This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4265

1	4265 Rivision4
2	Mid- and far-infrared spectra of synthetic
3	$CaMg_2(Al_{4-x}Ga_x)(Si_{1-y}Ge_y)O_{10}(OH,OD)_2$ -clintonite:
4	Characterization and assignment of the Ca-O _{inner} and
5	Ca-O _{outer} stretching bands
6	
7	
8	Kiyotaka Ishida*
9	
10	*Department of Environmental Changes, Graduate School of Social and Cultural
11	Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
12	
13	Keywords: Rietveld refinement, far infrared spectra, synthetic clintonite, Ca-Oinner
14	stretching band, Ca-Oouter stretching band
15	
16	Running title: MIR AND FIR FOR CLINTONITE
17	Written with Microsoft Office Word 2007
18	*: e-mail: kiyota@scs.kyushu-u.ac.jp

20	ABSTRACT
21	X-ray diffraction Rietveld structure refinement and mid- and far-infrared
22	spectral studies have been done on Ga-for-Al and Ge-for-Si substituted synthetic
23	clintonites (Cln), $CaMg_2(Al_{4-x}Ga_x)(Si_{1-y}Ge_y)O_{10}(OH,OD)_2$ (x = 0.0–4.0, y = 0.0–1.0).
24	Rietveld analyses indicate that there is complete solid-solution in both the (Al _{4-x} Ga _x)Si-,
25	(Al _{4-x} Ga _x)Ge-clintonite series. With increasing Ga-for-Al, the mean tetrahedral
26	bond-length, $<$ T-O>, and mean tetrahedral basal oxygen separation, $<^{[4]}O_{bas}-O_{bas}>$
27	increase, whereas the octahedral and interlayer parameters, the tetrahedral rotation
28	angles (α), and the dimensional misfits (Δ) vary little. With increasing Ga-for-Al
29	substitution in the Si-series the broad OH and OD stretching bands shift downward from
30	3607 to 3529 cm ⁻¹ and from 2671 to 2620 cm ⁻¹ , respectively. For the Ge-series samples,
31	the OH and OD stretching bands shift downward from 3610 to 3523 cm ⁻¹ and from
32	2667 to 2611 cm ⁻¹ , respectively. According to the data of the curve fitting analysis, both
33	the OH- and OD-stretching bands are modeled by at least three broad (wider than 37
34	cm^{-1} of full width at half height (FWHH)) I bands (M1M2M2 =
35	$MgMgAl^{3+}/MgMgGa^{3+}$) and a narrow (FWHH = 23-33 cm ⁻¹) and weak N band
36	(M1M2M2 = MgMgMg) on the highest frequency side. In some samples, a very weak
37	and broad V (one vacant M site) band at the lowest frequency region is observed.

38	Tetrahedral Si-O, Al-O and Ga-O stretching bands lie in fairly discrete regions, which
39	are at 1030-830, 880-760 and 790-640 cm ⁻¹ , respectively. However, the band regions
40	for both the tetrahedral Al-O and Ge-O stretching as well as the Ge-O and Ga-O
41	stretching bands closely overlap each other. In the 720–500 cm ⁻¹ region, Si-O-Al,
42	Al-O-Al, Si-O-Ga, Al-O-Ge, Al-O-Ga, Ge-O-Ga, and Ga-O-Ga deformational bands
43	(tetrahedral-chain bending and "breathing" modes) are observed to overlap strongly.
44	Around 300 and 200 cm ⁻¹ one observes the Ca-O _{inner} and Ca-O _{outer} stretching bands,
45	respectively, which show a slight downward frequency shift (~ 7 cm ⁻¹ per Ga apfu) with
46	Ga-for-Al substitution.

49	INTRODUCTION
50	Clintonite, a trioctahedral brittle mica with the ideal composition
51	Ca(Mg ₂ Al)(Al ₃ Si)O ₁₀ (OH,F) ₂ , has several interesting characteristic crystal-chemical
52	features (Takéuchi and Sadanaga 1959; Takéuchi 1966; Joswig et al. 1986; MacKinney
53	et al. 1988; Alietti et al. 1997). First, its tetrahedral Al:Si ratio is 3:1, and thus half of the
54	T-O-T bonds violate the Al-avoidance principle or the "Lowenstein avoidance rule" by
55	having Al ³⁺ -O-Al ³⁺ bonds. Second, the tetrahedral cations are disordered and the
56	tetrahedra are flattened as a consequence of the large Al content. Third, the large
57	dimensional misfit of the tetrahedral and octahedral sheets is compensated by large
58	tetrahedral rotation angles (α). Research on the synthesis and stability of clintonite has
59	been done by Olesch (1975) and Olesch and Seifert (1976). Both mid- and far-infrared
60	(MIR and FIR) spectra for synthetic and natural clintonites have been reported by
61	Farmer and Velde (1973). Jenkins (1989), in addition to investigating MIR band
62	assignments for synthetic phlogopites, also investigated synthetic clintonite and its
63	deuterium (D), Ni-, Ga-, and Ge chemical analogues. The purpose of this paper is to
64	further assign and characterize some MIR and FIR bands based on the X-ray Rietveld
65	refinement data for synthetic $CaMg_2(Al_{4-x}Ga_x)SiO_{10}(OH)_2$ - and
66	CaMg ₂ (Al _{4-x} Ga _x)GeO ₁₀ (OH) ₂ -series clintonites, and their deuterated equivalents. In

67	addition, two synthetic Ni-bearing Si-clintonites, Ni ₁ SiH- and Ni ₂ SiH-Cln, were also
68	examined; substitutions were made in the various sites in the clintonite structure in
69	order to observe the influence of different ions on the spectra.
70	
71	EXPERIMENTAL AND ANALYTICAL METHODS
72	The experimental and analytical methods in this study are similar to those of
73	Ishida and Hawthorne (2011).
74	
75	Synthesis
76	Experiments at 690-730 °C, 186-225 MPa and durations of 231-434 h were
77	done in cold-seal Tuttle-type vessels. The starting materials were made from mixtures of
78	reagent-grade oxides (MgO, NiO, Al ₂ O ₃ , Ga ₂ O ₃ , SiO ₂ , GeO ₂) and carbonates (CaCO ₃).
79	The starting materials were mixed together and decarbonated by roasting for about 30
80	min. at approximately 900 °C in air, and then sealed in 5.0 mm outer-diameter \times 4.7 mm
81	inner-diameter \times (~) 35 mm long Au capsules with ~20 wt% distilled water. Bulk
82	compositions investigated in this study are given in Table 1. Deuteration experiments
83	were done at about 600 °C, 200 MPa for a duration of 1 day in the same vessels; similar
84	amounts of materials were used for the OD-bearing samples, using D ₂ O (99.9% purity)

with the solids sealed in Au capsules.

86

87 X-ray Rietveld analysis

88	Powder-diffraction data were collected with a Rigaku Rint-2100V
89	diffractometer using $CuK\alpha X$ -ray monochromatized with a curved-graphite and
90	operating at 40 kV and 40 mA: more than 3000 counts were obtained for the strongest
91	reflections with a step-width of 0.02 or $0.04^{\circ} 2\theta$ and count times of 4–10 s. Rietveld
92	analysis was done using the program Rietan-2000 (Izumi and Ikeda 2000). The single
93	crystal data for the Chichibu-mine clintonite from MacKinney et al. (1988) were used to
94	initiate refinements. The clintonite structure was refined as the 1M polytype, with
95	monoclinic space group $C2/m$, using isotropic displacement parameters, as the initial
96	parameters for least-squares refinement. Three sets of data were averaged from Rietveld
97	refinements done on three separate scans obtained with different X-ray conditions for a
98	given sample.
99	
100	Infrared spectroscopy

- 101 Both MIR and FIR spectra were recorded with a JASCO FTIR-620
- 102 spectrometer. The OH and OD stretching bands were recorded in the ranges of

103	4000–3000 and 3800–2000 cm ⁻¹ respectively. Samples were prepared as 150 mg KBr
104	discs 10 mm in diameter and containing ~3 mg synthetic clintonite. Spectra were
105	measured with 126 replicate scans at a nominal resolution of 1 cm ⁻¹ . After the
106	background was substracted as a spline fit to the raw data, each spectrum was fitted to
107	component pseudo-Voigt bands. The 1300–400 cm ⁻¹ bands were obtained from discs
108	prepared with 100 mg KBr containing ~1 mg samples. Spectra were measured 64 times
109	with a nominal resolution of 2 cm ^{-1} in the 4000–400 cm ^{-1} range. The 650–50 cm ^{-1} and
110	250–30 cm ⁻¹ regions were recorded at a nominal resolution of 4 cm ⁻¹ with 10 mm
111	diameter discs containing \sim 4 mg of sample in about 80 mg polyethelene discs. A globar
112	light source with 5 μ m Mylar beam splitter, and Hg-lamp with 12 μ m Mylar beam
113	splitter, respectively, were used with a PE-TGS detector.
114	
115	RESULTS AND DISCUSSION
116	Products of synthesis
117	XRD indicated that ~ 90% of clintonite was obtained for each starting
118	composition (Table 1), along with an amorphous phase of unknown composition
119	(appearing as a hump in the diffraction pattern). Accordingly, compositional deviations
120	are expected. As the Ni ₂ SiHCln sample has large amounts of NiO (bunsenite), its FTIR

121 spectra were used only for comparisons. Chemical compositions for deuterated

122 materials may be similar to the OH-forms.

