4265 Rivision4

Mid- and far-infrared spectra of synthetic
 $\mathrm{CaMg}_{2}\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right)\left(\mathrm{Si}_{1-\mathrm{y}} \mathrm{Ge}_{\mathrm{y}}\right) \mathrm{O}_{\mathbf{1 0}}(\mathrm{OH}, \mathrm{OD})_{2}$-clintonite:
 Characterization and assignment of the $\mathbf{C a}-\mathrm{O}_{\text {inner }}$ and $\mathbf{C a}-\mathrm{O}_{\text {outer }}$ stretching bands

Kiyotaka Ishida*
*Department of Environmental Changes, Graduate School of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Keywords: Rietveld refinement, far infrared spectra, synthetic clintonite, $\mathrm{Ca}-\mathrm{O}_{\text {inner }}$ stretching band, $\mathrm{Ca}-\mathrm{O}_{\text {outer }}$ stretching band

Running title: MIR AND FIR FOR CLINTONITE
Written with Microsoft Office Word 2007
*: e-mail: kiyota@scs.kyushu-u.ac.jp

Abstract

X-ray diffraction Rietveld structure refinement and mid- and far-infrared spectral studies have been done on Ga-for-Al and Ge-for-Si substituted synthetic clintonites $(\mathrm{Cln}), \mathrm{CaMg}_{2}\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right)\left(\mathrm{Si}_{1-\mathrm{y}} \mathrm{Ge}_{\mathrm{y}}\right) \mathrm{O}_{10}(\mathrm{OH}, \mathrm{OD})_{2}(\mathrm{x}=0.0-4.0, \mathrm{y}=0.0-1.0)$.

Rietveld analyses indicate that there is complete solid-solution in both the $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Si}$-, $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Ge}$-clintonite series. With increasing Ga-for-Al, the mean tetrahedral bond-length, <T-O>, and mean tetrahedral basal oxygen separation, $<{ }^{[4]} \mathrm{O}_{\text {bas }}-\mathrm{O}_{\text {bas }}>$ increase, whereas the octahedral and interlayer parameters, the tetrahedral rotation angles (α), and the dimensional misfits (Δ) vary little. With increasing Ga-for-Al substitution in the Si-series the broad OH and OD stretching bands shift downward from 3607 to $3529 \mathrm{~cm}^{-1}$ and from 2671 to $2620 \mathrm{~cm}^{-1}$, respectively. For the Ge-series samples, the OH and OD stretching bands shift downward from 3610 to $3523 \mathrm{~cm}^{-1}$ and from 2667 to $2611 \mathrm{~cm}^{-1}$, respectively. According to the data of the curve fitting analysis, both the OH- and OD-stretching bands are modeled by at least three broad (wider than 37 cm^{-1} of full width at half height (FWHH)) I bands (M1M2M2 $=$ $\left.\mathrm{MgMgAl}^{3+} / \mathrm{MgMgGa}^{3+}\right)$ and a narrow $\left(\mathrm{FWHH}=23-33 \mathrm{~cm}^{-1}\right)$ and weak N band (M1M2M2 $=\mathrm{MgMgMg}$) on the highest frequency side. In some samples, a very weak and broad V (one vacant M site) band at the lowest frequency region is observed.

Tetrahedral Si-O, Al-O and Ga-O stretching bands lie in fairly discrete regions, which are at 1030-830, 880-760 and 790-640 cm^{-1}, respectively. However, the band regions for both the tetrahedral Al-O and Ge-O stretching as well as the $\mathrm{Ge}-\mathrm{O}$ and $\mathrm{Ga}-\mathrm{O}$ stretching bands closely overlap each other. In the $720-500 \mathrm{~cm}^{-1}$ region, Si-O-Al,
$\mathrm{Al}-\mathrm{O}-\mathrm{Al}, \mathrm{Si}-\mathrm{O}-\mathrm{Ga}, \mathrm{Al}-\mathrm{O}-\mathrm{Ge}, \mathrm{Al}-\mathrm{O}-\mathrm{Ga}, \mathrm{Ge}-\mathrm{O}-\mathrm{Ga}$, and $\mathrm{Ga}-\mathrm{O}-\mathrm{Ga}$ deformational bands (tetrahedral-chain bending and "breathing" modes) are observed to overlap strongly.

Around 300 and $200 \mathrm{~cm}^{-1}$ one observes the $\mathrm{Ca}-\mathrm{O}_{\text {inner }}$ and $\mathrm{Ca}-\mathrm{O}_{\text {outer }}$ stretching bands, respectively, which show a slight downward frequency $\operatorname{shift}\left(\sim 7 \mathrm{~cm}^{-1}\right.$ per Ga apfu $)$ with Ga-for-Al substitution.

INTRODUCTION

Clintonite, a trioctahedral brittle mica with the ideal composition
$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}\right)\left(\mathrm{Al}_{3} \mathrm{Si}_{\mathrm{i}}\right) \mathrm{O}_{10}(\mathrm{OH}, \mathrm{F})_{2}$, has several interesting characteristic crystal-chemical features (Takéuchi and Sadanaga 1959; Takéuchi 1966; Joswig et al. 1986; MacKinney et al. 1988; Alietti et al. 1997). First, its tetrahedral Al:Si ratio is 3:1, and thus half of the T-O-T bonds violate the Al-avoidance principle or the "Lowenstein avoidance rule" by having $\mathrm{Al}^{3+}-\mathrm{O}-\mathrm{Al}^{3+}$ bonds. Second, the tetrahedral cations are disordered and the tetrahedra are flattened as a consequence of the large Al content. Third, the large dimensional misfit of the tetrahedral and octahedral sheets is compensated by large tetrahedral rotation angles (α). Research on the synthesis and stability of clintonite has been done by Olesch (1975) and Olesch and Seifert (1976). Both mid- and far-infrared (MIR and FIR) spectra for synthetic and natural clintonites have been reported by Farmer and Velde (1973). Jenkins (1989), in addition to investigating MIR band assignments for synthetic phlogopites, also investigated synthetic clintonite and its deuterium (D), Ni-, Ga-, and Ge chemical analogues. The purpose of this paper is to further assign and characterize some MIR and FIR bands based on the X-ray Rietveld refinement data for synthetic $\mathrm{CaMg}_{2}\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiO}_{10}(\mathrm{OH})_{2}$ - and $\mathrm{CaMg}_{2}\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{GeO}_{10}(\mathrm{OH})_{2}$-series clintonites, and their deuterated equivalents. In
addition, two synthetic Ni-bearing Si-clintonites, $\mathrm{Ni}_{1} \mathrm{SiH}-$ and $\mathrm{Ni}_{2} \mathrm{SiH}-\mathrm{Cln}$, were also examined; substitutions were made in the various sites in the clintonite structure in order to observe the influence of different ions on the spectra.

EXPERIMENTAL AND ANALYTICAL METHODS

The experimental and analytical methods in this study are similar to those of Ishida and Hawthorne (2011).

Synthesis

Experiments at $690-730^{\circ} \mathrm{C}, 186-225 \mathrm{MPa}$ and durations of $231-434 \mathrm{~h}$ were done in cold-seal Tuttle-type vessels. The starting materials were made from mixtures of reagent-grade oxides $\left(\mathrm{MgO}, \mathrm{NiO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Ga}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{GeO}_{2}\right)$ and carbonates $\left(\mathrm{CaCO}_{3}\right)$.

The starting materials were mixed together and decarbonated by roasting for about 30 \min. at approximately $900^{\circ} \mathrm{C}$ in air, and then sealed in 5.0 mm outer-diameter $\times 4.7 \mathrm{~mm}$ inner-diameter $\times(\sim) 35 \mathrm{~mm}$ long Au capsules with $\sim 20 \mathrm{wt} \%$ distilled water. Bulk compositions investigated in this study are given in Table 1. Deuteration experiments were done at about $600^{\circ} \mathrm{C}, 200 \mathrm{MPa}$ for a duration of 1 day in the same vessels; similar amounts of materials were used for the OD-bearing samples, using $\mathrm{D}_{2} \mathrm{O}$ (99.9% purity)
with the solids sealed in Au capsules.

X-ray Rietveld analysis

Powder-diffraction data were collected with a Rigaku Rint-2100V
diffractometer using $\mathrm{CuK} \alpha$ X-ray monochromatized with a curved-graphite and operating at 40 kV and 40 mA : more than 3000 counts were obtained for the strongest reflections with a step-width of 0.02 or $0.04^{\circ} 2 \theta$ and count times of $4-10 \mathrm{~s}$. Rietveld analysis was done using the program Rietan-2000 (Izumi and Ikeda 2000). The single crystal data for the Chichibu-mine clintonite from MacKinney et al. (1988) were used to initiate refinements. The clintonite structure was refined as the 1 M polytype, with monoclinic space group $C 2 / m$, using isotropic displacement parameters, as the initial parameters for least-squares refinement. Three sets of data were averaged from Rietveld refinements done on three separate scans obtained with different X-ray conditions for a given sample.

Infrared spectroscopy

Both MIR and FIR spectra were recorded with a JASCO FTIR-620
spectrometer. The OH and OD stretching bands were recorded in the ranges of

4000-3000 and 3800-2000 cm^{-1} respectively. Samples were prepared as 150 mg KBr discs 10 mm in diameter and containing $\sim 3 \mathrm{mg}$ synthetic clintonite. Spectra were measured with 126 replicate scans at a nominal resolution of $1 \mathrm{~cm}^{-1}$. After the background was substracted as a spline fit to the raw data, each spectrum was fitted to component pseudo-Voigt bands. The $1300-400 \mathrm{~cm}^{-1}$ bands were obtained from discs prepared with 100 mg KBr containing $\sim 1 \mathrm{mg}$ samples. Spectra were measured 64 times with a nominal resolution of $2 \mathrm{~cm}^{-1}$ in the $4000-400 \mathrm{~cm}^{-1}$ range. The $650-50 \mathrm{~cm}^{-1}$ and $250-30 \mathrm{~cm}^{-1}$ regions were recorded at a nominal resolution of $4 \mathrm{~cm}^{-1}$ with 10 mm diameter discs containing $\sim 4 \mathrm{mg}$ of sample in about 80 mg polyethelene discs. A globar light source with $5 \mu \mathrm{~m}$ Mylar beam splitter, and Hg-lamp with $12 \mu \mathrm{~m}$ Mylar beam splitter, respectively, were used with a PE-TGS detector.

RESULTS AND DISCUSSION

Products of synthesis

XRD indicated that $\sim 90 \%$ of clintonite was obtained for each starting
composition (Table 1), along with an amorphous phase of unknown composition
(appearing as a hump in the diffraction pattern). Accordingly, compositional deviations are expected. As the $\mathrm{Ni}_{2} \mathrm{SiHCln}$ sample has large amounts of NiO (bunsenite), its FTIR
spectra were used only for comparisons. Chemical compositions for deuterated materials may be similar to the OH -forms.

