1	Ca-Sr fractionation between zoisite, lawsonite and aqueous fluids
2	- An experimental study at 2.0 and 4.0 GPa/400 to 800 $^{\circ}\mathrm{C}$
3	
4	- REVISION 2 -
5	
6	A. LIEBSCHER, ^{1,2,*} G. DÖRSAM, ² G. FRANZ, ² B. WUNDER, ¹ AND M. GOTTSCHALK ¹
7	
8	¹ German Research Centre for Geosciences GFZ Potsdam, Telegrafenberg, D-14473 Potsdam,
9	Germany
10	*Email: alieb@gfz-potsdam.de
11	² Fachgebiet Mineralogie-Petrologie, Technische Universität Berlin, Ackerstr. 76, D-13355
12	Berlin, Germany
13	

14 ABSTRACT

15	The Ca-Sr fractionation between zoisite respectively lawsonite and an aqueous fluid has been
16	determined by synthesis experiments in the presence of a 1 M (Ca,Sr)Cl ₂ aqueous fluid at 2.0
17	GPa/550, 600, and 700 °C and 4.0 GPa/800 °C for zoisite, and 2.0 GPa/400 °C and 4.0
18	GPa/600 °C for lawsonite. Solid run products were characterized by EMP, SEM and XRD
19	with Rietveld refinement and fluids were analysed by ICP-OES. Zoisite exhibits notable
20	intracrystalline Ca-Sr fractionation between the A1 and A2 sites and calculated
21	intracrystalline exchange coefficients $K_{D(Sr-Ca)}^{A1-A2} = 1.5$ to 26 show strong preference of Sr over
22	Ca for the slightly larger A2 site. Calculated individual site dependent zoisite-aqueous fluid
23	exchange coefficients for the studied 1 M (Ca,Sr)Cl ₂ aqueous fluids are
24	$K_{D(Sr-Ca)}^{zoisite A1-aqueous fluid} = 3.38$ to 41.08 for the A1 site and $K_{D(Sr-Ca)}^{zoisite A2-aqueous fluid} = 0.45$
25	to 6.51 for the A2 site. Assuming $\gamma_{Ca}^{aqueous fluid} = \gamma_{Sr}^{aqueous fluid}$ and a symmetric mixing model,
26	the thermodynamic evaluation of the site dependent exchange reactions $Ca^{2+(aqueous fluid)} +$
27	$Sr^{A1}(M^{2+})^{A2}Al_3[Si_3O_{11}(O/OH)] = Sr^{2+(aqueous fluid)} + Ca^{A1}(M^{2+})^{A2}Al_3[Si_3O_{11}(O/OH)] \text{ and } Ca^{2+}(A_1^{2+})^{A2}Al_3[Si_3O_{11}(O/OH)] = Sr^{2+(aqueous fluid)} + Ca^{A1}(M^{2+})^{A2}Al_3[Si_3O_{11}(O/OH)]$
28	$^{(aqueous fluid)} + (M^{2+})^{A1}Sr^{A2}Al_3[Si_3O_{11}(O/OH)] = Sr^{2+(aqueous fluid)} +$
29	$(M^{2+})^{A1}Ca^{A2}Al_3[Si_3O_{11}(O/OH)]$ yields $\Delta\mu^0 = -29$ kJ/mol and $W^{zoisite A1}_{Sr-Ca} = 5.5$ kJ/mol for the
30	A1 site and $\Delta \mu^0 = -1.1 \text{ kJ/mol}$ and $W_{Sr-Ca}^{zoisite A2} = 0 \text{ kJ/mol}$ for the A2 site at P and T of the
31	experiments. The data indicates ideal Ca-Sr substitution on the A2 site. Lawsonite formed in
32	both the orthorhombic <i>Cmcm</i> and the monoclinic $P2_1/m$ form. Calculated lawsonite-aqueous
33	fluid exchange coefficients indicate overall preference of Ca over Sr in the solid and are
34	$K_{D(Sr-Ca)}^{lawsonite\ Cmcm-aqueous\ fluid} = 1.12$ to 11.32 for orthorhombic and
35	$K_{D(Sr-Ca)}^{lawsonite\frac{P_{21}}{m}-aqueous fluid} = 1.67$ to 4.34 for monoclinic lawsonite. Thermodynamic
36	evaluation of the exchange reaction $Ca^{2+ (aqueous fluid)} + SrAl_2Si_2O_7(OH)_2 \cdot H_2O = Sr^{2+ (aqueous fluid)}$
37	+ CaAl ₂ Si ₂ O ₇ (OH) ₂ •H ₂ O assuming $\gamma_{Ca}^{aqueous fluid} = \gamma_{Sr}^{aqueous fluid}$ and a symmetric mixing model
38	yields similar values of $\Delta \mu^0 = -9 \text{ kJ/mol}$ and $W_{Sr-Ca}^{lawsonite Cmcm} = 10 \text{ kJ/mol}$ for orthorhombic

39 and $\Delta \mu^0 = -10 \text{ kJ/mol}$ and $W_{Sr-Ca}^{lawsonite P21/m} = 11 \text{ kJ/mol}$ for monoclinic lawsonite.

40	Calculated Nernst distribution coefficients for the studied 1 M (Ca,Sr)Cl ₂ aqueous fluids are
41	$D_{\rm Sr}^{\rm zoisite-aqueous fluid} = 2.8 \pm 0.7$ for zoisite at 2 GPa/600 °C and $D_{\rm Sr}^{\rm lawsonite Cmcm-aqueous fluid} = 0.6 \pm$
42	0.2 for orthorhombic lawsonite at 4 GPa/600 °C and show Sr to be compatible in zoisite but
43	incompatible in lawsonite. This opposite mineral-aqueous fluid fractionation behavior of Sr
44	with respect to zoisite and lawsonite on the one hand and the ideal Ca-Sr substitution on the
45	zoisite A2 site in combination with the strong intracrystalline Ca-Sr fractionation in zoisite on
46	the other hand make Sr a potential tracer for fluid-rock interactions in zoisite- and lawsonite-
47	bearing rocks. For low Sr-concentrations, $x_{Sr}^{zoisite}$ directly reflects $x_{Sr}^{aqueous fluid}$ and allows
48	calculate Sr-concentrations in the metamorphic aqueous fluid. During high-pressure aqueous
49	
49	fluid-rock interactions in subduction zone settings the opposite mineral-aqueous fluid
50	fluid-rock interactions in subduction zone settings the opposite mineral-aqueous fluid fractionation behavior of Sr results in different aqueous fluid characteristics for lawsonite-
50	fractionation behavior of Sr results in different aqueous fluid characteristics for lawsonite-

54 INTRODUCTION

The concentration of strontium and especially its enrichment in metamorphic rocks and 55 minerals are potential tracers of metamorphic fluid-rock interactions and metasomatic 56 57 processes (Grapes and Watanabe 1984). An extreme example of such fluid-induced Sr metasomatism is, e.g., reported by Brastadt (1985) from a metaeclogite from Bjørkedalen, 58 Norway. Because the ionic radii of Ca^{2+} (= 1.06 Å) and Sr^{2+} (= 1.21 Å; both for sevenfold 59 coordination; Shannon 1976) are quite similar Sr readily substitutes for Ca. Besides 60 carbonates, the Ca-silicates plagioclase and members of the epidote and lawsonite groups are 61 therefore the most important carriers of Sr in typical metamorphic rocks. In high- and 62 ultrahigh-pressure metabasites and metagreywackes, minerals of the epidote and lawsonite 63 groups, which replace the anorthite component of plagioclase in the protoliths, may control 64 more than 75% of the whole-rock Sr budget (Tribuzio et al. 1996; Nagasaki and Enami 1998; 65 Zack et al. 2002; Spandler et al. 2003). The geochemical cycles of Sr in subduction zone 66 67 settings and in high-pressure regional metamorphism are therefore largely controlled by the fractionation behavior of Sr between epidote minerals, lawsonite und metamorphic fluids 68 69 although also carbonates may play an important role. Knowledge of this fractionation 70 behavior provides the potential to use Sr concentrations as tracer of prograde dehydration reactions or breakdown reactions of the respective carrier minerals of the epidote and 71 lawsonite groups. Potential differences in Ca-Sr fractionation between zoisite-aqueous fluid 72 73 and lawsonite-aqueous fluid may also be traced in the compositions of arc magmas generated at subduction zones and may allow deciphering the thermal regime of the underlying 74 subduction zone, e.g. cold, lawsonite-bearing settings versus warm, zoisite-bearing settings. 75 Recently, the trace element fractionation of Sr between zoisite and aqueous fluid has been 76 studied by Feineman et al. (2007) at 750 to 900 °C/2.0 GPa and between zoisite and lawsonite 77 and aqueous fluid by Martin et al. (2011) at 650 to 850 °C/3.0 to 3.5 GPa. Both studies found 78 Sr to be compatible in zoisite; however, the calculated Nernst distribution coefficients 79

80	$D_{\rm Sr}^{\rm zoisite-aqueous fluid} = c_{\rm Sr}^{\rm zoisite}/c_{\rm Sr}^{\rm aqueous fluid}$ are notably higher in Feineman et al. (2007) with
81	$D_{\rm Sr}^{\rm zoisite-aqueous fluid} = 42 \pm 18$ to 170 ± 80 than in Martin et al. (2011) with $D_{\rm Sr}^{\rm zoisite-aqueous fluid} =$
82	2.2 ± 0.3 to 3.6 ± 1.2 . Contrary to zoisite, the data for lawsonite by Martin et al. (2011)
83	indicate that Sr is incompatible in lawsonite with $D_{\rm Sr}^{\rm lawsonite-aqueous fluid} = 0.14 \pm 0.02$ to 0.20 ±
84	0.02. However, epidote minerals and lawsonite not only incorporate Sr as a trace element but
85	also as minor and even major element leading to extensive Ca-Sr solid solutions series
86	(Dörsam et al. 2007; Liebscher et al. 2010); clinozoisite-(Sr) $Sr_2Al_3[SiO_4Si_2O_7(O/OH)]$ has
87	been described by Miyajima et al. (2002) and the Sr-analogue of lawsonite itoigawaite
88	SrAl ₂ Si ₂ O ₇ (OH) ₂ •H ₂ O by Miyajima et al. (1999). The Nernst distribution coefficient is only
89	applicable where Henry's law is fulfilled, typically at low concentrations. Although the
90	Henry's law region may extend to higher concentrations for similar substituents as in the case
91	of Ca and Sr, the fractionation behavior of Sr between aqueous fluids and members of the
92	epidote and lawsonite groups is not adequately described by classical Nernst distribution
93	coefficient. Instead, to describe the fractionation behavior of Sr as minor or even major
94	element and to cover the complete solid solution series fractionation behavior has to be
95	expressed via the equilibrium constant K . This approach then also allows deriving Ca-Sr
96	mixing properties for the solid solution series (e.g., Najorka et al. 1999).

