1	
2	Structure of Prismatic Halloysite
3	TOSHIHIRO KOGURE, ^{1*} KIYOFUMI MORI, ² VICTOR A DRITS, ³ AND
4	YOSHIZO TAKAI ²
5	
6	¹ Department of Earth and Planetary Science, Graduate School of Science, The University of
7	Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
8	² Department of Material and Life Science, Graduate School of Engineering, Osaka University,
9	2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
10	³ Geological Institute of the Russian Academy of Sciences, Pyzhevsky per 7, Moscow, Russia
11	*E-mail: kogure@eps.s.u-tokyo.ac.jp
12 13	Dunning title proposed: Structure of prigmatic ballowsite
15 14	Running title proposed : Structure of prismatic halloysite Corresponding author :
14	Toshihiro Kogure
16	Department of Earth and Planetary Science, Graduate School of Science,
17	The University of Tokyo
18	7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
21	E-mail: kogure@eps.s.u-tokyo.ac.jp
22	
23	
24	Revision 1
25	December 2012
26	

27

ABSTRACT

28	Halloysite from Olkhon Island, Lake Baikal, Russia has been investigated using X-ray
29	diffraction (XRD), scanning electron microscopy (SEM), selected-area electron diffraction
30	(SAED) and, in particular, high-resolution transmission electron microscopy (HRTEM), to
31	reveal its atomic structure and formation process. XRD analysis indicated a basal spacing of ca.
32	7.2 Å and two characteristic peaks with $d = 4.28$ and 4.03 Å on the tail of the 02, 11 band. The
33	halloysite grain cross-sections displayed various prismatic forms, ranging from a rectangle to a
34	regular eighteen-sectored polygon in SEM and TEM. The SAED pattern from a sector of the
35	polygonal prisms with the incident beam parallel to the prism axes showed a regular one-layer
36	oblique reciprocal lattice, similar to that of kaolinite along Y_i -directions. HRTEM imaging
37	performed with the new computer-assisted minimal-dose system and an incident beam
38	perpendicular to the prism axis showed stacking of most dioctahedral 1:1 layers with their
39	pseudo-mirror plane perpendicular to the prism axis and an almost random, or rather,
40	alternating lateral stagger to the right or left from the preceding layer, which corresponds to
41	interlayer displacements of τ_+ and τ in Zvyagin symbols, or layer displacements of t_1 and t_2
42	used to describe the stacking in kaolinite. This stacking feature explains the SAED pattern from
43	the side of the prismatic grains and the two characteristic peaks on the tail of the 02, 11 band in
44	the XRD pattern. Based on these results, it is proposed that tubular halloysite initially forms as
45	a hydrated one with the pseudo-mirror plane of the kaolinite layers perpendicular to the tube
46	axis, then dehydrates with, possibly, partially hydrogen-bonded interlayers, and finally
47	transforms to a prismatic one consisting of sectored flat layers with the complete
48	hydrogen-bonded interlayers. During this transformation, stacking with comparable ratio and
49	frequent alternation of τ_+ and τ is formed, to minimize morphological change of the tubes.
50	Keywords: halloysite, stacking sequence, prismatic form, hydrogen bonding, HRETM, SAED

2

9/10

51

~	1
~	
J	4

INTRODUCTION

53	Halloysite, Al ₂ Si ₂ O ₅ (OH) ₄ ·nH ₂ O, is one of the most common and ubiquitous clay
54	minerals on the terrestrial surface. However, it is also true that the real structure of halloysite
55	has yet to be fully understood despite the amount of research devoted to this mineral. Actually,
56	no three-dimensional periodicity has been reported for halloysite because of very limited
57	information from conventional diffractometry, which leads to the possibility that halloysite
58	contains intense structural disorder. Moreover, from the standpoint of electron microscopy,
59	halloysite is too beam-sensitive to apply recent high-resolution structure imaging in order to
60	analyze its atomic structure.
61	Halloysite is one of the kaolin group minerals consisting of dioctahedral 1:1 layers which are
62	termed "kaolinite layers" in this study, and hydrated/dehydrated interlayers. In cases involving
63	halloysite with a tubular morphology, the kaolinite layers are rolled to compensate for the misfit
64	between the tetrahedral and octahedral sheets (Bates et al., 1950). Bailey (1990) suggested
65	ditrigonal rotation in the tetrahedral sheet, which reduces the misfit in the other kaolin group
66	minerals may not be realized in halloysite due to water molecules and exchangeable cations
67	possibly existing at the interlayer region. On the contrary, Singh (1996) proposed that the
68	rolling mechanism of the kaolinite layers is preferable to ditrigonal rotation, if Si-Si repulsion
69	in the tetrahedral sheet is considered. With respect to the stacking structure of halloysite, much
70	research has suggested a two-layer periodicity for the dehydrated form, halloysite (7 Å), based
71	on selected-area electron diffraction (SAED) taken with the incident beam perpendicular to the
72	tube-axis (Honjo and Mihara, 1954; Honjo et al., 1954; Chukhrov and Zvyagin, 1966;
73	Kohyama et al., 1978; Singh and Gilkes, 1992). Among them, probably only Honjo et al. (1954)
74	and Chukhrov and Zvyagin (1966) considered the stacking structure to form the two-layer
75	periodicity. Based on the intensity distribution in the SAED pattern, Honjo et al. (1954)