123

124 X-ray Rietveld refinement

125	All synthetic clintonites could be analyzed as the $1M$ polytype (Fig. 1). The
126	relatively large amounts of an amorphous phase were hard to model resulting in
127	agreement indices that are somewhat high; however, the resulting structural parameters
128	are considered to be sufficiently precise for the purposes of this study. Rietveld
129	refinement data, atom coordinates, and selected interatomic distances and angles are
130	given in Tables 2*, 3*, 4* and CIF *(deposit item #######). Definitions for the
131	structural parameters reported here are given in the footnotes of Table 4. The standard
132	deviations for the mean bond lengths involving T (= $<$ T-O>), M (= $<$ M1-O> and
133	<m2-o>) and I (= <i–o<sub>inner>and <i–o<sub>outer>) sites are estimated as \pm 0.02, \pm 0.04, and \pm</i–o<sub></i–o<sub></m2-o>
134	0.05Å, respectively, though the individual bond distances and bond angles become
135	highly scattered. The standard deviations of the bond angles are estimated as $\pm 1^{\circ}$.
136	Cell dimensions. The measured cell parameters of the synthetic clintonites are plotted
137	in Figure 2. Data points show smooth curved relations which support the presence of
138	continuous solid-solution series along the tetrahedral Al/Ga substitutions in each SiH-

7/24

139 and GeH-Cln series.

140	Site-populations. The tetrahedral and octahedral site populations obtained by the
141	Rietveld analysis are plotted as a function of nominal Ga(apfu) of the starting materials
142	in Figure 3. Compared with the 1:1 ideal population lines, the
143	^[4] (Ga+Ge)/ ^[4] (Al+Si+Ga+Ge) values in the tetrahedral sites and ^[6] Ga/ ^[6] (Mg+Al+Ga)
144	values in the octahedral M1 and M2 sites are both lower than excepted, except for those
145	of the end-member.
146	The T sites. The variation of the tetrahedral parameters as a function of ^[4] (Ga
147	+Ge)/ ^[4] (Al+Ga+Si+Ge) observed by Rietveld refinement are shown in Figure 4*. With
148	increasing ^[4] (Ga+Ge), the <t–o> bond lengths, the average separation of the basal</t–o>
149	oxygens of the tetrahedron (= $<^{[4]}O_{basal}$ - O_{basal} >), and the thickness of the sheet of
150	tetrahedra (t_t) all increase. The flattening angle of the tetrahedron ($\tau = \angle O_{apical}$ -T- O_{basal})
151	also increases with increasing ^[4] (Ga+Ge) content except for the end member
152	Ga ₄ GeH-Cln. It is noted that the ideal flattening angle is 109.47° (Brigatti and
153	Guggenheim 2002), and the flattening angle draws close to this value for the studied
154	samples.
155	Octahedrally coordinated sites. The variations of the octahedral parameters

observed by Rietveld refinement are not so large in both series (Fig. 5*), because only

one apfu ^[6]Ga (
$$r = 0.620$$
 Å; Shannon 1976) for ^[6]Al ($r = 0.535$ Å; ditto) is substituted

in both series.

160 parameters are shown in Figure 6. In both SiH- and GeH-Cln series, the mean bond

161 lengths <I-O_{inner}> slightly decrease with increasing Ga, while the <I-O_{outer}> slightly

- 162 increase. Both basal oxygen angles, $\angle O$ -O-O_{acute} and $\angle O$ -O-O_{obtuse}, are nearly 60° and
- 163 180°, respectively, and thus the tetrahedral basal oxygens make an isosceles triangle.
- 164 The interlayer separation (= interlayer sheet thickness) varies little.
- 165 Rotation angles (α) and dimensional misfit (Δ). The tetrahedral rotation angles α
- 166 vary slightly between 27.8–29.6°, and the dimensional misfit Δ increases in both series
- 167 (Fig. 7*). Except for Ga₃SiH- and Ga₄SiH-Cln, the angle α tends to increase slightly
- 168 with the dimensional misfit as well as with the mean separation of the tetrahedral basal
- 169 oxygens, $<^{[4]}O_{basal}-O_{basal}>$ (Fig. 8*).
- 170
- 171 <Footnote>
- ^{*}Deposit items. Tables 2, 3, 4, Figures 4, 5,7, 8, and CIF are deposited.

173 IR spectra

174 The clintonite IR spectra in both the MIR and FIR regions show the following

175	characteristic properties. (1) There are broad OH/OD stretching bands occurring in the
176	range of 3800–3000 cm ⁻¹ for OH streechings and in the range of 2800–2400 cm ⁻¹ for OD
177	stretchings. (2) The T-O stretching bands have widths ~ 100 cm ⁻¹ FWHH (full-width at
178	half -height) each and occur in separate Si-O, Al/Ge-O, Ge/Ga-O and Ga-O
179	vibrational-band regions. (3) There are combined strong T-O-T bending bands with
180	inarticulate O-T-O bendings occurring in the range of 750–550 cm ⁻¹ . (4) A couple of
181	medium bands appear in the 300–100 cm ⁻¹ FIR region.
182	
183	MIR spectra
184	OH and OD stretching bands (vOH and vOD modes). There are broad OH and
184 185	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more
184 185 186	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more than 100 cm ⁻¹ (Fig. 9). The OH stretching band of the synthetic Al ₄ SiH-Cln, labeled $x =$
184 185 186 187	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more than 100 cm ⁻¹ (Fig. 9). The OH stretching band of the synthetic Al ₄ SiH-Cln, labeled $x = 0.0$ in Figure 9a, is centered at 3607 cm ⁻¹ and is in very good agreement with the band
184 185 186 187 188	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more than 100 cm ⁻¹ (Fig. 9). The OH stretching band of the synthetic Al ₄ SiH-Cln, labeled $x = 0.0$ in Figure 9a, is centered at 3607 cm ⁻¹ and is in very good agreement with the band observed by Farmer and Velde (1973, labeled S(SiAl ₃)). With increasing Ga content, the
184 185 186 187 188 189	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more than 100 cm ⁻¹ (Fig. 9). The OH stretching band of the synthetic Al ₄ SiH-Cln, labeled x = 0.0 in Figure 9a, is centered at 3607 cm ⁻¹ and is in very good agreement with the band observed by Farmer and Velde (1973, labeled S(SiAl ₃)). With increasing Ga content, the band's center position shifts to lower frequencies in both the Si- and Ge-Cln series; the
184 185 186 187 188 189 190	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more than 100 cm ⁻¹ (Fig. 9). The OH stretching band of the synthetic Al ₄ SiH-Cln, labeled x = 0.0 in Figure 9a, is centered at 3607 cm ⁻¹ and is in very good agreement with the band observed by Farmer and Velde (1973, labeled S(SiAl ₃)). With increasing Ga content, the band's center position shifts to lower frequencies in both the Si- and Ge-Cln series; the frequencies of the OH/OD stretching bands in the Si-Cln series are slightly higher (~ 15
184 185 186 187 188 189 190 191	OH and OD stretching bands (vOH and vOD modes). There are broad OH and OD stretching bands in both Si(H/D)- and Ge(H/D)-Cln series; their FWHH are more than 100 cm ⁻¹ (Fig. 9). The OH stretching band of the synthetic Al ₄ SiH-Cln, labeled $x = 0.0$ in Figure 9a, is centered at 3607 cm ⁻¹ and is in very good agreement with the band observed by Farmer and Velde (1973, labeled S(SiAl ₃)). With increasing Ga content, the band's center position shifts to lower frequencies in both the Si- and Ge-Cln series; the frequencies of the OH/OD stretching bands in the Si-Cln series are slightly higher (~ 15 cm ⁻¹) than those of the corresponding Ge-Cln series (Fig. 9). The observed OH and OD

193	the frequency ratios, vOH/vOD, for the corresponding bands lie in the range 1.36–1.33.
194	These shifts are very close to the calculated factor of 1.37 assuming a harmonic
195	oscillation (e.g., Jenkins 1989). The OH stretching bands I_{D} and I_{E} of which vOH/vOD
196	factors are ≈ 1.31 contain some adsorbed water. In most samples, a rather narrow and
197	weak shoulder band N (N = normal bands; Vedder 1964) on the high-frequency side of
198	the main bands appears; this N band is attributed to (MgMgMg)-OH/OD stretchings. Up
199	to five broad and strong bands I (I = impurity bands; Vedder 1964), I_A – I_E , are ascribed
200	to [MgMg(Al/Ga)]-OH/OD stretchings. In the deuterated samples SiD- and GeD-Clns,
201	a very weak and broad band V, where V is a vacancy (Vedder 1964), is observed at 2510
202	cm ⁻¹ and is ascribed to (MgMgV)-OH/OD stretchings.
203	1300–400 cm⁻¹ lattice vibration bands. The bands in the 1300–400 cm ⁻¹ regions are
204	shown in Figure 10.
205	(1) T-O stretching bands. The regions of the tetrahedral Si-O and Al-O stretching
206	bands are well separated, as are the regions of the Si-O and Ga-O stretching bands, and
207	the band regions are completely different. For the Si-O and Ga-O stretching bands, there
208	are some shoulder bands at the low-frequency side. With increasing Ga-Al substitution
209	up to 1.0 Ga(apfu) in Si-Clns, the frequencies of the Si-O and Al-O stretching bands
210	decrease by 9 and 3 cm ⁻¹ , respectively, but the band intensity and shape do not change

so strongly. The intensities of the Ga-O stretching bands are rather low compared with

212 the Si-O and Al-O stretching bands (Fig. 10a).