The data presented here form part of a larger on-going study on the Ca-Sr fractionation 97 between solids and aqueous fluids at metamorphic conditions (e.g., Najorka et al. 1999; 98 Dörsam et al. 2007; Liebscher et al. 2009, 2010). The crystal-structural and crystal-chemical 99 aspects of the Ca-Sr substitution along the solid solution series Ca₂Al₃[SiO₄Si₂O₇(O/OH)] -100 $Sr_2Al_3[SiO_4Si_2O_7(O/OH)]$ and $CaAl_2Si_2O_7(OH)_2 \cdot H_2O - SrAl_2Si_2O_7(OH)_2 \cdot H_2O$ have been 101 experimentally studied and described in detail by Dörsam et al. (2007) and Liebscher et al. 102 (2010), respectively. Here we present fluid data and the calculated solid-aqueous fluid 103 fractionation of Ca and Sr between zoisite, lawsonite and aqueous fluid for the Dörsam et al. 104 (2007) and Liebscher et al. (2010) data complemented by additional experiments. In addition 105

to the solid-aqueous fluid fractionation of Ca and Sr, the focus of this contribution lies on the

107 Ca-Sr mixing properties for both solid solution series.

108

109 EXPERIMENTAL AND ANALYTICAL METHODS

Detailed descriptions of experimental and analytical methods are given in Dörsam et al. (2007) and Liebscher et al. (2010) and are summarized here only briefly. Table 1 compiles all runs and the respective run conditions. Compositions of zoisite and lawsonite as determined by EMP are listed in Dörsam et al. (2007) and Liebscher et al. (2010), respectively.

114

115 Experimental techniques

Solid starting materials were prepared from oxide-hydroxide mixtures of α -quartz (ignited, 116 Fe-free p.a. Merck), y-Al₂O₃ (Aldrich), Ca(OH)₂, and either SrSiO₃ or Sr(OH)₂•8H₂O; SrSiO₃ 117 was derived by heating SrCO₃ and quartz for ≈ 24 h at 1100°C. Depending on P-T run 118 conditions and the targeted stable product phases (zoisite and/or lawsonite), solid starting 119 material was weighed in stoichiometric amounts of the desired composition of either 120 121 (Ca,Sr)₂Al₃Si₃O₁₁(O/OH) or (Ca,Sr)Al₂Si₂O₇(OH)₂•H₂O. To account for preferred dissolution of SiO₂ into the aqueous fluid and to ensure quartz/coesite saturation of the run products, \sim 122 3.0 to 10 mol% excess SiO₂ were added to each run. The Ca-Sr composition is expressed as 123 124 mol-fraction of the Sr component with $x_{Sr} = n_{Sr}/(n_{Sr}+n_{Ca})$. The solid starting material had bulk compositions from $x_{Sr}^{bulk} = 0.02$ to 0.95. To overcome kinetic problems and to allow for 125 simple homovalent Ca-Sr fractionation between solids and aqueous fluid (Zimmermann et al. 126 1996), a 1 M (Ca,Sr)Cl₂ aqueous solution was added to each run; initial $x_{Sr}^{aqueous fluid}$ was 127 identical to $x_{\rm Sr}^{\rm bulk}$. The initial solid-to-fluid ratio $(n_{\rm Sr}+n_{\rm Ca})^{\rm aqueous fluid}/[(n_{\rm Sr}+n_{\rm Ca})^{\rm aqueous fluid} +$ 128 $(n_{\rm Sr}+n_{\rm Ca})^{\rm solid}$ was variable between 0.019 and 0.523. 129

Starting mixtures of solids and aqueous fluid were sealed in Au or Pt capsules of 10 to 13 mm
length, 2 mm diameter and 0.115 mm wall thickness and placed in NaCl assemblies with steel

132 furnaces following Massonne and Schreyer (1986). Using steel furnace assemblies provides 133 larger inner cell space compared to graphite furnaces and allows loading up to 4 capsules (2 mm in diameter) in a common assembly for the used 1/2 inch design. The steel furnace cell 134 design has been pressure calibrated via the two equilibria albite = quartz + jadeite and quartz 135 136 = coesite. Experiments were performed at 2.0 GPa/550, 600, and 700 °C and 4.0 GPa/800 °C for zoisite experiments and 2.0 GPa/400 °C and 4.0 GPa/600 °C for lawsonite experiments 137 using a standard piston-cylinder apparatus. Run durations ranged between 4 and 7 days. The 138 temperature was recorded online with a Ni-CrNi thermocouple placed closely adjoining the 139 center of the capsules with an accuracy of ± 10 °C. Pressure was controlled within ± 50 MPa 140 by a JUMO controller. The assemblies were first pressurized to either 1.8 or 3.0 GPa, then 141 heated to the desired run temperatures and finally pressurized to 2.0 or 4.0 GPa. Switching off 142 143 the furnace current quenched the samples to below 200 °C within less than 10 s. After quenching, the capsules were cleaned, weight checked and opened immersed in distilled H_2O 144 145 to recover the run fluid. Solid run products were filtered several times through a filter of 10-16 um porosity until clocking of the filter pores, keeping all the fine-grained material in the filter. 146 The filter was dried at 100 °C for 15 min and the solid products were recovered from the filter. 147 The recovered product fluids were diluted to 50 ml with distilled H_2O . 148

149

150 Analytical methods

Solid run products were characterized by scanning electron microscopy (SEM), electron microprobe (EMP), and X-ray diffraction (XRD) with Rietveld refinement. Scanning electron microscopy images of the synthesis products were obtained with a Hitachi-S2700 instrument. The composition of the solid phases was analyzed with a Cameca SX 50 microprobe on polished and carbon coated samples using wavelength dispersive spectrometry, an acceleration voltage of 10 kV, a beam current of 15.2 nA, and a beam diameter of 1 µm. Counting time for all elements was 16 s on the peak position and 8 s on each side of the peak for the background. The raw data were corrected with the PAP correction program (Pouchou and Pichoir 1984). Using synthetic wollastonite (Si and Ca) and synthetic $SrAl_2Si_2O_8$ (Al and Sr) as standards, AlK_{α} , SiK_{β} and SrL_{β} were analysed with a TAP crystal and CaK_{α} with a PET crystal. Where possible, multiple analyses were done on single grains to check for compositional homogeneity (see Dörsam et al. 2007; Liebscher et al. 2010). For XRD with Rietveld refinement, sub-samples of the run products were ground in an agate mortar for several minutes, diluted with Elmer's White glue and then evenly spread on a

circular foil. During drying, the powder was stirred to minimize preferred orientation. The foil 165 was covered with a second foil and placed into the transmission sample holder. Powder XRD 166 patterns were recorded in transmission between $2\Theta = 5^{\circ}$ and 125° with a fully automated 167 STOE STADI-P diffractometer with CuK_{a1} radiation equipped with a primary 168 monochromator and a 7° wide position sensitive detector (PSD). Operation conditions of the 169 normal-focus Cu X-ray tube were 40 kV and 40 mA, using a take-off angle of 6°; detector 170 step size was 0.1° and resolution of 20 was 0.01°. Refinements were done with the GSAS 171 172 software package for Rietveld refinement (Larson and Von Dreele 1987). The peaks were 173 defined as pseudo-Voigt with variable Lorentzian character. The peak full-width at half 174 maximum height was varied as a function of 2Θ using the parameters U, V, and W of Caglioti et al. (1958); for the Lorentzian character the parameters X and Y were used. The recorded 175 reflections were highly symmetric due to the geometry of the STADIP diffractometer and no 176 177 parameters describing the asymmetry of the peaks had to be used. The background was fitted with a real space correlation function. Zoisite was refined in space group *Pnma* based on the 178 structural data for synthetic iron-free zoisite by Liebscher et al. (2002); lawsonite was refined 179 in space groups P21/m for monoclinic (Ca,Sr)-lawsonite and Cmcm for orthorhombic (Ca,Sr)-180 lawsonite, based on the structural data by Pawley and Allan (2001) for monoclinic lawsonite 181 and Libowitzky and Armbruster (1995) for orthorhombic lawsonite. The atomic displacement 182 parameters of lawsonite were fixed at the values from Libowitzky and Armbruster (1995). 183

