1 Revision1

2 A first principles calculation of the elastic and vibrational anomalies of lizardite under

3 pressure

4 Jun Tsuchiya^{1,2}

5 Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime

6 790-8577 JAPAN.

7 ²Earth-Life Science Institute, Ehime Satellite, 2-5 Bunkyo-cho, Matsuyama, Ehime

8 790-8577 JAPAN.

9 E-mail: junt@sci.ehime-u.ac.jp

10 Abstract

11 The crystal structure, elasticity, and vibrational properties of lizardite under pressure were determined using first principles techniques. Above 10 GPa, the stable and 12 13 metastable structures were obtained. The hydrogen bond geometry of the stable structure 14 indicates the disappearance of hydrogen bond above 10 GPa, whereas the metastable 15 structure does not show the noticeable change of the hydrogen bond strength throughout the 16 pressure range up to 20 GPa. At 10 GPa, a very sudden softening of the elastic constants was 17 observed at stable structure, which is associated with a slight change in the compressibility 18 of the c axis. This elastic softening causes a sudden reduction in the seismic velocities V_P

19	and V_{ϕ} by about 16% and 24%, respectively. These velocities, in turn, steeply increase with
20	further compression. Shear velocity $\mathrm{V}_{\mathrm{S}},$ on the other hand, gradually decreases with pressure
21	and then abruptly increases about 14% at 10 GPa. The calculated OH stretching frequencies
22	also increase suddenly at ~10 GPa. Previous Raman measurement reported that the highest
23	OH stretching frequencies also increase steeply above 6 GPa. Therefore, there is a
24	possibility that this elastic anomaly can be observed experimentally at about 6 GPa.
25	Keywords: lizardite, first principles, elasticity, vibration, high pressure

26 Introduction

27	Serpentine is a common rock forming hydrous magnesium phyllosilicate, and it is
28	known to form in the mantle wedge due to a reaction between peridotite and upwelling water,
29	which is released by the decomposition of hydrous minerals in the subducting slab under
30	pressure (e.g. Schmidt and Poli 1998, Iwamori 1998). Partially serpentinized peridotite may
31	be a significant reservoir for hydrogen in the mantle wedge and be the convectional lubricant
32	of subducting plates (Hilairet et al. 2007). The dehydration of serpentine is thought to
33	contribute to the generation of arc magmatism and was also extensively investigated in
34	connection with intermediate and deep earthquakes (e.g. Irifune et al. 1996, Dobson et al.
35	2002). There are three polymorphs in the serpentine group: antigorite, chrysotile, and

36	lizardite. Although antigorite is the most relevant mineral in these serpentine polymorphs at
37	the subduction zone, lizardite is expected to exist in very cold regions below ~400°C (Evans
38	2004). Despite the geophysical and mineralogical importance of serpentine, its structural and
39	physical properties have not been sufficiently determined. An in situ synchrotron X-ray
40	diffraction study previously reported the compressibility of lizardite, antigorite, and
41	chlysotile up to 10 GPa (Hilairet et al. 2006). Later, Nestola et al. 2009 reported the
42	anomalous softening of antigorite at 6 GPa by single crystal X-ray diffraction. Although,
43	Mookherjee and Stixrude (2009) reported the structure and elasticity of lizardite beyond 100
44	GPa, finding an elastic anomaly at 7-22 GPa, and discovering an elastic instability at 50 GPa,
45	their data points are sparse in the vicinity of the anomaly and a more detailed calculation and
46	analyses are needed. In this study, first principles calculations on the structural and elastic
47	properties of lizardite up to 20 GPa, with a smaller pressure interval of less than 2 GPa were
48	performed. In order to achieve a more detailed analysis, the vibrational properties such as
49	the OH stretching frequencies and the Raman spectra of lizardite under pressure were also
50	determined by using the density functional perturbation theory (DFPT).

51 Methods

52	First principles computations were based on the generalized gradient approximation
53	(GGA-PBE) within the density functional theory (Hohenberg and Kohn 1964, Perdew et al.
54	1996). It is known that the local density approximation (LDA) overestimates the strength of
55	the hydrogen bond and underestimates the volume, while GGA slightly overestimates the
56	experimental volume (e.g. Lee et al. 1992, Haman 1997). Since first principles structural
57	optimization is usually conducted at static 0 K conditions whereas the structural refinement
58	experiments are usually conducted at ambient conditions, the difference between
59	experiments and LDA calculations might be less if the temperature effects are included in
60	the calculations (e.g. Stixrude, 2002). Actually, the differences in the physical properties
61	calculated by GGA and LDA should be smaller when they are compared at the same volume,
62	and the qualitative behaviors under pressure are usually similar between GGA and LDA (e.g.
63	Demuth et al. 1999). In this study, GGA-PBE is employed for the elasticity calculation. The
64	Troullier-Martins type norm conserving pseudopotentials (Troullier and Martins 1991)
65	which were extensively tested in previous calculations (e.g. Tsuchiya and Tsuchiya, 2008,
66	2009) were used for this study.