213	(2) T-O-T bending bands and weak O-T-O out-of-plane bands. In the
214	^[4] $(T^{3+}_{3}T^{4+}_{1})$ tetrahedral sheet, there are the same number of T^{3+} -O- T^{3+} and T^{3+} -O- T^{4+}
215	linkages, while the T^{4+} -O- T^{4+} linkage will be very rare or nonexistent. In the 730–480
216	cm ⁻¹ range for the clintonites studied here, some bending and breathing bands ascribed
217	to these linkages should appear. With increasing Ga \rightarrow Al substitution, two modes of a
218	broad and strong T-O-T bending band with a couple of shoulder bands are observed in
219	Figure 10.
220	Here, we examine the bands which appear in the 770–580 cm ⁻¹ range for the
221	tetrahedral ^[4] (Al ₁ Si ₃), ^[4] (Al ₂ Si ₂), and ^[4] (Al ₃ Si ₁) micas. In the disordered tetrahedral
222	$^{[4]}$ (Al ₁ Si ₃) trioctahedral mica such as phlogopite, 5 peaks of absorption bands are
223	observed in the 770–580 cm ⁻¹ range (Farmer 1974; Jenkins 1989): 760 cm ⁻¹ Si-O-Si
224	bending, 725 cm ⁻¹ Si-O-Al bending, 690 cm ⁻¹ O-Si-O out-of-plane bending, 655 cm ⁻¹
225	O-Al-O out-of-plane bending, and 592 cm ⁻¹ OH librational band (δ OH, in-plane OH
226	bending; Farmer 1974). The 690 cm ⁻¹ band intensity is roughly three times stronger than
227	that of the 655 cm ⁻¹ band, because there are three times more Si-O tetrahedra than Al-O
228	tetrahedra in phlogopite. In the ordered ^[4] (Al ₂ Si ₂) trioctahedral mica such as margarite,

229	a diffuse but strong band at 681 cm ⁻¹ in synthetic 1 <i>M</i> and 1 <i>Md</i> polytypes was observed
230	(Velde 1980). This band in margarite is ascribed to the Si-O-Al bending, because there
231	is only the Si-O-Al tetrahedral linkage in the ordered $^{[4]}(Al_2Si_2)$ micas, which obey the
232	Al/Al avoidance rule. In the spectra for the synthetic 2M and natural margarite a
233	shoulder band at about 727 cm ⁻¹ was observed. Distinct O-T-O bending bands can not be
234	observed in the $^{[4]}(Al_2Si_2)$ micas.
235	Similar to the bands at 693 and 681 cm ⁻¹ in synthetic margarites by Farmer and
236	Velde (1973) and Velde (1980), the strong and broad bands at 661 and 667 cm ⁻¹ SiH-
237	and Ni ₁ SiH-Clns, respectively, are the bands for which the Si-O-Al and Al-O-Al
238	bending vibrations strongly overlap. These bands show a slightly positive skew shape
239	tailing to the lower frequency side and a weak shoulder band appears in Ga_4SiH - and
240	Ga ₄ GeH-Clns at 526 and 517 cm ⁻¹ (Fig. 10). They may probably be ascribed to the
241	O- ^[4] Ga-O out-of-plane bending band. The sequence to lower frequencies of these T-O-T
242	bending bands depends primarily on the T-O bond lengths and then next on the mass of
243	T-site cations. Thus the T-O-T bands are assigned as the Si-O-Al, Al-O-Al, Si-O-Ga,
244	Al-O-Ga and Ga-O-Ga linkages in the Si-Cln series, and as the Al-O-Al, Al-O-Ge,
245	Al-O-Ga, Ge-O-Ga and Ga-O-Ga linkages in the Ge-Clns, respectively.
246	(3) OD librational bands (δ OD mode). Parts of the 617, 517, 546 and 512 cm ⁻¹

247	weak bands in the deuterated clintonites, Al ₄ SiD-, Ga ₄ SiD-, Al ₄ GeD- and Ga ₄ GeD-Clns,
248	may be ascribed (partly) to OD librational bands (δ OD = in-plane OD bending) as
249	demonstrated by the downward shift induced by deuteration, though their in-plane OH
250	bending bands (δ OH) are obscure due to strong overlap with the Al/Ga-O stretching
251	bands.
252	(4) M-O and T-O deformational bands. Below 580 cm^{-1} in Si-Clns and 570 cm^{-1} in
253	Ge-Clns, several M-O and T-O deformational bands were observed, however, individual
254	band assignments are difficult because of strong overlaps.
255	
256	Low frequency vibrational bands including FIR bands
256 257	Low frequency vibrational bands including FIR bands Spectra in the 450–50 cm ⁻¹ low-frequency range, including the far infrared (FIR)
256 257 258	Low frequency vibrational bands including FIR bands Spectra in the 450–50 cm ⁻¹ low-frequency range, including the far infrared (FIR) range below about 250 cm ⁻¹ , for synthetic clintonites are shown in Figures 11 and 12.
256 257 258 259	 Low frequency vibrational bands including FIR bands Spectra in the 450–50 cm⁻¹ low-frequency range, including the far infrared (FIR) range below about 250 cm⁻¹, for synthetic clintonites are shown in Figures 11 and 12. (1) Absence of the tetrahedral torsional band in the FIR region. Ishida and
256 257 258 259 260	 Low frequency vibrational bands including FIR bands Spectra in the 450–50 cm⁻¹ low-frequency range, including the far infrared (FIR) range below about 250 cm⁻¹, for synthetic clintonites are shown in Figures 11 and 12. (1) Absence of the tetrahedral torsional band in the FIR region. Ishida and Hawthone (2011) showed that the frequencies of the tetrahedral torsional vibrations in
256 257 258 259 260 261	 Low frequency vibrational bands including FIR bands Spectra in the 450–50 cm⁻¹ low-frequency range, including the far infrared (FIR) range below about 250 cm⁻¹, for synthetic clintonites are shown in Figures 11 and 12. (1) Absence of the tetrahedral torsional band in the FIR region. Ishida and Hawthone (2011) showed that the frequencies of the tetrahedral torsional vibrations in synthetic kinoshitalites decrease linearly with increasing mean ionic radius of the
256 257 258 259 260 261 262	Low frequency vibrational bands including FIR bandsSpectra in the 450–50 cm ⁻¹ low-frequency range, including the far infrared (FIR)range below about 250 cm ⁻¹ , for synthetic clintonites are shown in Figures 11 and 12.(1) Absence of the tetrahedral torsional band in the FIR region. Ishida andHawthone (2011) showed that the frequencies of the tetrahedral torsional vibrations insynthetic kinoshitalites decrease linearly with increasing mean ionic radius of thecomposite tetrahedra, < ^[4] r>. Though the interlayer ion in clintonite is Ca ²⁺ instead of
256 257 258 259 260 261 262 263	Low frequency vibrational bands including FIR bands Spectra in the 450–50 cm ⁻¹ low-frequency range, including the far infrared (FIR) range below about 250 cm ⁻¹ , for synthetic clintonites are shown in Figures 11 and 12. (1) Absence of the tetrahedral torsional band in the FIR region. Ishida and Hawthone (2011) showed that the frequencies of the tetrahedral torsional vibrations in synthetic kinoshitalites decrease linearly with increasing mean ionic radius of the composite tetrahedra, < ^[4] <i>r</i> >. Though the interlayer ion in clintonite is Ca ²⁺ instead of Ba ²⁺ in kinoshitalite, the tetrahedral torsional band in the clintonite studied here should

265	0.358–0.450 Å. However, no such bands are observed in Figures 11 and 12. On the
266	other hand, Farmer and Velde (1973) reported very weak bands at 136–137 cm ⁻¹ in both
267	natural and synthetic clintonites. This band frequency is in close accordance with the
268	predicted values since ^[4] (Al ₃ Si ₁) has $<^{[4]}r > = 0.358$ Å. Furthermore, they reported
269	strong 145 cm ⁻¹ bands in natural and synthetic margarites; they are only attributed to the
270	tetrahedral torsional bands when the mica tetrahedral composition is $^{[4]}(Al_2Si_2)$, i.e.,
271	$<^{[4]}r > = 0.325$ Å. It is unclear why the tetrahedral torsional band does not appear in the
272	synthetic clintonites studied here.
273	(2) Ca-O _{inner} and Ca-O _{outer} stretching bands. Two medium-strong bands centered
274	at 300–279 (290 av.) and 195–181 (188 av.) cm ⁻¹ for the Si-Cln series, and at 304–283
275	(294 av.) and 196–181 (188 av.) cm ⁻¹ for the Ge-Cln series were observed. Farmer and
276	Velde (1973) reported these bands without assignment. Jenkins (1989) also observed a
277	weak 300 cm ⁻¹ band in synthetic clintonites. In Figure 13, the frequencies of the FIR
278	bands for synthetic $^{[4]}(Al_1Si_3)$ and $^{[4]}(Al_2Si_2)$ trioctahedral micas (phlogopite and
279	kinoshitalite, respectively) with various interlayer cations were plotted against $\sqrt{(Z/M)}$,
280	where Z is the cation valency and M its molecular mass (cf. Fripiat 1982). Except for
281	the lower frequencies of K-phlogopite, both lines exhibit quadratic curvature and the
282	differences between the high- and low-frequency bands increase with increasing $$

283	(Z/M). Fripiat (1982) assigned these high-frequency bands as out-of-plane vibrational
284	bands of interlayer cations and the low-frequency bands as in-plane vibrational bands of
285	the interlayer cations, respectively. However, these assignments can hardly explain the
286	relationships between the crystal-chemical parameters and the band frequencies. For
287	example, the F-bearing kinoshitalites have shorter <i>c</i> -parameters than OH-bearing ones,
288	and thus should give higher-frequency out-of-plane vibrations of the interlayer cation,
289	but in reality, the band frequencies shift downward with increasing F \rightarrow OH/OD (Ishida
290	and Hawthorne 2011). Figure 14 shows the variation in $\langle I-O \rangle$ bond length (I = Ca) as a
291	function of Ga (apfu). The nearly 100 cm ⁻¹ frequency differences between these two
292	medium-strong bands should be ascribed to Ca- $\mathrm{O}_{\mathrm{inner}}$ and Ca- $\mathrm{O}_{\mathrm{outer}}$ stretching bands
293	corresponding to their large ${<}I{-}O_{outer}{>}$ and ${<}I{-}O_{inner}{>}$ differences. In natural margarite
294	two bands at 280 and 180 cm ⁻¹ , which were reported by Farmer and Velde (1973), may
295	be Ca- O_{inner} and Ca- O_{outer} stretching bands, respectively. However, frequencies of these
296	bands are lower than those of clintonites by $\sim 10 \text{ cm}^{-1}$ due to crystal-chemical
297	differences, such as the tetrahedral Al:Si = $1:1$ and dioctahedral characteristics of the
298	natural margarite.

(3) M-O and OH librational (γOH mode) bands. Two weak bands centered at
 267–231 and 215–214 cm⁻¹ were observed in Al-rich samples of both series (Fig. 11).

