1	Using the chemical composition of carbonate rocks on Mars as a record of
2	secondary interaction with liquid water
3	Revision 2
4	
5	E.M. Hausrath ¹
6	A. A. Olsen ²
7	
8	¹ University of Nevada, Las Vegas 4505 S. Maryland Parkway, Las Vegas, NV 89154
9	USA Elisabeth.Hausrath@unlv.edu
10	² Department of Earth Sciences, University of Maine, 5790 Bryand Global Sciences
11	Center, Orono, Maine, 04469 amanda.a.olsen@maine.edu.
12	
13	Abstract
14	In the search for habitable environments on Mars, sites that have been altered by liquid
15	water represent an important target. Quickly dissolving and precipitating carbonates,
16	found in multiple locations on Mars, represent a key potential mineral indicator of
17	locations with a history of aqueous alteration, and therefore possible habitability. Recent
18	liquid surface water on Mars may differ significantly from the fluids, either sedimentary,
19	hydrothermal or pedogenic, that formed carbonate minerals on Mars. Interactions of
20	carbonate rocks with such recent surface water may therefore cause changes in chemistry
21	and mineralogy with depth that form weathering profiles recording the conditions of
22	alteration. To test the prediction that martian carbonates may record a signature of
23	aqueous alteration on Mars, we performed reactive transport modeling of putative

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4187	7
carbonate outcrops on Mars using the reactive transport code CrunchFlow.	Model inputs
included two parent rocks chosen based on the carbonate-rich rock at Guse	v Crater,

7/23

25	included two parent rocks chosen based on the carbonate-rich rock at Gusev Crater,
26	Comanche, one consisting of 60% magnesite, 20% siderite and 20% porosity, and one
27	consisting of 50% magnesite, 20% siderite, 9% calcite, 1.6% rhodochrosite and 20%
28	porosity. Reacting solutions consisted of four scenarios: acidic, sulfate-containing
29	solutions, perhaps resulting from an acid vapor scenario; dilute solutions resulting from
30	martian analog basalt dissolution; concentrated solutions resulting from modeled
31	evaporation of the dilute solutions; and solutions based on the results of the Phoenix
32	Lander. Modeling was performed under low oxidation and high oxidation conditions.
33	Based on the modeling results, a carbonate rock would become enriched in siderite upon
34	interaction with acidic water under low oxidation conditions; the same rock would
35	become enriched in calcite after interaction with Ca-enriched solutions. A carbonate rock
36	reacting under more oxidizing conditions would preferentially dissolve siderite, leaving a
37	surface enriched in magnesite and ferric oxide. Therefore, the Mg-rich carbonates on
38	Mars are consistent with possible interaction with liquid water under oxidizing
39	conditions, similar to those measured at the Phoenix landing site. Future detailed
40	chemical and mineralogical profiles through weathered rock into the unaltered interior of
41	carbonate rocks may therefore allow the quantitative interpretation of the aqueous history
42	and possible habitability of locations on Mars.
43	Keywords: Mars, weathering, carbonates, siderite, calcite, reactive transport modeling,
44	dissolution, precipitation

45

24

46

Introduction:

47	Water is a key component for life on Earth, and is considered a likely necessary
48	component for life on Mars. Therefore, the search for habitable environments on Mars
49	includes a search for environments altered by liquid water. Multiple mineralogies have
50	been used as indicators of martian environments that were likely altered by liquid water.
51	The iron oxide hematite was used as an indicator of likely interaction with liquid water at
52	the landing site of the Mars Exploration Rover Opportunity (Christensen et al., 2000);
53	similarly, clay minerals have been used as indicators of the climate history recorded at
54	Gale Crater, the landing site of the MSL Curiosity (Milliken et al., 2010). The mineral
55	olivine has been used to place constraints on liquid water on Mars (Stopar et al., 2006;
56	Olsen and Rimstidt, 2007; Hausrath et al., 2008a; Hausrath et al., 2008b), and jarosite on
57	the duration of liquid water at Meridiani Planum (Elwood Madden et al., 2009).
58	Carbonates both dissolve and precipitate at low pressures and temperatures and therefore
59	represent a key mineral indicator of potential water-rock interaction.
60	Several recent results document the presence of carbonates in multiple locations
61	on Mars. Results from the Mars Exploration Rover Spirit document Mg- and Fe-rich
62	carbonates present in outcrops at 16-34 wt % in Columbia Hills in Gusev Crater, Mars
63	(Morris et al., 2010). Similarly, CRISM data have been used to detect Mg-rich
64	carbonates in the Nili Fossae region (Ehlmann et al., 2008) and Ca- and Fe-rich
65	carbonates in Leighton Crater (Michalski and Niles, 2010). Pedogenic carbonates have
66	also been found by the Phoenix Lander in martian polar soils (Boynton et al., 2009;
67	Sutter et al., 2012). These recent observations are consistent with previous observations
68	of carbonates. Telescopic measurements suggested the presence of carbonates in
69	airborne dust and at the surface (Pollack et al., 1990; Calvin et al., 1994; Lellouch et al.,