X-ray Rietveld refinement

All synthetic clintonites could be analyzed as the $1 M$ polytype (Fig. 1). The relatively large amounts of an amorphous phase were hard to model resulting in agreement indices that are somewhat high; however, the resulting structural parameters are considered to be sufficiently precise for the purposes of this study. Rietveld refinement data, atom coordinates, and selected interatomic distances and angles are given in Tables $2^{*}, 3^{*}, 4^{*}$ and CIF *(deposit item \#\#\#\#\#\#\#). Definitions for the structural parameters reported here are given in the footnotes of Table 4. The standard deviations for the mean bond lengths involving $\mathrm{T}(=<\mathrm{T}-\mathrm{O}>), \mathrm{M}(=<\mathrm{M} 1-\mathrm{O}>$ and $<\mathrm{M} 2-\mathrm{O}>)$ and $\mathrm{I}\left(=<\mathrm{I}-\mathrm{O}_{\text {inner }}>\right.$ and $\left.<\mathrm{I}-\mathrm{O}_{\text {outer }}>\right)$ sites are estimated as $\pm 0.02, \pm 0.04$, and \pm $0.05 \AA$, respectively, though the individual bond distances and bond angles become
highly scattered. The standard deviations of the bond angles are estimated as $\pm 1^{\circ}$.

Cell dimensions. The measured cell parameters of the synthetic clintonites are plotted in Figure 2. Data points show smooth curved relations which support the presence of continuous solid-solution series along the tetrahedral $\mathrm{Al} / \mathrm{Ga}$ substitutions in each SiH -
and $\mathrm{GeH}-\mathrm{Cln}$ series.

Site-populations. The tetrahedral and octahedral site populations obtained by the

Rietveld analysis are plotted as a function of nominal $\mathrm{Ga}(\mathrm{apfu})$ of the starting materials
in Figure 3. Compared with the 1:1 ideal population lines, the
${ }^{[4]}(\mathrm{Ga}+\mathrm{Ge}) /{ }^{[4]}(\mathrm{Al}+\mathrm{Si}+\mathrm{Ga}+\mathrm{Ge})$ values in the tetrahedral sites and ${ }^{[6]} \mathrm{Ga} /{ }^{[6]}(\mathrm{Mg}+\mathrm{Al}+\mathrm{Ga})$ values in the octahedral M1 and M2 sites are both lower than excepted, except for those of the end-member.

The T sites. The variation of the tetrahedral parameters as a function of ${ }^{[4]}(\mathrm{Ga}$ $+\mathrm{Ge}) /^{[4]}(\mathrm{Al}+\mathrm{Ga}+\mathrm{Si}+\mathrm{Ge})$ observed by Rietveld refinement are shown in Figure 4^{*}. With increasing ${ }^{[4]}(\mathrm{Ga}+\mathrm{Ge})$, the $<\mathrm{T}-\mathrm{O}>$ bond lengths, the average separation of the basal oxygens of the tetrahedron $\left(=<{ }^{[4]} \mathrm{O}_{\text {basal }}-\mathrm{O}_{\text {basal }}>\right)$, and the thickness of the sheet of tetrahedra $\left(t_{\mathrm{t}}\right)$ all increase. The flattening angle of the tetrahedron $\left(\tau=\angle \mathrm{O}_{\text {apical }}-\mathrm{T}-\mathrm{O}_{\text {basal }}\right)$ also increases with increasing ${ }^{[4]}(\mathrm{Ga}+\mathrm{Ge})$ content except for the end member $\mathrm{Ga}_{4} \mathrm{GeH}-\mathrm{Cln}$. It is noted that the ideal flattening angle is 109.47° (Brigatti and Guggenheim 2002), and the flattening angle draws close to this value for the studied samples.

Octahedrally coordinated sites. The variations of the octahedral parameters observed by Rietveld refinement are not so large in both series (Fig. 5*), because only
one apfu ${ }^{[6]} \mathrm{Ga}\left(r=0.620 \AA\right.$; Shannon 1976) for ${ }^{[6]} \mathrm{Al}(r=0.535 \AA$; ditto $)$ is substituted in both series.

Interlayer sites. The relations between the nominal Ga (apfu) and the interlayer-site parameters are shown in Figure 6. In both SiH - and $\mathrm{GeH}-\mathrm{Cln}$ series, the mean bond lengths $<\mathrm{I}-\mathrm{O}_{\text {inner }}>$ slightly decrease with increasing Ga , while the $<\mathrm{I}-\mathrm{O}_{\text {outer }}>$ slightly increase. Both basal oxygen angles, $\angle \mathrm{O}-\mathrm{O}-\mathrm{O}_{\text {acute }}$ and $\angle \mathrm{O}-\mathrm{O}-\mathrm{O}_{\text {obtuse }}$, are nearly 60° and 180°, respectively, and thus the tetrahedral basal oxygens make an isosceles triangle.

The interlayer separation (= interlayer sheet thickness) varies little.

Rotation angles (α) and dimensional misfit (Δ). The tetrahedral rotation angles α vary slightly between $27.8-29.6^{\circ}$, and the dimensional misfit Δ increases in both series (Fig. 7*). Except for $\mathrm{Ga}_{3} \mathrm{SiH}-$ and $\mathrm{Ga}_{4} \mathrm{SiH}-\mathrm{Cln}$, the angle α tends to increase slightly with the dimensional misfit as well as with the mean separation of the tetrahedral basal oxygens, ${ }^{[4]} \mathrm{O}_{\text {basal }}-\mathrm{O}_{\text {basal }}>$ (Fig. $\left.8^{*}\right)$.
$<$ Footnote $>$

* Deposit items. Tables 2, 3, 4, Figures 4, 5,7, 8, and CIF are deposited.

IR spectra

The clintonite IR spectra in both the MIR and FIR regions show the following
characteristic properties. (1) There are broad $\mathrm{OH} / \mathrm{OD}$ stretching bands occurring in the range of $3800-3000 \mathrm{~cm}^{-1}$ for OH strechings and in the range of $2800-2400 \mathrm{~cm}^{-1}$ for OD stretchings. (2) The T-O stretching bands have widths $\sim 100 \mathrm{~cm}^{-1}$ FWHH (full-width at half -height) each and occur in separate $\mathrm{Si}-\mathrm{O}, \mathrm{Al} / \mathrm{Ge}-\mathrm{O}, \mathrm{Ge} / \mathrm{Ga}-\mathrm{O}$ and $\mathrm{Ga}-\mathrm{O}$ vibrational-band regions. (3) There are combined strong T-O-T bending bands with inarticulate O-T-O bendings occurring in the range of $750-550 \mathrm{~cm}^{-1}$. (4) A couple of medium bands appear in the $300-100 \mathrm{~cm}^{-1}$ FIR region.

MIR spectra

OH and OD stretching bands (vOH and $\nu \mathrm{OD}$ modes). There are broad OH and OD stretching bands in both $\mathrm{Si}(\mathrm{H} / \mathrm{D})$ - and $\mathrm{Ge}(\mathrm{H} / \mathrm{D})-\mathrm{Cln}$ series; their FWHH are more than $100 \mathrm{~cm}^{-1}$ (Fig. 9). The OH stretching band of the synthetic $\mathrm{Al}_{4} \mathrm{SiH}-\mathrm{Cln}$, labeled $\mathrm{x}=$ 0.0 in Figure 9 a , is centered at $3607 \mathrm{~cm}^{-1}$ and is in very good agreement with the band observed by Farmer and Velde (1973, labeled $\mathrm{S}\left(\mathrm{SiAl}_{3}\right)$). With increasing Ga content, the band's center position shifts to lower frequencies in both the Si - and $\mathrm{Ge}-\mathrm{Cln}$ series; the frequencies of the OH/OD stretching bands in the Si-Cln series are slightly higher (~ 15 cm^{-1}) than those of the corresponding Ge-Cln series (Fig. 9). The observed OH and OD stretching bands were analyzed into component bands (Table 5). In almost all samples,
the frequency ratios, $\mathrm{vOH} / \mathrm{vOD}$, for the corresponding bands lie in the range 1.36-1.33.

These shifts are very close to the calculated factor of 1.37 assuming a harmonic oscillation (e.g., Jenkins 1989). The OH stretching bands I_{D} and I_{E} of which $\mathrm{vOH} / \mathrm{NOD}$ factors are ≈ 1.31 contain some adsorbed water. In most samples, a rather narrow and weak shoulder band $\mathrm{N}(\mathrm{N}=$ normal bands; Vedder 1964) on the high-frequency side of the main bands appears; this N band is attributed to $(\mathrm{MgMgMg})-\mathrm{OH} / \mathrm{OD}$ stretchings. Up to five broad and strong bands $\mathrm{I}\left(\mathrm{I}=\right.$ impurity bands; Vedder 1964), $\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{E}}$, are ascribed to $[\mathrm{MgMg}(\mathrm{Al} / \mathrm{Ga})]-\mathrm{OH} / \mathrm{OD}$ stretchings. In the deuterated samples SiD- and GeD-Clns, a very weak and broad band V , where V is a vacancy (Vedder 1964), is observed at 2510 cm^{-1} and is ascribed to $(\mathrm{MgMgV})-\mathrm{OH} / \mathrm{OD}$ stretchings.
$\mathbf{1 3 0 0}-\mathbf{4 0 0} \mathbf{~ c m}^{\mathbf{- 1}}$ lattice vibration bands. The bands in the $1300-400 \mathrm{~cm}^{-1}$ regions are shown in Figure 10.
(1) T-O stretching bands. The regions of the tetrahedral Si-O and Al-O stretching bands are well separated, as are the regions of the $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Ga}-\mathrm{O}$ stretching bands, and the band regions are completely different. For the $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Ga}-\mathrm{O}$ stretching bands, there are some shoulder bands at the low-frequency side. With increasing $\mathrm{Ga} \rightarrow \mathrm{Al}$ substitution up to $1.0 \mathrm{Ga}(\mathrm{apfu})$ in $\mathrm{Si}-\mathrm{Clns}$, the frequencies of the $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{O}$ stretching bands decrease by 9 and $3 \mathrm{~cm}^{-1}$, respectively, but the band intensity and shape do not change
so strongly. The intensities of the $\mathrm{Ga}-\mathrm{O}$ stretching bands are rather low compared with the $\mathrm{Si}-\mathrm{O}$ and $\mathrm{Al}-\mathrm{O}$ stretching bands (Fig. 10a).
(2) T-O-T bending bands and weak O-T-O out-of-plane bands. In the ${ }^{[4]}\left(\mathrm{T}^{3+}{ }_{3} \mathrm{~T}^{4+}\right)$ tetrahedral sheet, there are the same number of $\mathrm{T}^{3+}-\mathrm{O}-\mathrm{T}^{3+}$ and $\mathrm{T}^{3+}-\mathrm{O}-\mathrm{T}^{4+}$ linkages, while the $\mathrm{T}^{4+}-\mathrm{O}-\mathrm{T}^{4+}$ linkage will be very rare or nonexistent. In the 730-480 cm^{-1} range for the clintonites studied here, some bending and breathing bands ascribed to these linkages should appear. With increasing $\mathrm{Ga} \rightarrow \mathrm{Al}$ substitution, two modes of a broad and strong T-O-T bending band with a couple of shoulder bands are observed in Figure 10.