67	The lizardite-1T polytype $Mg_3Si_2O_5(OH)_4$ has trigonal symmetry with the space
68	group $P3_1m$, and the lizardite primitive cell contains 18 atoms (Mellini 1982). The electronic
69	wave function was expanded in plane waves using a kinetic energy cutoff of 80 Ry. The

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

70	irreducible Brillouin zone of the lizardite primitive cell was sampled on a 5x5x4
71	Monkhorst-Pack mesh (Monkhorst and Pack 1976). All structural parameters are fully
72	relaxed at static 0 K conditions using damped variable cell shape molecular dynamics
73	(Wentzcovitch 1991) and the Quantum-espresso code (hppt://www.quantum-espresso.org)
74	until residual forces became less than 1.0×10^{-5} Ry/au. The elastic constants were determined
75	by using the stress-strain relations (Karki et al. 2001). The magnitude of all applied strains
76	was 0.01. The linear relation was ensured for this strain range.

77 In order to more closely investigate the elastic anomaly which is presumably caused by the change of the hydrogen bond strength in lizardite, the vibrational properties were 78 calculated using the linear response density functional perturbation theory (DFPT) (Baroni 79 80 et al. 2001). This method has been successfully applied to investigate the vibrational 81 properties of several hydrogen-free minerals (Tsuchiya et al. 2004a, 2004b) and a hydrous 82 phase of AIOOH (Tsuchiya et al. 2008). The experimental IR spectrum of lizardite at 83 ambient conditions has been excellently reproduced by using DFPT (Balan et al. 2002). For detailed comparisons with the Raman spectrum measurement (Auzende et al. 2004), the 84 Raman intensities have been computed. The Raman tensor was computed using the 85 second-order derivative of the electronic density matrix with respect to a uniform electric 86 87 field (Lazzeri and Mauri 2003) using the phonon code implemented in Quantum-espresso.

7/24

88 The experimental Raman spectra of hydrous minerals have been excellently reproduced by

using these calculation methods (Balan et al. 2006, Tsuchiya et al. 2008).

90 Results and Discussion

91 **1. Structure**

The crystal structure of lizardite consists of the SiO₄ tetrahedral layers, the MgO₆ 9293 octahedral layers, and the hydrogen bond layers. In this type of mineral, the structure is anisotropically changed by compression because it is easy to shrink along the weak direction, 94 95 *i.e.* normal to the layers. Figure 1 and Table 1 show the cell constants of lizardite under pressure. Those calculated results are consistent with previous x-ray diffraction experiments 96 (Hilairet et al. 2006a,b, Mellini and Zanazzi 1989) and previous calculation based on GGA 97 98 (Mookherjee and Stixrude 2009). The length of the lizardite *a*-axis corresponds to the two 99 basal edges of the SiO_4 tetrahedra. As mentioned above, GGA tends to overestimate the 100 volume and underestimate the hydrogen bond strength. Since the hydrogen bond aligns along the c-axis in lizardite, differences between calculation and experiment are larger in the 101 *c*-axis ($\sim 1.5\%$) more than the *a*-axis ($\sim 0.3\%$). The calculated and experimental bulk modulus 102are shown in Table 2. Least squares fittings of the calculated data to the third-order 103Birch-Murnaghan equation of state yield the zero-pressure bulk modulus B₀ of lizardite of 104