3

9/10

76	proposed a stacking sequence expressed as $\sigma_1\tau_+\sigma_1\tau_0\sigma_1$ or $\sigma_5\tau\sigma_5\tau_0\sigma_5$ with a triclinic symmetry,
77	using the Zvyagin symbols (Chukhrov and Zvyagin, 1966). However, Chukhrov and Zvyagin
78	(1966) suggested that the sequence expressed as $\sigma_3\tau_+\sigma_3\tau\sigma_3$ with monoclinic <i>Cc</i> symmetry
79	could also reproduce the intensity distribution in the SAED pattern and insisted that this
80	sequence was more realistic than that proposed by Honjo et al. (1954). In this notation, σ_3
81	corresponds to the intralayer displacement of $a_o/3$ in the kaolinite layer having the orthogonal
82	unit cell with a_o and b_o cell edges, and τ_+ and τ correspond to the interlayer displacements of
83	$+b_o/3$ and $-b_o/3$, respectively. This sequence is also described as the regular alternation of the
84	layer displacements (Guggenheim et al., 2009) with $a_o/3 + b_o/3$ ($\sigma_3 \tau_+$) and $a_o/3 - b_o/3$ ($\sigma_3 \tau$).
85	Bookin et al. (1989) showed that two-dimensional layer periodicity of defect-free 1Tc
86	kaolinite can be described equally well by the orthogonal cell $\{a_o, b_o, \gamma_o\}$ $(\gamma_0 = 90^\circ)$ as well as by
87	the enantiomorphic oblique cells $\{a_1, b_1, \gamma_1\}$ and $\{a_2, b_2, \gamma_2\}$ which are related to each other by a
88	mirror plane passing through the octahedral vacant site and the center of the ditrigonal ring of
89	the tetrahedral sheet in kaolinite layer, and containing the a_o axis. In particular, the a_1 and a_2
90	axes of the enantiomorphic oblique cells are rotated clockwise and counterclockwise by $\sim 120^{\circ}$
91	with respect to the a_o axis. The numerical values for the oblique cells coincide with those
92	determined for kaolinite sample from Keokuk which is almost defect-free in the stacking
93	sequence (Suitch and Young, 1983; Bish and von Dreele, 1989), indicating that the obliquity (γ_{l} ,
94	$_2 \neq 90^\circ$) of the refined cell of kaolinite is just the choice of the unit cell and interlayer stacking
95	sequence does not disturb the layer symmetry. On the other hand, the layer displacements t_1 and
96	t_2 which are corresponding to the individual enantiomorphs and related to each other by the
97	mirror plane mentioned above form a defect-free 1 <i>Tc</i> kaolinite structure (Bookin et al., 1989).
98	In terms of the conventional cell (a_1, b_1, γ_1) chosen for description of a defect-free kaolinite
99	structure, the components of the t_1 and t_2 are $(-0.369a_1, -0.024b_1)$ and $(-0.352a_1, 0.304b_1)$,
100	respectively. Bookin et al. (1989) also proposed that the stacking sequence in halloysite is

101	expressed as the regular interstratification of t_1 and t_2 . The components of the t_1 and t_2 expressed
102	with the orthogonal cell are $0.282a_o + 0.327b_o$ and $0.282a_o - 0.327b_o$, respectively. These
103	expressions indicate the similarity and difference between the model by Chukhrov and Zvyagin
104	(1966) and Bookin et al. (1989). The first authors used the layer structure with the idealized
105	intralayer and interlayer displacements whereas the other assumed that the interlayer
106	displacements in halloysite are identical to those in a periodic 1Tc kaolinite despite the quite
107	different mutual arrangement of the adjacent layers in these structures.
108	Recently, Kogure et al. (2011) succeeded in recording clear two-dimensional high-resolution
109	transmission electron microscopy (HRTEM) images from tubular halloysite, using a new TEM
110	with a computer-assisted minimal-dose system (Hayashida et al. 2007). These images showed
111	no symptom of a two-layer periodicity which was suggested in the previous works. They did,
112	however, show a more likely one-layer periodicity with high density of stacking disorder. The
113	discrepancy between two-layer periodicity and one-layer periodicity with a high density of
114	stacking disorder should be looked into during future halloysite research.
115	One of the characteristic features of halloysite is its various morphologies, typical of which
116	are tubes and spheres (see the summarized table in Joussein et al. 2005). Furthermore, Bailey
117	(1990) described the "prismatic" form as a category of halloysite morphologies. Chukhrov and
118	Zvyagin (1966) and Dixon and McKee (1974) showed TEM replica images in which the
119	elongate halloysite particles had regular and flat faces parallel to the elongation of the particles.
120	It is noteworthy that the stacking sequence reported by Chukhrov and Zvyagin (1966) as
121	mentioned above was derived from a specimen with prismatic morphology. Beside the TEM
122	replica images, cross sectional TEM (Bates and Comer, 1958; Singh and Gilkes, 1992,
123	Churchman et al., 1995) and scanning electron microscopy (SEM) (Diamond and Bloor, 1970)
124	indicated prismatic shapes for halloysite. Such prismatic morphology was proposed to be

125 formed during dehydration (Kirkman, 1981) or transformation from kaolinite to halloysite

126 (Robertson and Eggleton, 1991).

127 Following our previous work in investigating the atomic structure of tubular halloysite using 128 advanced electron microscopy (Kogure et al., 2011), we have investigated a different halloysite 129 specimen which apparently shows "higher crystallinity" in X-ray diffraction (XRD). SEM 130 observation indicated that the morphology of most grains is prismatic, similar to those reported 131 by Chukhrov and Zvyagin (1966) and Dixon and McKee (1974). HRTEM images were 132 successfully obtained and showed a different stacking structure from that in tubular halloysite 133 reported in Kogure et al. (2011). Finally, experimental XRD and SAED patterns were 134 successfully reproduced in simulation using the recorded stacking structure in these HRTEM 135 images. These results provide new insights into the real structure of halloysite and its formation

136 137 process.