301	With increasing Ga content the intensity of both bands decreases. The frequency for the
302	former bands decrease in samples with more than 2.0 Ga, however, the frequency for
303	the latter bands does not shift. These bands are therefore assigned to M-O librational
304	(rocking) modes. A weak band around 400 cm ⁻¹ in SiH- and GeH-Clns may be partly
305	ascribed to out-of-plane OH bending (γ OH), because the intensity decreases slightly by
306	deuteration (Fig. 11a).
307	
308	ACKNOWLEDGMENTS
309	The author thanks D.M. Jenkins for his valuable discussions and constructive
310	comments. H. Kojitani gave advices that was usuful in making CIFs. The author is
311	indebted to A. Beran, H. Skogby and S. Stalder for their critical reading of the
312	manuscript, helpful suggestions and many recommendations. Infrared spectra were
313	recorded at the Center of Advanced Instrumental Analysis, Kyushu University. K.I. was
314	supported by a Subsidy of an excellent study of the Graduate School of Social and
315	Cultural Studies, Kyushu University, and partly supported by a Grand-in-Aid for
316	Scientific Research for Y. Kuwahara (No. 23340163).
317	

318	R EFERENCES CITED
319	Alietti, E., Brigatti, M.F., and Poppi L. (1997) Clintonite-1M: Crystal chemistry and its
320	relationships to closely associated Al-rich phlogopite. American Mineralogist, 82,
321	936–945.
322	Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of
323	pressure, temperature, and solid solution on atomistic models. In Micas: Crystal
324	Chemistry & Metamorphic Petrology, 351-369 (A. Mottana, F.P. Sassi, J.B.
325	Thompson, Jr., and Guggenheim, editors). Reviews in Mineralogy & Geochemistry,
326	46, Mineralogical Society of America and the Geochemical Society, Washington,
327	DC.
328	Donnay, G., Donnay, J.D.H., and Takeda, H (1964) Trioctahedral one-layer micas.
329	Prediction of the structure from composition and cell dimensions. Acta
330	Crystallographica, 17, 1374–1381.
331	Farmer, V.C. (1974) Layer silicates. In: Infrared spectra of minerals. Ed. V.C. Farmer,
332	Mineralogical Society London, 331–360.
333	Farmer, V.C. and Velde, B. (1973) Effects of structural order and disorder on the
334	infrared spectra of brittle micas. Mineralogical Magazine, 39, 282-288.

335	Fripiat, J.J. (1982) Application of far infrared spectroscopy of the study of clay minerals
336	and zeolites. In: Developments in sedimentology, 34, J.J.Fripiat (ed).
337	Advancedtechniques for clay mineral analysis, 191–210, Elsevier Scientific Pub.
338	Co.
339	Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite
340	and annite. American Mineralogist, 58, 889–900.
341	Ishida, K. and Hawthorne, F. (2011) Far-infrared spectra of synthetic
342	^[4] [(Al _{2-x} Ga _x)(Si _{2-y} Ge _y)](OH,OD,F) ₂ -kinoshitalite: Characterization and assignment
343	of interlayer Ba-O _{inner} and Ba-O _{outer} stretching bands. American Mineralogist, 96,
344	566–576.
345	Izumi, F. and Ikeda, T. (2000) A Rietveld analysis program RIETAN -98 and its
346	application to zeolites. Material Science Forum, 321-324.
347	Jenkins, D.M. (1989) Empirical study of the infrared lattice vibrations (1100–350 cm ⁻¹)
348	of phlogopite. Physics and Chemistry of Minerals, 16, 408–414.
349	Joswig, W., Amthaner, G., and Takeuchi, Y. (1986) Neutron diffraction and Mössbauer
350	spectroscopic study of clintonite (xanthophyllite). American Mineralogist, 71,
351	1194–1197.

- 352 McKinney, J.A., Mora, C.I., and Bailey, S.W. (1988) Structure and crystal chemistry of
- clintonite. American Mineralogist, 73, 365–375.
- Olesch, M. (1975) Synthesis and solid solubility of trioctahedral brittle micas in the
- system CaO-MgO-Al₂O₃-SiO₂-H₂O. American Mineralogist, 60, 188–199.
- Olesch, M. and Seifert, F. (1976) Stability and phase relations of trioctahedral calcium
- brittle micas (clintonite group). Journal of Petrology, 17, 291–314.
- Shannon, R.D. (1976) Revised effective ionic radii and systematic atudies of interatomic
- distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.
- 360 Takéuchi, Y. (1966) Structural studies of brittle micas (I). The structure of xanthophyllite
- refined. Mineralogical Journal (Japan), 4, 424–437.
- 362 Takéuchi, Y. and Sadanaga, R. (1959) The crystal structure of xanthophyllite. Acta
- 363 Crystalloggraphica, 12, 945–946.
- Toraya, H. (1981) Distortions of octahedra and octahedral sheets in 1M micas and the
- relation to their stability. Zeitschrift für Kristallography, 157, 173–190.
- Vedder, W. (1964) Correlations between infrared spectrum and chemical composition of
- mica. American Mineralogist, 49, 736–768.
- Velde, B. (1980) Cell dimensions, polymorph type, and infrared spectra of synthetic
- white micas: the importance of ordering. American Mineralogist, 65, 1277–1282.
- 370

371 Captions of figures.

372	FIGURE 1. Rietveld patterns of synthetic clintonite. (a) [876]SiHCln. (b)
373	[916]Ga ₄ GeHCln. The crosses are the observed data, the solid line is the calculated
374	pattern, and the vertical bars mark all possible Bragg reflections (Cu $K\alpha_1$ and Cu $K\alpha_2$).
375	The difference between the observed and calculated patterns is shown at the bottom.
376	
377	FIGURE 2. Cell parameters and site populations of synthetic clintonite fitted to a
378	quadratic function by least-squares regression. Open circles: (Al _{4-x} Ga _x)SiH-Cln
379	series. Solid circles: $(Al_{4-x}Ga_x)GeH$ -Cln series. Open square: $Si_{0.5}Ge_{0.5}HCln$.
380	Solid triangle: Ni ₁ SiHCln. Open diamond: Ni ₂ SiHCln. Solid and broken lines:
381	least-squares regression lines for Si- and Ge-Cln series, respectively. Errors for
382	unit-cell dimensions and volumes are smaller than the dimensions of the symbols.
383	
384	FIGURE 3. (a) Ga+Ge site-populations in the tetrahedral sites, and (b) Ga
385	site-populations in the octahedral M1 and M2 sites, estimated by X-ray Rietveld
386	refinements. Open circles: (Al _{4-x} Ga _x)SiH-Cln series. Solid circles:
387	$(Al_{4-x}Ga_x)GeH$ -Cln series. Open square: $Si_{0.5}Ge_{0.5}H$ -Cln. Samll circles: M1 sites.
388	Large circles : M2 sites. Solid lines: theoretical 1:1 correlation lines. Broken

389 lines: quadratic function least-squares regression lines of observed site-populations.

390

392 ***FIGURE 4.** Variation in tetrahedron parameters as a function of the nominal Ga

- 393 (apfu) for the starting material fitted to a quadratic function by least-squares
- regression lines. Both the Si- and Ge-Cln data are modeled with the same curve.
- 395 (a) $\langle T-O \rangle$ = mean tetrahedral bond-length. (b) τ = tetrahedral flattening angle.

396 (c)
$$<^{[4]}O_{basal}-O_{basal}>$$
 = mean separation of basal oxygens of the tetrahedron. (d) t_t =

397 tetrahedral sheet thickness. Solid triangles: Ni₁SiH- & Ni₂SiH-Clns. Other

legends as in Fig. 2. Definitions for the structural parameters see note in Table 4.

399

401 for the starting material fitted to a quadratic function by least-square regression

402 lines. Both the Si- and Ge-Cln data are modeled with the same curve. (a) \leq M1,2

403 -O> = mean octrahedron bond-length. (b) $\Psi_{M1,M2}$ = octahedron flattening angle.

404 (c) t_0 = tetrahedral sheet thickness. Legend as in Fig. 4.

405

406 **FIGURE 6.** Variation in interlayer-site parameters as a function of the nominal Ga

407	(apfu) for the starting material fitted to a quadratic function by least-squares
408	regression. (a) $<$ I-O _{inner} > = mean inner interlayer bond-length, $<$ I-O _{outer} > = mean
409	outer interlayer bond-length. (b) $\angle O$ -O-O _{acute} = mean acute interlayer oxygen
410	angle, $\angle O$ -O-O _{obtuse} = mean obtuse interlayer oxygen angle. (c) t_i = interlayer
411	sheet thickness. Legend as in Fig. 4.
412	
413	FIGURE 7. Variation in (a) α = the rotation angles of the tetrahedron, and (b) Δ = the
414	dimensional misfit, both as a function of the nominal Ga (apfu) for the starting
415	material fitted to a quadratic function by least-squares regression. Legend as in
416	Fig. 4.
417	
418	FIGURE 8. Variations in α as functions of (a) the mean separation of basal oxygens
419	of the tetrahedron (= $<^{[4]}O_{basal}-O_{basal}>$) and (b) the dimensional misfit (Δ) shown by
420	quadratic-function least-squares regression curves.
421	
422	FIGURE 9. Infrared OH and OD stretching bands of synthetic clintonite. (a)
423	$(Al_{4-x}Ga_x)SiH$ -Cln series; x= 0.0–2.0. (b) $(Al_{4-x}Ga_x)SiH$ -Cln series; x= 3.0–4.0.
424	$Si_{0.5}Ge_{0.5}H$ -, Ni_1SiH -, and Ni_2SiH -Clns . (c) ($Al_{4-x}Ga_x$)GeH-Cln series. (d)

425

$$(Al_{4,x}Ga_x)SiD-Clns; x = 0.0, 2.0 and 4.0.$$
 $(Al_{4,x}Ga_x)GeD-Clns; x = 0.0, 2.0 and 4.0.$

 426
 Solid lines: observed spectra and individual components analyzed. Broken lines:

 427
 sum of the analyzed components. Lines have been displaced vertically for clarity.