Here, we examine the bands which appear in the $770-580 \mathrm{~cm}^{-1}$ range for the tetrahedral ${ }^{[4]}\left(\mathrm{Al}_{1} \mathrm{Si}_{3}\right),{ }^{[4]}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right)$, and ${ }^{[4]}\left(\mathrm{Al}_{3} \mathrm{Si}_{1}\right)$ micas. In the disordered tetrahedral ${ }^{[4]}\left(\mathrm{Al}_{1} \mathrm{Si}_{3}\right)$ trioctahedral mica such as phlogopite, 5 peaks of absorption bands are observed in the $770-580 \mathrm{~cm}^{-1}$ range (Farmer 1974; Jenkins 1989): $760 \mathrm{~cm}^{-1} \mathrm{Si-O-Si}$ bending, $725 \mathrm{~cm}^{-1}$ Si-O-Al bending, $690 \mathrm{~cm}^{-1} \mathrm{O}$-Si-O out-of-plane bending, $655 \mathrm{~cm}^{-1}$ O-Al-O out-of-plane bending, and $592 \mathrm{~cm}^{-1} \mathrm{OH}$ librational band ($\delta \mathrm{OH}$, in-plane OH bending; Farmer 1974). The $690 \mathrm{~cm}^{-1}$ band intensity is roughly three times stronger than that of the $655 \mathrm{~cm}^{-1}$ band, because there are three times more Si-O tetrahedra than Al-O tetrahedra in phlogopite. In the ordered ${ }^{[4]}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right)$ trioctahedral mica such as margarite,
a diffuse but strong band at $681 \mathrm{~cm}^{-1}$ in synthetic $1 M$ and $1 M d$ polytypes was observed (Velde 1980). This band in margarite is ascribed to the $\mathrm{Si}-\mathrm{O}-\mathrm{Al}$ bending, because there is only the Si-O-Al tetrahedral linkage in the ordered ${ }^{[4]}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right)$ micas, which obey the $\mathrm{Al} / \mathrm{Al}$ avoidance rule. In the spectra for the synthetic $2 M$ and natural margarite a shoulder band at about $727 \mathrm{~cm}^{-1}$ was observed. Distinct O-T-O bending bands can not be observed in the ${ }^{[4]}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right)$ micas.

Similar to the bands at 693 and $681 \mathrm{~cm}^{-1}$ in synthetic margarites by Farmer and Velde (1973) and Velde (1980), the strong and broad bands at 661 and $667 \mathrm{~cm}^{-1} \mathrm{SiH}^{-}$ and $\mathrm{Ni}_{1} \mathrm{SiH}-\mathrm{Clns}$, respectively, are the bands for which the $\mathrm{Si}-\mathrm{O}-\mathrm{Al}$ and $\mathrm{Al}-\mathrm{O}-\mathrm{Al}$ bending vibrations strongly overlap. These bands show a slightly positive skew shape tailing to the lower frequency side and a weak shoulder band appears in $\mathrm{Ga}_{4} \mathrm{SiH}$ - and $\mathrm{Ga}_{4} \mathrm{GeH}-\mathrm{Clns}$ at 526 and $517 \mathrm{~cm}^{-1}$ (Fig. 10). They may probably be ascribed to the $\mathrm{O}-{ }^{[4]} \mathrm{Ga}-\mathrm{O}$ out-of-plane bending band. The sequence to lower frequencies of these T-O-T bending bands depends primarily on the T-O bond lengths and then next on the mass of T-site cations. Thus the T-O-T bands are assigned as the Si-O-Al, Al-O-Al, Si-O-Ga, $\mathrm{Al}-\mathrm{O}-\mathrm{Ga}$ and $\mathrm{Ga}-\mathrm{O}-\mathrm{Ga}$ linkages in the $\mathrm{Si}-\mathrm{Cln}$ series, and as the $\mathrm{Al}-\mathrm{O}-\mathrm{Al}, \mathrm{Al}-\mathrm{O}-\mathrm{Ge}$, Al-O-Ga, Ge-O-Ga and Ga-O-Ga linkages in the Ge-Clns, respectively.
(3) OD librational bands (δ OD mode). Parts of the $617,517,546$ and $512 \mathrm{~cm}^{-1}$
weak bands in the deuterated clintonites, $\mathrm{Al}_{4} \mathrm{SiD}-, \mathrm{Ga}_{4} \mathrm{SiD}-, \mathrm{Al}_{4} \mathrm{GeD}-$ and $\mathrm{Ga}_{4} \mathrm{GeD}-\mathrm{Clns}$, may be ascribed (partly) to OD librational bands ($\delta O D=$ in-plane $O D$ bending) as demonstrated by the downward shift induced by deuteration, though their in-plane OH bending bands $(\delta \mathrm{OH})$ are obscure due to strong overlap with the $\mathrm{Al} / \mathrm{Ga}-\mathrm{O}$ stretching bands.
(4) M-O and T-O deformational bands. Below $580 \mathrm{~cm}^{-1}$ in Si-Clns and $570 \mathrm{~cm}^{-1}$ in Ge-Clns, several M-O and T-O deformational bands were observed, however, individual band assignments are difficult because of strong overlaps.

Low frequency vibrational bands including FIR bands

Spectra in the $450-50 \mathrm{~cm}^{-1}$ low-frequency range, including the far infrared (FIR) range below about $250 \mathrm{~cm}^{-1}$, for synthetic clintonites are shown in Figures 11 and 12.
(1) Absence of the tetrahedral torsional band in the FIR region. Ishida and Hawthone (2011) showed that the frequencies of the tetrahedral torsional vibrations in synthetic kinoshitalites decrease linearly with increasing mean ionic radius of the composite tetrahedra, $<{ }^{[4]} r>$. Though the interlayer ion in clintonite is Ca^{2+} instead of Ba^{2+} in kinoshitalite, the tetrahedral torsional band in the clintonites studied here should appear below about $135 \mathrm{~cm}^{-1}$, as the nominal tetrahedral ionic-radius range is
$0.358-0.450 \AA$. However, no such bands are observed in Figures 11 and 12. On the other hand, Farmer and Velde (1973) reported very weak bands at $136-137 \mathrm{~cm}^{-1}$ in both natural and synthetic clintonites. This band frequency is in close accordance with the predicted values since ${ }^{[4]}\left(\mathrm{Al}_{3} \mathrm{Si}_{1}\right)$ has $<{ }^{[4]} r>=0.358 \AA$. Furthermore, they reported strong $145 \mathrm{~cm}^{-1}$ bands in natural and synthetic margarites; they are only attributed to the tetrahedral torsional bands when the mica tetrahedral composition is ${ }^{[4]}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right)$, i.e., ${ }^{<4]} r>=0.325 \AA$. It is unclear why the tetrahedral torsional band does not appear in the synthetic clintonites studied here.
(2) $\mathbf{C a}-\mathrm{O}_{\text {inner }}$ and $\mathbf{C a}-\mathrm{O}_{\text {outer }}$ stretching bands. Two medium-strong bands centered at 300-279 (290 av.) and 195-181 (188 av.) cm^{-1} for the Si-Cln series, and at 304-283 (294 av.) and 196-181 (188 av.) cm^{-1} for the Ge-Cln series were observed. Farmer and Velde (1973) reported these bands without assignment. Jenkins (1989) also observed a weak $300 \mathrm{~cm}^{-1}$ band in synthetic clintonites. In Figure 13, the frequencies of the FIR bands for synthetic ${ }^{[4]}\left(\mathrm{Al}_{1} \mathrm{Si}_{3}\right)$ and ${ }^{[4]}\left(\mathrm{Al}_{2} \mathrm{Si}_{2}\right)$ trioctahedral micas (phlogopite and kinoshitalite, respectively) with various interlayer cations were plotted against $\sqrt{ }(Z / M)$, where Z is the cation valency and M its molecular mass (cf. Fripiat 1982). Except for the lower frequencies of K-phlogopite, both lines exhibit quadratic curvature and the differences between the high- and low-frequency bands increase with increasing $\sqrt{ }$
(Z/M). Fripiat (1982) assigned these high-frequency bands as out-of-plane vibrational bands of interlayer cations and the low-frequency bands as in-plane vibrational bands of the interlayer cations, respectively. However, these assignments can hardly explain the relationships between the crystal-chemical parameters and the band frequencies. For example, the F-bearing kinoshitalites have shorter c-parameters than OH -bearing ones, and thus should give higher-frequency out-of-plane vibrations of the interlayer cation, but in reality, the band frequencies shift downward with increasing $\mathrm{F} \rightarrow \mathrm{OH} / \mathrm{OD}$ (Ishida and Hawthorne 2011). Figure 14 shows the variation in $\langle\mathrm{I}-\mathrm{O}\rangle$ bond length ($\mathrm{I}=\mathrm{Ca}$) as a function of Ga (apfu). The nearly $100 \mathrm{~cm}^{-1}$ frequency differences between these two medium-strong bands should be ascribed to $\mathrm{Ca}-\mathrm{O}_{\text {inner }}$ and $\mathrm{Ca}-\mathrm{O}_{\text {outer }}$ stretching bands corresponding to their large $<\mathrm{I}-\mathrm{O}_{\text {outer }}>$ and $<\mathrm{I}-\mathrm{O}_{\text {inner }}>$ differences. In natural margarite two bands at 280 and $180 \mathrm{~cm}^{-1}$, which were reported by Farmer and Velde (1973), may be $\mathrm{Ca}-\mathrm{O}_{\text {inner }}$ and $\mathrm{Ca}-\mathrm{O}_{\text {outer }}$ stretching bands, respectively. However, frequencies of these bands are lower than those of clintonites by $\sim 10 \mathrm{~cm}^{-1}$ due to crystal-chemical differences, such as the tetrahedral $\mathrm{Al}: \mathrm{Si}=1: 1$ and dioctahedral characteristics of the natural margarite.
(3) M-O and OH librational ($\gamma \mathrm{OH}$ mode) bands. Two weak bands centered at 267-231 and 215-214 cm ${ }^{-1}$ were observed in Al-rich samples of both series (Fig. 11).