70	2000), and thermal emission spectrometry measurements of dust are consistent with the
71	presence of Mg-rich carbonates at less than 5% (Bandfield et al., 2003; Hamilton et al.,
72	2005). Ca-, Mg- and Fe-rich carbonates, including calcite, dolomite-ankerite, and
73	magnesite-siderite have also been detected in martian meteorites (Mittlefehldt, 1994;
74	Harvey and McSween, 1996). Carbonates, which exist in multiple locations on Mars, are
75	therefore key potential mineral indicators of the aqueous history of those locations.
76	Observations of the martian surface provide important evidence of surface water
77	on Mars. Enrichments in S, Cl and Br, and apparent correlation of Mg with S suggest
78	mobilization and transport by water through the soil column exposed by the rover's
79	wheels in the Burroughs Subclass soils at Gusev Crater (Haskin et al., 2005; Wang et al.,
80	2006; Ming et al., 2008). Similarly, recent measurements of perchlorate at the Phoenix
81	landing site suggest transport of thin films of liquid water in the soil (Cull et al., 2010).
82	Pedogenesis has also been documented on Mars by Amundson et al. (2008) based on loss
83	of major rock-forming elements and addition of elements likely present as soluble salts.
84	Recent observations of recurring slope lineae appearing and lengthening also suggest the
85	presence of liquid brines currently present near the surface of Mars (McEwen et al.,
86	2011). Previous calculations suggest the possibility of liquid water in concentrated salt
87	solutions (Ingersoll, 1970), and in gullies and depressions where thin ice can be melted
88	by insolation (Hecht, 2002). In addition, carbon isotope measurements by the Mars
89	Phoenix spacecraft indicate strong influences by liquid water, suggesting low temperature
90	water-rock interaction occurring throughout martian history (Niles et al., 2010). Pre-
91	terrestrial Ca-carbonates are also present in a shergottite meteorite (Gooding et al., 1988).

92 Recent liquid surface water on Mars may be significantly different than the fluids 93 that formed carbonates on Mars. The surface of a carbonate rock that has interacted with 94 liquid water since its formation likely contains a different signature observable from orbit 95 than a pristine rock. In similar scenarios on Earth, liquid surface waters that have a very 96 different composition than the fluids that formed the carbonate rocks can interact with 97 those rocks. For example, interaction of existing carbonate rocks with meteoric 98 precipitation on Earth can result in karst landscapes and formation of limonite 99 (amorphous hydrous ferric oxides), and siderite can replace calcite in anoxic diagenetic 100 environments on Earth. Carbonate rocks that have interacted with liquid surface water on 101 Mars since their formation may therefore be very different from unreacted carbonate 102 rocks. 103 When rocks or soils interact with fluids, changes in chemistry and mineralogy can 104 occur with depth, forming weathering profiles. Such profiles preserve characteristics of 105 those interactions with liquid water, including factors such as pH and duration. In order 106 to quantitatively interpret weathering profiles on Earth and on Mars, reactive transport 107 modeling has been used e.g. (Maher et al., 2006; Zolotov and Mironenko, 2007b; Zolotov 108 and Mironenko, 2007a; Hausrath et al., 2008a; Maher et al., 2009; Navarre-Sitchler et al., 109 2009; Navarre-Sitchler et al., 2011; Zolotov and Mironenko, 2011). Reactive transport 110 modeling can be particularly useful as a predictive tool, used to predict alteration that 111 would result from a particular set of weathering reactions on Mars. Carbonate dissolution 112 and precipitation rates have been previously studied, allowing their use in reactive 113 transport modeling. 114 **Carbonate Dissolution and Precipitation:**

