chemical Communications, 47, 10874–10885.
350 351 352 353	Wolery, T.W., Xiong, YL., and Long, J. (2010) Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Document Version 8.10. Carlsbad, NM: Sandia National laboratories. ERMS 550239.
354 355 356	Xiong,. YL. (2011a) Experimental determination of solubility constant of hydromagnesite(5424) in NaCl solutions up to 4.4 m at room temperature. Chemical Geology, 284, 262–269.
357 358 359 360	Xiong, YL. (2011b) WIPP Verification and Validation Plan/Validation Document for EQ3/6 Version 8.0a for Actinide Chemistry, Revision 1, Document Version 8.20. Supersedes ERMS 550239. Carlsbad, NM. Sandia National Laboratories. ERMS 555358.
361 362 363	Xiong, YL., and Lord, A.C.S. (2008) Experimental investigations of the reaction path in the MgO–CO ₂ –H ₂ O system in solutions with ionic strengths, and their applications to nuclear waste isolation. Applied Geochemistry, 23, 1634–1659.
364 365 366 367 368	Xiong, YL., Deng, HR., Nemer, M., and Johnsen, S. (2010) Experimental determination of the solubility constant for magnesium chloride hydroxide hydrate (Mg ₃ Cl(OH) ₅ ·4H ₂ O), phase 5) at room temperature, and its importance to nuclear waste isolation in geological repositories in salt formations. Geochimica et Cosmochimica Acta, 74, 4605-46011.
369	
370	

Table 1. Experimental results produced in this study at 22.5 ± 1.5 °C.

				Molal total boron
	Supporting			concentrations, $m_{\Sigma B}$, in
T	Medium, NaCl,	1		equilibrium with sodium
Experimental Number	molal	time, days	pmH	tetraborate
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	132	9.10	0.515
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	132	9.03	0.509
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	132	8.97	0.435
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	132	8.95	0.417
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	132	8.70	0.179
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	132	8.72	0.194
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	132	8.66	0.157
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	132	8.81	0.147
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	132	8.81	0.139
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	132	8.77	0.143
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	132	8.88	0.165
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	132	8.89	0.151
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	132	8.80	0.145
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	132	8.79	0.146
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	278	9.28	0.488
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	278	9.28	0.495
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	278	9.26	0.411
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	278	9.24	0.415
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	278	9.04	0.190
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	278	9.03	0.099
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	278	9.00	0.155
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	278	8.98	0.152
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	278	8.96	0.143
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	278	8.93	0.140
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	278	9.06	0.139
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	278	9.05	0.142
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	278	8.96	0.141
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	278	8.96	0.142
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	327	9.33	0.482
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	327	9.28	0.508
$Na_2B_4O_7$ -NaCl-0.1-1	0.10	327	9.26	0.436

Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	327	9.22	0.430
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	327	9.09	0.207
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	327	9.10	0.210
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	327	8.99	0.160
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	327	9.00	0.161
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	327	9.00	0.151
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	327	8.95	0.157
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	327	9.10	0.151
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	327	9.11	0.147
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	327	8.97	0.151
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	327	9.01	0.158
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	377	9.39	0.513
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	377	9.38	0.509
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	377	9.32	0.468
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	377	9.33	0.482
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	377	9.09	0.214
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	377	9.09	0.231
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	377	9.03	0.168
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	377	9.03	0.171
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	377	9.01	0.153
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	377	9.00	0.149
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	377	9.08	0.152
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	377	9.09	0.146
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	377	9.00	0.152
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	377	9.02	0.149
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	425	9.35	0.514
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	425	9.31	0.532
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	425	9.26	0.531
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	425	9.25	0.458
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	425	9.04	0.221
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	425	9.03	0.222
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	425	8.96	0.171
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	425	8.97	0.171
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	425	8.95	0.161
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	425	8.93	0.156
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	425	9.02	0.158
Na ₂ B ₄ O ₇ -NaCl-4.0-2	4.4	425	9.04	0.154
$Na_2B_4O_7$ -NaCl-5.0-1	5.0	425	8.96	0.159

Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	425	8.97	0.162
Na ₂ B ₄ O ₇ -NaCl-0.01-1	0.010	567	9.28	0.489
Na ₂ B ₄ O ₇ -NaCl-0.01-2	0.010	567	9.28	0.497
Na ₂ B ₄ O ₇ -NaCl-0.1-1	0.10	567	9.24	0.429
Na ₂ B ₄ O ₇ -NaCl-0.1-2	0.10	567	9.23	0.426
Na ₂ B ₄ O ₇ -NaCl-1.0-1	1.0	567	9.00	0.199
Na ₂ B ₄ O ₇ -NaCl-1.0-2	1.0	567	9.00	0.203
Na ₂ B ₄ O ₇ -NaCl-2.0-1	2.1	567	8.94	0.157
Na ₂ B ₄ O ₇ -NaCl-2.0-2	2.1	567	8.94	0.167
Na ₂ B ₄ O ₇ -NaCl-3.0-1	3.2	567	8.93	0.160
Na ₂ B ₄ O ₇ -NaCl-3.0-1R	3.2	567	8.92	0.155
Na ₂ B ₄ O ₇ -NaCl-3.0-2	3.2	567	8.90	0.154
Na ₂ B ₄ O ₇ -NaCl-4.0-1	4.4	567	8.99	0.148
$Na_2B_4O_7$ - $NaCl$ -4.0-2	4.4	567	9.01	0.152
Na ₂ B ₄ O ₇ -NaCl-5.0-1	5.0	567	8.93	0.158
Na ₂ B ₄ O ₇ -NaCl-5.0-2	5.0	567	8.93	0.154

Table 2. Felmy and Weare (1986) model for the Na–B(OH)₃–Cl–SO₄ system

Pitzer Binary Interaction Cofficients						
Species, i	Species, j	$\beta^{(0)}$	$\beta^{(1)}$	C^{ϕ}		
Na ⁺	B(OH) ₄	-0.0427	0.089	0.0114		
Na ⁺	$B_3O_3(OH)_4^-$	-0.056	-0.910			
Na ⁺	B ₄ O ₅ (OH) ₄ ²⁻	-0.11	-0.40			
Pitzer Mixing Pa	rameters and Intera	action Parameters	Involving Neutral	Species		
Species, i	Species, j	Species, k	θ_{ij} or λ_{ij}	Ψ_{ijk} or ζ_{ijk}		
B(OH) ₄	Cl ⁻	Na ⁺	-0.065	-0.0073		
B(OH) ₄	SO_4^{-2}		-0.012			
$B_3O_3(OH)_4^-$	Cl ⁻	Na ⁺	0.12	-0.024		
$B_3O_3(OH)_4^-$	$\mathrm{SO_4}^{-2}$		0.10			
$B_4O_5(OH)_4^{-2}$	Cl ⁻	Na ⁺	0.074	0.026		
$B_3O_3(OH)_4^-$ $B_4O_5(OH)_4^{-2}$ $B_4O_5(OH)_4^{-2}$	SO_4^{-2}		0.12			
B(OH) ₃ (aq)	Cl ⁻		0.091			
B(OH) ₃ (aq)	SO_4^{-2}	Na ⁺	0.018	0.046		
B(OH) ₃ (aq)	$B_3O_3(OH)_4^-$		-0.20			
B(OH) ₃ (aq)	Na ⁺		-0.097			
Equilibrium Constant for Solubility Reaction						
Reaction log K						
Na ₂ B ₄ O ₇ •10H ₂ O	$=2Na^{+}+4B(OH)$	$_{4}^{-} + 2H^{+} + H_{2}O$	-24.49			

383 384

385

Table 3. The revised thermodynamic model for the Na–B(OH)₃–Cl–SO₄ system developed in this study*.