With increasing Ga content the intensity of both bands decreases. The frequency for the former bands decrease in samples with more than 2.0 Ga , however, the frequency for the latter bands does not shift. These bands are therefore assigned to M-O librational (rocking) modes. A weak band around $400 \mathrm{~cm}^{-1}$ in SiH - and $\mathrm{GeH}-\mathrm{Clns}$ may be partly ascribed to out-of-plane OH bending $(\gamma \mathrm{OH})$, because the intensity decreases slightly by deuteration (Fig. 11a).

ACKNOWLEDGMENTS

The author thanks D.M. Jenkins for his valuable discussions and constructive
comments. H. Kojitani gave advices that was usuful in making CIFs. The author is indebted to A. Beran, H. Skogby and S. Stalder for their critical reading of the manuscript, helpful suggestions and many recommendations. Infrared spectra were recorded at the Center of Advanced Instrumental Analysis, Kyushu University. K.I. was supported by a Subsidy of an excellent study of the Graduate School of Social and Cultural Studies, Kyushu University, and partly supported by a Grand-in-Aid for Scientific Research for Y. Kuwahara (No. 23340163).

References cited

Alietti, E., Brigatti, M.F., and Poppi L. (1997) Clintonite-1M: Crystal chemistry and its relationships to closely associated Al-rich phlogopite. American Mineralogist, 82, 936-945.

Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In Micas:Crystal Chemistry \& Metamorphic Petrology, 351-369 (A. Mottana, F.P. Sassi, J.B.

Thompson,Jr., and Guggenheim, editors). Reviews inMineralogy \& Geochemistry, 46, Mineralogical Society of America and the Geochemical Society, Washington,
DC.

Donnay, G., Donnay, J.D.H., and Takeda, H (1964) Trioctahedral one-layer micas.

Prediction of the structure from composition and cell dimensions. Acta

Crystallographica, 17, 1374-1381.

Farmer, V.C. (1974) Layer silicates. In: Infrared spectra of minerals. Ed. V.C. Farmer, Mineralogical Society London, 331-360.

Farmer, V.C. and Velde, B. (1973) Effects of structural order and disorder on the infrared spectra of brittle micas. Mineralogical Magazine, 39, 282-288.

Fripiat, J.J. (1982) Application of far infrared spectroscopy of the study of clay minerals and zeolites. In: Developments in sedimentology, 34, J.J.Fripiat (ed). Advancedtechniques for clay mineral analysis, 191-210, Elsevier Scientific Pub. Co.

Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite and annite. American Mineralogist, 58, 889-900.

Ishida, K. and Hawthorne, F. (2011) Far-infrared spectra of synthetic ${ }^{[4]}\left[\left(\mathrm{Al}_{2-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right)\left(\mathrm{Si}_{2-\mathrm{y}} \mathrm{Ge}_{\mathrm{y}}\right)\right](\mathrm{OH}, \mathrm{OD}, \mathrm{F})_{2}$-kinoshitalite: Characterization and assignment of interlayer $\mathrm{Ba}-\mathrm{O}_{\text {inner }}$ and $\mathrm{Ba}-\mathrm{O}_{\text {outer }}$ stretching bands. American Mineralogist, 96, 566-576.

Izumi, F. and Ikeda, T. (2000) A Rietveld analysis program RIETAN -98 and its application to zeolites. Material Science Forum, 321-324.

Jenkins, D.M. (1989) Empirical study of the infrared lattice vibrations (1100-350 cm^{-1}) of phlogopite. Physics and Chemistry of Minerals, 16, 408-414.

Joswig, W., Amthaner, G., and Takeuchi, Y. (1986) Neutron diffraction and Mössbauer spectroscopic study of clintonite (xanthophyllite). American Mineralogist, 71, 1194-1197.

McKinney, J.A., Mora, C.I., and Bailey, S.W. (1988) Structure and crystal chemistry of clintonite. American Mineralogist, 73, 365-375.

Olesch, M. (1975) Synthesis and solid solubility of trioctahedral brittle micas in the system $\mathrm{CaO}-\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}$. American Mineralogist, 60, 188-199.

Olesch, M. and Seifert, F. (1976) Stability and phase relations of trioctahedral calcium brittle micas (clintonite group). Journal of Petrology, 17, 291-314.

Shannon, R.D. (1976) Revised effective ionic radii and systematic atudies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.

Takéuchi, Y. (1966) Structural studies of brittle micas (I). The structure of xanthophyllite refined. Mineralogical Journal (Japan), 4, 424-437.

Takéuchi, Y. and Sadanaga, R. (1959) The crystal structure of xanthophyllite. Acta Crystalloggraphica, 12, 945-946.

Toraya, H. (1981) Distortions of octahedra and octahedral sheets in $1 M$ micas and the relation to their stability. Zeitschrift für Kristallography, 157, 173-190.

Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of mica. American Mineralogist, 49, 736-768.

Velde, B. (1980) Cell dimensions, polymorph type, and infrared spectra of synthetic white micas: the importance of ordering. American Mineralogist, 65, 1277-1282.

Captions of figures.

FIGURE 1. Rietveld patterns of synthetic clintonite. (a) [876] SiHCln . (b)
[916] $\mathrm{Ga}_{4} \mathrm{GeHCln}$. The crosses are the observed data, the solid line is the calculated pattern, and the vertical bars mark all possible Bragg reflections $\left(\mathrm{CuK} \alpha_{1}\right.$ and $\left.\mathrm{CuK} \alpha_{2}\right)$. The difference between the observed and calculated patterns is shown at the bottom.

FIGURE 2. Cell parameters and site populations of synthetic clintonite fitted to a quadratic function by least-squares regression. Open circles: $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiH}-\mathrm{Cln}$ series. Solid circles: $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{GeH}-\mathrm{Cln}$ series. Open square: $\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{HCln}$. Solid triangle: $\mathrm{Ni}_{1} \mathrm{SiHCln}$. Open diamond: $\mathrm{Ni}_{2} \mathrm{SiHCln}$. Solid and broken lines: least-squares regression lines for Si - and Ge-Cln series, respectively. Errors for unit-cell dimensions and volumes are smaller than the dimensions of the symbols.

FIGURE 3. (a) $\mathrm{Ga}+\mathrm{Ge}$ site-populations in the tetrahedral sites, and (b) Ga site-populations in the octahedral M1 and M2 sites, estimated by X-ray Rietveld refinements. Open circles: $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiH}-\mathrm{Cln}$ series. Solid circles: $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{GeH}-\mathrm{Cln}$ series. Open square: $\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{H}-\mathrm{Cln}$. Samll circles: M1 sites. Large circles : M2 sites. Solid lines: theoretical 1:1 correlation lines. Broken
lines: quadratic function least-squares regression lines of observed site-populations.
(*: Deposit items)
*FIGURE 4. Variation in tetrahedron parameters as a function of the nominal Ga
(apfu) for the starting material fitted to a quadratic function by least-squares regression lines. Both the Si - and $\mathrm{Ge}-\mathrm{Cln}$ data are modeled with the same curve.
(a) $\langle\mathrm{T}-\mathrm{O}\rangle=$ mean tetrahedral bond-length. (b) $\tau=$ tetrahedral flattening angle.
(c) $<{ }^{[4]} \mathrm{O}_{\text {basal- }}-\mathrm{O}_{\text {basal }}>=$ mean separation of basal oxygens of the tetrahedron. (d) $t_{\mathrm{t}}=$ tetrahedral sheet thickness. Solid triangles: $\mathrm{Ni}_{1} \mathrm{SiH}-\& \mathrm{Ni}_{2} \mathrm{SiH}-\mathrm{Clns}$. Other legends as in Fig. 2. Definitions for the structural parameters see note in Table 4.
*FIGURE 5. Variation in octahedron parameters as a function of the nominal Ga (apfu)
for the starting material fitted to a quadratic function by least-square regression
lines. Both the Si - and $\mathrm{Ge}-\mathrm{Cln}$ data are modeled with the same curve. (a) $<\mathrm{M} 1,2$
$-\mathrm{O}>=$ mean octrahedron bond-length. (b) $\Psi_{\mathrm{M} 1, \mathrm{M} 2}=$ octahedron flattening angle.
(c) $t_{\mathrm{o}}=$ tetrahedral sheet thickness. Legend as in Fig. 4.

FIGURE 6. Variation in interlayer-site parameters as a function of the nominal Ga
(apfu) for the starting material fitted to a quadratic function by least-squares
regression. (a) $<\mathrm{I}-\mathrm{O}_{\text {inner }}>=$ mean inner interlayer bond-length, $<\mathrm{I}-\mathrm{O}_{\text {outer }}>=$ mean outer interlayer bond-length. (b) $\angle \mathrm{O}-\mathrm{O}-\mathrm{O}_{\text {acute }}=$ mean acute interlayer oxygen angle, $\angle \mathrm{O}-\mathrm{O}-\mathrm{O}_{\text {obtuse }}=$ mean obtuse interlayer oxygen angle. (c) $t_{\mathrm{i}}=$ interlayer sheet thickness. Legend as in Fig. 4.

FIGURE 7. Variation in (a) $\alpha=$ the rotation angles of the tetrahedron, and (b) $\Delta=$ the dimensional misfit, both as a function of the nominal Ga (apfu) for the starting material fitted to a quadratic function by least-squares regression. Legend as in Fig. 4.

FIGURE 8. Variations in α as functions of (a) the mean separation of basal oxygens of the tetrahedron $\left(=<{ }^{[4]} \mathrm{O}_{\text {basal- }}-\mathrm{O}_{\text {basal }}>\right)$ and (\mathbf{b}) the dimensional misfit (Δ) shown by quadratic-function least-squares regression curves.

FIGURE 9. Infrared OH and OD stretching bands of synthetic clintonite. (a)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiH}-\mathrm{Cln}$ series; $\mathrm{x}=0.0-2.0$. (b) $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiH}-\mathrm{Cln}$ series; $\mathrm{x}=3.0-4.0$. $\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{H}-, \mathrm{Ni}_{1} \mathrm{SiH}^{-}$, and $\mathrm{Ni}_{2} \mathrm{SiH}-\mathrm{Clns}$.
(c) $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{GeH}-\mathrm{Cln}$ series.
(d)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiD}-\mathrm{Clns} ; \mathrm{x}=0.0,2.0$ and 4.0. $\quad\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{GeD}-\mathrm{Clns} ; \mathrm{x}=0.0,2.0$ and 4.0.

Solid lines: observed spectra and individual components analyzed. Broken lines:
sum of the analyzed components. Lines have been displaced vertically for clarity.
$\mathrm{N}=$ normal, $\mathrm{I}_{\mathrm{A}}-\mathrm{I}_{\mathrm{E}}=$ impurity, and $\mathrm{V}=$ vacant bands (Vedder 1964).