7/24

105	about 76.4 GPa (B'=2.39, V_0=182.3 Å ³) which is consistent with a synchrotron X-ray
106	diffraction study (B ₀ =71.9 GPa, B ₀ '=3.2, V ₀ =180.92 Å ³ , Hilairet et al., 2006).
107	The metastable structure of lizardite was also found above 10 GPa (~165 Å ³)
108	(Figure 1-3). Note that the space group of lizardite $(P3_1m)$ was maintained in both stable and
109	metastable structures throughout the pressure range. In the stable structure, the calculated
110	c-axis shows softening at about 10 GPa, whereas the metastable structure does not show
111	such softening (Figure 1). The compression mechanism of lizardite has been stated in a
112	previous study (Mookherjee and Stixrude 2009). In both stable and metastable structures,
113	the volume reductions are achieved by the deformation of SiO4 six-membered rings from
114	hexagonal to trigonal shapes (Figure 3) in order to accommodate higher pressure conditions.
115	However, the distortion direction of the six-membered rings is different between the stable
116	and metastable structures (Figure 3). In the stable structure, tetrahedral rotation angle α
117	changes from negative to positive above 10 GPa, whereas α is maintained at negative in the
118	metastable structure (Figure 4(d)). Interestingly, those two types of distortions of SiO_4
119	six-membered rings have already been reported in a previous study of lizardite-1T and -2H1
120	polytypes at ambient conditions (Mellini and Zanazzi 1987).
121	The hydrogen bond strength in the oxide minerals approximately correlates with the
122	O-H···O bond angle ($\angle OH \cdots O$) and the distance between the hydrogen and two adjacent

139

123	oxygens (R_{O-H} and R_{O-H}). In general, with increasing hydrogen bond strength, the R_{O-H} and
124	$R_{\text{O}\cdots\text{H}}$ bonds become longer and shorter respectively, and the hydrogen bond angle
125	$\angle OH \cdots O$ increases toward 180° (e.g Tsuchiya et al. 2005a, Tsuchiya and Tsuchiya. 2009,
126	Mookherjee and Stixrude 2009). Figure 4 shows the pressure dependence of the hydrogen
127	bond geometry of lizardite. Although the R_{O-H} distances decrease in both stable and
128	metastable structures, R_{0H} increases and $\angle OH \cdots O$ is noticeably decreased in the stable
129	structure whereas $R_{O\ldots H}$ decreased and ${\ensuremath{ \angle OH \cdots O}}$ is almost constant in the metastable
130	structure above 10 GPa (Figure 4 (a-c)). Those behaviors indicate that the hydrogen bond of
131	the stable structure is almost collapsed above 10 GPa, whereas that of the metastable
132	structure is still maintained and preventing the inter-layer softening. Previous studies
133	(Nestola et al., 2010; Mookherjee and Capitani,2011) also reported the softening of the
134	c-axis in antigorite. Further detailed studies may be needed for the identification of the
135	mechanism that causes the softening of the c-axis in antigorite.
136	2. Elasticity
137	Figure 5 and Table 3 show elastic constants of lizardite under pressure. At 0 GPa,
138	C_{33} is significantly smaller than C_{11} , since C_{33} corresponds to the compressibility along the
139	c-axis. With increasing pressure C_{33} increases rapidly and is almost comparable to C_{11} at

 ${\sim}10$ GPa. Many of the elastic constants of lizardite show kinks at 10 GPa. Among them, C_{33} 140

141	and C_{13} show the most striking change. These changes can be explained by the
142	disappearance of hydrogen bonds and softening of the c -axis as shown in Figure 1 and 4.
143	Shear elastic constants C_{44} and C_{66} show almost no pressure dependence up to 10 GPa, then
144	C_{44} shows a step-like increase at 10 GPa (Figure5(c)). In contrast, C_{66} is not affected by the
145	softening of the c -axis, since C ₆₆ is the elastic constant related to the shearing of the layer
146	and is of no relevance to the softening of the c-axis. Huge drops of C_{33} and C_{13} are
147	somewhat counter-intuitive since the hydrogen bond which is aligning along c-axis in
148	lizardite is attractive force and the disappearance of hydrogen bond leads to the softening of
149	the layers. However, the present results indicate that the disappearance of hydrogen bonds
150	induces the close-fitting between the layers of lizardite under pressure.
151	A study by Mookherjee and Stixrude (2009) reported an elastic anomaly of lizardite
152	where several elastic constants decrease with pressure at 7-22 GPa. The overall behavior of
153	the elastic anomaly in this study is consistent with the study by Mookherjee and Stixrude
154	(2009). However, in the present study, the elastic constants decrease more severely at 10
155	GPa and the pressure range where the elastic constants decrease is more localized within a
156	small pressure interval of only a few GPa.
157	Bulk and shear moduli determined by the Voigt, Ruess, and Hill averages are
158	shown in Figure 6(a). The bulk modulus increases with pressure and suddenly drops above