SAMPLE AND METHODS

138 The halloysite specimen investigated was from Olkhon Island, Lake Baikal, Russia, and 139 formed by weathering of oligoclase (Chekin et al., 1972). It was reported that the hallovsite 140 crystallites initially grew epitaxially on the (001) surface of oligoclase with a platy and 141 dendritic shape elongated along the [100], [110], [010] and [310] directions. When the 142 crystallites became rather thick, they peeled away from the oligoclase surface and grew as a 143 tubular crystal along the *b*-axis with a spiral-cylindrical structure (Chekin et al., 1972, 1976). 144 The powder XRD pattern was measured at an ambient condition using a Rigaku 145 RINT-Ultima⁺ diffractometer with monochromatized CuK α radiation, a 0.3 mm receiving slit, and 0.5° divergence and anti-scatter slits. A continuous scan rate of 0.1° (2 θ) min⁻¹ and a 146 147 sampling interval of 0.02° were adopted. High-resolution SEM was conducted using a Hitachi 148 S-4500 SEM with a cold type field-emission gun operated at 2 kV. The specimen was coated 149 with Pt-Pd of 5 nm in thickness using a sputter coater to provide electron conductivity.

150	TEM specimens for cross-sectional views of the prismatic halloysite were prepared using
151	ion-milling. The halloysite grains were mixed with epoxy resin. After hardening, the mixture
152	was cut into slices and mechanically thinned to less than 100 μ m, then made
153	electron-transparent using an ion-milling instrument (Gatan Dual Ion Mill Model 600) with
154	argon beams of ~ 4 KeV and an incident angle of 15°. Images and electron diffraction patterns
155	with the prism-axis perpendicular to the beam were acquired using halloysite particles, and
156	dispersed on holey carbon microgrids through aqueous suspension. TEM images with low
157	magnifications and SAED patterns were acquired using JEOL JEM-2010UHR with a LaB_6
158	filament operated at 200 kV. The images were recorded with films or a Gatan MSC 794
159	bottom-mounted CCD camera, while SAED patterns were recorded with a Gatan ES-500W
160	side-mounted CCD camera on the phosphor screen.
161	HRTEM images for analyzing the atomic structure in halloysite were acquired using a Hitachi
162	HF-1000BC, with a cold field emission gun operated at 100 kV and a newly developed minimal
163	dose system (MDS) for reducing the electron dose. The MDS consists of a CCD camera, an
164	electric-field-type electron beam blanker that is installed beneath the condenser lens, and a
165	computer for controlling the entire TEM system, including a CCD camera and a high speed
166	blanker. The details for practical operation were described in our previous paper (Kogure et al.,
167	2011). Noise contrast in the HRTEM images was removed using a Wiener-filter (Marks 1996;
168	Kilaas 1998) developed by K. Ishizuka (HREM Research Inc.) and implemented with a Gatan
169	DigitalMicrograph, version 3.1 0.0 (Kogure et al., 2008).
170	Finally, simulations of powder XRD and SAED patterns were performed using DIFFaX
171	(Treacy et al., 1991), which calculates diffraction patterns from layered materials with stacking
172	disorder.

173

RESULTS AND DISCUSSION

174 **Powder XRD**

9/10

175	The XRD pattern (Fig. 1a) of the specimen indicates a basal spacing of ca. 7.2 Å,
176	suggesting that the halloysite is almost dehydrated, or halloysite-(7 Å). Apart from the basal
177	reflections, several peaks are distinctly identified in the patterns, deviating from the XRD
178	patterns of halloysite in other research (e.g, Joussein et al., 2005; Kogure et al., 2011). These
179	peaks are compared with those calculated from the crystallographic parameters for kaolinite
180	(Neder et al., 1999) in Figure 1. In the calculated patterns, the pattern for reflections with $k = 3n$
181	is drawn with a solid line, while that for all reflections is drawn with a broken line. First, the
182	experimental pattern profile higher than 2θ of 35° corresponds, approximately, to the calculated
183	pattern for kaolinite. In particular, calculated reflections with $k = 3n$ also almost make an
184	appearance in the experimental pattern. The reflections $h \neq 0$ and $k = 3n$ are called family
185	reflections (Ďurovič and Weiss, 1986) and their intensity distributions are distinct for the four
186	polytypic groups (or structure types) of 1:1 phyllosilicates (Bailey, 1969; Zvyagin, 1967). The
187	rough correspondence of the family reflections between the experimental and calculated
188	patterns indicates that the stacking sequence in the present halloysite sample belongs to group
189	A with a layer displacement of approximately $\pm a_i/3$ and/or mutual rotations between adjacent
190	layers with 0° or $\pm 120^{\circ}$. On the other hand, the experimental pattern shows two characteristic
191	peaks on the tail of the 02, 11 band, as indicated with arrows one and two. The <i>d</i> -values are 4.28
192	and 4.03 Å, which are in complete disagreement with the peaks for kaolinite. These <i>d</i> -values
193	can be indexed as 021 and $\overline{112}$ with a two-layer unit cell (Chukhrov and Zvyagin, 1966; Bailey,
194	1990). However, these reflections cannot be ascribed to dickite, because those for dickite have
195	very weak intensities when compared to other reflections such as 022 or 111. On the contrary,
196	these reflections have the strongest intensities in the 02 <i>l</i> , 11 <i>l</i> , and $\overline{11}l$ reciprocal lattice rows
197	for the stacking model proposed by Chukhrov and Zvyagin (1966). Another intense reflection,
198	112 with $d \sim 3.49$ Å, as expected from their model, is overlapped with 004 peaks in the powder