7/23

115	The dissolution of carbonate minerals has been studied extensively e.g. (Sjoberg,
116	1976; Plummer et al., 1978; Busenberg and Plummer, 1982; Rickard and Sjoberg, 1983;
117	Sjoberg and Rickard, 1983; Chou et al., 1989; Schott et al., 1989; Alkattan et al., 1998;
118	Shiraki et al., 2000; Duckworth and Martin, 2003; Duckworth and Martin, 2004;
119	Arvidson et al., 2006; Jordan et al., 2007; Pokrovsky et al., 2009a; Pokrovsky et al.,
120	2009b). Here, in order to facilitate comparison between carbonate minerals of different
121	compositions, mineral dissolution rate laws were chosen from experiments that compared
122	two or more of the following carbonate minerals whenever possible: magnesite (Chou et
123	al., 1989), siderite (Duckworth and Martin, 2004), rhodochrosite (Duckworth and Martin,
124	2003), calcite (Chou et al., 1989), and dolomite (Chou et al., 1989). Rates are plotted
125	from the rate laws as the form
126	$R = k_{H^+} a_{H^+} + k_{H_2O} , \qquad (Eq. 1)$
127	where <i>R</i> is the far from equilibrium rate (mol m ⁻² s ⁻¹), k_{H^+} is the proton-promoted
128	dissolution rate constant, a_{H^+} is the activity of hydrogen ions, and k_{H2O} is the dissolution
129	rate constant under neutral conditions. Carbon dioxide has been recently shown to have
130	only a minor effect on carbonate dissolution rates aside from its effect on pH (Pokrovsky
131	et al., 2009b), and a term for H_2CO_3 is therefore not included in these calculations. This
132	is a reasonable assumption at current martian CO_2 concentrations – CO_2 concentrations
133	may have been much higher and therefore more important on early Mars.
134	Rates of carbonate dissolution were calculated over a range of pH values (Figure
135	1). A comparison of these rates indicates that dissolution follows the order: calcite $>$
136	dolomite > rhodochrosite > siderite > magnesite. This order has been previously reported
137	and attributed to the rate of water molecule exchange in the hydration sphere of dissolved

138	cations in solution (Pokrovsky and Schott, 2002), a trend that has been noted for
139	carbonates and other mineral groups (Casey and Westrich, 1992). This suggests that,
140	although the exact mineralogy of the phases present on Mars is not known, this
141	relationship between cation chemistry and dissolution rate will likely be relevant to
142	carbonate weathering on Mars.
143	Precipitation rates for carbonates also vary strongly as a function of cation
144	identity. Inorganic carbonate precipitation rates, either measured or calculated to a
145	temperature range of ~ 25 ° C, have been published for a variety of minerals e.g.
146	(Romanek et al., 1992; Sternbeck, 1997; Jiménez-López et al., 2001; Jimenez-Lopez and
147	Romanek, 2004; Saldi et al., 2009), and results indicate that precipitation rates follow the
148	trend calcite > rhodochrosite > siderite> magnesite (Figure 2), with magnesite
149	precipitation kinetically inhibited at low temperatures (Saldi et al., 2009). This trend has
150	been documented previously, and decreasing precipitation rates attributed to the average
151	surface density charge of the cation surrounded by water molecules in solution
152	(Lippmann, 1973; Reddy and Wang, 1980; Mucci and Morse, 1983; Mucci, 1987;
153	Deleuze and Brantley, 1997). Therefore, although the exact carbonate phases are not
154	known on Mars, the trends in dissolution and precipitation described here are likely to be
155	relevant.
156	In order to test the types of signatures that might result from the interactions of
157	carbonate rocks with liquid water on Mars, we reacted two different carbonate rocks
158	corresponding to observed carbonate rocks on Mars (Morris et al., 2010) under scenarios
159	corresponding to possible aqueous alteration on Mars. Four possible aqueous scenarios