Refinements were done in following sequence: scale factor, background, zero-point 184 185 correction, phase fractions, lattice parameter, preferred orientation, profile parameter Cagliotti W and Lorentz X, atom parameters (excluding hydrogen), site occupancy with fractions of Ca 186 187 and Sr for A1 and A2 positions in zoisite and A position in lawsonite, isotropic displacement parameters for zoisite, and remaining profile parameters Cagliotti U and V and Lorentz Y. 188 Calcium and Sr concentrations in the diluted (to 50 ml) product fluids were determined with a 189 Vista-MPX CCD simultaneous ICP-OES in triplicate on lines 422.673 nm for Ca and 407.771 190 nm for Sr and averaged. Stabilization time applied was 20 s and 10 s were applied for sample 191 uptake delay. Calibration was done with Specpure standard solutions from Alfar Aesar # 192 031852 for Ca and # 013874 for Sr. The relative error of the determined Ca and Sr 193 concentrations is 3 % that of the calculated $x_{\rm Sr}^{\rm aqueous fluid}$ is 5 %. Because the capsules were 194 opened "immersed" in distilled water and then filtered, no exact determination of mass of 195 product fluid was possible. Concentrations of Ca and Sr in the un-diluted product fluid can 196 therefore not be calculated. However, the masses [in mmol] of Sr and Ca in the un-diluted 197 product fluid are given in Table 1 to allow for calculation of $x_{\rm Sr}^{\rm aqueous fluid}$. 198

199

200 **RESULTS**

201 **Description of run products**

202 Zoisite content in the 19 runs, which were used to constrain the Ca-Sr fractionation between zoisite and aqueous fluid (Table 1a) ranges from 12 to 100 wt% of the solid product phases. 203 Additional phases include quartz in 2 GPa runs except for runs Au45 and Pt4 and coesite in 4 204 GPa runs, and variable amounts of clinozoisite, monoclinic and/or orthorhombic lawsonite, 205 strontianite, kyanite, pyrophyllite, slawsonite and walstromite (Table 1a). Zoisite crystals are 206 idiomorphic to hypidiomorphic with a short-prismatic habit of 1 to 10 μ m width and 10 to 30 207 μ m length and show typical orthorhombic morphology with {100}, {001}, {101} and {210} 208 (Dörsam et al. 2007). The EMP analyses proved homogeneous zoisite composition within 209

210 each individual run as well as within individual zoisite crystals (Dörsam et al. 2007). 211 However, following Dörsam et al. (2007) we will only refer to the Ca-Sr composition of zoisite determined by XRD in the following because EMP measurements do not distinguish 212 213 between zoisite and clinozoisite in runs in which both polymorphs are present. Additionally, the XRD data allow determining the site-specific Ca-Sr composition on A1 and A2 sites of 214 zoisite. Runs that lack clinozoisite proved the reliability of zoisite compositions determined 215 by XRD by comparison with the EMP data (Dörsam et al. 2007). Zoisite composition ranges 216 from $x_{\rm Sr}^{\rm zoisite} = 0.05 \pm 0.03$ to 0.87 ± 0.02 and covers nearly the complete solid solution series. 217 Strontium concentration $x_{Sr}^{zoisite}$ shows a clear positive correlation with x_{Sr}^{bulk} but tends to be 218 slightly smaller than the latter (Fig. 1a), whereas $x_{\rm Sr}^{\rm aqueous fluid}$ is generally higher than $x_{\rm Sr}^{\rm bulk}$ 219 220 (Fig. 1b).

The Ca-Sr fractionation between lawsonite and aqueous fluid has been determined based on 221 16 experiments (Table 1b). In the 2 GPa/400 °C runs lawsonite contents range from 43 to 51 222 wt% of the solid run products whereas in the 4 GPa/600 °C runs lawsonite yields are 223 224 significantly higher and range from 82 to 99 wt% of the solid run products. All runs contain 225 additional coesite (at 4 GPa) or quartz (at 2 GPa) except for runs Au63 and Au92. At 2 GPa/400 °C 13 to 15 wt% strontianite and 12 to 17 wt% diaspore formed. Other additional 226 minor product phases in some runs include kyanite, wollastonite, and grossular. Lawsonite 227 228 forms small, euhedral crystals typically below 10 µm in size. Lawsonite habit changes from more prismatic at low x_{Sr}^{bulk} to more isometric at higher x_{Sr}^{bulk} (Liebscher et al. 2010). 229 Refinement of the XRD data shows that lawsonite formed in both the orthorhombic Cmcm 230 and monoclinic $P2_{l}/m$ form depending on P-T conditions and x_{Sr}^{bulk} . Because EMP data do 231 not distinguish between both polymorphs, we only refer to the Ca-Sr composition of 232 lawsonite determined by XRD, following Liebscher et al. (2010). Strontium contents in 233 orthorhombic lawsonite range from $x_{\rm Sr}^{\rm lawsonite Cmcm} = 0.02 \pm 0.01$ to 0.62 ± 0.05 whereas those 234 in monoclinic lawsonite range from $x_{Sr}^{\text{lawsonite }P21/m} = 0.21 \pm 0.04$ to 0.97 ± 0.02 . At 2 GPa/400 235

°C both forms coexist and the data suggest decreasing amounts of orthorhombic lawsonite but 236 increasing amounts of monoclinic lawsonite with increasing x_{Sr}^{bulk} . At 4 GPa/600 °C 237 lawsonite is exclusively orthorhombic at $x_{sr}^{bulk} < 0.18$, exclusively monoclinic at $x_{sr}^{bulk} > 0.45$ 238 and both forms coexist in the compositional range $0.18 < \text{at } x_{\text{Sr}}^{\text{bulk}} < 0.45$. As is the case at 2 239 GPa/400 °C, the data suggest that in this compositional range the amount of orthorhombic 240 lawsonite decreases with increasing at x_{sr}^{bulk} while that of monoclinic lawsonite increases. For 241 runs that either contain orthorhombic or monoclinic lawsonite, XRD analyses agree well with 242 the Ca-Sr composition of lawsonite as determined by EMP and proved lawsonite to be 243 homogeneous within the individual runs as well as within individual crystals (Liebscher et al. 244 2010). The Ca-Sr composition of lawsonite corresponds to $x_{\rm Sr}^{\rm bulk}$ although the data indicate 245 overall slightly lower $x_{sr}^{lawsonite}$ than x_{sr}^{bulk} (Fig. 1c). Similarly as in the zoisite experiments, 246 $x_{\rm Sr}^{\rm aqueous fluid}$ is generally higher than the corresponding $x_{\rm Sr}^{\rm bulk}$ (Fig. 1d). 247

248

249 Intracrystalline Ca-Sr partitioning in zoisite

The new additional experiments fit well with the results by Dörsam et al. (2007) and prove the 250 strong intracrystalline Ca-Sr fractionation in zoisite (Fig. 2). Strontium has a clear preference 251 over Ca for the slightly larger A2 site (Liebscher et al. 2002; Dörsam et al. 2007). Up to about 252 $x_{Sr}^{zoisite} = 0.4$ Sr substitutes for Ca almost exclusively on A2. The Sr contents on A1 are 253 generally below $x_{Sr}^{zoisite A1} = 0.1$ within this compositional range while Sr contents on A2 254 linearly increase up to $x_{Sr}^{zoisite A2} = 0.66$ (Fig. 2a). Notable amounts of Sr on A1 are only 255 observed for $x_{sr}^{zoisite} > 0.4$ and $x_{sr}^{zoisite A2} > 0.7$ (Fig. 2). The calculated intracrystalline 256 exchange coefficient 257

258
$$K_{D(Sr-Ca)}^{A1-A2} = \frac{x_{Ca}^{A1} * x_{Sr}^{A2}}{x_{Sr}^{A1} * x_{Ca}^{A2}} \quad (1)$$

is generally > 1 reflecting the preferred substitution of Sr on A2. The calculated $K_{D(Sr-Ca)}^{A1-A2}$ values slightly scatter between 2 and 26, but most data suggest $K_{D(Sr-Ca)}^{A1-A2} = 10$ to 20 (Fig. 2b).

262Ca-Sr fractionation between zoisite/lawsonite and aqueous fluid263The Ca-Sr fractionation between zoisite-aqueous fluid and lawsonite-aqueous fluid can be264described by the general exchange reactions265
$$2 \operatorname{Ca}^{2+}(\operatorname{squeous fluid}) + \operatorname{Sr}_2\operatorname{Al}_3[\operatorname{Si}_3\operatorname{O}_{11}(\operatorname{O}/\operatorname{OH})] = 2 \operatorname{Sr}^{2+}(\operatorname{squeous fluid}) + \operatorname{Ca}_2\operatorname{Al}_3[\operatorname{Si}_3\operatorname{O}_{11}(\operatorname{O}/\operatorname{OH})] (2)266and267 $\operatorname{Ca}^{2+}(\operatorname{squeous fluid}) + \operatorname{Sr}_4\operatorname{Al}_2\operatorname{Si}_2\operatorname{O}_7(\operatorname{OH})_2 \cdot \operatorname{H}_2\operatorname{O} = \operatorname{Sr}^{2+}(\operatorname{squeous fluid}) + \operatorname{Ca}_4\operatorname{Al}_2\operatorname{Si}_2\operatorname{O}_7(\operatorname{OH})_2 \cdot \operatorname{H}_2\operatorname{O} . (3)268To account for the two distinct A-positions in zoisite and the significant intracrystalline Ca-Sr269fractionation between A1 and A2, reaction (2) has to be split into the site-specific exchange270reactions271 $\operatorname{Ca}^{2+}(\operatorname{squeous fluid}) + \operatorname{Sr}^{A1}(\operatorname{M}^{2+})^{A2}\operatorname{Al}_3[\operatorname{Si}_3\operatorname{O}_{11}(\operatorname{O}/\operatorname{OH})] = \operatorname{Sr}^{2+}(\operatorname{squeous fluid}) +$ 272 $\operatorname{Ca}^{A1}(\operatorname{M}^{2+})^{A2}\operatorname{Al}_3[\operatorname{Si}_3\operatorname{O}_{11}(\operatorname{O}/\operatorname{OH})] = \operatorname{Sr}^{2+}(\operatorname{squeous fluid}) +$ 273and274 $\operatorname{Ca}^{2+}(\operatorname{squeous fluid}) + (\operatorname{M}^{2+})^{A1}\operatorname{Sr}^{A2}\operatorname{Al}_3[\operatorname{Si}_3\operatorname{O}_{11}(\operatorname{O}/\operatorname{OH})] = \operatorname{Sr}^{2+}(\operatorname{squeous fluid}) +$ 275 $(\operatorname{M}^{2+})^{A2}\operatorname{Al}_3[\operatorname{Si}_3\operatorname{O}_{11}(\operatorname{O}/\operatorname{OH})] = (2b)$ 276The solid-aqueous fluid Ca-Sr fractionation for reactions (2) and (3) can then be described by $x_{Ss}^{aqueous fluid}$ versus x_{Ss}^{rimen1} diagrams (Figs 3a, 4), the site dependent zoisite-aqueous fluid Ca-277Spisite and lawsonite both exhibit overall preferred fractionation of Ca over Sr compared2793b). Zoisite and lawsonite both exhibit overall preferred fractionatio$$$

7/23

1, the Ca-Sr fractionation between zoisite A1 and aqueous fluid is much more pronounced with $x_{\text{Sr}}^{\text{zoisite A1}} \ll x_{\text{Sr}}^{\text{aqueous fluid}}$ and an overall $K_{D(Sr-Ca)}^{\text{zoisite A1}-aqueous fluid} \sim 0.05$.