199 XRD pattern. Hence, the experimental XRD pattern in Figure 1 seems consistent with the

200 Chukhrov and Zvyagin model.

201

202 Morphology analyses by SEM and TEM

203 Several secondary electron images taken by the FE-SEM are shown in Figure 2. Most 204 halloysite grains are elongated and appear roughly cylindrical, however their cross-section is 205 often not circular but polygonal, as indicated by the white arrows. These morphologies are very 206 close to those reported by Chukhrov and Zvyagin (1966) and Dixon and McKee (1974), 207 although their images are TEM replicas. In Figure 2a, the arrowed grain has a rectangular 208 prismatic form. Such a prismatic morphology, with a small number of faces and acute angles 209 between the adjacent faces, is commonly observed. Cross sectional TEM images of the 210 elongated grains thinned by ion-milling are presented in Figure 3. Some grains show smoothly 211 curved layers and appear cylindrical rather than prismatic (Fig. 3a). On the contrary, Figure 3b 212 shows the cross section of a prismatic halloysite with five major sectors. At the boundaries of 213 the sectors with an acute corner angle, a section of the layers are connected with a small 214 curvature radius. It is not certain whether the void-like regions between the connected layers at 215 the boundaries are the original structure or formed by radiation damage before the recording 216 was completed. In Figure 3c, the cross-section is almost circular, however, a close examination 217 of the 7 Å lattice fringes reveals that the halloysite grain also consists of many sectors. This is 218 clearly confirmed by the SAED pattern from the grain (Fig. 3d). Eighteen intensity maximums 219 can be counted, with an equal interval on the rings corresponding to 7.2 and 3.6 Å. Hence, the grain consists of eighteen sectors with a center angle of 20°. This structure is very similar to that 220 221 of a polygonal serpentine as reported in other research, in which fifteen and thirty sectors are 222 common (e.g., Cressey and Zussman, 1976; Yada and Wei, 1987). If we return to the SEM 223 images in Figure 2 and examine the contrast on the surface of relatively large halloysite grains

with cylindrical forms, it can be seen that the surface consists of facets elongated parallel to thecylinder axis, as indicated with the thin black arrows in Figure 2c.

226

227 Stacking analyses using SAED and HRTEM

Figure 4 shows the cross-section of a prismatic halloysite consisting of three sectors. One half 228 229 of the prism disappeared during sample preparation by ion-milling. Moreover, the areas around 230 the center and outside of the prism were amorphized by beam radiation. The corresponding 231 SAED pattern from the entire prism is comprised of three superimposed reciprocal lattice nets, 232 each of which corresponds to the individual sector. The three reciprocal lattice nets are 233 identical; one-layer periodicity, the oblique angle, and no streak, indicating the typical pattern 234 for 1:1 phyllosilicates of group A (Bailey, 1988), which corresponds to the XRD analysis result 235 in Figure 1. On the contrary, two-dimensional HRTEM images recorded using the TEM with a 236 minimal dose system are shown in Figure 5. As shown in our previous paper (Kogure et al., 237 2011), the contrast for each kaolinite layer consists of two-tiered dark dots separated by b/2 (~ 238 4.5 Å) along the layer. Each dark dot can correspond to a pair of SiO_4 tetrahedra (or an SiO_4 239 chain running parallel to the incident beam) in the tetrahedral sheet and a pair of $AlO_2(OH)_4$ 240 octahedra in the dioctahedral sheet (see Fig. 1 in Kogure and Inoue, 2005). In Figure 5, the 241 contrast of each layer shows vertically aligned dots with no lateral shift within the layer forming 242 a bar-like shape (indicated with a square for each layer), except for three layers in Figure 5b, 243 which are indicated with triangles. Such contrast should appear in the HRTEM images of 244 kaolinite viewed along [110] or [110] (see Fig. 3 in Kogure and Inoue, 2005). More universally, 245 these directions are expressed as those parallel to the pseudo-mirror plane described by Bookin 246 et al. (1989), passing through both the octahedral vacant site and center of the tetrahedral 247 six-membered ring in the kaolinite layer. Moreover, such contrast for each kaolinite layer is 248 laterally shifted to the right or left against that for the lower and upper layers in the amount of