160 were modeled, including: initially dilute solutions resulting from dissolution of basalt

7/23

162	McLennan, 2006); acidic, sulfate-containing solutions, possibly corresponding to
163	solutions resulting from interaction of water with volcanic acidic aerosols such as under
164	acid vapor or acid fog conditions (Settle, 1979; Banin et al., 1997; Tosca et al., 2004;
165	Golden et al., 2005; Hausrath et al., in press); and solutions based on measurements by
166	the Phoenix lander (Boynton et al., 2009; Kounaves et al., 2009; Kounaves et al., 2010a;
167	Kounaves et al., 2010b; Quinn et al.). The pH of the dilute solutions was varied over a
168	range of possible pH values in order to test how dissolution and precipitation change as a
169	function of solution pH, while the acid vapor conditions and concentrated solutions were
170	tested under acidic conditions, and the solution based on Phoenix measurements under
171	alkaline conditions. The implications of these modeled alterations to observations of
172	Mars possible from orbiters and landers are then discussed.
173	
174	Methods
175	Model inputs:

176 In order to interpret possible signatures of aqueous alteration on Mars, interaction of Mars-relevant solutions with Mars-relevant carbonate rocks was modeled using 177 CrunchFlow. We made the following assumptions based on known compositions of 178 179 martian materials. We chose two compositions of carbonate rocks based on observations 180 from the Mars Exploration Rover Spirit (Morris et al., 2010). The first modeled rock 181 consists of (by volume) 50% magnesite, 20% siderite, 9% calcite, and 1.6% 182 rhodochrosite. This composition was chosen to allow the presence of Ca and Mn within 183 the carbonate rocks (Morris et al., 2010). The second modeled rock consisted of (by

184	volume) 60% magnesite and 20% siderite, which assumes the presence of only magnesite
185	and siderite in the parent carbonate rock, after Morris et al. (2010). In both cases, initial
186	porosity was assumed to be 20%, as a reasonable porosity for carbonate rocks (Moore,
187	2001). Secondary minerals allowed to precipitate included siderite, calcite,
188	rhodochrosite, magnesite, goethite and gypsum. Mixed-cation carbonates, including
189	dolomite, were not allowed to precipitate because of sparse kinetic data. Inorganic
190	dolomite precipitation is not common at low temperatures and is therefore not likely to
191	occur under martian weathering conditions (Arvidson and Mackenzie, 1999; Sanchez-
192	Roman et al., 2009). Model inputs, including mineral composition, surface area,
193	equilibrium constants, dissolution and precipitation rate constants, and activation energies
194	are presented in Table 1.
195	The total reactive surface area, the actual mineral surface area that reacts with
196	aqueous solutions, is difficult to constrain even in carefully controlled laboratory
197	experiments, and has been considered to be the largest source of uncertainty in terrestrial
198	field calculations of mineral dissolution rates (White, 2002). Reactive surface area may
199	be better approximated by geometric surface area based on the size of the particle than by
200	surface area measured by gas adsorption, as is common in laboratory experiments
201	(Gautier et al., 2001). During chemical weathering in natural environments, the mineral
202	surface actually in contact with weathering fluids is also difficult to determine, but may
203	be only 0.1 to 10% of the measurable surface area (Velbel, 1993).
204	In order to normalize the mineral dissolution rates to relevant surface areas,
205	therefore, we calculated surface roughness for carbonate minerals from BET-measured

surface areas and geometric surface areas from the literature (Plummer et al., 1978;

207 Pokrovsky and Schott, 1999; Duckworth and Martin, 2003; Pokrovsky et al., 2005):

208
$$\lambda = \frac{A_{BET}}{A_{geo}}$$
 (Eq. 2)

where λ is the dimensionless surface roughness, A_{BET} is the specific surface area in m²/g measured by gas adsorption, and A_{geo} is the geometric surface area calculated using the equation

212
$$A_{geo} = \frac{6V_m}{W_m D}$$
 (Eq. 3)

where V_m is the molar volume in m³/mol, W_m is the molar mass in g/mol, and *D* is the grain diameter in m. These calculated surface roughnesses were multiplied by the geometric surface area calculated for a hypothetical 1 mm spherical grain of each carbonate mineral used in the model to obtain a mineral surface area for inclusion in the model. The size of the 1 mm grain is based upon the scale of the surface roughness of the carbonate rock observed by the Mars Exploration Rover Spirit (Morris et al., 2010),

219 which may result from dissolution.