287

288 DISCUSSION

289 Attainment of equilibrium

290 To derive Ca-Sr fractionation data it is essential to show that the runs reached near-

291 equilibrium conditions. Unfortunately, in empirical work equilibrium may only be assumed or

judged based on the absence of disequilibrium features and is only valid unless proven

otherwise. Arguments for equilibrium include: i) within errors the derived data sets for zoisite

and lawsonite, respectively, are internally consistent (for disequilibrium experiments one

would expect scatters or internal inconsistencies within the different data sets), ii) Rietveld

refinements of the XRD data yielded good refinement statistics (for disequilibrium

experiments one would expect scattered or zoned Ca-Sr compositions in the minerals, which

would result in poorer refinement statistics), iii) microprobe data give no hints to any zonation

in individual zoisite or lawsonite grains nor to scattered compositions of zoisite or lawsonite

in individual runs (see Dörsam et al. 2007 and Liebscher et al. 2010 for more details), and iv)

duplicate runs Au31/Pt4, Au29/Pt3, and Au23/Pt2 for zoisite and Au37/Au86 and Au38/Au87

302 for lawsonite yielded consistent results at least within the precision of our experiments.

303 However, in some of our experiments additional phases formed, which may put doubts on the

assumption of equilibrium. Nevertheless, in none of the runs the number of phases violates

the phase rule. In run Au29, which was prepared with SrSiO₃ as starting material, we

306 observed a large number of phases while in duplicate run Pt3, which was prepared with Sr-

- 307 hydroxide instead of SrSiO₃ as starting material, only zoisite and quartz formed (Table 1a),
- indicating metastable phases for Au29. However, additional metastable phases should only
- influence the modal amounts of product phases by shifting the effective bulk composition;
- additional phases should not influence the Ca-Sr fractionation as long as these additional

- 311 phases do not change the physico-chemical properties and speciation in the aqueous fluid.
- 312 Overall, as we have no hints to disequilibrium (at least within the errors of our data) it is
- probably reasonable and justified to assume equilibrium conditions at least with respect to the
- 314 Ca-Sr fractionation. Also, in all our previous studies on solid-aqueous fluid element
- fractionation determined via the applied synthesis experiments, we did not find any evidence
- 316 for disequilibrium.
- 317

318 Thermodynamic evaluation

319 At constant temperature and pressure and assuming thermodynamic equilibrium, homovalent

one-site exchange reactions as (2a), (2b) and (3) can be described thermodynamically by

321
$$\Delta G = 0 = \Delta \mu^{0} + RT ln \frac{a_{Ca}^{solid} * a_{Sr}^{aqueous fluid}}{a_{Sr}^{solid} * a_{Ca}^{aqueous fluid}}$$
(4)

where a_i is the activity of component *i* in solid solution and aqueous fluid, respectively, and $\Delta \mu^0$ the difference in standard chemical potentials between products and educts of reactions (2a), (2b) and (3), respectively. With the definition of activity $a_i = x_i * \gamma_i$ equation (4)

325 transforms into

326
$$0 = \Delta \mu^{0} + RT ln \frac{x_{Ca}^{solid} * x_{Sr}^{aqueous fluid}}{x_{Sr}^{solid} * x_{Ca}^{aqueous fluid}} + RT ln \frac{\gamma_{Ca}^{solid} * \gamma_{SSr}^{aqueous fluid}}{\gamma_{Sr}^{solid} * \gamma_{Ca}^{aqueous fluid}}.$$
 (5)

For the 1 M (Ca,Sr)Cl₂ aqueous solutions used in this study one may reasonably well assume that Henry's law applies for the fluid and $\gamma_i = k_i$. For simplicity and due to the chemical similarity of both species we assume that Henry's constants for Sr²⁺ and Ca²⁺ equal each other. Additionally applying the definition for the exchange coefficient

331
$$K_{D(Sr-Ca)}^{solid-aqueous fluid} = \frac{x_{Ca}^{solid} * x_{Sr}^{aqueous fluid}}{x_{Sr}^{solid} * x_{Ca}^{aqueous fluid}}$$
(6)

equation (5) simplifies to

333
$$0 = \Delta \mu^{0} + RT ln K_{D(Sr-Ca)}^{solid-aqueous fluid} + RT ln \frac{\gamma_{Ca}^{solid}}{\gamma_{Sr}^{solid}}.$$
 (7)

334 While the exchange coefficient can be extracted from the experimental data, calculation of the

and

activity coefficient requires an activity model. The simplest activity model for binary

homovalent one-site mixing is that of a regular solution for which

337
$$RT ln \gamma_{Ca}^{solid} = x_{Sr}^{solid^2} * W_{Sr-Ca}^{solid}$$
(8a)

339
$$RT ln \gamma_{Sr}^{solid} = x_{Ca}^{solid^2} * W_{Sr-Ca}^{solid} .$$
(8b)

Combining and re-arranging equation (7) with equations (8a) and (8b) and formulating

explicitly for exchange reactions (2a), (2b) and (3) yield

342
$$-lnK_{D(Sr-Ca)}^{zoisite\ A1-aqueous\ fluid} = \frac{1}{RT}\Delta\mu^{0} + \frac{1}{RT}W_{Sr-Ca}^{zoisite\ A1} * \left(x_{Sr^{A1}-zoisite}^{zoisite} - x_{Ca^{A1}-zoisite}^{zoisite}\right),$$

344
$$-lnK_{D(Sr-Ca)}^{zoisite\ A2-aqueous\ fluid} = \frac{1}{RT}\Delta\mu^{0} + \frac{1}{RT}W_{Sr-Ca}^{zoisite\ A2} * \left(x_{Sr^{A2}-zoisite}^{zoisite} - x_{Ca^{A2}-zoisite}^{zoisite}\right)$$

(9b)

347
$$-lnK_{D(Sr-Ca)}^{lawsonite-aqueous fluid} = \frac{1}{RT}\Delta\mu^{0} + \frac{1}{RT}W_{Sr-Ca}^{lawsonite} * \left(x_{Sr-lawsonite}^{lawsonite} - x_{Ca-lawsonite}^{lawsonite}\right).$$

.....

and

(10)

.

.

Diagrams of
$$-lnK_{D(Sr-Ca)}^{mineral-aqueous fituld}$$
 versus $(x_{Sr-mineral}^{mineral} - x_{Ca-mineral}^{mineral})$ therefore should
result in linear relations with an intercept of $\frac{1}{RT}\Delta\mu^0$ and a slope of $\frac{1}{RT}W_{Sr-Ca}^{mineral}$; within the
precision of our data, the experimental results fulfill this linear relationship (Fig. 5). To
extract $\Delta\mu^0$ and $W_{Sr-Ca}^{mineral}$ at P and T of our experiments from equations (9a), (9b) and (10)
we only fitted the data derived at 2 GPa/600 °C for zoisite and 4 GPa/600 °C for lawsonite.
However, within experimental and analytical errors the results from the other runs are
consistent with the derived linear fits. Evaluation of the data yields $\Delta\mu^0 = -29$ kJ/mol and
 $W_{Sr-Ca}^{zoisite A1} = 5.5$ kJ/mol for Ca-Sr fractionation between aqueous fluid and zoisite A1 site,
 $\Delta\mu^0 = -1.1$ kJ/mol and $W_{Sr-Ca}^{zoisite A2} = 0$ kJ/mol for Ca-Sr fractionation between aqueous fluid

and zoisite A2 site,
$$\Delta \mu^0 = -10 \text{ kJ/mol}$$
 and $W_{sr-Ca}^{lawsonite P21/m} = 11 \text{ kJ/mol}$ for Ca-Sr

fractionation between aqueous fluid and monoclinic lawsonite, and $\Delta \mu^0 = -9 \text{ kJ/mol}$ and

360 $W_{Sr-Ca}^{lawsonite Cmcm} = 10 \text{ kJ/mol for Ca-Sr fractionation between aqueous fluid and}$

361 orthorhombic lawsonite. The derived values for zoisite reflect the strong intracrystalline Ca-Sr

fractionation between A1 and A2 sites in zoisite. For the A2 site the data indicate ideal

363 behavior of the Ca-Sr solid solution as well as almost identical standard state chemical

364 potentials for the Ca^{A2}- and Sr^{A2}-endmembers. For most natural systems with low x_{Sr}^{bulk} , the

365 Sr concentration in zoisite will be exclusively controlled by Sr incorporation on the A2 site.

366 Consequently, due to the ideal behavior of the A2 site, $x_{Sr}^{zoisite A2}$ can reasonably well be taken

367 representative of the coexisting $x_{Sr}^{aqueous fluid}$. For orthorhombic and monoclinic lawsonite the

368 data indicate almost identical energetics of the Ca-Sr substitution.