FIGURE 10. Infrared spectra $\left(1300-400 \mathrm{~cm}^{-1}\right)$ of synthetic clintonite. (a)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Si}-\mathrm{Cln}$ series. (b) $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Ge}_{-\mathrm{Cln}}$ series, $\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{H}-, \mathrm{Ni}_{1} \mathrm{SiH}-$, and $\mathrm{Ni}_{2} \mathrm{SiH}-$ Clns. Solid lines $=\mathrm{OH}$-forms. Broken lines $=\mathrm{OD}$-forms.

FIGURE 11. Far -infrared spectra $\left(450-100 \mathrm{~cm}^{-1}\right)$ of synthetic clintonite. (a)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Si}-\mathrm{Cln}$ series. $\quad \mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{H}-, \mathrm{Ni}_{1} \mathrm{SiH}-$, and $\mathrm{Ni}_{2} \mathrm{SiH}-\mathrm{Clns} . \quad$ (b)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Ge}-\mathrm{Cln}$ series. Solid lines $=\mathrm{OH}$-forms. Broken lines $=\mathrm{OD}$-forms.

FIGURE 12. Far -infrared spectra $\left(250-50 \mathrm{~cm}^{-1}\right)$ of synthetic clintonite. (a)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Si}-\mathrm{Cln}$ series. $\quad \mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{H}-, \mathrm{Ni}_{1} \mathrm{SiH}-$, and $\mathrm{Ni}_{2} \mathrm{SiH}-\mathrm{Clns} . \quad$ (b)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Ge}-\mathrm{Cln}$ series. Solid lines $=\mathrm{OH}$-forms. Broken lines $=\mathrm{OD}$-forms.

FIGURE 13. Interlayer cation frequencies observed for synthetic micas vs. $\sqrt{ }(\mathrm{Z} / \mathrm{M})$
modeled with quadratic-function least-squares regression curves. $\mathrm{Z}=$ valence of the interlayer cation. $\quad \mathrm{M}=$ atomic mass of the interlayer cation. Ca^{2+} : clintonite (this study, [875]). $\quad \mathrm{K}^{+} / \mathrm{Rb}^{+} / \mathrm{Cs}^{+}$: phlogopites (Ishida, unpublished data). Sr^{2+} : Fluoro-Sr-kinoshitalite (Ishida, unpublished data). Ba^{2+} : kinoshitalites (Ishida and Hawthorne 2011, samples [811] $\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{Kn}$ and $\left.[\mathrm{M} 30] \mathrm{F}_{2} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{Kn}\right)$. Circles: (OH)-bearing micas. Triangles: F-bearing micas.

FIGURE 14. Variation in $\langle\mathrm{I}-\mathrm{O}\rangle$ bond-lengths as a function of the nominal Ga (apfu)
for the starting material modeled by quadratic least-squares regression curves. (a)
$\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{SiH}-\mathrm{Cln}$ series (open circles and solid squares), $\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{H}-\mathrm{Cln}$
(triangles) and $\mathrm{Ni}_{1} \mathrm{SiH}-\mathrm{Cln}$ (diamonds). (b) $\left(\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{GeH}-\mathrm{Cln}$ series. Solid and broken lines: least-square regression lines for the components of $<\mathrm{I}-\mathrm{O}_{\text {outer }}>$ and $-\mathrm{O}_{\text {inner }}>$, respectively (see text).

TABLE 1. Hydrothermally synthesized clintonites and MIR \& FIR band's assignments

Run no.	Symbol	Nominal composition	$T(\mathrm{C})$	$P(\mathrm{MPa})$	$t(\mathrm{~h})$	OH str.
(a) ($\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}$)Si-Cln series						
[875]	SiHCln	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{3} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	690	186	373	3742,3687,3618,3558,3423
[894]	$\mathrm{Ga}_{0.5} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{2.5} \mathrm{Ga}_{0.5} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	710	196	374	3739,3676,3606,3538,3414
[876]	$\mathrm{Ga}_{1} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{2} \mathrm{Ga}_{1} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	690	186	373	3733,3657,3588,3519,3418
[895]	$\mathrm{Ga}_{1.5} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{1.5} \mathrm{Ga}_{1.5} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	710	196	374	3725,3649,3579,3505,3412
[877]	$\mathrm{Ga}_{2} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{1} \mathrm{Ga}_{2} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	690	186	373	3725,3656,3590,3532,3436
[878]	$\mathrm{Ga}_{3} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{0.5} \mathrm{Ga}_{0.5}\right)\left(\mathrm{Al}_{0.5} \mathrm{Ga}_{2.5} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	690	186	373	3716,3652,3590,3530,3454,3374
[879]	$\mathrm{Ga}_{4} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Ga}_{1}\right)\left(\mathrm{Ga}_{3} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	690	186	373	3709,3644,3592,3529,3446,3370
[885]	$\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{HCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{3} \mathrm{Si}_{0.5} \mathrm{Ge}_{0.5}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	710	225	231	3687,3619,3565,3444
[887]	$\mathrm{Ni}_{1} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{1} \mathrm{Ni}_{1} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{3} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	710	225	231	3632,3578,3520,3410
[888]	$\mathrm{Ni}_{2} \mathrm{SiHCln}$	$\mathrm{Ca}\left(\mathrm{Ni}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{3} \mathrm{Si}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	710	225	231	3632,3605,3548,3490,3415
(b) ($\left.\mathrm{Al}_{4-\mathrm{x}} \mathrm{Ga}_{\mathrm{x}}\right) \mathrm{Ge}-\mathrm{Cln}$ series						
[886]	GeHCln	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{3} \mathrm{Ge}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	710	225	231	3690,3618,3571,3437
[902]	$\mathrm{Ga}_{1} \mathrm{GeHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{2} \mathrm{Ga}_{1} \mathrm{Ge}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	730	201	357	3677,3613,3573,3520,3418
[903]	$\mathrm{Ga}_{2} \mathrm{GeHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Al}_{1} \mathrm{Ga}_{2} \mathrm{Ge}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	730	201	357	3664,3593,3555,3488,3388
[915]	$\mathrm{Ga}_{3} \mathrm{GeHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Al}_{1}\right)\left(\mathrm{Ga}_{3} \mathrm{Ge}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	715	210	434	3649,3584,3543,3470,3385
[916]	$\mathrm{Ga}_{4} \mathrm{GeHCln}$	$\mathrm{Ca}\left(\mathrm{Mg}_{2} \mathrm{Ga}_{1}\right)\left(\mathrm{Ga}_{3} \mathrm{Ge}_{1}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$	715	210	434	3624,3524,3455,3387,3563

* Frequency difference between $\mathrm{Ca}-\mathrm{O}_{\text {inner }}$ and $\mathrm{Ca}-\mathrm{O}_{\text {outer }}$ stretching bands.
\dagger : Numbers in parentheses are those for deuterated form.

OD str.	T-O str.	T-O-T bend.	O-T-O def.	M-O def.	M-O def. \&T-O def.	$\mathbf{C a - O}{ }_{\text {inner }} \mathbf{s t r}$.	M-O def	M-O def.
(2757,2725,2692,2660,2620,2511) \dagger	940,904,813	661	(617)	562(557)	505,488,451	300	261	214
	937,900,811	657,596		560	482,453,403	300,290	262,255	213
	931,896,810,722	650,594		556	474,452,411	294	258	213
	928,894,804,637	637,595,555			468,445,412	289	256	215
(2746,2709,2674,2638,2601)	925,893,794,778	640,589			455,445,414	292	255	
	918,890,754,687	584			446,436,417	286	250	
$(2737,2689,2652,2620,2593,2552)$	911,880,736,711,685	600,580	526(517)		442,429,415	279		
	947,810	652,598		557	481,454	300	263	214
	931,900,818	667		551	506,491,463,443,431	293	264,257	
	969,924,859,841	670,618		543	488,462,445,431,413	299	267,243	
$(2719,2679,2660,2626,2508)$	852,800,737,701	635,603		549(546)	493,469,439,357	304	263	215
	840,790,750	534,607			659,431,360	290	263	215
(2702,2661,2635,2594,2520)	818,770,686	597,554			459,444,432,418	284	251	
	832,789,744,676	618,580,559			443,429,415	283		
$(2679,2633,2606,2558)$	876,835,774,726,683	586,564,517	(512)		427,418	283	248,231	

$\mathbf{C a}^{2} \mathbf{O}_{\text {outer }}$ str.	
195	105
193,189	104
192	102
191	98
189	103
185	101
181	98
196	104
199	94
200,186	99
196	108
194	96
190	94
186	97
181	102