Previous measurements indicate that, in terrestrial environments, 90-99.9% of the available mineral surface area is likely not in contact with solution (Velbel, 1993). We therefore assume that martian carbonates are likely to be in the lower range of wetted surfaces and therefore decreased the specific surface area used in our calculations by three orders of magnitude. Although these surface areas are approximations, they are consistent with the assumptions listed above, and are sufficient to test a mineralogical signature of aqueous alteration.

227	Aqueous transport consisted of diffusive transport, with a tortuosity of 0.5 (Saner
228	et al., 1996; Mair et al., 1999; Azar et al., 2008), an initial porosity of 20% (Moore 2001),
229	and 100% liquid saturation. Species specific diffusion coefficients taken from the
230	literature are corrected for temperature using an activation energy of 4.5 kcal/mol (Maher
231	et al., 2006). Electrochemical migration is also calculated within the model using the
232	Nernst-Planck equation (Giambalvo et al., 2002), which preserves electroneutrality.
233	Although abundant geomorphic evidence for liquid water exists on Mars e.g.
234	(Carr, 1996), the characteristics of that liquid water remain poorly constrained.
235	Therefore, we tested four different scenarios for the interaction of aqueous solutions with
236	carbonates. In Scenario 1, we reacted acidic water containing sulfate but no other cations
237	or anions with the carbonate rock, which may correspond to solutions resulting from
238	reaction of water with volcanic acidic aerosols such as under acid vapor or acid fog
239	conditions (Settle, 1979; Banin et al., 1997; Tosca et al., 2004; Golden et al., 2005;
240	Hausrath et al., in press). Scenario 2 used dilute solutions formed from the alteration of a
241	Mars-analog basalt. We chose cation concentrations after Tosca et al. (2004), except that
242	the Fe concentrations were reduced to zero and solutions contain sulfate (Table 2). Iron
243	concentrations in input solutions were reduced to zero to account for possible oxidation
244	and precipitation at the surface. In order to constrain the effects of solutions possibly
245	concentrated by evaporation, in Scenario 3, we used five more concentrated solutions
246	based on Tosca and McLennan (2006). Concentrated solutions, including brines, may
247	play or have played an important role on Mars (Brass, 1980; Knauth and Burt, 2002;
248	Sears and Chittenden, 2005; Tosca and McLennan, 2006; Zolotov and Mironenko,
249	2007b; Altheide et al., 2009; Elwood Madden et al., 2009; Hausrath and Brantley, 2010).

250 For each concentrated solution, the enriched cation concentrations were assumed to be 251 10x higher than the concentrations in Tosca et al. (2004), except that Fe was reduced as 252 described above. In Scenario 4, we used solutions based on measurements from the 253 Phoenix lander (Boynton et al., 2009; Kounaves et al., 2009; Kounaves et al., 2010a; 254 Kounaves et al., 2010b; Quinn et al.). Based on measurements from the Phoenix lander, 255 Ca, Mg and bicarbonate concentrations were assumed to be in equilibrium with calcite 256 and magnesite, and sulfate in equilibrium with gypsum. All equilibrium calculations 257 were performed in PhreeqC (Parkhurst and Appelo, 1999). K concentrations used were 258 the concentrations measured in the soil-solution slurries from Phoenix adjusted for 20% 259 porosity (Table 2) (Kounaves et al., 2010a). Within the model, solution compositions, 260 including pH, were updated for each cell at each time step as a result of geochemical 261 reactions including dissolution and precipitation, and activity coefficients are calculated 262 using the extended Debye-Huckel model.