 428
 N = normal, I_A-I_E = impurity, and V = vacant bands (Vedder 1964).

 429
 FIGURE 10. Infrared spectra (1300–400 cm⁻¹) of synthetic clintonite. (a)

 431
 $(Al_{4,x}Ga_x)Si-Cln series.$ (b) $(Al_{4,x}Ga_x)Ge-Cln series, Si_{0.5}Ge_{0.5}H-, Ni_1SiH-, and

 432
 Ni2SiH-Clns. Solid lines = OH-forms. Broken lines = OD-forms.

 433
 FIGURE 11. Far -infrared spectra (450–100 cm-1) of synthetic clintonite. (a)

 434
 $(Al_{4,x}Ga_x)Si-Cln series. Si_{0.5}Ge_{0.5}H-, Ni_1SiH-, and Ni_2SiH-Clns. (b)

 435
 $(Al_{4,x}Ga_x)Ge-Cln series. Solid lines = OH-forms. Broken lines = OD-forms.

 436
 FIGURE 12. Far -infrared spectra (250–50 cm-1) of synthetic clintonite. (a)

 437
 (Al_{4,x}Ga_x)Si-Cln series. Si_{0.5}Ge_{0.5}H-, Ni_1SiH-, and Ni_2SiH-Clns. (b)

 438
 FIGURE 12. Far -infrared spectra (250–50 cm-1) of synthetic clintonite. (a)

 439
 $(Al_{4,x}Ga_x)Si-Cln series. Si_{0.5}Ge_{0.5}H-, Ni_1SiH-, and Ni_2SiH-Clns. (b)

 440
 $(Al_{4,x}Ga_x)Ge-Cln series. Solid lines = OH-forms. Broken lines = OD-forms.$$$$$

442 **FIGURE 13.** Interlayer cation frequencies observed for synthetic micas vs. $\sqrt{(Z/M)}$

7/24

443	modeled with quadratic-function least-squares regression curves. $Z =$ valence of the
444	interlayer cation. $M =$ atomic mass of the interlayer cation. Ca^{2+} : clintonite (this
445	study, [875]). $K^+/Rb^+/Cs^+$: phlogopites (Ishida, unpublished data). Sr^{2+} :
446	Fluoro-Sr-kinoshitalite (Ishida, unpublished data). Ba ²⁺ : kinoshitalites (Ishida and
447	Hawthorne 2011, samples $[811]Al_2Si_2Kn$ and $[M30]F2Al_2Si_2Kn$). Circles:
448	(OH)-bearing micas. Triangles: F-bearing micas.
449	
450	FIGURE 14. Variation in <i-o> bond-lengths as a function of the nominal Ga (apfu)</i-o>
450 451	FIGURE 14. Variation in <i-o> bond-lengths as a function of the nominal Ga (apfu) for the starting material modeled by quadratic least-squares regression curves. (a)</i-o>
450 451 452	FIGURE 14. Variation in <i-o> bond-lengths as a function of the nominal Ga (apfu) for the starting material modeled by quadratic least-squares regression curves. (a) (Al_{4-x}Ga_x)SiH-Cln series (open circles and solid squares), Si_{0.5}Ge_{0.5}H-Cln</i-o>
450 451 452 453	 FIGURE 14. Variation in <i-o> bond-lengths as a function of the nominal Ga (apfu)</i-o> for the starting material modeled by quadratic least-squares regression curves. (a) (Al_{4-x}Ga_x)SiH-Cln series (open circles and solid squares), Si_{0.5}Ge_{0.5}H-Cln (triangles) and Ni₁SiH-Cln (diamonds). (b) (Al_{4-x}Ga_x)GeH-Cln series. Solid and
450 451 452 453 454	 FIGURE 14. Variation in <i-o> bond-lengths as a function of the nominal Ga (apfu)</i-o> for the starting material modeled by quadratic least-squares regression curves. (a) (Al_{4-x}Ga_x)SiH-Cln series (open circles and solid squares), Si_{0.5}Ge_{0.5}H-Cln (triangles) and Ni₁SiH-Cln (diamonds). (b) (Al_{4-x}Ga_x)GeH-Cln series. Solid and broken lines: least-square regression lines for the components of <i-o<sub>outer> and</i-o<sub>
450 451 452 453 454 455	FIGURE 14. Variation in <i-o> bond-lengths as a function of the nominal Ga (apfu) for the starting material modeled by quadratic least-squares regression curves. (a) (Al_{4-x}Ga_x)SiH-Cln series (open circles and solid squares), Si_{0.5}Ge_{0.5}H-Cln (triangles) and Ni₁SiH-Cln (diamonds). (b) (Al_{4-x}Ga_x)GeH-Cln series. Solid and broken lines: least-square regression lines for the components of <i-o<sub>outer> and -O_{inner}>, respectively (see text).</i-o<sub></i-o>

TABLE 1. Hydrothermally synthesized clintonites and MIR & FIR band's assignments

Run no. Symbol		Nominal composition	T(C)	P(MPa)	<i>t</i> (h)	OH str.		
		(a) (Al _{4-x} Ga _x)Si-Cln series						
[875]	SiHCIn	Ca(Mg ₂ AI ₁)(AI ₃ Si ₁)O ₁₀ (OH) ₂	690	186	373	3742,3687,3618,3558,3423		
[894]	Ga _{0.5} SiHCln	Ca(Mg ₂ AI ₁)(AI _{2.5} Ga _{0.5} Si ₁)O ₁₀ (OH) ₂	710	196	374	3739,3676,3606,3538,3414		
[876]	Ga₁SiHCln	Ca(Mg ₂ AI ₁)(AI ₂ Ga ₁ Si ₁)O ₁₀ (OH) ₂	690	186	373	3733,3657,3588,3519,3418		
[895]	Ga _{1.5} SiHCln	Ca(Mg ₂ AI ₁)(AI _{1.5} Ga _{1.5} Si ₁)O ₁₀ (OH) ₂	710	196	374	3725,3649,3579,3505,3412		
[877]	Ga ₂ SiHCln	Ca(Mg ₂ AI ₁)(AI ₁ Ga ₂ Si ₁)O ₁₀ (OH) ₂	690	186	373	3725,3656,3590,3532,3436		
[878]	Ga₃SiHCln	Ca(Mg ₂ Al _{0.5} Ga _{0.5})(Al _{0.5} Ga _{2.5} Si ₁)O ₁₀ (OH) ₂	690	186	373	3716,3652,3590,3530,3454,3374		
[879]	Ga₄SiHCln	Ca(Mg ₂ Ga ₁)(Ga ₃ Si ₁)O ₁₀ (OH) ₂	690	186	373	3709,3644,3592,3529,3446,3370		
[885]	Si _{0.5} Ge _{0.5} HCIn	Ca(Mg ₂ AI ₁)(AI ₃ Si _{0.5} Ge _{0.5})O ₁₀ (OH) ₂	710	225	231	3687,3619,3565,3444		
[887]	Ni₁SiHCIn	Ca(Mg ₁ Ni ₁ AI ₁)(AI ₃ Si ₁)O ₁₀ (OH) ₂	710	225	231	3632,3578,3520,3410		
[888]	Ni ₂ SiHCIn	Ca(Ni ₂ Al ₁)(Al ₃ Si ₁)O ₁₀ (OH) ₂	710	225	231	3632,3605,3548,3490,3415		
		(b) (Al _{4-x} Ga _x)Ge-CIn series						
[886]	GeHCIn	Ca(Mg ₂ AI ₁)(AI ₃ Ge ₁)O ₁₀ (OH) ₂	710	225	231	3690,3618,3571,3437		
[902]	Ga₁GeHCln	Ca(Mg ₂ AI ₁)(AI ₂ Ga ₁ Ge ₁)O ₁₀ (OH) ₂	730	201	357	3677,3613,3573,3520,3418		
[903]	Ga ₂ GeHCIn	Ca(Mg ₂ AI ₁)(AI ₁ Ga ₂ Ge ₁)O ₁₀ (OH) ₂	730	201	357	3664,3593,3555,3488,3388		
[915]	Ga ₃ GeHCIn	Ca(Mg ₂ AI ₁)(Ga ₃ Ge ₁)O ₁₀ (OH) ₂	715	210	434	3649,3584,3543,3470,3385		
[916]	Ga₄GeHCIn	Ca(Mg ₂ Ga ₁)(Ga ₃ Ge ₁)O ₁₀ (OH) ₂	715	210	434	3624,3524,3455,3387,3563		
* Frequen	cy difference betw	veen Ca-O _{inner} and Ca-O _{outer} stretching bands	3.					

† : Numbers in parentheses are those for deuterated form.