249 b/6 (only two exceptions are indicated with the white arrows in Figure 5c, where no lateral shift 250 is observed). As described in Kogure and Inoue (2005), these right and left shifts correspond to 251 the projections of the layer displacements for t_1 and t_2 (In actuality, they are related to each 252 other through the pseudo-mirror plane), or directly correspond to the Zvyagin's interlayer shifts 253 of τ_{+} and τ_{-} . Hence, the two-layer stacking model proposed by Chukhrov and Zvyagin (1966) 254 should appear as the alternating shift of the contrast for the kaolinite layer in Figure 5. However, 255 such alternation is only observed locally (indicated with square brackets in the figure) with six 256 or seven layers, and not in the entire stacking. 257 As mentioned above, two-layer periodicity was proposed for the stacking structure of 258 halloysite, based on electron diffraction from tubular grains in previous researches pertaining to 259 halloysite (Honjo and Mihara, 1954; Honjo et al., 1954; Chukhrov and Zvyagin, 1966, 260 Kohyama et al., 1978; Singh and Gilkes, 1992). Previous research found the intensity 261 maximum at a position parallel to the tube axis on the 02l row, which can be indexed 020. On 262 the 02*l* row, the next intensity peak to 020 has a distance that nearly corresponds to two-layer 263 periodicity, which is perhaps the reason why the two-layer structure was proposed. However, 264 the 02l diffraction rows in their SAED patterns are considerably streaked, except for that 265 presented by Chukhrov and Zvyagin (1966). It is possible that these patterns were obtained with 266 a selected-area aperture including the whole diameter of the tubular form. In this case, the 267 intensity maximum will be formed at the 020 position by the streaked 02l diffraction row from 268 the top and/or bottom parts of the tubular wall normal to the electron beam. Figures 6b and c 269 show examples of the SAED patterns from the present specimen, obtained by including the 270 whole diameter (Fig. 6b) and only the side region of the prism (Fig. 6c), using the selected-area 271 apertures drawn in Figure 6a. The intensity maximum at the 020 position as indicated with the 272 white arrows in Figure 6b does not appear in Figure 6c. Most halloysite prisms which are thick 273 enough to set the aperture as in Figure 6a showed similar results; they did not indicate two-layer

periodicity. However, occasionally the intensity maximum appeared at the 020 position in the
SAED pattern from the side region of a prism, implying that the possibility of a two-layer
structure could not be fully excluded.

277

278 Simulation of XRD and SAED pattern

Another issue to be considered is the origin of the two characteristic peaks at the 02, 11 band

with d = 4.28 and 4.03 Å in the XRD pattern (Fig. 1), which were indexed as 021 and 112 with

a two-layer structure. In Figure 5, the HRTEM images indicate almost the same intralayer

displacement (σ_3 of the Zvyagin symbol) and heavily disordered interlayer displacement with

283 τ_+ and τ_- (or layer displacement with t_1 and t_2). Powder XRD and SAED patterns from this

structure model have been simulated using DIFFaX (Treacy et al., 1991). Such a simulation for

285 XRD was already performed by Bookin et al. (1989), but their result (Fig. 6 in their paper) is

286 confusing owing to an editorial mistake. The same result presented in Drits and Tchoubar

287 (1990) is preferable as a reference.

288 The calculation procedure is similar to our previous research (Kogure et al., 2006a; Kogure et

al., 2010). The lattice constants and atomic coordinates for the kaolinite layer were derived

from the results by Neder et al. (1999) and coordinates for t_1 and t_2 are those described in

Bookin et al. (1989) as described above. To make the calculation more simple, we assume equal

proportions for t_1 and t_2 (W₁ = W₂ = 0.5). Accordingly, all of the condition probabilities (P₁₁,

293 P₁₂, P₂₁, P₂₂) are determined if one of them, e.g., P₁₁, is specified (Bookin et al., 1989), where

294 P_{11} refers to the probability that t_1 comes next to t_1 in the stacking. Figure 7 shows the calculated

295 XRD patterns with various P₁₁ values, and the experimental one for comparison. We adopted a

296 pseudo-Voigt function with the same ratio of Gaussian and Lorentz shapes and a half-width of

297 0.1° for the peak profile. In Figure 7, $P_{11} = 0$ corresponds to the stacking model by Chukhrov

and Zvyagin (1966) and Bookin et al. (1989) with two-layer periodicity, and $P_{11} = 1$ to the

299	segregated two enantiomeric kaolinite crystals with one-layer periodicity. Based on the figure,
300	it is understood that the two characteristic peaks at the 02, 11 band in the experimental pattern
301	are reproduced in the wide range of P_{11} , from $P_{11} = 0$ to even the most disordered state of $P_{11} =$
302	0.5. The peaks corresponding to those for kaolinite appear from $P_{11} = 0.7$. Hence, the two peaks
303	in the experimental pattern do not necessarily indicate ordered two-layer periodicity, but only a
304	tendency towards it.
305	The calculated intensity distributions along the reciprocal row next to 00l in the SAED
306	patterns in Figure 6c were also calculated using DIFFaX and shown in Figure 8. As the disorder
307	increases, the peaks are broadened and those with $l=2n$ disappear, losing any evidence of
308	two-layer periodicity. The twin maximums at $l = \pm 1$ correspond to those in the SAED pattern in
309	Figure 6c and they also correspond to the peak with $d = 4.28$ Å in the XRD pattern. The
310	intensity maximums corresponding to the peak with $d = 4.03$ Å in the XRD pattern are on the
311	other reciprocal rows. As P_{11} exceeds 0.5, these peaks move and split and finally (P_{11} =1.0) the
312	pattern becomes that of the 11 <i>l</i> diffraction row from the two enantiomeric kaolinite crystals.
313	

Formation and ripening process of halloysite

315 When summarizing the result of the analysis described above, the crystal structure of prismatic halloysite is expressed as an almost-ordered layer orientation (intralayer 316 317 displacement) and heavily-disordered layer displacement with t_1 and t_2 . This expression is 318 almost the same as the conclusions for disordered kaolinite by Plancon et al. (1989) derived 319 using XRD and Kogure and Inoue (2005) using HRTEM. However, to the best of our 320 knowledge, similar peaks on the 02, 11 band observed in the XRD pattern of the present 321 specimen were not reported for disordered kaolinite. As the XRD simulation indicated, the 322 origin of these peaks is of comparable proportion to t_1 and t_2 , and their frequent alternation (P₁₁ 323 ≤ 0.5). Hence, this is characteristic of the structure of prismatic halloysite. Although there are

not a significant number of successful HRTEM images, it is probable that the pseudo-mirror
plane in the kaolinite layer being perpendicular to tube or prismatic axis, or the kaolinite layer
rolling around the axis normal to the pseudo-mirror plane could represent other structural
characteristics of halloysite. The origin of these features will be considered in the following
paragraph (Fig. 9).