176

159	10 GPa because of an anomalous drop of the elastic constants. The shear modulus of
160	lizardite shows almost no pressure dependence except for the elevation at 10 GPa associated
161	with the C_{44} shear elastic constants anomaly. The differences of these moduli between Voigt
162	and Reuss limits at 0 GPa are very large, which reflects the very anisotropic crystal structure
163	of serpentine (Figure 6(a)). With increasing pressure, the difference in the bulk modulus
164	between the Voigt and Reuss averages $(B_V \text{ and } B_R)$ decreases rapidly whereas the difference
165	between G_V and G_R is almost unchanged.
166	Figure 6(b) shows the velocities of lizardite under pressure. This elastic softening
167	causes a reduction in seismic velocities V_P and V_φ by about 16% and 24%, respectively.
168	These velocities, in turn, suddenly increase with further compression. Shear velocity V_S , on
169	the other hand, gradually decreases with pressure and then abruptly increases about 14% at
170	10 GPa. Since these valley- and step-like changes in velocities complete within very small
171	pressure intervals (2-3 GPa), previous investigations may have failed to detect these elastic
172	anomalies.
173	
174	3. Born stability criteria
175	If a crystal is mechanically stable, the elastic wave energy is positive and the elastic

constant matrix should be positive definite. This is known as the Born stability criteria (Born

- and Huang, 1954). In order to check the mechanical stability of lizardite, the Born stability
- 178 criteria was calculated under pressure. The Born stability criteria for a trigonal system are,
- 179 $B_1 = C_{11} |C_{12}| > 0, (1)$

180
$$B_2 = (C_{11} + C_{12})C_{33} - 2C_{21}^3 > 0, (2)$$

181
$$B_3 = (C_{11} - C_{12})C_{44} - 2C_{21}^4 > 0.$$
 (3)

As shown in Figure 7, B_1 , B_2 , and B_3 are positively defined, even though a sudden drop of the elastic constants at 10 GPa occurred. Although the pressure of this anomaly is higher than the stability field of lizardite, these results suggest that lizardite is still mechanically stable. Therefore, there is a possibility that this elastic anomaly can be observed experimentally if it is metastably compressed and carefully measured with sufficiently small pressure intervals.

188 4. Vibrational property

In order to further inspect the hydrogen bond characteristic of lizardite, the vibrational properties of lizardite under pressure are calculated based on DFPT. Though, DFPT calculations of anhydrous systems have been shown to successfully describe their vibrational properties (e.g. Tsuchiya et al. 2005b), that of a hydrogen bonded system has been reported to be associated with larger calculation errors (Tsuchiya and Tsuchiya 2008). Therefore, DFPT calculations using two different electron exchange and correlation

195	functionals were performed: GGA and LDA in order to the grasp the general trends of two
196	functionals, the range of errors, and the qualitative behavior of vibrational properties under
197	pressure. Figure 8 shows the OH stretching frequencies of lizardite under pressure.
198	Eventually, the experimental OH stretching frequencies were found between the calculated
199	frequencies using LDA and GGA.
200	The experimental vibrational frequencies and Infrared and Raman spectrum of
201	lizardite at ambient conditions have been reported in previous studies (Balan et al. 2002,
202	Hofmeister and Bowey 2006, Post and Borer 2000, Fuchs et al. 1998, Rinaudo et al. 2003).
203	The normal modes, IR spectrum, and their peak assignments of lizardite at ambient
204	conditions are extensively discussed and clarified in previous studies (Balan et al. 2002,
205	Prencipe et al. 2009). The vibrational frequency pressure dependence of lizardite has been
206	reported by a Raman spectroscopic measurement (Auzende et al., 2004). They reported that
207	there are two sets of the OH stretching frequencies, one with a shallower and another is
208	steeper slopes under pressure as shown in Figure 8.
209	The calculated OH stretching frequencies gradually decrease at lower pressures and
210	then suddenly increase at pressures above ~ 10 GPa (Figure 8). Those behaviors are closely
211	correlated with the O-H bond geometry as shown in Figure 4. The abrupt increase of OH

212 stretching frequencies above 10 GPa can therefore be explained by the disappearance of

213	hydrogen bond. There is no calculated vibrational mode whose frequency has steadily
214	increasing with pressure as reported in the previous experiment. Considering the
215	experimental difficulty of the assignment of vibrational modes and experimental errors for
216	the determination of the vibrational peak positions, there is a possibility that the
217	experimental O-H vibrations can also be interpreted by the shallower slopes at lower
218	pressure condition below ~6 GPa and steeper slopes at higher pressure condition above 6
219	GPa.
220	It has been pointed out that the vibrational frequencies can be influenced by the
221	coupling of atomic vibrations with a macroscopic electric field (LO-TO splitting) and
222	therefore vibrational frequencies depend on the macroscopic shape of the measured particles
223	(Balan et al. 2006). In a common spectroscopic experimental setting, the samples were
224	polycrystalline material which was typically larger than a few 100 nm in size. In such coarse
225	polycrystalline grains, both LO and TO modes can be measured by Raman spectroscopic
226	measurements (Farmer 2000). Figure 9 shows the theoretical Raman cross section of
227	lizardite under pressure. Several OH peaks have previously been observed experimentally
228	presumably because they used natural samples which contain impurities. The calculated
229	Raman spectra show that the most intense peaks are existing around 3730 cm ⁻¹ (LO) and
230	3770 cm ⁻¹ (TO) at below 10 GPa and the frequencies of those peaks rapidly increase above