OD str.	T-O str.	T-O-T bend.	O-T-O def.	M-O def.	M-O def. &T-O def.	Ca-O _{inner} str.	M-O def	M-O def.
(2757,2725,2692,2660,2620,2511)†	940,904,813	661	(617)	562(557)	505,488,451	300	261	214
	937,900,811	657,596		560	482,453,403	300,290	262,255	213
	931,896,810,722	650,594		556	474,452,411	294	258	213
	928,894,804,637	637,595,555			468,445,412	289	256	215
(2746,2709,2674,2638,2601)	925,893,794,778	640,589			455,445,414	292	255	
	918,890,754,687	584			446,436,417	286	250	
(2737,2689,2652,2620,2593,2552)	911,880,736,711,685	600,580	526(517)		442,429,415	279		
	947,810	652,598		557	481,454	300	263	214
	931,900,818	667		551	506,491,463,443,431	293	264,257	
	969,924,859,841	670,618		543	488,462,445,431,413	299	267,243	
(2719,2679,2660,2626,2508)	852,800,737,701	635,603		549(546)	493,469,439,357	304	263	215
	840,790,750	534,607			659,431,360	290	263	215
(2702,2661,2635,2594,2520)	818,770,686	597,554			459,444,432,418	284	251	
	832,789,744,676	618,580,559			443,429,415	283		
(2679,2633,2606,2558)	876,835,774,726,683	586,564,517	(512)		427,418	283	248,231	

Ca-O _{outer} str.		_	
195	105		
193,189	104		
192	102		
191	98		
189	103		
185	101		
181	98		
196	104		
199	94		
200,186	99		
196	108		
194	96		
190	94		
186	97		
181	102		

TABLE 2. Rietveld refinement of (Al/Ga)(Si/Ge)(OH)-clintonite

_															
Run no.	875	894	876	895	877	878	879	885	887	888	886	902	903	915	916
Symbol	SiHCIn	Ga _{0.5} SiHCln	Ga₁SiHCln	Ga _{1.5} SiHCln	Ga ₂ SiHCln	Ga₃SiHCln	Ga₄SiHCln	Si _{0.5} Ge _{0.5} HCIn	Ni₁SiHCln	Ni ₂ SiHCIn	GeHCIn	Ga₁GeHCln	Ga ₂ GeHCln	Ga ₃ GeHCln	Ga₄GeHCln
<i>Т</i> (C)– <i>Р</i> (MPa)	690–186	710-196	690-186	710-196	690-186	690-186	690-186	710-225	710-225	710-225	710-225	730-201	730-201	715-210	715-210
Collecting condit	ions														
2 scan range (°)	5-120	5-120	5-120	5-120	5-120	5-120	5-110	5-120	5-120	5-120	5-120	5-120	5-120	5-120	5-120
Step interval (°)	0.04	0.02	0.02	0.04	0.04	0.04	0.01	0.04	0.04	0.04	0.04	0.02	0.04	0.04	0.04
Step times (s)	2	5	7	6	7	6	7	6	5	6	6	6	6	6	6
Agreement indici	es from Rietvel	d refinement													
Rwp(%)	26.2	25.7	26.7	25.7	28.7	26.9	32.1	25.9	22.2	29.4	32.5	30.5	19.8	23.3	29.8
Rp(%)	20.7	20.6	21.1	20.1	22.8	21.2	28.1	20.7	17.0	22.2	24.7	25.6	15.2	18.3	23.9
Re(%)	7.89	5.50	5.78	4.19	6.10	3.96	5.46	4.22	5.00	4.56	4.40	4.49	4.00	3.95	3.95
S	3.32	4.67	4.61	6.14	4.70	6.81	5.87	6.13	4.44	6.43	7.39	6.79	4.96	5.90	7.56
Durbin-Watson d	0.122	0.048	0.054	0.089	0.146	0.125	0.015	0.118	0.117	0.376	0.072	0.041	0.177	0.141	0.127
RF(%)	9.59	7.89	11.0	8.62	11.7	8.61	16.6	11.0	7.69	17.9	13.8	17.5	6.09	7.94	11.0
Unit-cell paramet	ers														
a().	5.2017(13)	5.2092(13)	5.221(2)	5.2314(16)	5.2427(13)	5.2704(15)	5.2983(13)	5.2198(18)	5.1902(13)	5.160(2)	5.2346(18)	5.2584(11)	5.2759(9)	5.3031(9)	5.3268(11)
b()	8.991(2)	9.008(2)	9.025(3)	9.052(3)	9.068(2)	9.111(2)	9.161(2)	9.028(3)	8.975(2)	8.969(4)	9.056(3)	9.0973(19)	9.1352(15)	9.1773(16)	9.216(2)
c()	9.799(2)	9.818(2)	9.841(4)	9.866(3)	9.882(2)	9.924(3)	9.960(2)	9.840(23)	9.806(2)	9.802(4)	9.870(3)	9.918(2)	9.9541(14)	9.9954(16)	10.023(2)
□(°)	100.142(16)	100.221(14)	100.120(17)	100.132(17)	100.085(15)	100.018(16)	100.034(12)	100.157(17)	100.187(16)	100.24(2)	100.35(2)	100.221(11)	100.260(9)	100.216(11)	100.172(15)
V(³)	451.13(19)	453.39(19)	456.5(3)	459.9(2)	462.5(2)	469.22(2)	476.0(2)	456.4(3)	449.58(18)	446.4(3)	460.3(3)	466.22(17)	472.08(13)	478.75(14)	484.31(18)
asin □()	5.121(1)	5.126(1)	5.140(2)	5.150(2)	5.162(1)	5.191(1)	5.217(2)	5.138(2)	5.108(1)	5.078(2)	5.149(1)	5.175(4)	5.191(1)	5.219(2)	5.243(3)
D cal(g/cm ³)	3.123(5)	2.879(120)	2.950(110)	2.943(107)	3.095(43)	3.499(16)	3.657(209)	2.985(40)	3.116(27)	3.036(29)	3.318(135)	3.003(238)	3.383(15)	3.524(51)	4.556(21)
Site-populations															
T1 Ge+Ga	-	0.10(1)	0.11(1)	0.14(1)	0.19(2)	0.41(2)	0.70(4)	0.06(1)	-	-	0.21(3)	0.40(1)	0.47(1)	0.61(1)	1.00
Si+Al	1.00	0.90(1)	0.89(1)	0.86(1)	0.81(2)	0.59(2)	0.30(4)	0.94(1)	1.00	1.00	0.79(3)	0.60(1)	0.53(1)	0.39(1)	-
M1 Ga	-	0.00(1)	0.00(1)	0.00(1)	0.04(2)	0.17(3)	0.39(4)	-	Ni:0.24(2)	Ni:0.44(3)	-	0.02(1)	0.01(1)	0.12(1)	0.42(4)
Mg+Al	1.00	1.00(1)	1.00(1)	1.00(1)	0.96(2)	0.83(3)	0.61(4)	1.00	AI:0.76(2)	AI:0.56(3)	1.00	0.98(1)	0.99(1)	0.88(1)	0.58(4)
M2 Ga	-	0.00(1)	0.00(1)	0.00(1)	0.01(1)	0.20(2)	0.42(4)	-	Ni:0.19(1)	Ni:0.23(2)	-	0.00(1)	0.00(1)	0.08(1)	0.40(3)
Mg+Al	1.00	1.00(1)	1.00(1)	1.00(1)	0.99(1)	0.80(2)	0.58(4)	1.00	AI:0.81(1)	AI:0.77(2)	1.00	1.00(1)	1.00(1)	0.92(1)	0.60(3)
Average(M1+2M2)														
Ga	-	0.00(1)	0.00(1)	0.00(1)	0.02(1)	0.19(1)	0.41(1)	-	Ni:0.21(2)	Ni:0.30(10)	-	0.01(1)	0.01(1)	0.09(2)	0.41(1)
Mg+Al	1.00	1.00(1)	1.00(1)	1.00(1)	0.98(1)	0.81(1)	0.59(1)	1.00	AI:0.79(2)	Al:0.70(10)	1.00	0.99(1)	0.99(1)	0.91(2)	0.59(1)
A Ca	0.74(1)	0.77(1)	0.65(1)	0.60(2)	0.54(2)	0.68(2)	0.76(3)	0.73(2)	0.78(1)	0.67(2)	0.76(3)	0.73(1)	0.72(1)	0.63(2)	0.78(3)
			/		/	/		/							

TABLE 3. Atomic parameters of (Al/Ga)(Si/Ge)(OH/OD)-clintonite

Run no.		875	894	876	895	877	878	879	885	887	888	886	902	903	915	916
Symbol		SiHCIn	Ga0.5SiHCIn	Ga₁SiHCln	Ga15SiHCIn	Ga ₂ SiHCIn	Ga ₃ SiHCIn	Ga₄SiHCIn	Si _{0.5} Ge _{0.5} HCI	r Ni₁SiHCln	Ni₂SiHCIn	GeHCIn	Ga₁GeHCln	Ga ₂ GeHCIn	Ga ₃ GeHCIn	Ga₄GeHCln
T-P		690-186	710-196	690-186	710-196	690-186	690-186	690-186	710-225	710-225	710-225	710-225	730-201	730-201	715-210	715-210
T1	x	0.550(2)	0.5573(15)	0.5527(17)	0.556(2)	0.553(2)	0.5523(18)	0.5584(13)	0.552(2)	0.558(2)	0.532(3)	0.584(3)	0.5604(18)	0.5662(15)	0.5627(14)	0.558(2)
	y	0.1697(11)	0.1668(8)	0.1699(8)	0.1681(9)	0.1685(9)	0.1692(8)	0.1689(6)	0.1683(9)	0.1706(8)	0.1650(17)	0.1664(12)	0.1680(8)	0.1665(5)	0.1669(5)	0.1668(7)
	z	0.2067(8)	0.2053(5)	0.2028(6)	0.2033(7)	0.2033(8)	0.2017(7)	0.2032(5)	0.2049(7)	0.2057(7)	0.1957(13)	0.2102(9)	0.2078(6)	0.2074(3)	0.2071(4)	0.2059(6)
M1	x	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	y	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
M2	x	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	y	0.3308(13)	0.3291(13)	0.3231(13)	0.3239(17)	0.3265(18)	0.3286(16)	0.3248(12)	0.3297(15)	0.3300(10)	0.3285(16)	0.329(3)	0.3239(19)	0.3278(12)	0.3261(14)	0.3251(19)
	z	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
A	x	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	y	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н	x	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*	0.088*
	y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	z	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*	0.303*
01	x	0.389(7)	0.386(3)	0.414(5)	0.415(7)	0.378(7)	0.390(8)	0.423(5)	0.374(7)	0.378(6)	0.348(8)	0.394(14)	0.433(4)	0.375(4)	0.429(5)	0.396(14)
	y	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	z	0.158(2)	0.1536(15)	0.145(2)	0.141(3)	0.148(3)	0.150(3)	0.152(2)	0.151(2)	0.1511(19)	0.147(3)	0.157(4)	0.1515(19)	0.1517(18)	0.149(2)	0.154(5)
02	x	0.845(5)	0.864(2)	0.896(5)	0.905(5)	0.863(6)	0.846(6)	0.885(5)	0.855(5)	0.841(4)	0.832(6)	0.866(12)	0.897(4)	0.861(3)	0.911(4)	0.872(14)
	y	0.1598(18)	0.1619(13)	0.1571(13)	0.1598(18)	0.1592(19)	0.157(2)	0.1522(17)	0.1659(19)	0.1621(15)	0.148(2)	0.169(3)	0.1677(18)	0.1701(16)	0.1638(19)	0.160(4)
	z	0.1436(13)	0.1395(9)	0.1392(13)	0.1358(18)	0.1347(19)	0.127(2)	0.1324(13)	0.1441(14)	0.1414(11)	0.1315(15)	0.142(2)	0.1412(11)	0.1398(11)	0.1395(13)	0.143(3)
O3	x	0.625(4)	0.630(2)	0.599(3)	0.597(5)	0.605(5)	0.595(5)	0.598(4)	0.609(6)	0.634(5)	0.629(6)	0.643(9)	0.609(3)	0.637(4)	0.602(4)	0.632(9)
	y	0.168(2)	0.1687(14)	0.1685(17)	0.169(2)	0.170(2)	0.172(3)	0.171(2)	0.171(2)	0.1691(18)	0.163(2)	0.172(4)	0.1720(17)	0.1717(16)	0.1722(19)	0.170(4)
	z	0.3925(15)	0.3951(10)	0.3960(15)	0.3993(18)	0.400(2)	0.404(2)	0.3912(15)	0.3912(15)	0.3876(12)	0.3769(18)	0.403(3)	0.3981(12)	0.3981(10)	0.4007(13)	0.404(3)
04	x	0.648(8)	0.653(4)	0.603(5)	0.603(7)	0.621(7)	0.621(8)	0.600(5)	0.629(6)	0.662(7)	0.612(7)	0.653(14)	0.592(4)	0.639(4)	0.589(4)	0.626(13)
	y	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2
	z	0.400(2)	0.4056(14)	0.4026(18)	0.404(3)	0.404(3)	0.411(3)	0.3983(20)	0.401(2)	0.4001(17)	0.374(3)	0.401(4)	0.3930(18)	0.3984(16)	0.3924(19)	0.392(4)
Note : Follo *: Fixed val	wing i ues.	isotropic temp	erature facror	s (B) were us	ed: T = 1.06, M	M1 = 0.95, M2	! = 1.08, A = 1	.69, H = 1.70,	O1 =2.70, O2 =	= 2.00,O3 = 1	.12, O4 =1.80.					