Pitzer Mixing Parameters and Interaction Parameters Involving Neutral Species						
Species, i	Species, j	Species, k	θ_{ij} or λ_{ij}	Ψ_{ijk} or ζ_{ijk}		
B(OH) ₄	$\mathrm{SO_4}^{-2}$		0.17 ± 0.03			
NaB(OH) ₄ (aq)	Na ⁺		0.093 ± 0.005			
$B_4O_5(OH)_4^{-2}$	$\mathrm{SO_4}^{-2}$	Na ⁺		0.1 ± 0.2		
Equilibrium Cons	stants for Solubility	y and Complex Fo	rmation Reactions			
Reaction		$\log K$ or $\log \beta_I$ at 25 °C unless				
		otherwise noted				
Na ₂ B ₄ O ₇ •10H ₂ O	$=2Na^{+}+4B(OH)a$	$-24.80 \pm 0.10 (2\sigma)$				
$Na^{+} + B(OH)_{4}^{-} =$	NaB(OH) ₄ (aq)	$0.29 \pm 0.01 (10^{\circ})$	C)			
		$0.25 \pm 0.01 (25^{\circ})$	C) with			
		$\Delta \varepsilon = -0.04 \pm$	0.02			
		$0.24 \pm 0.01 \ (40 {}^{\circ}\text{C})$				
			$0.26 \pm 0.02 (50 ^{\circ}\text{C})$			

^{*}Unless otherwise noted, other parameters, which are not listed, are the same as those in Felmy and Weare (1986) model.

Table 4. Comparison of independent, experimental equilibrium compositions for multiple equilibrium assemblages containing sodium tetraborate (Na₂B₄O₇•10H₂O) (borax) with predicted compositions in mixtures of NaCl and Na₂SO₄ at 25 °C

387

	Experimental data for equilibrium compositions						
m _{Na}	m_{Cl}	m_{SO4}	$m_{\Sigma B}$	Equilibrium	References		
				Assemblage*	Van't Haff		
				BRX+HLT+THNDT	Van't Hoff and		
					Blasdale		
6.967	5.516	0.694	0.125		(1905)		
0.907	5.510	0.094	0.125	BRX+HLT	Grushvitski		
				BKX+IIL1	and		
					Flerinskava		
6.355	5.925	0.183	0.128		(1932)		
6.527	5.408	0.526	0.134	BRX+HLT	ibid.		
6.716	5.286	0.673	0.167	BRX+HLT	ibid.		
6.939	5.441	0.716	0.132	BRX+HLT+THNDT	ibid.		
6.603	4.723	0.903	0.149	BRX	ibid.		
6.477	3.168	1.619	0.141	BRX+MRBLT+THNDT	ibid.		
3.774	0.248	1.734	0.117	BRX+MRBLT	ibid.		
Equilibriun	n compositio	ns predicted	by the Felmy	and Weare (1986) model			
m_{Na}	m_{Cl}	m_{SO4}	$m_{\Sigma B}$	Equilibrium			
				Assemblage*			
6.971	5.484	0.691	0.212	BRX+HLT+THNDT			
6.364	5.896	0.182	0.206	BRX+HLT			
6.532	5.381	0.523	0.209	BRX+HLT			
6.704	5.260	0.670	0.211	BRX+HLT			
6.943	5.413	0.712	0.212	BRX+HLT+THNDT			
6.602	4.699	0.898	0.214	BRX			
6.367	3.229	1.512	0.229	BRX+MRBLT+THNDT			
3.833	0.246	1.721	0.289	BRX+MRBLT			
Equilibriun	n compositio	ns predicted	by the mode	developed in this study			
m_{Na}	m_{Cl}	m_{SO4}	$m_{\Sigma B}$	Equilibrium			
				Assemblage*			
6.947	5.494	0.692	0.136	BRX+HLT+THNDT			
6.347	5.906	0.183	0.151	BRX+HLT			
6.512	5.393	0.524	0.141	BRX+HLT			
6.683	5.272	0.671	0.137	BRX+HLT			
6.922	5.426	0.714	0.136	BRX+HLT+THNDT			
6.577	4.711	0.900	0.131	BRX			
6.284	3.273	1.475	0.120	BRX+MRBLT+THNDT			
3.780	0.247	1.728	0.151	BRX+MRBLT			
				and those predicted by the F	W86 model		
∆Na in %	∆Cl in %	∆SO₄ in %	$\Delta\Sigma$ B in %	Equilibrium			
				Assemblage*			