369

370 Calculation of Nernst distribution coefficients

To allow comparison of our data with those published by Feineman et al. (2007) and Martin et 371 al. (2011) we use our data to calculate the corresponding Nernst distribution coefficients for 372 the Sr-partitioning between aqueous fluid and zoisite and lawsonite. The Nernst distribution 373 coefficient is typically used to describe the trace element partitioning between coexisting 374 phases α and β based on the concentration c as $D_i^{\alpha-\beta} = c_i^{\alpha}/c_i^{\beta}$. However, one has to be aware 375 that in a strict sense any D-value is only valid for the P-T-x conditions for which it has been 376 determined. We used the x_{Sr} data derived in this study to calculate the corresponding Sr 377 378 concentrations in zoisite, lawsonite and aqueous fluid, assuming stoichiometric compositions of (Ca,Sr)-zoisite and (Ca,Sr)-lawsonite and the 1 M (Ca,Sr)Cl₂ aqueous solution (Fig. 6). The 379 concentrations $c_{\rm Sr}^{\rm zoisite}$ and $c_{\rm Sr}^{\rm aqueous fluid}$ are linearly correlated up to about $c_{\rm Sr}^{\rm zoisite} \sim 17$ wt% 380 (equivalent to $x_{\rm Sr}^{\rm zoisite} \sim 0.5$) and $c_{\rm Sr}^{\rm aqueous fluid} \sim 6.6$ wt% (equivalent to $x_{\rm Sr}^{\rm aqueous fluid} \sim 0.8$) (Fig. 381 6a). For lawsonite, such a linear relation between $c_{\rm Sr}^{\rm lawsonite}$ and $c_{\rm Sr}^{\rm aqueous fluid}$ is observed for a 382 much more restricted compositional range of up to about $c_{\rm Sr}^{\rm lawsonite} \sim 1.5$ wt% (equivalent to 383

384	$x_{\rm Sr}^{\rm lawsonite} \sim 0.06$) and $c_{\rm Sr}^{\rm aqueous luid} \sim 2.0 {\rm wt\%}$ (equivalent to $x_{\rm Sr}^{\rm aqueous fluid} \sim 0.24$) (Fig. 6b).
385	Fitting those data for a linear relation between $c_{\rm Sr}^{\rm mineral}$ and $c_{\rm Sr}^{\rm aqueous fluid}$ forced through the
386	origin yields $D_{\text{Sr}}^{\text{zoisite-aqueous fluid}} = 2.8 \pm 0.7$ and $D_{\text{Sr}}^{\text{lawsonite-aqueous fluid}} = 0.6 \pm 0.2$ (Fig. 6c). The
387	derived $D_{\rm Sr}^{\rm zoisite-aqueous fluid}$ value fits perfectly with the results by Martin et al. (2011) who
388	determined $D_{\text{Sr}}^{\text{zoisite-aqueous fluid}} = 2.2 \pm 0.3$ to 3.6 ± 1.2 , while the derived $D_{\text{Sr}}^{\text{lawsonite-aqueous fluid}}$ is
389	slightly higher than that derived by Martin et al. (2011) with $D_{\rm Sr}^{\rm lawsonite-aqueous fluid} = 0.14 \pm 0.02$
390	to 0.20 ± 0.02 . Our data supports the findings by Martin et al. (2011) that Sr is compatible in
391	zoisite and incompatible in lawsonite. The notably higher $D_{\rm Sr}^{\rm zoisite-aqueous fluid}$ values of 42 ± 18
392	to 170 ± 80 determined by Feineman et al. (2007) cannot be explained with the data at hand.
393	Their experiments were performed at slightly higher temperatures of 750 to 900 °C compared
394	to this study. However, these only slightly higher temperatures can reasonably well be
395	excluded as being responsible for the more than 10- to 50-times higher $D_{Sr}^{zoisite-aqueous fluid}$
396	values determined by Feineman at el. (2007). The experiments by Feineman et al. (2007) were
397	performed with Fe-bearing zoisite with ~ 1 wt% Fe_2O_3 compared to the Fe-free system
398	studied here. Incorporation of Fe in the M3 octahedron affects the crystal-structural properties
399	of the A1 and A2 sites (Liebscher et al. 2002) and by this may influence the Ca-Sr
400	fractionation. However, Liebscher et al. (2002) also have shown that the structural changes of
401	A1 and A2 with increasing Fe-content are only minor, at least for low Fe contents. So the
402	effect of Fe on Sr incorporation should also be minor.

403

404 Application to natural systems

405 An example of fluid-induced Sr metasomatism was reported by Brastadt (1985) from a

406 retrogressed metaeclogite from Bjørkedalen, Norway. Besides relicts of the eclogitic

407 assemblage, this rock is predominantly composed of hornblende, plagioclase, Fe/Ti oxides

408 and apatite and shows clear evidence of a second alteration stage caused by the infiltration of

an external aqueous fluid from the neighboring lithologies. This second alteration stage

410	essentially resulted in the hydration and breakdown of plagioclase to epidote, thomsonite, and
411	variable amounts of zoisite, clinozoisite, prehnite, sphene, smectite, calcite, paragonite and Sr-
412	feldspar. Whole rock and mineral analyses indicate that the infiltrating aqueous fluid also
413	added Sr to the rock. The different epidote group minerals are characterized by high Sr
414	contents. Maximum Sr contents reported by Brastad (1985) are 8.52 wt% SrO in epidote, 4.73
415	wt% SrO in clinozoisite and 7.42 wt% SrO in zoisite. Assuming exclusive incorporation of Sr
416	on the respective A2 sites as indicated by our data, these concentrations transfer to $x_{Sr}^{epidote A2}$
417	= 0.402, $x_{\text{Sr}}^{\text{clinozoisite A2}}$ = 0.217, and $x_{\text{Sr}}^{\text{zoisite A2}}$ = 0.333. Applying
418	$K_{D(Sr-Ca)}^{epidote\ mineral\ A2-aqueous\ fluid} = 1$ as determined here for zoisite yields minimum molar
419	Ca/Sr ratios in the aqueous fluid of 1.5 based on epidote, 3.6 based on clinozoisite and 2.0
420	based on zoisite. These values agree well with those determined by Najorka et al. (1999) for
421	the Ca/Sr ratio in the Bjørkedalen fluid of 1.8 and 1.7 based on the Sr-contents in plagioclase
422	as given by Brastad (1985) and the plagioclase-fluid distribution data by Lagache & Dujon
423	(1987) and Kotelnikov et al. (1989), respectively. Using the Nernst distribution coefficient for
424	zoisite-aqueous fluid derived in this study the calculated Sr concentration in the Bjørkedalen
425	fluid is 2.2 (1.8 to 3.0) wt%.
426	A detailed mass-balancing of the Sr-cycle in subduction zones is beyond the scope of this
427	paper. However, some general conclusions and speculations can be drawn from the Ca-Sr
428	fractionation behavior determined here. Our data show that Sr is incompatible in lawsonite
429	but compatible in zoisite, consistent with previously published data. In cold, lawsonite-
430	bearing subduction zone settings any upward migrating aqueous fluid will therefore strip-off
431	Sr out of the lawsonite-bearing rock resulting in a progressively Sr-depleted residue. Due to
432	this progressive Sr-depletion, fluids formed at greater depths in such cold, lawsonite-bearing
433	subduction zone settings will exhibit continuously decreasing Sr concentrations. Contrary, in
434	warm, zoisite-bearing subduction zone settings the rocks will act as a sink for Sr and strip-off

435 Sr out of the upward migrating fluid resulting in a progressively Sr-enriched residue. Due to

- this progressive Sr-enrichment, fluids formed at greater depths in such warm, zoisite-bearing
- 437 subduction zone settings will exhibit continuously increasing Sr concentrations.

438

439 Acknowledgements

- 440 This paper greatly benefitted from careful and critical reviews by M. Feineman and an
- 441 anonymous reviewer. Critical and constructive editorial handling by E. Ghent is gratefully
- 442 acknowledged.

444 **References**

445	Brastad, K. (1985) Sr metasomatism, and partition of Sr between the mineral phases of a
446	meta-eclogite from Bjorkedalen, West Norway. Tschermaks Mineralogische und
447	Petrographische Mitteilungen, 34, 87–103.
448	Caglioti, G., Paoletti, A., and Ricci, F.P. (1958) Choice of collimators for crystal spectrometer
449	for neutron diffraction. Nuclear Instruments, 3, 223-228.
450	Dörsam, G., Liebscher, A., Wunder, B., Franz, G., and Gottschalk, M. (2007) Crystal
451	chemistry of synthetic Ca ₂ Al ₃ Si ₃ O ₁₂ OH - Sr ₂ Al ₃ Si ₃ O ₁₂ OH solid-solution series of
452	zoisite and clinozoisite. American Mineralogist, 92, 1133-1147.
453	Feineman, M.D., Ryerson, F.J., DePaolo, D.J., and Plank, T. (2007) Zoisite-aqueous fluid
454	trace element partitioning with implications for subduction zone fluid composition.
455	Chemical Geology, 239, 250-265.
456	Grapes, R. and Watanabe, T. (1984) Al-Fe ³⁺ and Ca-Sr ²⁺ epidotes in metagreywacke-
457	quartzofeldspathic schist, Southern Alps, New Zealand. American Mineralogist, 69,
458	490-498.
459	Kotelnikov, A.R., Chernysheva, I.V., Romanenko, I.M., and Tikhomirova, E.I. (1989)
460	Experimental determination of energy of mixing of Ca-Sr-anorthites from data on
461	cation-exchange equilibria. Geochimia, 11, 1575-1586.
462	Lagache, M. and Dujon, S.C. (1987) Distribution of strontium between plagioclases and 1
463	molar aqueous chloride solutions at 600 °C, 1.5 kbar and 750 °C, 2 kbar. Bulletin
464	Mineralogie, 110, 551-561.
465	Larson, A.C. and Von Dreele, R.B. (2000) General structure analysis system (GSAS). Los
466	Alamos National Laboratory Report LAUR, 86-748.
467	Libowitzky, E. and Armbruster, Th. (1995) Low-temperature phase transitions and the role of
468	hydrogen bonds in lawsonite. American Mineralogist, 80, 1277-1285.