Run no.		875	894	876	895	877	878	879
Symbol		SiHCIn	Ga _{0.5} SiHCIn	Ga₁SiHCln	Ga _{1.5} SiHCln	Ga ₂ SiHCIn	Ga₃SiHCln	Ga₄SiHCln
<i>T</i> (C)– <i>P</i> (MF	Pa)	690–186	710–196	690–186	710–196	690–186	690–186	690–186
Selected bo	ond-lei	ngths (Å)						
T-O1		1.766(16)	1.784(8)	1.749(11)	1.765(20)	1.826(19)	1.797(20)	1.745(10)
T-O2		1.753(27)	1.827(14)	2.005(26)	2.050(28)	1.875(31)	1.829(29)	1.982(23)
T-O2'		1.908(20)	1.904(10)	1.825(14)	1.830(19)	1.925(20)	1.993(22)	1.952(17)
T-O3		1.794(13)	1.845(9)	1.877(13)	1.910(17)	1.917(19)	1.985(21)	1.848(14)
<t-0></t-0>		1.805	1.840	1.864	1.889	1.886	1.901	1.882
01-02		2.794(33)	2.907(17)	2.895(26)	2.951(35)	2.944(33)	2.836(33)	2.852(21)
01-02'		3.069(16)	3.051(11)	3.097(12)	3.081(17)	3.094(18)	3.142(20)	3.193(16)
02-02'		3.065(17)	3.096(12)	3.103(13)	3.084(18)	3.096(19)	3.137(22)	3.198(18)
<o<sub>bas-O_{bas}></o<sub>		2.976	3.018	3.032	3.039	3.045	3.038	3.081
M1-O3	x4	2.016(19)	2.024(12)	1.952(16)	1.940(20)	1.967(20)	1.947(24)	2.026(19)
M1-O4	x2	1.919(36)	1.882(18)	2.125(25)	2.129(35)	2.049(33)	2.037(39)	2.185(24)
<m1-o></m1-o>		1.984	1.977	2.010	2.003	1.994	1.977	2.079
M2-O3	x2	1.978(19)	1.969(13)	1.856(16)	1.839(20)	1.872(21)	1.828(24)	1.904(19)
M2-O3	x2	2.050(22)	2.020(11)	2.166(18)	2.170(24)	2.133(24)	2.180(28)	2.214(19)
M2-04	x2	2.032(19)	2.040(10)	1.986(13)	1.980(19)	1.980(18)	1.955(19)	2.018(12)
<m2-o></m2-o>		2.020	2.010	2.003	1.996	2.004	1.988	2.045
<m1,2-o></m1,2-o>		2.008	1.999	2.005	1.998	2.001	1.984	2.056
I-02	x4	2.258(18)	2.215(12)	2.113(16)	2.102(19)	2.183(21)	2.159(23)	2.084(16)
I-01	x2	2.321(33)	2.296(14)	2.373(23)	2.369(32)	2.256(33)	2.321(37)	2.476(23)
<i-o<sub>inner></i-o<sub>		2.279	2.242	2.200	2.191	2.207	2.213	2.215

 TABLE 4. Crystal structure data of (Al/Ga)(Si/Ge)(H/D)-clintonite

I-O2	x4	3.697(18)	3.724(11)	3.842(15)	3.847(21)	3.755(22)	3.700(23)	3.887(17)
I-01	x2	3.770(36)	3.770(17)	3.591(29)	3.581(37)	3.794(38)	3.801(40)	3.641(25)
<i-o<sub>outer></i-o<sub>		3.721	3.739	3.758	3.758	3.768	3.734	3.805
Selected bo	nd-ang	gles()						
□O1-T-O3		106.1(10)	108.0(7)	107.4(8)	109.0(11)	107.0(11)	105.5(12)	105.9(9)
□O2-T-O3		108.1(10)	109.2(4)	110.8(7)	112.6(10)	113.3(10)	117.0(11)	114.1(8)
_O2'-T-O3		110.1(7)	110.3(5)	109.0(6)	109.5(8)	109.3(8)	108.8(9)	108.7(7)
mean = $t(^{\circ})$ †	-	108.1	109.2	109.1	110.4	109.9	110.4	109.6
□01–02∋–02	x2	62.0(9)	60.4(6)	58.9(6)	58.8(8)	59.0(8)	60.8(9)	59.0(7)
□01-02-01		61.9(10)	60.2(6)	58.6(7)	58.7(8)	58.7(8)	60.4(10)	58.6(8)
mean		62.0	60.3	58.8	58.8	58.9	60.7	58.9
□01-02-02'	x2	177.1(6)	177.0(5)	176.4(6)	177.1(8)	175.8(8)	174.8(9)	173.8(6)
□02'-01-02'		170.7(13)	173.7(6)	176.0(10)	177.2(12)	174.7(13)	169.2(14)	170.8(9)
mean		175.0	175.9	176.3	177.1	175.4	172.9	172.8
Calculated p	barame	eters						
a(°)*		28.3	28.9	29.4	29.6	29.1	28.1	28.5
У _{М1} (°) ‡		59.3	60.3	60.6	61.3	61.2	62.3	59.9
У _{М2} (°)		59.9	60.8	60.5	61.2	61.4	62.5	59.3
(y _{M1} +2y _{M2})/	3	59.7	60.6	60.5	61.2	61.3	62.4	59.5
Sheet thickr	nesses	s (Å)						
tetrahedral t_{t}	(Å)	2.407	2.453	2.485	2.519	2.515	2.535	2.509
octahedral to	(Å)	2.026	1.959	1.972	1.926	1.920	1.837	2.088
interlayer sep	baratio	n <i>t</i> _i (Å)						
		2.806	2.797	2.746	2.748	2.779	2.866	2.702
D(Å)		1.790	1.974	1.997	2.051	2.059	2.107	1.950

* *a* (tetrahedral rotation angle) = $S_{j=1}^{6}$ I120 - f_j I/2 and where f_j is the angles between basal oxygens (Alietti et al. 1997).

†Tetrahedral flattening angle = mean O_{basal} -T- O_{apical} . $\ddagger \cos y = t_o/(2d_o), t_o = 2\{0.5 - [2z_{O3} + z_{O4}]/3\}c \sin b, d_o = <M-O> (Hazen and Burnham 1973).$ §Sheet thickness $t_t = 4d_t/3, t_l = c \sin b - 2d_o \cos y - (8/3)d_t, d_t = <T-O> (Donnay et al. 1964).$ ¶ Dimensional misfit between tetrahedral and octahedral sheets defined as $D = \{2 \ 3 < O_{bas} - O_{bas} > -3 \ 2[(<M1-O> + 2 < M2-O>)/3]$