329 It seems natural and undisputed that initially halloysite grows as a hydrated form, halloysite 330 (10Å), without hydrogen, bonds between the basal oxygen and hydroxyl across the interlayer. It 331 is probable that the roll direction of the layer at this initial stage is the same as that found in the 332 present specimen, about the normal of the pseudo-mirror plane in the kaolinite layer (Fig. 9a). 333 Although we have no evidence, it is suspected that the dioctahedral 1:1 layer can bend more 334 easily along this direction to relax the lateral misfit between the tetrahedral and octahedral 335 sheets. Next, the water molecules are removed from the interlayer to form halloysite (7\AA) (Fig. 336 9b). At this stage, because the layers are not flat but cylindrical, and cannot realize the specific 337 positional relation between adjacent layers all over the circumference, hydrogen bonding across 338 the interlayer must be limited in a circuit. Although the number of successful HRTEM images 339 was limited, Kogure et al. (2011) reported the stacking structure of cylindrical halloysite with a 340 pseudo-mirror plane normal to the tube axis and no lateral stagger between adjacent layers, as 341 illustrated in Figure 9b. In this configuration, t_1 or t_2 layer displacement, which forms stable 342 hydrogen bonding in kaolinite, does not exist. During the probable long-term ripening of 343 halloysite cylindrical forms are converted to prismatic ones with sector domains in which the 344 kaolinite layers are flat. During this deformation, each layer moves relative to the adjacent layer 345 by $\pm b/3$ (or $\pm b/6$) along the tube-axis (the black arrows in Figure 9b), to form an interlayer 346 configuration with hydrogen bonding such as that in kaolinite (Fig. 9c). At this time, in order to 347 minimize deformation of the external form of halloysite, the proportion of the displacements of 348 $+ b/3 (= \tau_+)$ and $- b/3 (= \tau_-)$ should be comparable and they should make frequent exchanges

along the stacking as can be seen via the black arrows in Figure 9b, which results in a P_{11} value less than 0.5.

351

CONCLUDING REMARKS

352 If our model for the stacking structure and its formation pathway is accurate, the structural 353 difference between kaolinite and halloysite is related to their formation processes. For kaolinite, 354 the crystals grow via layer by layer or spiral growth mechanisms (e.g., Kogure et al., 2010). 355 During these growth processes, a new kaolinite layer and hydrogen bonding at the interlayer is 356 formed simultaneously. Our previous HRTEM research (Kogure and Inoue, 2005; Kogure et al., 357 2010) reported that stacking structure regarded as "growth faults" (Bookin et al., 1989) or 358 "enantiometric twins" (Kogure et al., 2010) which are formed with a condition probability P_{11} 359 more than 0.5 are common in kaolinite. This implies that, in kaolinite, stacking with the same 360 layer displacement to the adjacent layer is thermodynamically more favorable than stacking 361 with the different layer displacement. In prismatic hallovsite, by contrast, our model suggests 362 that the hydrogen bonds in the interlayer are generated after the formation of concentric or 363 spiraled kaolinite layers. In this case, it is probable that the kinetic factor to minimize the 364 deformation of the external shape to form hydrogen bonding promotes the tendency to form a 365 regular interstratification of the different layer displacements.

366

ACKNOWLEDGMENTS

367 The authors are grateful to E. Fujii for the XRD measurements and preparation of the

368 specimens for SEM and TEM. The authors also thank to M. Mellini and G.J. Churchman for

369 their reviews of the manuscript and valuable suggestions. This work was supported by

370 Grants-in-Aid for Scientific Research 24340133 and 21107005 from the Japan Society for the

371 Promotion of Science (JSPS) and Ministry of Education, Culture, Sports, Science and

372 Technology (MEXT), respectively. V.A. Drits acknowledges the Russian Foundation for Basic

373 Research, Grant 2012-05-00381.

REFERENCES CITED 374 375 Bailey, S.W. (1969) Polytypism of trioctahedral 1:1 layer silicates. Clays and Clay Minerals, 376 17, 355-371. 377 Bailey, S.W. (1988) Polytypism of 1:1 layer silicates. In S.W. Bailey, Ed., Hydrous 378 Phyllosilicates (Exclusive of Micas), p. 9-27. Reviews in Mineralogy, Mineralogical 379 Society of America, Washington, D.C. 380 Bailey, S.W. (1990) Halloysite – A critical assessment. In: Farmer, V.C and Tardy, Y. (Eds), Proceedings of the 9th International Clay Conference, Strasbourg, France. Sci. Geol. Mem. 381 382 86: 89-98. 383 Bates, T.F. and Comer, J.J. (1958) Further observations on the morphology of chrysotile and 384 halloysite. Clays and Clay Minerals, 6, 237-248. 385 Bates, T.F., Hildebrand, F.A., and Swineford, A. (1950) Morphology and structure of endellite 386 and halloysite. American Mineralogist, 35, 463-484. 387 Bish, D.L. and von Dreele, R.B. (1989) Rietveld refinement of non-hydrogen atomic positions 388 in kaolinite. Clays and Clay Minerals, 37, 289-296. 389 Bookin, A.S., Drits, V.A., Plancon, A., and Tchoubar, C. (1989) Stacking faults in kaolin-group 390 minerals in the light of real structural features. Clays and Clay Minerals, 37, 297-307. 391 Chekin S.S., Samptoin N.D., and Finko, V.I. (1972) Formation of halloysite by weathering of 392 oligoclase. Izvestiya Akademii Nauk SSSR, Seriya geologicheskaya, N11, 88-114 (in 393 Russian). 394 Chekin, S.S., Samotoin, N.D., and Finko, V.I. (1976) Spiral-cylindrical shape and growth of 395 halloysite crystallites. Izvestiya Akademii Nauk SSSR, Seriya geologicheskaya, N 6, 396 111-124 (in Russian).