469	Liebscher, A., Gottschalk, M., and Franz, G. (2002) The substitution Fe3+-Al and the
470	isosymmetric displacive phase transition in synthetic zoisite: A powder X-ray and
471	infrared spectroscopy study. American Mineralogist, 87, 909-921.
472	Liebscher, A., Thiele, M., Franz, G., Dörsam, G., and Gottschalk, M. (2009) Synthetic Sr-Ca
473	margarite, anorthite and slawsonite solid solutions and solid-fluid Sr-Ca fractionation.
474	European Journal of Mineralogy, 21, 275-292.
475	Liebscher, A., Dörsam, G., Franz, G., Wunder, B., and Gottschalk, M. (2010) Crystal
476	chemistry of synthetic lawsonite solid-solution series $CaAl_2[(OH)_2/Si_2O_7] \bullet H_2O$ -
477	$CaAl_2[(OH)_2/Si_2O_7] \bullet H_2O$ and the <i>Cmcm-P2</i> ₁ / <i>m</i> phase transition. American
478	Mineralogist, 95, 724-735.
479	Martin, L.A.J., Wood, B., Turner, S., and Rushmer, T. (2011) Experimental measurements of
480	trace element partitioning between lawsonite, zoisite and fluid and their implication
481	for the composition of arc magmas. Journal of Petrology, 52, 1049-1075.
482	Massonne, HJ. and Schreyer, W. (1986) High-pressure syntheses and X-ray properties of
483	white micas in the system $K_2O-MgO-Al_2O_3-SiO_2-H_2O$. Neues Jahrbuch für
484	Mineralogie, Abhandlungen, 153, 177-215.
485	Miyajima, H., Matsubara, S., Miyawaki, R., and Ito, K. (1999) Itoigawaite, a new mineral, the
486	Sr analogue of lawsonite, in jadeitite from the Itoigawa-Ohmi district, central Japan.
487	Mineralogical Magazine, 63, 909-916.
488	Miyajima, H., Matsubara, S., Miyawaki, R., and Horikawa, K. (2002) Niigataite,
489	CaSrAl ₃ (Si ₂ O ₇)(SiO ₄)O(OH): Sr-analogue of clinozoisite, a new member of the
490	epidote group from the Itoigawa-Ohmi district, Niigata Prefecture, central Japan.
491	Journal of Mineralogical and Petrological Science, 98, 118-129.
492	Nagasaki, A. and Enami, M. (1998) Sr-bearing zoisite and epidote in ultra-high pressure
493	(UHP) metamorphic rocks from the Su-Lu province, eastern China: an important Sr
494	reservoir under UHP conditions. American Mineralogist, 83, 240-247.

495	Najorka, J., Gottschalk, M., Franz, G., and Heinrich, W. (1999) Ca-Sr distribution among
496	amphibole, clinopyroxene, and chloride-bearing solutions. American Mineralogist, 84,
497	596-606.
498	Pawley, A.R. and Allan, D.R. (2001) A high-pressure study of lawsonite using angle-
499	dispersive powder-diffraction methods with synchrotron radiation. Mineralogical
500	Magazine, 65, 41-58.
501	Pouchou, J.L. and Pichoir, F. (1984) Un nouveau modèle de calcul pour la microanalyse
502	quantitative par spectrométrie de rayons X. La Recherche Aérospatiale, 3, 167-192.
503	Shannon, R.D. (1976) Revised ionic radii and systematic studies of interatomic distances in
504	halides and chalcogenides. Acta Crystallographica, A32, 751-767.
505	Spandler, C., Hermann, J., and Arculus, R. (2003) Redistribution of trace elements during
506	prograde metamorphism from lawsonite blueschist to eclogite facies; implications for
507	deep subduction-zone processes. Contribution to Mineralogy and Petrology, 146, 205-
508	222.
509	Tribuzio, R., Messiga, B., Vannucci, R., and Bottazzi, P. (1996) Rare earth element
510	redistribution during high-pressure-low-temperature metamorphism in ophiolitic Fe-
511	gabbros (Liguria, northwestern Italy); implications for light REE mobility in
512	subduction zones. Geology, 24, 711-714.
513	Zack, T., Foley, S.F., and Rivers, T. (2002) Equilibrium and Disequilibrium Trace Element
514	Partitioning in Hydrous Eclogites (Trescolmen, Central Alps). Journal of Petrology,
515	43, 1947-1974.
516	Zimmermann, R., Heinrich, W., and Franz, G. (1996) Tremolite synthesis from CaCl ₂ -bearing
517	aqueous solutions. European Journal of Mineralogy, 8, 767-776.
518	

7/23

519 Figure captions

520

Figure 1: Ca-Sr composition of run products expressed as $x_{Sr} = n_{Sr}/(n_{Sr} + n_{Ca})$ versus x_{Sr}^{bulk} for

zoisite (A) and coexisting aqueous fluid (B) and lawsonite (C) and coexisting aqueous fluid

523 (D). Overall the data indicate $x_{\rm Sr}^{\rm solid} \le x_{\rm Sr}^{\rm bulk}$ and $x_{\rm Sr}^{\rm aqueous fluid} > x_{\rm Sr}^{\rm bulk}$ and suggest preferred

524 fractionation of Sr over Ca into the aqueous fluid.

525

- 526 Figure 2: Intracrystalline Ca-Sr fractionation between zoisite A1 and A2 sites. The data
- 527 indicate notable intracrystalline fractionation with a clear preference of Sr for the larger A2

site. Up to $x_{Sr}^{zoisite} \sim 0.4$ Sr is almost exclusively incorporated in the A2 site, only for higher Sr

529 concentrations notable amounts of Sr can be found on the A1 site (A). Most data are

530 consistent with an intracrystalline exchange coefficient $K_{D(Sr-Ca)}^{A1-A2} = 10$ to 20 (B).

- 531
- **Figure 3**: Ca-Sr fractionation between zoisite and aqueous fluid (A) as well as the site
- dependent Ca-Sr fractionation between zoisite A1 and A2 sites and aqueous fluid (B). The site

634 dependent Ca-Sr fractionation shows $K_{D(Sr-Ca)}^{zoisite A1-aqueous fluid} \sim 0.05$ and

535 $K_{D(Sr-Ca)}^{zoisite A2-aqueous fluid} \sim 1$ reflecting the notable intracrystalline fractionation. Due to the

preferred substitution of Sr on the A2 site, the data suggest that for low $x_{\rm Sr}^{\rm bulk}$, as may be

assumed for most natural systems, $x_{\rm Sr}^{\rm aqueous fluid} = x_{\rm Sr}^{\rm zoisite A2}$.

538

Figure 4: Ca-Sr fractionation between monoclinic (A) and orthorhombic (B) lawsonite and aqueous fluid. Except for high x_{Sr} the data indicate preference of Sr over Ca for the aqueous fluid.

543	Figure 5: Thermodynamic evaluation of the Ca-Sr solid-fluid fractionation for zoisite-A1 site
544	(A), zoisite-A2 site (B), monoclinic (C) and orthorhombic (D) lawsonite expressed as
545	$-lnK_{D(Sr-Ca)}^{mineral-aqueous fluid}$ versus $(x_{Sr-mineral}^{mineral} - x_{Ca-mineral}^{mineral})$ diagrams. Linear fits in (A)
546	and (B) based on data at 2 GPa/600 °C, those in (C) and (D) based on data at 4 GPa/600 °C.
547	Data indicate ideal behavior of the Ca-Sr substitution on zoisite A2 site. Monoclinic and
548	orthorhombic lawsonite exhibit comparable Ca-Sr substitution behavior.
549	
550	Figure 6: Calculated Sr-concentrations in coexisting zoisite and aqueous fluid (a) and
551	lawsonite and aqueous fluid (b). Concentrations are calculated based on the x_{Sr} values
552	determined in this study and assuming stoichiometric composition in zoisite and lawsonite
553	and a 1 M (Ca,Sr)Cl ₂ aqueous fluid. The grey shaded area for low Sr-concentrations is
554	enlarged in (c) showing only data for zoisite at 2 GPa/600 °C and for orthorhombic lawsonite
555	at 4 GPa/600 °C. Stippled lines in (a) and (b) are drawn by eye while stippled lines in (c) are
556	linear fits to the data forced through the origin. The slope of these fits yields the Nernst
557	distribution coefficients $D_{\rm Sr}^{\rm mineral-aqueous fluid}$ with $D_{\rm Sr}^{\rm zoisite-aqueous fluid} = 2.8 \pm 0.7$ and $D_{\rm Sr}^{\rm lawsonite-}$
558	aqueous fluid = 0.6 ± 0.2 .