885	887	888	886	902	903	915	916
Si _{0.5} Ge _{0.5} HCIn	Ni₁SiHCln	Ni₂SiHCln	GeHCIn	Ga₁GeHCln	Ga₂GeHCln	Ga₃GeHCln	Ga₄GeHCln
710–225	710–225	710–225	710–225	730–201	730–201	715–210	715–210
1.815(19)	1.823(16)	1.778(23)	1.828(39)	1.725(9)	1.864(15)	1.744(11)	1.797(32)
1.785(27)	1.702(23)	1.779(33)	1.722(55)	1.996(21)	1.805(16)	2.077(22)	1.892(66)
1.857(19)	1.915(17)	2.011(25)	1.929(41)	1.795(14)	1.902(14)	1.825(16)	1.926(45)
1.807(14)	1.758(10)	1.758(15)	1.874(24)	1.864(11)	1.874(10)	1.910(12)	1.956(28)
1.816	1.800	1.832	1.838	1.845	1.861	1.889	1.893
2.937(34)	2.824(30)	2.860(41)	2.919(57)	2.895(21)	3.018(23)	2.981(24)	2.953(54)
3.018(17)	3.039(13)	3.161(19)	3.008(31)	3.030(16)	3.017(15)	3.089(17)	3.140(37)
3.020(17)	3.037(14)	3.160(23)	3.005(30)	3.026(15)	3.015(14)	3.088(18)	3.140(38)
2.992	2.967	3.060	2.977	2.984	3.017	3.053	3.078
2.016(21)	2.068(17)	2.081(21)	2.036(38)	2.003(15)	2.072(16)	1.992(18)	2.034(40)
2.007(29)	1.855(32)	2.158(36)	1.903(67)	2.218(20)	1.991(21)	2.254(23)	2.092(64)
2.013	1.997	2.107	1.992	2.075	2.045	2.079	2.053
1.936(21)	2.015(17)	2.095(22)	1.942(38)	1.864(18)	1.965(17)	1.861(17)	1.928(38)
2.131(26)	2.019(22)	2.074(26)	1.935(44)	2.126(16)	2.003(17)	2.168(19)	2.026(47)
2.003(20)	2.072(17)	2.116(20)	2.073(36)	2.030(14)	2.083(14)	2.027(13)	2.121(33)
2.023	2.035	2.095	1.983	2.007	2.017	2.019	2.025
2.020	2.022	2.099	1.986	2.030	2.026	2.039	2.034
2.282(17)	2.264(14)	2.142(21)	2.275(33)	2.206(15)	2.296(12)	2.159(17)	2.246(40)
2.233(31)	2.240(28)	2.093(36)	2.346(67)	2.498(19)	2.270(21)	2.492(23)	2.382(65)
2.266	2.256	2.126	2.299	2.303	2.287	2.270	2.291

3.690(19) 3.822(35)	3.658(15) 3.782(32)	3.710(23) 3.892(39)	3.694(39) 3.772(65)	3.799(16) 3.569(20)	3.705(15) 3.863(22)	3.891(16) 3.604(24)	3.851(42) 3.807(66)
3.734	3.699	3.771	3.720	3.722	3.758	3.795	3.836
107.0(10) 110.2(12) 107.5(8)	107.7(8) 108.7(11) 110.7(7)	107.8(13) 104.3(14) 111.3(9)	107.2(16) 113.1(17) 108.6(14)	108.9(9) 111.6(7) 109.3(6)	109.3(7) 110.7(7) 110.0(6)	108.8(9) 112.8(7) 108.4(6)	108.2(18) 107.7(17) 108.6(14)
108.2	109.0	107.8	109.6	109.9	110.0	110.0	108.2
61.4(8) 61.3(9)	62.0(8) 62.0(9)	55.8(11) 55.5(11)	63.2(15) 63.1(16)	63.6(7) 63.7(7)	62.1(6) 62.0(6)	60.7(7) 60.8(7)	60.0(14) 59.8(15)
61.4	62.0	55.7	63.2	63.6	62.1	60.7	59.9
178.6(6) 175.8(13)	178.0(6) 172.5(12)	171.7(10) 172.7(13)	176.4(14) 172.6(25)	176.8(8) 172.2(8)	177.0(6) 174.9(9)	178.0(7) 175.3(9)	177.1(16) 174.4(22)
177.7	176.2	172.0	175.1	175.3	176.3	177.1	176.2
29.1	28.6	29.1	28.0	27.9	28.6	29.1	29.1
59.5	58.5	55.4	61.6	60.8	60.3	61.1	61.3
59.7	59.1	55.2	61.4	59.8	59.9	60.2	60.8
59.6	58.9	55.3	61.5	60.1	60.0	60.5	61.0
2.421	2.400	2.443	2.451	2.460	2.481	2.519	2.524
2.044	2.089	2.393	1.897	2.022	1.994	2.008	1.973
2.800	2.762	2.367	2.910	2.819	2.839	2.791	2.844
1.794	1.699	1.695	1.887	1.724	1.856	1.925	2.033
} (Toraya 1981).

TABLE 5. OH- and OD-stretching bands for synthetic clintonites

Run no.		[875]	[894]	[876]	[895]	[877]	[878]	[879]	[885]	[887]	[888]	[907]	[908]	[909]	[886]	[902]	[903]	[915]	[916]	[944]	[945]	[946]
Symbol		SiHCIn	Ga _{0.5} SiHCIn	Ga ₁ SiHCIn	Ga _{1.5} SiHCIn	Ga ₂ SiHCIn	Ga ₃ SiHCIn	Ga₄SiHCIn	Si0.5Ge0.5HCIn	Ni₁SiHCIn	Ni ₂ SiHCIn	SiDCIn	Ga2SiDCIn	Ga4SiDCIn	GeHCIn	Ga1GeHCIn	Ga2GeHCIn	Ga3GeHCIn	Ga4GeHCIn	GeDCIn	Ga2GeDCIn	Ga4GeDCIn
Ν	Position (cm ⁻¹)	3741.8	3739.4	3733.1	3725.0	3724.6	3716.3	3709.3			3631.5	2756.7	2745.8	2736.7	3689.7	3676.7	3663.6	3649.4	3624.4	2719.5	2702.0	2679.0
	FWHH (cm ⁻¹)*	25.3	27.9	24.6	32.4	27.8	26.2	23.4			32.6	24.7	23.0	19.1	41.9	37.6	48.4	61.5	88.6	31.9	36.4	56.4
	Intensity (%)†	0.4	0.4	0.4	0.5	0.9	0.5	0.5			2.1	2.2	1.5	1.1	3.3	1.8	1.9	5.1	7.4	6.1	3.7	8.2
IA	G/(G+L) (%)‡	100.0	100.0	0.0	100.0	0.0	100.0	100.0			100.0	86.2	100.0	100.0	100.0	100.0	100.0	100.0	79.6	100.0	100.0	100.0
	Position (cm ⁻¹)	3686.5	3675.6	3657.1	3649.3	3655.7	3652.1	3644.4	3686.8	3631.5	3604.5	2724.7	2708.7	2689.1	3618.0	3612.9	3593.1	3583.9	3524.0	2678.9	2661.1	2632.9
	FWHH (cm ⁻¹)	80.8	88.5	95.5	99.7 15.8	89.4 15.6	83.1	78.0	59.2	20.0	58.2	37.7	46.0	56.9 21.1	72.1	/1.9	85.2	/6.5	81.7 30.2	42.6	49.7	41.0
	G/(G+L) (%)	100.0	100.0	100.0	100.0	100.0	100.0	55.7	100.0	78.2	100.0	100.0	100.0	68.4	100.0	100.0	100.0	100.0	88.2	92.1	100.0	100.0
	Position (cm ⁻¹)	3618.5	3605.7	3588.2	3578.6	3589.6	3590.1	3592.3	3618.7	3577.6	3548.5	2691.8	2674.1	2652.1	3671.0	3573.4	3554.9	3543.0	3454.7	2660.5	2634.8	2605.5
IB	FWHH (cm ⁻¹)	100.9	108.1	109.8	119.6	101.9	99.0	83.9	84.5	100.0	82.0	49.5	51.4	44.2	115.2	94.8	114.8	103.1	101.2	49.2	61.4	51.8
	Intensity (%)	37.2	42.1	36.7	39.2	30.9	25.6	18.4	49.9	36.2	27.8	26.8	24.0	15.7	49.3	37.9	43.8	42.4	31.5	38.3	41.0	33.2
	G/(G+L) (%)	100.0	100.0	100.0	100.0	100.0	100.0	68.3	100.0	100.0	92.6	100.0	100.0	100.0	09.3	80.1	//.9	74.8	04.2	100.0	83.5	76.4
I _C	Position (cm ⁻¹)	3008.4	3037.0 136.1	3018.0	3504.6	128.5	3529.9	3529.0	3000.4	3520.0	349U.Z	2009.8	2038.0	2020.0	3430.0	3019.8	3087.8	34/U.Z	3387.1	2020.0	2094.3	2008.4
	Intensity (%)	39.1	33.1	29.8	25.7	33.5	34.4	33.6	32.3	28.2	33.0	44.3	26.9	18.9	16.1	29.8	25.1	25.3	13.7	25.3	30.9	47.7
	G/(G+L) (%)	89.2	100.0	80.9	100.0	62.6	76.9	100.0	85.2	100.0	48.3	100.0	100.0	100.0	100.0	73.6	99.0	100.0	100.0	86.5	69.4	0.0
	Position (cm ⁻¹)	3422.9	3413.8	3417.9	3412.3	3435.6	3453.7	3446.5	3443.9	3409.6	3415.4	2620.0	2600.9	2592.9		3418.0		3384.7	3562.9		2519.7	
ID	FWHH (cm ⁻¹)	144.3	141.2	159.3	184.0	159.2	120.1	110.5	149.5	142.0	199.2	63.6	86.4	50.2		156.8		145.7	82.8		110.1	
	G/(G+L) (%)	14.0	14.2	20.5	18.9	19.1	19.8	24.8	11.7	14.7	27.6	10.9	23.8	17.9		10.1		13.5	37.3		9.8	
	Desition (om ⁻¹)	100.0	100.0	100.0	100.0	100.0	3374.0	3770.4	100.0	100.0	100.0	100.0	20.0	2552.2		100.0		100.0	01.0		100.0	
I _E	FWHH (cm ⁻¹)						136.9	142.2						74.0								
	Intensity (%)						9.1	11.8						25.2								
	G/(G+L) (%)						100.0	100.0						29.4								
	Position (cm ⁻¹)											2510.6								2508.3		
v	FWHH (cm ⁻¹)											33.1								84.4		
	Intensity (%)											0.6								3.2		
* Eullusie	th at half maxin	num height										33.0								0.0		
Tree intensity reactions as well = two w. 4 G = Gaussian component L = Lorenzian component.																						

Filg. la

Fig. 3b

Fig.4a

Fig.46

Filg,4c

Flig.40l

Filg.5a

Flig, 56

FilaSc

Ga (apfu)

Flig.6c

Frig. 7a

Fig.8a

Filg.8b

Fig. 9a

Fig.9C

Fig.lla

Fig.11b

Fig.12a

Fig.14

Fig.15a

Frig-15b