231	10 GPa. Experimental results show a similar increase of OH frequencies at pressures above
232	\sim 6 GPa, though those vibrational modes were fitted with a straight line throughout the
233	pressure range previously measured (Figure 8). Since the experimental frequencies overlap
234	and peak positions are not clear at lower pressure conditions, there is a possibility that the
235	increase in vibrational frequencies is associated with the elastic anomaly found in this study.
236	In that case, the elastic anomaly, which occurs at ~ 10 GPa (GGA) in the present study, may
237	be observed experimentally at lower pressures of about 6 GPa in experiments. There is a
238	similar report that the OH vibrational frequencies of layered hydrous minerals rapidly
239	increase due to a phase transition under pressure (Johnston et al. 2002). Therefore, there is a
240	possibility that other layered hydrous minerals show similar behaviors under compression.
241	
242	Conclusions
243	The structure, elasticity, and vibrational properties of lizardite have been
244	determined by first principles density functional calculations. At 10 GPa, elastic constants
245	dropped very suddenly and are associated with the softening of the c axis. The OH stretching
246	frequencies also increase steeply above 10 GPa. Since experimental results show a similar
247	increase in frequencies at pressures above ~6 GPa, there is a possibility that this elastic

248 anomaly can also be observed at ~6 GPa. Since elastic softening of lizardite is associated

- 249 with the ditrigonal distortion of SiO₄ six-membered rings, there is a possibility that other
- 250 hydrous sheet silicates show similar elastic and vibrational anomalies under pressure.
- 251 Acknowledgements
- 252 Research supported in part by special coordination funds for promoting science and
- 253 technology (Supporting Young Researchers with Fixed-term Appointments) and
- 254 Grants-In-Aid for Scientific Research from the Japan Society (Nos. 21740380, 20103005,
- and 24740357) for the Promotion of Science. The crystal structural image of Figure 3 was
- drawn using VESTA, developed by Momma and Izumi (2011).

258 References cited

- 259 Auzende, A.-L., Daniel, I., Reynard, B., Lemaire, C., and Guyot, F. (2004) High-pressure
- 260 behaviour of serpentine minerals: a Raman spectroscopic study, Physics and Chemistry of
- 261 Minerals, 31, 269-277.
- 262 Balan, E., Lazzeri, M., Morin, G., and Mauri, F. (2006) First-principles study of the
- 263 OH-stretching modes of gibbsite, American Mineralogist, 91, 115-119.
- 264 Balan, E., Saitta, A. M. Mauri, F., Lemaire, C., and François, G. (2002) First-principles
- 265 calculation of the infrared spectrum of lizardite, American Mineralogist, 87, 1286-1290.
- 266 Baroni, S., de Gironcoli, S., Dal Corso, A., and Giannozzi, P. (2001) Phonons and related
- 267 crystal properties from density-functional perturbation theory, Review of Modern Physics,
- 268 73, 515-562.
- Born, M. and Huang, K. (1954) Dynamical theory of crystal lattices, Oxford University
 Press, Oxford.
- 271 Demuth, Th., Jeanvoine, Y., Hafner, J., and Ángyán, J. G. (1999) Polymorphism in silica
- 272 studies in the local density and generalized-gradient approximations, Journal of Physics:
- 273 Condensed Matter, 11, 3833-3874.
- 274 Dobson, D. P., Meredith, P. G., and Boon, S. A., (2002) Simulation of subduction zone
- seismicity by dehydration of serpentine, Science, 298, 1407-1410.
- 276 Evans, B.W. (2004) The serpentine multisystem revisited: chrysotile is metastable,