1 Table 1a. Experimental conditions, run products, Ca-Sr composition of zoisite and aqueous fluid, and calculated

Run	Pt84	Pt85	Au32 ¹⁾	Pt9	Au45 ¹⁾	Au31 ¹⁾	Pt4 ¹⁾
P [GPa]	2	2	2	2	2	2	2
<i>T</i> [°C]	550	550	600	600	600	600	600
Phase	zo+qtz	zo+qtz	zo+qtz	zo+qtz	zo+qtz	zo+qtz	zo+qtz
$x_{\rm Sr}^{\rm bulk}$	0.10	0.14	0.0625	0.125	0.18	0.25	0.25
Starting material							
SiO ₂ [mg]	6.64	6.66	6.43	4.97	5.63	5.61	5.23
Al_2O_3 [mg]	5.36	5.38	5.16	3.84	4.87	5.10	4.04
Ca(OH) ₂ [mg]	4.68	4.48	4.69	3.79	3.87	3.71	2.93
SrSiO ₃ [mg]	/	/	0.69	1.94	1.88	2.73	/
Sr(OH) ₂ -8 H ₂ O	1.86	2.62	/	/	/	/	3.51
Fluid [mg] ²⁾	2.05	2.49	5.85	5.17	6.29	5.78	5.27
Solid run products							
quartz/coesite ³⁾	1.6	0.7	5	6.4	/	5	/
zoisite	30	17	45	48	53	48	100
clinozoisite	49	74	50	45	47	47	/
lawsonite $P2_1/m$	/	/	/	/	/	/	/
lawsonite Cmcm	/	/	/	/	/	/	/
strontianite	/	0.2	/	/	/	/	/
kyanite	/	/	/	0.3	/	/	/
Total ⁴⁾	99.6	98.9	100	99.7	100	100	100
Composition ⁵⁾							
$x_{\rm Sr}^{\rm zoisite}$	0.05 (3)	0.19 (9)	0.06(2)	0.16 (5)	0.16 (3)	0.25 (3)	0.22 (1
zoisite A1	0.03 (3)	0.10 (9)	0.02 (2)	0.07 (5)	0.03 (2)	0.06 (2)	0.03 (1
$x_{\rm Sr}^{\rm zoisite A2}$	0.06 (3)	0.27 (8)	0.09 (3)	0.24 (5)	0.29 (3)	0.44 (3)	0.40 (1
Ca ²⁺ [mmol]	0.0017	0.0016	0.006	0.0037	0.0045	0.0012	0.0044
Sr ²⁺ [mmol]	0.0005	0.0006	0.0009	0.0013	0.0025	0.0007	0.0014
$x_{\rm Sr}^{\rm aqueous fluid}$	0.23 (1)	0.27 (1)	0.13 (1)	0.26(1)	0.36 (2)	0.37 (2)	0.24 (1
$K_{\text{D(ST-Gq)}}^{\text{zoisite A1-aqueous fluid } 6)}$	9.51	3.38	7.35	4.67	17.96	9.14	10.29
$K_D(Sr-Ca)$ $K_D(Sr-Ca)$ $M_D(Sr-Ca)$	4.61	1.01	1.52	1.11	1.36	0.74	0.48

2 exchange coefficients K_D for A-site specific Ca-Sr exchange between zoisite and aqueous fluid.

5 Table 1a (cont.)

Run	Au42 ¹⁾	Au29	Pt3 ¹⁾	Au43 ¹⁾	Au23 ¹⁾	Pt2 ¹⁾	Au22 ¹
P [GPa]	2	2	2	2	2	2	2
<i>T</i> [°C]	600	600	600	600	600	600	600
Phase	zo+qtz	zo+qtz	zo+qtz	zo+qtz	zo+qtz	zo+qtz	zo+qtz
$x_{\rm Sr}^{\rm bulk}$	0.4	0.5	0.5	0.65	0.75	0.75	0.875
Starting material							
SiO ₂ [mg]	5.01	4.59	5.05	4.02	3.52	4.66	2.16
Al_2O_3 [mg]	5.10	5.08	3.90	5.11	4.98	3.59	3.54
Ca(OH) ₂ [mg]	2.96	2.46	1.89	1.73	0.91	0.87	0.33
SrSiO ₃ [mg]	4.37	5.44	/	7.11	8.00	/	6.64
Sr(OH)2-8 H2O	/	/	6.77	/	/	9.36	/
Fluid [mg] ²⁾	5.77	5.73	5.33	6.05	5.73	5.41	1.27
Solid run products							
quartz/coesite ³⁾	1	1.6	2	6	4	1	31
zoisite	41	12	98	33	69	92	59
clinozoisite	58	53	/	40	/	/	/
lawsonite $P2_1/m$	/	26	/	18	23	/	4
lawsonite Cmcm	/	1.5	/	/	/	/	/
strontianite	/	1.2	/	3	2	7	6
kyanite	/	4.3	/	/	/	/	/
Total ⁴⁾	100	99.6	100	100	98	100	100
Composition ⁵⁾							
$x_{\rm Sr}^{\rm zoisite}$	0.37 (3)	0.37 (10)	0.42(1)	0.55 (3)	0.66 (4)	0.63 (2)	0.77 (2
$x_{\rm Sr}^{\rm zoisite A1}$	0.09 (3)	0.08 (8)	0.13(1)	0.19 (3)	0.41 (3)	0.38(1)	0.61 (2
$x_{\rm Sr}^{\rm zoisite A2}$	0.67 (3)	0.66 (10)	0.72(1)	0.82 (4)	0.92 (4)	0.89 (2)	0.93 (3
Ca ²⁺ [mmol]	0.0019	0.0007	0.0005	0.0014	0.0003	0.0003	0.000
Sr ²⁺ [mmol]	0.004	0.0014	0.0023	0.0063	0.0033	0.0024	0.000
$x_{\rm Sr}^{\rm aqueous fluid}$	0.68 (3)	0.67 (3)	0.82 (4)	0.82 (4)	0.92 (5)	0.89 (4)	0.86 (4
zoisite A1–aqueous fluid 6) D(Sr–Ca)	21.29	23.0	30.78	19.18	15.83	13.05	3.84
D(Sr–Ca) zoisite A2–aqueous fluid 7) D(Sr–Ca)	1.04	1.03	1.79	0.99	0.96	0.99	0.45

6

7

(continued)

8 Table 1a (cont.)

Run	Au33 ¹⁾	Au44 ¹⁾	Au84	Pt103	Pt106
P [GPa]	2	2	2	4	4
<i>T</i> [°C]	600	600	700	800	800
Phase	zo+qtz	zo+qtz	fsp+qtz	law+coe	law+coe
$x_{\rm Sr}^{\rm bulk}$	0.95	0.95	0.875	0.051	0.14
Starting material					
SiO ₂ [mg]	2.69	2.63	5.82	5.84	6.43
Al_2O_3 [mg]	4.88	4.78	7.75	4.72	5.20
Ca(OH) ₂ [mg]	0.24	0.23	0.70	3.25	3.25
SrSiO ₃ [mg]	9.93	9.71	10.88	/	/
Sr(OH)2-8 H2O	/	/	/	0.63	1.90
Fluid [mg] ²⁾	11.29	6.60	6.56	5.61	5.70
Solid run products					
quartz/coesite ³⁾	2	2	6.2	20	15
zoisite	56	76	31	58	60
clinozoisite	/	/	8	4.8	0.9
lawsonite $P2_{I}/m$	39	21	/	/	/
lawsonite Cmcm	/	/	/	1.9	11.2
strontianite	3	1	2.3	/	/
kyanite	/	/	5.4	14	10
Total ⁴⁾	100	100	99.9	98.7	99.2
Composition ⁵⁾					
$x_{\rm Sr}^{\rm zoisite}$	0.86 (2)	0.87 (2)	0.58 (3)	0.08 (3)	0.14 (3)
zoisite A1	0.76 (2)	0.82 (2)	0.32 (4)	0.01 (1)	0.02 (2)
$x_{\rm Sr}^{\rm zoisite A2}$	0.96 (2)	0.92 (2)	0.84 (3)	0.15 (3)	0.27 (3)
Ca ²⁺ [mmol]	0	0.0001	0.0003	0.0056	0.0046
Sr ²⁺ [mmol]	0.0112	0.0062	0.0058	0.0007	0.0026
$x_{\rm Sr}^{\rm aqueous fluid}$	1.00 (5)	0.98 (5)	0.95 (5)	0.11 (1)	0.36 (2)
zoisite A1–aqueous fluid 6)		13.61	41.08	12.375	27.70
D(Sr-Ca) zoisite A2-aqueous fluid 7) D(Sr-Ca)		5.39	3.68	0.71	1.53

9 *Note*: errors in parentheses refer to 1σ standard deviation

10 ¹⁾ runs discussed in Doersam et al. (2007) with respect to the orthorhombic and monoclinic

 $Ca_2Al_3[(O/OH)/SiO_4Si_2O_7] - Sr_2Al_3[(O/OH)/SiO_4Si_2O_7]$ solid solution series ²⁾ fluid was an aqueous 1 M (Ca,Sr)Cl₂ solution with $x_{Sr}^{fluid} = x_{Sr}^{bulk}$ 11

12

³⁾ coesite in 4 GPa runs 13

14 ⁴⁾ additional phases are pyrophyllite in Pt84 and Pt85, slawsonite in Au84, and walstromite in Pt106