0.060	-0.586	-0.507	69.788	BRX+HLT+THNDT
0.133	-0.483	-0.482	60.851	BRX+HLT
0.084	-0.496	-0.497	55.925	BRX+HLT
-0.170	-0.504	-0.503	26.362	BRX+HLT
0.072	-0.508	-0.507	60.305	BRX+HLT+THNDT
-0.016	-0.514	-0.515	43.776	BRX
-1.701	1.941	-6.656	62.343	BRX+MRBLT+THNDT
1.555	-0.725	-0.725	145.848	BRX+MRBLT
Difference	in %** betw	een experim	ental values	and those predicted by the model
developed	in this study			
∆Na in %	Δ Na in % Δ Cl in % Δ SO ₄ in % Δ Σ B in % Equili		Equilibrium	
				Assemblage*
-0.290	-0.402	-0.274	9.240	BRX+HLT+THNDT
-0.121	-0.309	-0.308	18.448	BRX+HLT
-0.227	-0.284	-0.285	5.249	BRX+HLT
-0.495	-0.275	-0.274	-18.006	BRX+HLT
-0.245	-0.273	-0.272	2.587	BRX+HLT+THNDT
-0.392	-0.259	-0.260	-11.967	BRX
-2.974	3.327	-8.884	-14.637	BRX+MRBLT+THNDT
0.145	-0.307	-0.307	28.758	BRX+MRBLT

*Abbreviations for minerals: BRX, borax (Na₂B₄O₇•10H₂O); HLT, halite (NaCl);

MRBLT, mirabilite (Na₂SO₄•10H₂O); THNDT, thenardite (Na₂SO₄).

**Difference in % is defined as, using concentrations of sodium on molal scale as an example,

393
$$\Delta \text{Na in \%} = 100 \times \frac{m_{Na,Model} - m_{Na,Experimental}}{m_{Na,Experimental}}$$

390

391392

Table 5. Chemical composition of the brine from the Zhabei Salt Lake, Xizang (Tibet) Autonomous Region, China (from Gao et al., 2012)

Composition	Na ⁺	\mathbf{K}^{+}	Ca ²⁺	Mg^{2+}	Cl ⁻	ΣCO_3	SO_4^{2-}	$B_4O_7^{2-}$
mol•kg ⁻¹	0.738	0.0660	0.00203	0.188	0.404	0.124	0.933	0.0864
Other		Н	Density, g/cm ³		Total Dissolved Salts,			
parameters							mg/L	
Value 9.19		1.046		61,740				

*Original compositions are converted to molal concentrations by this work, based on density and total dissolved salts.

Table 6. Chemical composition of the brine from the western Sichuan gas field, China (from Lin et al., 2000)*

Composition	Na ⁺	K ⁺	Ca ²⁺	Mg^{2+}	Cl ⁻	ΣCO_3	SO_4^{2-}	$B_4O_7^{2-}$
mol•kg ^{−1}	4.90	1.59	0.105	0.152	6.90	0.0215	0.0169	0.0184
Other	рН		Density, g/cm ³			Total Dissolved Salts,		
parameters						mg/L		
Value	6.18		1.2359			377,270		

^{*}Original compositions are converted to molal concentrations by this work, based on density and total dissolved salts.

414	Figure Captions
415 416	Figure 1. A plot showing experimental total boron concentrations in equilibrium with
417 418	sodium tetraborate produced in this study as a function of experimental time.
419 420 421	Figure 2. A plot showing experimental total boron concentrations in equilibrium with sodium tetraborate produced in this study as a function of molalities of NaCl.
422 423	F
424	Figure 3. A plot showing $[\log \beta_1^I + 2D]$ as a function of ionic strengths, where
425	$\log \beta_1^I$ denotes conditional formation constants of NaB(OH) ₄ (aq) at certain ionic strengths
426 427 428	from Reardon (1976).
429 430 431 432 433	Figure 4. A plot showing a comparison of experimental total boron concentrations in equilibrium with sodium tetraborate in NaCl and Na ₂ SO ₄ solutions with predicted total boron concentrations as a function of ionic strengths.
434 435 436 437 438	Figure 5. A plot showing differences in total boron concentrations in equilibrium with sodium tetraborate between experimental and predicted values in $NaCl + Na_2SO_4$ solutions as a function of ionic strengths.
439 440 441 442	Figure 6. A plot showing mineral precipitation as a function of degree of evaporation (DE).
443 444 445 446	Figure 7. A plot showing chemical evolution of the brine as a function of degree of evaporation (DE). A. the brine from the Zhabei Salt Lake, China; B. the brine from the western Sichuan Province, China