- 277 International Geology Review, 46, 479-506.
- 278 Farmer, V. C. (2000) Transverse and longitudinal crystal modes associated with OH
- 279 stretching vibrations in single crystals of kaolinite and dickite, Spectrochim Acta Part A, 56,
- 280 927-930.
- 281 Fuchs, Y., Linares, J., and Mellini, M. (1998) Mössbauer and infrared spectrometry of
- 282 lizardite-1*T* from Monte Fico, Elba, Physics and Chemistry of Minerals, 26, 111-115.
- 283 Hamann, D. R. (1997) H₂O hydrogen bonding in density-functional theory, Physical Review
- 284 B, 55, R10157-R10160.
- 285 Hilairet, N., Daniel, I., and Raynard, B. (2006) P-V equation of state and the relative
- stabilities of serpentine varieties, Physics and Chemistry of Minerals, 33, 629-637.
- 287 Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N., and Petitgirard, S.
- 288 (2007) High-Pressure Creep of Serpentine, Interseismic Deformation, and Initiation of
- 289 Subduction, Science, 318, 1910-1973.
- 290 Hofmeister, A.M., and Bowey, J.E. (2006) Quantitative infrared spectra of hydrosilicates and
- 291 related minerals, Monthly Notices of the Royal Astronomical Society, 367, 577-591.
- 292 Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas, Physical Review, 136,
- 293 B864-B871.
- 294 Irifune, T., Kuroda, K., Funamori, N., Uchida, T., Yagi, T., Inoue, T., and Miyajima, N.

295 (1996) Amorphization of Serpentine at High Pressure and High Temperature, Science, 272,

296 1468-1470.

- 297 Iwamori, H. (1998) Transportation of H2O and melting in subductionzones, Earth and
- 298 Planetary Science Letters, 160, 65-80.
- 299 Johnston, C. T., Wang, S. L., Bish, D. L., Dera, P., Agnew, S. F., and Kenney III, J. W.
- 300 (2002) Novel pressure-induced phase transformations in hydrous layered materials,
- 301 Geophysical Researcg Letters, 29, 1770.
- 302 Karki, B. B., Stixrude, L., and Wentzcovitch, R. M. (2001) High-pressure elastic properties
- 303 of major materials of earth's mantle from first principles, Reviews of Geophysics, 39,

304 507-534.

- 305 Lazzeri, M. and Mauri, F. (2003) First-Principles Calculation of Vibrational Raman Spectra
- 306 in Large Systems: Signature of Small Rings in Crystalline SiO₂, Physical Review Letters, 90,
- 307 036401.
- 308 Lee, C., Vanderbilt, D., Laasonen, K., Car, R., and Parrinello, M. (1992) Ab initio studies on
- 309 high pressure phases of ice, Physical Review Letters, 69, 462-465.
- 310 Mellini, M. (1982) The crystal structure of lizardite 1T: hydrogen bonds and polytypism,
- 311 American Mineralogist, 67, 587-598.
- 312 Mellini, M. and Zanazzi, P. F. (1987) Crystal structures of lizardite-1T and lizardite-2H1

- 313 from Coli, Italy, American Mineralogist, 72, 943-948.
- 314 Mellini, M. and Zanazzi, P. F. (1989) Effects of pressure on the structure of lizardite-1T,
- 315 European Journal of Mineralogy, 1, 13-19.
- 316 Monkhorst, H. J. and Pack, J. D. (1976) Special points for Brillouin-zone integrations,
- 317 Physical Review B, 13, 5188-5192.
- 318 Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal,
- 319 volumetric and morphology data, Journal of Applied Crystallography, 44, 1272-1276.
- 320 Mookherjee, M. and Capitani, G. C. (2011) Trench parallel anisotropy and large delay times:
- 321 Elasticity and anisotropy of antigorite at high pressures, Geophysical Research Letters, 38,

322 L09315.

- 323 Mookherjee, M. and Stixrude, L. (2009) Structure and elasticity of serpentine at
- high-pressure, Earth and Planetary Science Letters, 279, 11-19.
- 325 Nestola, F., Angel, R. J., Zhao, J., Garrido, C. J., Sánchez-Vizcaíno, V. L., Capitani, G., and
- 326 Mellini, M. (2010) Antigorite equation of state and anomalous softening at 6 GPa: an in situ
- 327 single-crystal X-ray diffraction study, Contributions to Mineralogy and Petrology, 160,
- 328 33-43.
- 329 Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized Gradient Approximation
- 330 Made Simple, Physical Review Letters, 77, 3865-3868.