TABLE 2. Rietveld refinement of (Al/Ga)(Si/Ge)(OH)-clintonite

Run no.	875	894	876	895	877	878	879	885	887	888	886	902	903	915	916
Symbol	SiHCln	$\mathrm{Ga}_{0.5} \mathrm{SiHCln}$	$\mathrm{Ga}_{1} \mathrm{SiHCln}$	$\mathrm{Ga}_{1.5} \mathrm{SiHCln}$	$\mathrm{Ga}_{2} \mathrm{SiHCln}$	$\mathrm{Ga}_{3} \mathrm{SiHCln}$	$\mathrm{Ga}_{4} \mathrm{SiHCln}$	$\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{HCln}$	$\mathrm{Ni}_{1} \mathrm{SiHCln}$	$\mathrm{Ni}_{2} \mathrm{SiHCln}$	GeHCln	$\mathrm{Ga}_{1} \mathrm{GeHCln}$	$\mathrm{Ga}_{2} \mathrm{GeHCln}$	$\mathrm{Ga}_{3} \mathrm{GeHCln}$	$\mathrm{Ga}_{4} \mathrm{GeHCln}$
$T(\mathrm{C})-\mathrm{P}(\mathrm{MPa})$	690-186	710-196	690-186	710-196	690-186	690-186	690-186	710-225	710-225	710-225	710-225	730-201	730-201	715-210	715-210
Collecting conditions															
2 scan range (${ }^{\circ}$)	5-120	5-120	5-120	5-120	5-120	5-120	5-110	5-120	5-120	5-120	5-120	5-120	5-120	5-120	5-120
Step interval (${ }^{\circ}$)	0.04	0.02	0.02	0.04	0.04	0.04	0.01	0.04	0.04	0.04	0.04	0.02	0.04	0.04	0.04
Step times (s)	2	5	7	6	7	6	7	6	5	6	6	6	6	6	6
Agreement indicies from Rietveld refinement															
$R \mathrm{wp}(\%)$	26.2	25.7	26.7	25.7	28.7	26.9	32.1	25.9	22.2	29.4	32.5	30.5	19.8	23.3	29.8
Rp(\%)	20.7	20.6	21.1	20.1	22.8	21.2	28.1	20.7	17.0	22.2	24.7	25.6	15.2	18.3	23.9
$\mathrm{Re}(\%)$	7.89	5.50	5.78	4.19	6.10	3.96	5.46	4.22	5.00	4.56	4.40	4.49	4.00	3.95	3.95
S	3.32	4.67	4.61	6.14	4.70	6.81	5.87	6.13	4.44	6.43	7.39	6.79	4.96	5.90	7.56
Durbin-Watson d	0.122	0.048	0.054	0.089	0.146	0.125	0.015	0.118	0.117	0.376	0.072	0.041	0.177	0.141	0.127
RF(\%)	9.59	7.89	11.0	8.62	11.7	8.61	16.6	11.0	7.69	17.9	13.8	17.5	6.09	7.94	11.0
Unit-cell parameters															
$a()$	5.2017(13)	5.2092(13)	5.221 (2)	5.2314(16)	5.2427(13)	5.2704(15)	5.2983(13)	5.2198(18)	5.1902(13)	5.160(2)	5.2346(18)	5.2584(11)	5.2759(9)	5.3031 (9)	$5.3268(11)$
b ()	8.991(2)	9.008(2)	9.025(3)	9.052(3)	9.068(2)	9.111(2)	9.161(2)	9.028(3)	8.975(2)	8.969(4)	9.056(3)	9.0973(19)	9.1352(15)	9.1773(16)	9.216(2)
$c()$	9.799(2)	9.818(2)	9.841(4)	9.866(3)	9.882(2)	9.924(3)	9.960(2)	9.840(23)	9.806(2)	9.802(4)	9.870(3)	9.918(2)	9.9541(14)	9.9954(16)	10.023(2)
$\left.\square \square^{\circ}\right)$	100.142(16)	100.221(14)	100.120(17)	100.132(17)	100.085(15)	100.018(16)	100.034(12)	100.157(17)	100.187(16)	100.24(2)	100.35(2)	100.221(11)	100.260(9)	100.216(11)	100.172(15)
$V\left({ }^{3}\right)$	451.13(19)	453.39(19)	456.5(3)	459.9(2)	462.5(2)	469.22(2)	476.0(2)	456.4(3)	449.58(18)	446.4(3)	460.3(3)	466.22(17)	472.08(13)	478.75(14)	484.31(18)
asin \square ()	5.121(1)	5.126(1)	5.140(2)	5.150(2)	5.162(1)	5.191(1)	5.217(2)	5.138(2)	5.108(1)	5.078(2)	5.149(1)	5.175(4)	5.191(1)	5.219(2)	5.243(3)
D cal(g/cm ${ }^{3}$)	3.123(5)	2.879(120)	2.950(110)	2.943(107)	3.095(43)	3.499(16)	$3.657(209)$	2.985(40)	3.116(27)	3.036(29)	$3.318(135)$	3.003(238)	3.383(15)	3.524(51)	4.556(21)
Site-populations															
T1 $\quad \mathrm{Ge}+\mathrm{Ga}$	-	0.10(1)	0.11(1)	0.14(1)	0.19(2)	0.41(2)	0.70(4)	0.06(1)	-	-	0.21 (3)	0.40(1)	0.47(1)	0.61(1)	1.00
$\mathrm{Si}+\mathrm{Al}$	1.00	0.90(1)	0.89(1)	0.86(1)	0.81(2)	0.59(2)	0.30(4)	0.94(1)	1.00	1.00	0.79(3)	0.60(1)	0.53(1)	0.39(1)	-
M1 Ga	-	0.00(1)	0.00(1)	0.00(1)	0.04(2)	0.17(3)	0.39(4)	-	Ni:0.24(2)	Ni:0.44(3)	-	0.02(1)	0.01(1)	0.12(1)	0.42(4)
$\mathrm{Mg}+\mathrm{Al}$	1.00	1.00(1)	1.00(1)	1.00(1)	0.96(2)	0.83(3)	0.61(4)	1.00	Al:0.76(2)	Al:0.56(3)	1.00	0.98(1)	0.99(1)	0.88(1)	0.58(4)
M2 Ga	-	0.00(1)	0.00(1)	0.00(1)	0.01(1)	0.20(2)	0.42(4)	-	Ni:0.19(1)	Ni:0.23(2)	-	0.00(1)	0.00(1)	0.08(1)	0.40(3)
$\mathrm{Mg}+\mathrm{Al}$	1.00	1.00(1)	1.00(1)	1.00(1)	0.99(1)	0.80(2)	0.58(4)	1.00	Al:0.81(1)	Al:0.77(2)	1.00	1.00(1)	1.00(1)	0.92(1)	0.60(3)
Average(M1+2M2)															
Ga	-	0.00(1)	0.00(1)	0.00(1)	0.02(1)	0.19(1)	0.41(1)	-	Ni:0.21(2)	Ni:0.30(10)	-	0.01(1)	0.01(1)	0.09(2)	0.41(1)
$\mathrm{Mg}+\mathrm{Al}$	1.00	1.00(1)	1.00(1)	1.00(1)	0.98(1)	0.81(1)	0.59(1)	1.00	Al:0.79(2)	Al:0.70(10)	1.00	0.99(1)	0.99(1)	0.91(2)	0.59(1)
A Ca	0.74(1)	0.77(1)	0.65(1)	0.60(2)	0.54(2)	0.68(2)	0.76(3)	0.73(2)	0.78(1)	0.67(2)	0.76(3)	0.73(1)	0.72(1)	0.63(2)	0.78(3)

TABLE 3. Atomic parameters of (Al/Ga)(Si/Ge)(OH/OD)-clintonite

Run no.		875	894	876	895	877	878	879	885	887	888	886	902	903	915	916
Symbol		SiHCln	$\mathrm{Ga}_{0.5} \mathrm{SiHCln}$	$\mathrm{Ga}_{1} \mathrm{SiHCln}$	$\mathrm{Ga}_{1.5} \mathrm{SiHCln}$	$\mathrm{Ga}_{2} \mathrm{SiHCln}$	$\mathrm{Ga}_{3} \mathrm{SiHCln}$	$\mathrm{Ga}_{4} \mathrm{SiHCln}$	$\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{HClr}$	$\mathrm{Ni}_{1} \mathrm{SiHCln}$	$\mathrm{Ni}_{2} \mathrm{SiHCln}$	GeHCln	$\mathrm{Ga}_{1} \mathrm{GeHCln}$	$\mathrm{Ga}_{2} \mathrm{GeHCln}$	$\mathrm{Ga}_{3} \mathrm{GeHCln}$	$\mathrm{Ga}_{4} \mathrm{GeHCln}$
$T-P$		690-186	710-196	690-186	710-196	690-186	690-186	690-186	710-225	710-225	710-225	710-225	730-201	730-201	715-210	715-210
T1	x	0.550(2)	0.5573(15)	$0.5527(17)$	0.556(2)	0.553(2)	0.5523(18)	0.5584(13)	0.552(2)	0.558(2)	0.532(3)	0.584(3)	0.5604(18)	0.5662(15)	$0.5627(14)$	0.558(2)
	y	$0.1697(11)$	0.1668(8)	0.1699(8)	0.1681(9)	0.1685(9)	0.1692(8)	0.1689(6)	0.1683(9)	0.1706(8)	0.1650(17)	$0.1664(12)$	0.1680(8)	0.1665(5)	0.1669(5)	0.1668(7)
	z	0.2067(8)	0.2053(5)	0.2028(6)	0.2033(7)	0.2033(8)	0.2017(7)	0.2032(5)	0.2049(7)	$0.2057(7)$	0.1957(13)	0.2102(9)	0.2078(6)	0.2074(3)	0.2071 (4)	0.2059(6)
M1	x	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	y	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M2	x	1/2	$1 / 2$	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	y	0.3308(13)	0.3291 (13)	0.3231 (13)	$0.3239(17)$	$0.3265(18)$	$0.3286(16)$	$0.3248(12)$	0.3297(15)	0.3300(10)	$0.3285(16)$	0.329(3)	$0.3239(19)$	$0.3278(12)$	0.3261 (14)	0.3251(19)
	z	1/2	1/2	1/2	1/2	1/2	1/2	$1 / 2$	1/2	1/2	1/2	$1 / 2$	1/2	1/2	$1 / 2$	$1 / 2$
A	x	1/2	1/2	1/2	1/2	1/2	1/2	$1 / 2$	1/2	1/2	1/2	1/2	1/2	1/2	1/2	$1 / 2$
	y	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H	x	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*
	y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	z	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*
01	x	0.389(7)	0.386(3)	0.414(5)	0.415(7)	0.378(7)	0.390(8)	0.423(5)	$0.374(7)$	0.378(6)	0.348(8)	0.394(14)	0.433(4)	0.375(4)	0.429(5)	0.396(14)
	y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	z	0.158(2)	0.1536(15)	0.145(2)	0.141(3)	0.148(3)	0.150(3)	0.152(2)	0.151(2)	0.1511(19)	0.147(3)	0.157(4)	0.1515(19)	0.1517(18)	0.149(2)	0.154(5)
O2	x	0.845(5)	0.864(2)	0.896(5)	0.905(5)	0.863(6)	0.846(6)	$0.885(5)$	0.855(5)	0.841 (4)	0.832(6)	0.866(12)	0.897(4)	0.861(3)	0.911(4)	0.872(14)
	y	0.1598(18)	0.1619(13)	0.1571 (13)	0.1598(18)	0.1592(19)	0.157(2)	$0.1522(17)$	0.1659(19)	0.1621(15)	0.148(2)	0.169(3)	$0.1677(18)$	0.1701(16)	0.1638(19)	0.160(4)
	z	0.1436(13)	0.1395(9)	0.1392(13)	0.1358(18)	0.1347(19)	0.127(2)	0.1324(13)	0.1441(14)	$0.1414(11)$	0.1315(15)	0.142(2)	0.1412(11)	0.1398(11)	0.1395(13)	0.143 (3)
O3	x	0.625(4)	0.630(2)	0.599(3)	0.597(5)	0.605(5)	0.595(5)	0.598(4)	0.609(6)	0.634(5)	0.629(6)	0.643(9)	0.609(3)	$0.637(4)$	0.602(4)	0.632(9)
	y	0.168(2)	$0.1687(14)$	0.1685(17)	0.169(2)	0.170(2)	0.172(3)	0.171(2)	0.171(2)	0.1691(18)	0.163(2)	0.172(4)	$0.1720(17)$	$0.1717(16)$	0.1722(19)	0.170(4)
	z	0.3925(15)	0.3951 (10)	0.3960 (15)	0.3993 (18)	0.400(2)	0.404(2)	$0.3912(15)$	$0.3912(15)$	$0.3876(12)$	$0.3769(18)$	0.403(3)	$0.3981(12)$	0.3981 (10)	$0.4007(13)$	0.404(3)
O4	x	0.648(8)	$0.653(4)$	0.603(5)	0.603(7)	0.621(7)	0.621(8)	0.600(5)	0.629(6)	$0.662(7)$	0.612(7)	0.653(14)	0.592(4)	0.639(4)	0.589(4)	0.626(13)
	y	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	z	0.400(2)	0.4056(14)	0.4026(18)	0.404(3)	0.404(3)	0.411(3)	$0.3983(20)$	0.401(2)	0.4001(17)	0.374(3)	0.401(4)	0.3930(18)	0.3984(16)	$0.3924(19)$	0.392(4)