- 9/10
- 397 Chukhrov, F.V. and Zvyagin, B.B. (1966) Halloysite, a crystallochemically and
- 398 mineralogically distinct species. Proceedings of the International Clay Conference, 1966 (L.
- Heller and A. Weiss, editors). Israel Program for Scientific Translation, Jerusalem, Israel.
- 400 Churchman, G.J., Davy, T.J., Aylmore, L.A.G, Gilkes, R.J. and Self, P.G. (1995)
- 401 Characteristics of fine pores in some halloysites. Clay Minerals, 30, 89-98.
- 402 Cressey, B.A. and Zussman, J. (1976) Electron microscopic studies of serpentinites. Canadian
- 403 Mineralogist, 14, 307-213.
- 404 Diamond, S. and Bloor, J.W. (1970) Globular cluster microstructure of endellite (hydrated
- halloysite) from Bedford, Indiana. Clays and Clay Minerals, 18, 309-312.
- 406 Dixon, J.B. and McKee, T.R. (1974) Internal and external morphology of tubular and
- 407 spheroidal halloysite particles. Clays and Clay Minerals, 22, 127-137.
- 408 Drits, V.A. and Tchoubar, C. (1990) X Ray Diffraction by Disordered Lamellar Structures:
- 409 Theory and Applications to Microdivided Silicates and Carbons. Berlin; Tokyo:
- 410 Springer-Verlag, XVII+648 pp.
- 411 Ďurovič, S. and Weiss, Z. (1986) OD structures and polytypes. Bulletin de Minéralogie, 109,
 412 15-29.
- 413 Guggenheim, S., Adams, J.M., Bergaya, F., Brigatti, M.F., Drits, V.A., Fromoso, M.L.L.,
- 414 Galan, E., Kogure, T., Stanjek, H., and Stucki, J.W. (2009) Nomenclature for stacking in
- 415 phyllosilicates: Report of the Association Internationale pour l'Etude des Argiles (AIPEA)
- 416 nomenclature committee for 2008, Clay Minerals, 44, 157-159.
- 417 Hayashida, M., Nomaguchi, T., Kimura, Y., and Takai, Y. (2007) Development of
- 418 computer-assisted minimal dose system with beam blanker for TEM. Micron, 38, 505-512.
- 419 Honjo, G. and Mihara, K. (1954) A study of clay minerals by electron-diffraction diagrams due
- 420 to individual crystallites. Acta Crystallographica, 7, 511-513.

- 421 Honjo, G., Kitamura, N., and Mihara, K. (1954) A study of clay minerals by means of
- 422 single-crystal diagrams the structure of tubular kaolin. Clay Minerals Bulletin. 2, 133-141.
- 423 Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B. (2005) Halloysite
- 424 clay minerals a review. Clay Minerals, 40, 383-426.
- 425 Kilaas, R. (1998) Optimal and near-optimal filters in high-resolution electron microscopy.
- 426 Journal of Microscopy, 190, 45-51.
- 427 Kirkman, J.H. (1981) Morphology and structure of halloysite in New Zealand tephras. Clays
- 428 and Clay Minerals, 29, 1-9.
- 429 Kogure, T. and Inoue, A. (2005a) Determination of defect structures in kaolin minerals by
- 430 high-resolution transmission electron microscopy (HRTEM). American Mineralogist, 90,
- 431 85-89.
- 432 Kogure, T., Jige, M., Kameda, J., Yamagishi, A., Miyawaki, R., and Kitagawa, R. (2006a)
- 433 Stacking structures in pyrophyllite revealed by high-resolution transmission electron
- 434 microscopy (HRTEM). American Mineralogist, 91, 1293-1299.
- 435 Kogure, T., Kameda, J., Matsui T., and Miyawaki, R. (2006b) Stacking structure in disordered
- talc: interpretation of its X-ray diffraction pattern by using pattern simulation and
- high-resolution transmission electron microscopy. American Mineralogist, 91, 1363-1370.
- 438 Kogure, T., Eilers, P.H.C., and Ishizuka, K. (2008) Application of optimum HRTEM noise
- filters in mineralogy and related sciences. Microscopy and Analysis, 22, S11-S14.
- 440 Kogure, T., Johnston, C.T., Kogel, J.E. and Bish, D. (2010) Stacking disorder in a sedimentary
- 441 kaolinite. Clays and Clay Minerals, 58, 63-72.
- Kogure, T., Mori, K., Kimura, Y. and Takai, Y. (2011) Unraveling the stacking structure in
- tubular halloysite using a new TEM with computer-assisted minimal-dose system, American
- 444 Mineralogist, 96, 1776-1780
- 445 Kohyama, N., Fukushima, K. and Fukami, A. (1978) Observation of hydrated form of tubular