- 331 Prencipe, M., Noel, Y., Bruno, M., and Dovesi, R. (2009). The vibrational spectrum of
- 332 lizardite-1T [Mg₃Si₂O₅(OH)₄] at the G point: a contribution from an ab initio periodic
- 333 B3LYP calculation, American Mineralogist, 94, 986-994.
- 334 Post, J.L. and Borer, L. (2000) High-resolution infrared spectra, physical properties, and
- 335 micromorphology of serpentines, Applied Clay Science, 16, 73-85.
- 336 Rinaudo, C., Gastaldi, D. and Belluso, E. (2003) Characterization fo chrysotile, antigorite,
- and lizardite by FT-Raman Spectroscopy, Canadian Mineralogist, 41, 883-890.
- 338 Schmidt, M. W. and Poli, S. (1998) Experimentally based water budgets for dehydrating
- 339 slabs and consequences for arc magma generation, Earth and Planetary Science Letters, 163,

340 361-379.

- 341 Stixrude, L. (2002) Talc under tension and compression: Spinodal instability, elasticity, and
- structure, Journal of Geophysical Research, 107, 2327.
- 343 Troullier, N. and Martins, J. L. (1991) Efficient pseudopotentials for plane-wave calculations,
- 344 Physical Review B, 43, 1993-2006.
- 345 Tsuchiya, J., and Tsuchiya, T. (2008) Elastic properties of phase D (MgSi₂O₆H₂) under
- 346 pressure: Ab initio investigation, Physics of the Earth and Planetary Interiors, 170, 215-220.
- 347 Tsuchiya, J. and Tsuchiya, T. (2009) First principles investigation of the structural and
- 348 elastic properties of hydrous wadsleyite under pressure, Journal of Geophysical Research,

349 114, B02206.

- 350 Tsuchiya, J., Tsuchiya, T., and Tsuneyuki, S. (2005a) First-principles study of hydrogen bond
- 351 symmetrization fo phase D under high pressure, American Mineralogist, 90, 44-49.
- 352 Tsuchiya, J., Tsuchiya, T., and Wentzcovitch, R. M. (2005b) Vibrational and
- 353 thermodynamics properties of MgSiO₃ postperovskite, Journal of Geophysical Research,
- 354 110, B02204.
- 355 Tsuchiya, J., Tsuchiya, T., and Wentzcovitch, R. M. (2008) Vibrational properties of
- 356 δ -AlOOH under pressure, American Mineralogist, 93, 477-482.
- 357 Tsuchiya, T., Caracas, R., and Tsuchiya, J. (2004a) First principles determination of the
- 358 phase boundaries of high-pressure polymorphs of silica, Geophysical Research Letters, 31,

359 L11610.

- 360 Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R. M. (2004b) Phase transition
- 361 in MgSiO₃ perovskite in the Earth's lower mantle, Earth and Planetary Science Letters, 224,
- 362 241-248.
- 363 Wentzcovitch, R. M. (1991) Invariant molecular-dynamics approach to structural phase
- transitions, Physical Review B, 44, 2358-2361.
- 365
- 366
- 367

368	
369	
370	Figure Captions
371	Figure 1. Calculated and experimental cell parameters of lizardite. Full and dashed lines
372	are calculated results of the stable and metastable structure of lizardite, respectively. The
373	open circle and triangle are experimental results (Hilairet et al. 2006, Mellini and Zanazzi
374	1989).
375	Figure 2. Enthalpy difference between the stable and metastable structures of lizardite.
376	Figure 3. Crystal structure of lizardite (Mg ₃ Si ₂ O ₉ H ₄) at 0 and 14 GPa. Blue tetrahedra,
377	and orange octahedra correspond to SiO ₄ and MgO ₆ , respectively. Large (orange), middle
378	(blue), small (red), very small (white) spheres are magnesium, silicon, oxygen, and
379	hydrogen, respectively. The green arrows on the high pressure structures correspond to the
380	direction of distortion of the SiO ₄ six-membered rings under pressure.
381	Figure 4 The calculated (a) O-H bond distances R_{O-H} , (b) the hydrogen bond distances
382	R_{OH} (c) the O-HO angles, and (d) the tetrahedral rotation angle α of lizardite under
383	pressure. The full and dashed lines are stable and metastable structures, respectively. The
384	gray lines indicate the R_{O-H} in the tetrahedral layers.
385	Figure 5 High pressure elastic constants of lizardite.
386	Figure 6 (a) Bulk and shear moduli and (b) velocities of lizardite under pressure. Upper
387	and lower thin lines are Voigt and Reuss bounds, respectively.