- 15 ⁵⁾ Ca-Sr composition of zoisite determined by XRD with Rietveld refinement, mass [mmol] of Ca and Sr in 16
- ⁵⁷ Ca-Sr composition of zoisite determined by XRD with Rietveld refinement, mass [mmol] of Ca and S product fluid determined by ICO-OES ; $x_{Sr} = n_{Sr}/(n_{Sr} + n_{Ca})$ ⁶⁾ $K_{D(Sr-Ca)}^{zoisite A1-aqueous fluid} = \frac{\frac{x_{ca}^{A1-zoisite} *x_{Sr}^{aqueous fluid}}{x_{Sr}^{A1-zoisite} *x_{Ca}^{aqueous fluid}} \operatorname{according to exchange reaction Ca}^{2+ (aqueous fluid)} + Sr^{(A1)}M^{2+(A2)}Al_3[Si_3O_{11}(O/OH)] = Sr^{2+ (aqueous fluid)} + Ca^{(A1)}M^{2+(A2)}Al_3[Si_3O_{11}(O/OH)]$ ⁷⁾ $K_{D(Sr-Ca)}^{zoisite A2-aqueous fluid} = \frac{\frac{x_{ca}^{zoisite} *x_{Sr}^{aqueous fluid}}{x_{Sr}^{2A2-zoisite} *x_{Sr}^{aqueous fluid}} \operatorname{according to exchange reaction Ca}^{2+ (aqueous fluid)} + M^{2+(A1)}Ca^{(A2)}Al_3[Si_3O_{11}(O/OH)]$ 17
- 18
- 19

20
$$M^{2+(A1)}Sr^{(A2)}Al_3[Si_3O_{11}(O/OH)] = Sr^{2+(aqueous fluid)} + M^{2+(A1)}Ca^{(A2)}Al_3[Si_3O_{11}(O/OH)]$$

1 Table 1b. Experimental conditions, run products, Ca-Sr composition of orthorhombic and monoclinic lawsonite

2 and aqueous fluid, and calculated exchange coefficients $K_{\rm D}$ for Ca-Sr exchange between lawsonite and aqueous

Run	Pt92	Pt93	Pt94	Au76 ¹⁾	Au77 ¹⁾	Au78 ¹⁾	Au79 ¹⁾
P [GPa]	2	2	2	4	4	4	4
<i>T</i> [°C]	400	400	400	600	600	600	600
Phase	law+qtz	law+qtz	law+qtz	law+coe	law+coe	law+coe	law+co
$\chi_{ m Sr}^{ m bulk}$	0.4	0.6	0.8	0.02	0.03	0.04	0.05
Starting material							
SiO ₂ [mg]	6.04	5.09	4.86	12.23	12.11	12.36	12.26
Al_2O_3 [mg]	4.88	4.12	3.92	9.74	9.7	9.94	9.91
$Ca(OH)_2 [mg]$	2.12	1.19	0.57	6.94	6.83	6.93	6.84
SrSiO ₃ [mg]	5.08	6.43	8.19	0.31	0.47	0.64	0.79
Fluid [mg] ²⁾	2.72	2.98	2.5	11.01	11.17	9.33	10.96
Solid run products							
coesite/quartz ³⁾	18	19	18	5	7	5	4
lawsonite $P2_1/m$	29	38	43	/	/	/	/
lawsonite Cmcm	13.6	11.3	7.9	95	93	95	96
Total ⁴⁾	60.6	68.3	68.9	100	100	100	100
Composition ⁵⁾							
$x_{\rm Sr}^{\rm lawsonite P21/m}$		0.50(2)	0.71 (2)				
$x_{\rm Sr}^{\rm lawsonite}$ Cmcm	0.18(1)	0.62 (5)		0.02(1)	0.03 (1)	0.04 (2)	0.02 (1
Ca ²⁺ [mmol]	0.002	0.0011	0.0007	0.0086	0.0077	0.0068	0.007
Sr ²⁺ [mmol]	0.0019	0.0024	0.0028	0.0008	0.0012	0.0013	0.0017
$x_{\rm Sr}^{\rm aqueous fluid}$	0.49 (2)	0.69 (3)	0.80 (4)	0.085 (4)	0.135 (7)	0.160 (8)	0.20 (1
$K_{D(Sr-Ca)}^{lawsoniteP2_1/m-aqueousfluid_{6)}}$		2.23	1.67				
$K_{D(Sr-Ca)}^{lawsonite Cmcm-aqueous fluid 6)}$	4.36	1.34		5.07	5.22	5.27	11.32

6 Table 1b. (cont.)

Run	Au63 ¹⁾	Au62 ¹⁾	Au37	Au86 ¹⁾	Au38	Au87 ¹⁾	Au82 ¹⁾
P [GPa]	4	4	4	4	4	4	4
<i>T</i> [°C]	600	600	600	600	600	600	600
Phase	law+coe	law+coe	law+coe	law+coe	law+coe	law+coe	law+coe
$x_{\rm Sr}^{\rm bulk}$	0.18	0.249	0.4	0.4	0.45	0.45	0.5
Starting material							
SiO ₂ [mg]	9.57	9.24	5.96	8.47	5.93	8.54	9.51
Al_2O_3 [mg]	8.69	8.71	5.78	8.21	5.92	8.53	9.78
Ca(OH) ₂ [mg]	5.18	4.75	2.52	3.58	2.37	3.41	3.55
SrSiO ₃ [mg]	2.51	3.47	3.71	5.27	4.28	6.16	7.85
Fluid [mg] ²⁾	5.11	4.37	5.35	10.77	5.02	10.87	10.77
Solid run products							
coesite/quartz ³⁾	/	1	4.4	7	5.1	5	4
lawsonite $P2_1/m$	57	69	87	87	87	95	96
lawsonite Cmcm	42	28	8.8	6	7.5	/	/
Total ⁴⁾	99	98	100.2	100	99.6	100	100
Composition ⁵⁾							
lawsonite $P21/m$ X_{Sr}	0.21 (4)	0.32 (2)	0.37 (1)	0.36 (2)	0.41 (1)	0.41 (2)	0.49 (1)
$x_{Sr}^{lawsonite} Cmcm$	0.11 (4)	0.19 (0)	0.61 (13)		0.40 (8)		
Ca ²⁺ [mmol]	0.0026	0.0019	0.0007	0.0034	0.0017	0.0038	0.0024
Sr ²⁺ [mmol	0.003	0.0023	0.0012	0.0057	0.0035	0.0076	0.0053
$x_{\rm Sr}^{\rm faqueous fluid}$	0.54 (3)	0.55 (3)	0.63 (3)	0.63 (3)	0.67 (3)	0.67 (3)	0.69 (3)
$K^{lawsoniteP2_1/m-aqueousfluid 6)}$	4.34	2.57	2.88	2.98	2.97	2.89	2.27
$K_{D(Sr-Ca)}^{(a)}$ $K_{D(Sr-Ca)}^{(avsonite Cmcm-aqueous fluid 6)}$	9.24	5.06	1.12		3.09		

7

8

(continued)

9 Table 1b. (cont.)

Run	Au47 ¹⁾	Au92 ¹⁾
P [GPa]	4	4
<i>T</i> [°C]	600	600
Phase	law+coe	law+coe
$x_{\rm Sr}^{\rm bulk}$	0.65	0.75
Starting material		
SiO ₂ [mg]	5.17	5.99
Al_2O_3 [mg]	5.85	7.82
$Ca(OH)_2 [mg]$	1.49	1.42
SrSiO ₃ [mg]	6.11	9.42
Fluid [mg] ²⁾	5.54	4.41
Solid run products		
coesite/quartz ³⁾	7	/
lawsonite $P2_1/m$	93	82
lawsonite Cmcm	/	/
Total ⁴⁾	100	82
Composition ⁵⁾		
$\chi_{\rm Sr}^{\rm lawsonite P21/m}$	0.63 (1)	0.97 (2)
lawsonite $Cmcm$ X_{Sr}		
Ca ²⁺ [mmol]	0.0008	0.0001
Sr^{2+} [mmol]	0.0025	0.001
$\chi_{ m Sr}^{ m aqueous fluid}$	0.77 (4)	0.91 (5)
$K_{D(Sr-Ca)}^{lawsoniteP2_1/m-aqueousfluid_{6)}}$	1.86	0.35

$K_{D(Sr-Ca)}^{lawsoniteP2_1/m-aqueousfluid 6)}$	1.86	0.3
Klawsonite Cmcm-aqueous fluid 6)		

 $K_{D(Sr-Ca)}^{tawsonal}$

- *Note*: errors in parentheses refer to 1σ standard deviation 10
- ¹⁾ runs discussed in Liebscher et al. (2010) with respect to the orthorhombic and monoclinic CaAl₂[(OH)₂/Si₂O₇]-11
- $H_2O SrAl_2[(OH)_2/Si_2O_7]-H_2O$ solid solution series 12
- ²⁾ fluid was an aqueous 1 M (Ca,Sr)Cl₂ solution with $x_{Sr}^{\text{fluid}} = x_{Sr}^{\text{bulk}}$ 13
- ³⁾ quartz in 2 GPa runs 14
- ⁴⁾ additional phases are kyanite in Au62, wollastonite in Au62, grossular in Au63 and Au92, clinozoisite in Pt92, 15
- 16 and zoisite in Au92; at 2 GPa about 15 wt% strontianite and diaspore each formed in runs Pt92, Pt93 and Pt94
- ⁵⁾ Ca-Sr composition of lawsonite determined by XRD with Rietveld refinement, mass [mmol] of Ca and Sr in 17
- 18
- product fluid determined by ICO-OES; $x_{Sr} = n_{Sr}/(n_{Sr} + n_{Ca})$ ⁶⁾ $K_{D(Sr-Ca)}^{lawsonite-aqueous fluid} = \frac{x_{lawsonite}^{lawsonite} * x_{Sr}^{aqueous fluid}}{x_{Sr-lawsonite}^{lawsonite} * x_{Ca}^{aqueous fluid}} \operatorname{according to exchange reaction Ca^{2+ (aqueous fluid)}} + SrAl_2[Si_2O_7(OH)_2] \cdot H_2O = Sr^{2+ (aqueous fluid)} + CaAl_2[Si_2O_7(OH)_2] \cdot H_2O$ 19
- 20

Liebscher et al., Ca-Sr fractionation Figure 1

Liebscher et al., Ca-Sr fractionation Figure 4

Sr-concentration in aqueous fluid [wt%]