TABLE 4. Crystal structure data of (Al/Ga)(Si/Ge)(H/D)-clintonite

Run no.	875	894	876	895	877	878	879
Symbol	SiHCln	$\mathrm{Ga}_{0.5} \mathrm{SiHCln}$	$\mathrm{Ga}_{1} \mathrm{SiHCln}$	$\mathrm{Ga}_{1.5} \mathrm{SiHCln}$	$\mathrm{Ga}_{2} \mathrm{SiHCln}$	$\mathrm{Ga}_{3} \mathrm{SiHCln}$	$\mathrm{Ga}_{4} \mathrm{SiHCln}$
T(C)-P(MPa)	690-186	710-196	690-186	710-196	690-186	690-186	690-186
Selected bond-lengths (Å)							
T-O1	1.766(16)	1.784(8)	1.749(11)	1.765(20)	1.826(19)	1.797(20)	1.745(10)
T-O2	1.753(27)	1.827(14)	2.005(26)	2.050(28)	1.875(31)	1.829(29)	1.982(23)
T-O2'	1.908(20)	1.904(10)	1.825(14)	1.830(19)	1.925(20)	1.993(22)	1.952(17)
T-O3	1.794(13)	1.845(9)	1.877(13)	1.910(17)	1.917(19)	1.985(21)	1.848(14)
<T-O>	1.805	1.840	1.864	1.889	1.886	1.901	1.882
O1-O2	2.794(33)	2.907(17)	2.895(26)	2.951(35)	2.944(33)	2.836(33)	2.852(21)
01-02'	3.069(16)	3.051(11)	3.097(12)	3.081(17)	3.094(18)	3.142(20)	3.193(16)
O2-O2'	3.065(17)	3.096(12)	3.103(13)	3.084(18)	3.096(19)	3.137(22)	3.198(18)
$<\mathrm{O}_{\text {bas }}-\mathrm{O}_{\text {bas }}>$	2.976	3.018	3.032	3.039	3.045	3.038	3.081
M1-O3 X	2.016(19)	2.024(12)	1.952(16)	1.940(20)	1.967(20)	1.947(24)	2.026(19)
M1-O4 ${ }^{\text {a }}$	1.919(36)	1.882(18)	2.125(25)	2.129(35)	2.049(33)	2.037(39)	2.185(24)
<M1-O>	1.984	1.977	2.010	2.003	1.994	1.977	2.079
M2-O3 ${ }^{\text {x2 }}$	1.978(19)	1.969(13)	1.856(16)	1.839(20)	1.872(21)	1.828(24)	1.904(19)
M2-O3 ${ }^{\text {22 }}$	2.050(22)	2.020(11)	2.166(18)	2.170(24)	2.133(24)	2.180(28)	2.214(19)
M2-O4 ${ }^{\text {22 }}$	2.032(19)	2.040(10)	1.986(13)	1.980(19)	1.980(18)	1.955(19)	2.018(12)
<M2-O>	2.020	2.010	2.003	1.996	2.004	1.988	2.045
<M1,2-O>	2.008	1.999	2.005	1.998	2.001	1.984	2.056
$\mathrm{I}-\mathrm{O} 2 \quad \mathrm{x}$	2.258(18)	2.215(12)	2.113(16)	2.102(19)	2.183(21)	2.159(23)	2.084(16)
$\underline{\mathrm{l}} \mathrm{O} 1$ x2	2.321(33)	2.296(14)	2.373(23)	2.369(32)	2.256(33)	2.321(37)	2.476(23)
$<1-\mathrm{O}_{\text {inner }}>$	2.279	2.242	2.200	2.191	2.207	2.213	2.215

$\mathrm{I}-\mathrm{O} 2$	x4	3.697(18)	3.724(11)	3.842(15)	3.847(21)	3.755(22)	3.700(23)	3.887(17)
I-O1	x2	3.770(36)	3.770(17)	3.591(29)	3.581(37)	3.794(38)	3.801(40)	3.641(25)
<l-O ${ }_{\text {outer }}$ >		3.721	3.739	3.758	3.758	3.768	3.734	3.805

Selected bond-angles ()

-01-T-O3	106.1(10)	108.0(7)	107.4(8)	109.0(11)	107.0(11)	105.5(12)	105.9(9)
-O2-T-O3	108.1(10)	109.2(4)	110.8(7)	112.6(10)	113.3(10)	117.0(11)	114.1(8)
O2'-T-O3	110.1(7)	110.3(5)	109.0(6)	109.5(8)	109.3(8)	108.8(9)	108.7(7)
mean $=\left({ }^{\circ}\right) \dagger$	108.1	109.2	109.1	110.4	109.9	110.4	109.6
$\square \mathrm{O} 1-\mathrm{O} 2 \ni-\mathrm{O} 2 \times 2$	62.0(9)	60.4(6)	58.9(6)	58.8(8)	59.0(8)	60.8(9)	59.0(7)
$\square \mathrm{O1-02-01}$	61.9(10)	60.2(6)	58.6(7)	58.7(8)	58.7(8)	60.4(10)	58.6(8)
mean	62.0	60.3	58.8	58.8	58.9	60.7	58.9
-O1-O2-O2' x2	177.1(6)	177.0(5)	176.4(6)	177.1(8)	175.8(8)	174.8(9)	173.8(6)
-02'-01-02'	170.7(13)	173.7(6)	176.0(10)	177.2(12)	174.7(13)	169.2(14)	170.8(9)
mean	175.0	175.9	176.3	177.1	175.4	172.9	172.8

Calculated parameters

$\left({ }^{\circ}{ }^{*}\right.$	28.3	28.9	29.4	29.6	29.1	28.1	28.5
M1 $\left(^{\circ}\right.$) \ddagger	59.3	60.3	60.6	61.3	61.2	62.3	59.9
м2 $\left(^{\circ}\right.$)	59.9	60.8	60.5	61.2	61.4	62.5	59.3
$\left(\begin{array}{ll}\text { m1 }\end{array}\right.$ м m_{2})/3	59.7	60.6	60.5	61.2	61.3	62.4	59.5
Sheet thicknesses (Å)							
octahedral $t_{0}(\AA)$ interlayer separation	$\begin{aligned} & 2.026 \\ & (\AA) \end{aligned}$	1.959	1.972	1.926	1.920	1.837	2.088
	2.806	2.797	2.746	2.748	2.779	2.866	2.702
(Å)	1.790	1.974	1.997	2.051	2.059	2.107	1.950

* (tetrahedral rotation angle) $={ }_{\mathrm{j}=1}{ }^{6} \mathrm{I} 120-\mathrm{j} / 2$ and where \quad is the angles between basal oxygens (Alietti et al. 1997).
\dagger Tetrahedral flattening angle $=$ mean $\mathrm{O}_{\text {basal }}-\mathrm{T}-\mathrm{O}_{\text {apical }}$.
$\ddagger \cos =t_{\mathrm{o}} /\left(2 d_{0}\right), t_{\mathrm{o}}=2\left\{0.5-\left[2 \mathrm{z}_{\mathrm{O} 3}+\mathrm{z}_{\mathrm{O} 4}\right] / 3\right\} c \sin , d_{\mathrm{o}}=\langle\mathrm{M}-\mathrm{O}\rangle$ (Hazen and Burnham 1973).
\S Sheet thickness $t_{\mathrm{t}}=4 d_{\mathrm{t}} / 3, t_{\mathrm{t}}=c \sin -2 d_{\mathrm{o}} \cos \quad-(8 / 3) d_{\mathrm{t}}, d_{\mathrm{t}}=\langle\mathrm{T}-\mathrm{O}\rangle$ (Donnay et al. 1964).
II Dimensional misfit between tetrahedral and octahedral sheets defined as $= \begin{cases}2 & 3<\mathrm{O}_{\text {bas }}-\mathrm{O}_{\text {bas }}>-3 \quad 2[(<\mathrm{M} 1-\mathrm{O}>+2<\mathrm{M} 2-\mathrm{O}>) / 3]\end{cases}$

885	887	888	886	902	903	915	916
$\overline{\mathrm{Si}_{0.5} \mathrm{Ge}_{0.5} \mathrm{HCln}}$	$\mathrm{Ni}_{1} \mathrm{SiHCln}$	$\mathrm{Ni}_{2} \mathrm{SiHCln}$	GeHCln	$\mathrm{Ga}_{1} \mathrm{GeHCln}$	$\mathrm{Ga}_{2} \mathrm{GeHCln}$	$\mathrm{Ga}_{3} \mathrm{GeHCln}$	$\mathrm{Ga}_{4} \mathrm{GeHCln}$
710-225	710-225	710-225	710-225	730-201	730-201	715-210	715-210
1.815(19)	1.823(16)	1.778(23)	1.828(39)	1.725(9)	1.864(15)	1.744(11)	1.797(32)
1.785(27)	1.702(23)	1.779(33)	1.722(55)	1.996(21)	1.805(16)	2.077(22)	1.892(66)
1.857(19)	1.915(17)	2.011(25)	1.929(41)	1.795(14)	1.902(14)	1.825(16)	1.926(45)
1.807(14)	1.758(10)	1.758(15)	1.874(24)	1.864(11)	1.874(10)	1.910(12)	1.956(28)
1.816	1.800	1.832	1.838	1.845	1.861	1.889	1.893
2.937(34)	2.824(30)	2.860(41)	2.919(57)	2.895(21)	3.018(23)	2.981(24)	2.953(54)
3.018(17)	3.039(13)	3.161(19)	3.008(31)	3.030(16)	3.017(15)	3.089(17)	3.140(37)
3.020(17)	3.037(14)	3.160(23)	3.005(30)	3.026(15)	3.015(14)	3.088(18)	3.140(38)
2.992	2.967	3.060	2.977	2.984	3.017	3.053	3.078
2.016(21)	2.068(17)	2.081(21)	2.036(38)	2.003(15)	2.072(16)	1.992(18)	2.034(40)
2.007(29)	1.855(32)	2.158(36)	1.903(67)	2.218(20)	1.991(21)	2.254(23)	2.092(64)
2.013	1.997	2.107	1.992	2.075	2.045	2.079	2.053
1.936(21)	2.015(17)	2.095(22)	1.942(38)	1.864(18)	1.965(17)	1.861(17)	1.928(38)
2.131(26)	2.019(22)	2.074(26)	1.935(44)	2.126(16)	2.003(17)	2.168(19)	2.026(47)
2.003(20)	2.072(17)	2.116(20)	2.073(36)	2.030(14)	2.083(14)	2.027(13)	2.121(33)
2.023	2.035	2.095	1.983	2.007	2.017	2.019	2.025
2.020	2.022	2.099	1.986	2.030	2.026	2.039	2.034
2.282(17)	2.264(14)	2.142(21)	2.275(33)	2.206(15)	2.296(12)	2.159(17)	2.246(40)
2.233(31)	2.240(28)	2.093(36)	2.346(67)	2.498(19)	2.270(21)	2.492(23)	2.382(65)
2.266	2.256	2.126	2.299	2.303	2.287	2.270	2.291