- 447 Minerals, 26, 25-40.
- 448 Marks, L.D. (1996) Wiener-filter enhancement of noisy HREM images. Ultramicroscopy, 62,
- 449 43-52.
- 450 Neder, R.B., Burghammer, M., Grasl, T., Schulz, H., Bram, A., and Fiedler, S. (1999)
- 451 Refinement of the kaolinite structure from single-crystal synchrotron data. Clays and Clay
- 452 Minerals, 47, 487-494.
- 453 Plançon, A., Giese, R.F., Snyder, R., Drits, V.A., and Bookin, A.S. (1989) Stacking faults in the
- 454 kaolin-group minerals defect structures of kaolinite. Clays and Clay Minerals, 37, 203-210.
- 455 Robertson, I.D.M. and Eggleton, R.A. (1991) Weathering of granitic muscovite to kaolinite and
- halloysite and of plagioclase-derived kaolinite and halloysite. Clays and Clay Minerals, 39,113-126.
- 458 Singh, B. (1996) Why does halloysite roll? A new model. Clays and Clay Minerals, 44,
- 459 191-196.
- 460 Singh, B. and Gilkes, R.J. (1992) An electron optical investigation of the alteration of kaolinite
 461 to halloysite. Clays and Clay Minerals, 40, 212-219.
- 462 Suitch, O.R. and Young, R.A. (1983) Atomic position in highly ordered kaolinite. Clays and
- 463 Clay Minerals, 31, 357-366.
- 464 Treacy, M.M.J., Newsam, J.M. and Deem, M.W. (1991) A general recursion method for
- 465 calculating diffracted intensities from crystals containing planar faults. Proceedings of the466 Royal Society of London A, 433, 499-520.
- 467 Yada, K. and Wei, L. (1987) Polygonal microstructures of Povlen chrysotile observed by
- 468 high-resolution electron microscopy. Abstracts Sixth Meeting of the European Clay Groups
- 469 (Seville), 596-597.

- 470 Zvyagin, B.B. (1967) Electron diffraction analysis of clay mineral structures. New York:
- 471 Plenum Press, XVI+364 pp.
- 472
- 473
- 474

475 Figure captions.

470	
477	FIGURE 1. XRD pattern of halloysite from Olkhon Island, Lake Baikal, Russia, taken at
478	ambient conditions. The calculated patterns for kaolinite including all reflections and those
479	with $k = 3n$ are also plotted for comparison. Although they are broadened, most halloysite peaks
480	are also identified in the calculated kaolinite pattern with $k = 3n$. However, those indicated with
481	the arrows 1 and 2 on the 02, 11 band do not correspond to kaolinite.
482	
483	FIGURE 2. FE-SEM images of the halloysite, showing polygonal cross-sections as indicated
484	with the white arrows. The thin black arrows in (c) indicate that the surface of the cylindrical
485	halloysite actually consists of elongated faces parallel to the cylindrical axis (see also Fig. 3c).
486	
487	FIGURE 3. (a-c) Cross-sectional TEM images of several prismatic halloysites. (d) SAED
488	pattern from the cross-section in (c). The two arrows indicate the ring corresponding to 7.2 and
489	3.6 Å. Eighteen intensity maximums with an almost equal interval are observed in the rings,
490	indicating that the prism is actually a regular octadecagon with eighteen sectors.
491	
492	FIGURE 4. (left) Cross-section of a prismatic halloysite with three major sectors. One-half of
493	the prism in the top-left disappeared during the ion-milling sample preparation. In addition, the
494	crystals around the center and outer surface amorphized before TEM recording. (Right) The
495	SAED pattern from the prism is comprised of a superposition of three reciprocal lattices. Three
496	sectors in the image correspond to the numbered reciprocal lattices.
497	

498

499 FIGURE 5. (a) Low-magnified image of a halloysite grain, showing the area of the HRTEM 500 image in (b). Filtered HRTEM image in the rectangle in (a). The squares and triangles at the 501 individual kaolinite layers indicate the types of contrast relating to the layer orientation defined 502 in Kogure and Inoue (2005). The square bracket indicates a position where the stacking is 503 regarded as the two-layer structure proposed by Chukhrov and Zvyagin (1966). (c) Filtered 504 HRTEM image of the side of another prismatic grain, showing a similar contrast. The 505 interlayers indicated with white arrows show no lateral shift between the contrasts at the two 506 layers across the interlayer.

507

FIGURE 6. (a) Bright-field TEM image of a thick halloysite prism, showing the position and size of selected-area aperture used to acquire the SAED patterns in (b) and (c). (b) SAED pattern from the area selected by the larger aperture with "b" in (a). (c) SAED pattern from the side of the prism, using the smaller aperture with "c" in (a). Note that the intensity maximums indicted with the arrows in (b), which were previously considered the 020 peak, have almost disappeared in (c). The white bracket in (c) indicates the diffraction row and its range for which the intensity distribution is simulated in Figure 8.

515

516 **FIGURE 7.** Simulated XRD patterns for halloysite as a function of P_{11} , the condition 517 probability to continue the layer displacement of t_1 over t_1 . The experimental pattern is also 518 shown at the top.

9/10

- 521 **FIGURE 8.** Calculated intensity distribution on the diffraction rows next to 00*l* in the SAED
- 522 pattern in Figure 6c. The unit for the horizontal axis is the value of *l* for two-layer periodicity.
- 523 The experimental intensity distribution along the diffraction row indicated with the white
- 524 bracket in Figure 6c is also shown at the top.
- 525
- 526 **FIGURE 9.** Schematic drawing for the ripening pathway of halloysite. See the text for details.

Kogure et al., Figure 1

halloysite (10 Å)