7/24

388	Figure 7 Born stability criteria (B_1 , B_2 , and B_3) of lizardite under pressure.
389	Figure 8 Vibrational frequencies of lizardite under pressure.
390	Figure 9 Raman cross section of lizardite under pressure using GGA. Convolution with a
391	Lorentzian function with a full width at half height of 10 cm ⁻¹ was used to account for the
392	broadening of experimental peaks. Inset shows the experimental Raman spectra of
393	lizardite under pressure (Auzende et al. 2004).
394	

P (GP:	a)a(Å)	c (Å)	Mgx	Mg_z	$\mathbf{Si}_{\mathbf{z}}$	01_z	02 _x	02_{z}	03y	03_z	042	H1x	H1z	H2 _z
0	5.345	7.403	0.331	0.458	0.080	0.297	0.511	0.998	0.664	0.590	0.309	0.651	0.720	0.178
2	5.316	7.239	0.331	0.460	0.075	0.295	0.514	066.0	0.665	0.594	0.304	0.650	0.727	0.171
4	5.288	7.130	0.331	0.461	0.072	0.295	0.517	0.986	0.665	0.596	0.301	0.650	0.732	0.166
9	5.263	7.050	0.331	0.463	0.071	0.296	0.519	0.983	0.666	0.599	0.299	0.650	0.736	0.162
8	5.239	6.990	0.331	0.463	0.070	0.296	0.523	0.981	0.667	0.600	0.296	0.651	0.738	0.158
10	5.223	6.904	0.331	0.462	0.067	0.296	0.495	0.976	0.668	0.601	0.292	0.649	0.740	0.152
12	5.190	6.828	0.331	0.462	0.064	0.295	0.466	0.972	0.668	0.602	0.289	0.649	0.743	0.148
14	5.157	6.773	0.331	0.463	0.063	0.295	0.451	179.0	0.668	0.605	0.288	0.651	0.746	0.146
16	5.129	6.724	0.331	0.464	0.061	0.295	0.441	0.970	0.668	0.606	0.287	0.654	0.748	0.144
18	5.101	6.679	0.331	0.463	0.059	0.295	0.432	0.968	0.669	0.607	0.286	0.659	0.750	0.141
20	5.074	6.636	0.331	0.464	0.058	0.294	0.425	0.967	0.669	0.609	0.284	0.665	0.753	0.139
Exp														
0	5.332	7.233	0.3327	0.4596	0.0766	0.300	0.5087	0.9964	0.6654	0.5935	0.3088	0.6550	0.709	0.199

Table1 Calculated cell constants and atomic coordinates of lizardite under pressure

¹Mellini (1982),

Table 2 Calculated and experimental equation of state parameters of lizardite.

V (Å ³)	B ₀ (GPa)	B ₀ '	
182.3	76.4	2.39	Calc. GGA, 0 K (present study)
186.34	41.36	12.38	Calc. GGA 0 K ^a (< 7 GPa)
203.15	35.64	4.09	Calc. GGA 0 K ^a (7 <p<22 gpa)<="" td=""></p<22>
170.76	79.93	12.34	Calc. LDA 0 K ^a (< 7 GPa)
173.52	74.61	3.10	Calc. LDA 0 K ^{a (} 7 <p<22 gpa)<="" td=""></p<22>
174.02	61.05	17.25	Calc. LDA 300 K ^a (<7 GPa)
180.93	68.9	4 (fixed)	Exp. Synchrotron x-ray diffraction 300 K ^b
180.92	71.0	3.2	Exp. Synchrotron x-ray diffraction at 300 K ^b

^a Mookherjee and Stixrude 2009.

^b Hilairet et al. 2006

Pressure (GPa)	C _{II}	C ₃₃	C ₁₂	C ₁₃	C ₁₄	C44	C ₆₆
0	212.6	57.3	73.3	8.5	1.3	11.6	69.7
2	222.1	102.0	78.5	21.6	1.7	13.4	71.9
4	228.4	133.6	82.1	34.5	1.6	13.5	73.5
6	231.2	159.4	81.8	48.1	1.9	12.6	74.7
8	229.8	178.3	78.8	62.9	1.7	11.2	75.7
9	227.7	185.8	76.2	71.0	1.2	9.9	76.1
10	223.7	195.4	71.5	77.6	1.3	8.2	76.1
10.5	216.1	119.6	62.8	0	2.1	8.2	76.7
11	209.5	106.7	56.0	14.3	2.6	14.5	76.8
11.5	210.6	184.3	57.3	22.0	2.6	14.8	76.7
12	213.4	194.8	59.8	27.3	2.8	15.7	76.8
14	219.8	204.5	67.1	39.3	2.2	15.3	77.1
16	225.8	214.9	74.1	46.8	2.4	14.9	77.0
18	229.3	221.0	79.9	51.0	2.9	13.1	76.5
20	229.6	220.9	84.2	50.3	5.7	10.3	75.7

Table3. The elastic constants of lizardite.