3.690(19)	3.658(15)	3.710(23)	3.694(39)	3.799(16)	3.705(15)	3.891(16)	3.851(42)
3.822(35)	3.782(32)	3.892(39)	3.772(65)	3.569(20)	3.863(22)	3.604(24)	3.807(66)
3.734	3.699	3.771	3.720	3.722	3.758	3.795	3.836
107.0(10)	107.7(8)	107.8(13)	107.2(16)	108.9(9)	109.3(7)	108.8(9)	108.2(18)
110.2(12)	108.7(11)	104.3(14)	113.1(17)	111.6(7)	110.7(7)	112.8(7)	107.7(17)
107.5(8)	110.7(7)	111.3(9)	108.6(14)	109.3(6)	110.0(6)	108.4(6)	108.6(14)
108.2	109.0	107.8	109.6	109.9	110.0	110.0	108.2
61.4(8)	62.0(8)	55.8(11)	63.2(15)	63.6(7)	62.1(6)	60.7(7)	60.0(14)
61.3(9)	62.0(9)	55.5(11)	63.1(16)	63.7(7)	62.0(6)	60.8(7)	59.8(15)
61.4	62.0	55.7	63.2	63.6	62.1	60.7	59.9
178.6(6)	178.0(6)	171.7(10)	176.4(14)	176.8(8)	177.0(6)	178.0(7)	177.1(16)
175.8(13)	172.5(12)	172.7(13)	172.6(25)	172.2(8)	174.9(9)	175.3(9)	174.4(22)
177.7	176.2	172.0	175.1	175.3	176.3	177.1	176.2
29.1	28.6	29.1	28.0	27.9	28.6	29.1	29.1
59.5	58.5	55.4	61.6	60.8	60.3	61.1	61.3
59.7	59.1	55.2	61.4	59.8	59.9	60.2	60.8
59.6	58.9	55.3	61.5	60.1	60.0	60.5	61.0
2.421	2.400	2.443	2.451	2.460	2.481	2.519	2.524
2.044	2.089	2.393	1.897	2.022	1.994	2.008	1.973
2.800	2.762	2.367	2.910	2.819	2.839	2.791	2.844
1.794	1.699	1.695	1.887	1.724	1.856	1.925	2.033

$\frac{\text { Run no. }}{\text { Symbol }}$		${ }_{\text {S }}^{\text {[875] }}$	${ }_{\text {Ga } 0_{0} \mathrm{SSH} \mathrm{SHCln}}^{[84]}$		${ }_{\text {Ga }{ }_{15} \text { S SilicIn }}^{[85]}$				${ }_{\text {Sis } 5_{5} \mathrm{Se}_{0} 58 \mathrm{HCln}}^{[88]}$	${ }_{\text {Ni, }}^{[887 \mathrm{SCCln}}$	${ }^{[8888]}$	$\frac{[907]}{\text { SiDCIn }}$	$\frac{[908]}{\text { Ga2SiDCIn }}$	${ }_{\text {Ga4SiDCIn }}^{\text {[909] }}$	$[886]$ GeHCln	$\begin{gathered} {[902]} \\ \hline \text { Ga1GeHCln } \end{gathered}$	$\begin{gathered} {[903]} \\ \text { Ga2GeHCln } \end{gathered}$	$\begin{gathered} {[915]} \\ \hline \text { Ga3GeHCln } \end{gathered}$	$\begin{gathered} {[916]} \\ \hline \text { Ga4GeHCln } \end{gathered}$	[944] GeDCIn	$\begin{gathered} {[945]} \\ \hline \text { Ga2GeDCln } \end{gathered}$	$\frac{[946]}{\text { Ga4GeDCl }}$
	Position (cm^{-1})	3741.8	3739.4	3733.1	3725.0	3724.6	3716.3	3709.3			3631.5	2756.7	2745.8	2736.7	3689.7	3676.7	3663.6	3649.4	3624.4	2719.5	2702.0	2679.0
N	$\mathrm{FWHH}\left(\mathrm{cm}^{-1}\right)^{*}$	25.3	27.9	24.6	32.4	27.8	26.2	23.4			32.6	24.7	23.0	19.1	41.9	37.6	48.4	61.5	88.6	31.9	36.4	56.4
	Intensity (\%) \dagger	0.4	0.4	0.4	0.5	0.9	0.5	0.5			2.1	2.2	1.5	1.1	3.3	1.8	1.9	5.1	7.4	6.1	3.7	8.2
	$\mathrm{G} /(\mathrm{G}+\mathrm{L})(\%) \ddagger$	100.0	100.0	0.0	100.0	0.0	100.0	100.0			100.0	86.2	100.0	100.0	100.0	100.0	100.0	100.0	79.6	100.0	100.0	100.0
IA	Position ($\left(\mathrm{cm}^{-1}\right)$	3686.5	3675.6	3657.1	3649.3	3655.7	3652.1	3644.4	3686.8	3631.5	3604.5	2724.7	2708.7	2689.1	3618.0	3612.9	3593.1	3583.9	3524.0	2678.9	2661.1	2632.9
	FWWH (cm^{-1})	80.8	88.5	95.5	99.7	89.4	83.1	78.0	59.2	90.0	58.2	37.7	46.0	56.9	72.1	71.9	85.2	76.5	81.7	42.6	49.7	41.0
	Intensity (\%)	9.4	10.3	12.6	15.8	15.6	10.6	11.0	6.1	20.9	9.5	10.3	12.6	21.1	31.4	15.5	16.2	13.7	30.2	27.1	14.6	11.0
	G (G+L) (\%)	100.0	100.0	100.0	100.0	100.0	100.0	55.7	100.0	78.2	100.0	100.0	100.0	68.4	100.0	100.0	100.0	100.0	88.2	92.1	100.0	100.0
18	Position ($\left(\mathrm{cm}^{-1}\right)$	3618.5	3605.7	3588.2	3578.6	3589.6	3590.1	3592.3	3618.7	3577.6	3548.5	2691.8	2674.1	2652.1	3671.0	3573.4	3554.9	3543.0	3454.7	2660.5	2634.8	2605.5
	FWHH (cm^{-1})	100.9	108.1	109.8	119.6	101.9	99.0	83.9	84.5	100.0	82.0	49.5	51.4	44.2	115.2	94.8	114.8	103.1	101.2	49.2	61.4	51.8
	Intensity (\%)	37.2	42.1	36.7	39.2	30.9	25.6	18.4	49.9	36.2	27.8	26.8	24.0	15.7	49.3	37.9	43.8	42.4	31.5	38.3	41.0	33.2
	G (G+L) (\%)	100.0	100.0	100.0	100.0	100.0	100.0	68.3	100.0	100.0	92.6	100.0	100.0	100.0	69.3	80.1	77.9	74.8	64.2	100.0	83.5	76.4
Ic_{6}	Position (cm^{-1})	3558.4	3537.5	3518.6	3504.6	3531.6	3529.9	3529.0	3565.4	3520.0	3490.2	2659.8	2638.0	2620.0	3436.5	3519.8	3687.8	3470.2	3387.1	2626.5	2594.3	2558.4
	FWHH (cm^{-1})	135.9	136.1	135.1	150.9	128.5	105.1	96.2	103.2	123.7	112.1	57.7	56.6	44.5	151.7	125.5	134.4	123.4	136.4	63.5	82.6	77.9
	Intensity (\%)	39.1	33.1	29.8	25.7	33.5	34.4	33.6	32.3	28.2	33.0	44.3	26.9	18.9	16.1	29.8	25.1	25.3	13.7	25.3	30.9	47.7
	$\mathrm{G} /(\mathrm{G}+\mathrm{L})(\%)$	89.2	100.0	80.9	100.0	62.6	76.9	100.0	85.2	100.0	48.3	100.0	100.0	100.0	100.0	73.6	99.0	100.0	100.0	86.5	69.4	0.0
10		3422.9	3413.8	3417.9	${ }^{3412.3}$	3435.6	3453.7	3446.5	3443.9	3409.6	3415.4	2620.0	2600.9	2592.9		3418.0		3384.7	3562.9		2519.7	
	FWHH $\left(\mathrm{cm}^{-1}\right)$	144.3	141.2	159.3	184.0	159.2	120.1	110.5	149.5	142.0	199.2	63.6	86.4	50.2		156.8		145.7	82.8		110.1	
	Intensity (\%)	14.0	14.2	20.5	18.9	19.1	19.8	24.8	11.7	14.7	27.6	15.9	35.0	17.9		15.1		13.5	17.2			
	$\mathrm{G} /(\mathrm{G}+\mathrm{L})(\%)$	100.0	100.0	100.0	100.0	100.0	100.0	84.9	100.0	100.0	100.0	100.0	23.8	66.9		100.0		100.0	37.3		100.0	
IE	Position (cm^{-1})						3374.0	3770.4						2552.2								
	FWHH (cm^{-1})						136.9	142.2						74.0								
	Intensity (\%) $\mathrm{G} /(\mathrm{G}+\mathrm{L})(\%)$						${ }_{100.0}^{9.1}$	11.8 100.0						25.2 29.4								
v	Position (cm^{-1})											2510.6								2508.3		
	FWHH (cm^{-1})											33.1								84.4		
	Intensity (\%)											${ }^{0.6}$								3.2		
	G/(G+L) (\%)											95.6								0.0		

intensity ratio as total $=100 \%$
\ddagger Areal intensity ratio as total $=100 \%$.

Fig. $2 a$

Firg. 26
Ga (apfu)

Fayze
Ga (apfu)

Fig. 3 a

Fig. 3b

Fig. $4 a$

Fig. 4b

Fig. 4 C

Fig. 4 d

Fig. $5 b$

Fiig.7a
Ga (apfu)

Filg.8a

Filg.8b

Fig. $9 a$

Fig. 9 C

Fig. 9 d

Fira, 10 as

Fig. Ila

Fig, 116

Fig. $12 a$

Filglab

Fig. 14

Fig. 15 a