To test the effect of oxidation, all modeling was performed under two oxidation conditions. One, assumed to be a lower limit, was O_2 in equilibrium with atmospheric O_2 set to current concentrations on Mars. This condition might reflect less oxidizing soils or conditions beneath the surface. For the other, more oxidizing condition, the aqueous O_2 concentration was set to 0.002625 mol, based on tests of materials corresponding to the Phoenix results (Quinn et al., 2011), and assuming a porosity of 20%.

Temperature was set to 1° C, and pH varied. Scenario 2 was modeled at solution pH values ranging from 2-8, while Scenarios 1, 3 and 4 were each modeled under one pH condition (pH=2, 4 and 7.7 respectively). Pore water cation concentrations within the carbonate rock were assumed to be in equilibrium with the carbonates, as calculated by

273 PhreeqC (Parkhurst and Appelo, 1999), except for Scenario 1, in which case they were274 set to zero.

275

276 *Reactive transport modeling:*

277 Modeling was conceptualized as a one dimensional column of 100 cells 278 representing a carbonate outcrop, with a Dirichlet boundary for aqueous and gaseous 279 species at the rock-atmosphere surface, and a flux boundary at the base of the column.

280 Solution diffused from the top of the column to the base. The simulations use a global

281 implicit reactive transport approach (GIMRT) which solves transport and

282 multicomponent reactions simultaneously (Steefel and Lasaga, 1994; Steefel and

283 MacQuarrie, 1996).

We used parallel rate laws to incorporate the strong pH dependence of carbonate dissolution (Table 1; Equation 1). In order to model the dependence on saturation state for precipitation rates of each mineral, a separate precipitation rate law was incorporated, using measured values for the dependence on the degree of supersaturation (*m*) from the literature (Table 1). Models were run until the modeled weathering profile did not change with additional time except for increasing weathering advance. When convergence had been achieved after each time step, the mineral volume,

surface areas, and porosity were each updated within CrunchFlow. The total surface area

was updated according to a shrinking sphere model (Levenspiel, 1972; Lasaga, 1998;

Burkin, 2001). The total porosity (initially 20% as a reasonable approximation of a

- 294 carbonate rock (Moore, 2001)), is first calculated from the sum of the mineral volume
- fractions input into the model (Table 1). In order to most realistically model the behavior

of the system, the model was set to the porosity_update option, such that the total porosity was updated after each time step. The minimum porosity was set to 3%.

- 298
- 299Results and Discussion

300 In order to test the prediction that reactions of carbonates with aqueous solutions 301 would result in chemical and mineralogical changes that could act as indicators of 302 aqueous interaction on Mars, we performed reactive transport modeling simulating 303 interaction of two Mars-relevant carbonate rocks with four types of Mars-relevant 304 aqueous solutions at a variety of pH values, under low oxidation conditions (in 305 equilibrium with atmospheric O_2) and high oxidation conditions (mmol concentrations of 306 O₂ in solution based on Phoenix solutions (Quinn et al., 2011)). Outputs of this reactive 307 transport modeling include parameters such as bulk chemistry and mineralogy, surface 308 area and porosity of the porous medium, gas concentrations, pore water chemistry and 309 speciation, pH, and the saturation state and dissolution and precipitation rates of the 310 minerals. To compare modeling results most directly to observations from Mars, the 311 volume of the minerals in the model output is plotted as a function of depth from the 312 original rock surface (Figures 3, 4, and 5). Results of the modeling are then compared 313 with observations from Mars to identify potential aqueous indicators.

Four aqueous scenarios were compared, Scenario 1, acidic aqueous solution containing sulfate and no cations, possibly corresponding to solutions resulting from interaction of water with volcanic acidic aerosols such as under acid vapor or acid fog conditions (Settle, 1979; Banin et al., 1997; Tosca et al., 2004; Golden et al., 2005; Hausrath et al., in press), Scenario 2, dilute solutions representing dissolution of a Mars-

319	analog basalt after Tosca et al. (2004), Scenario 3, solutions resulting from modeled
320	evaporation of solutions resulting from reaction of basalt after Tosca and McLennan
321	(2006), and Scenario 4, solution based on measurements by the Mars Lander Phoenix
322	(Boynton et al., 2009; Kounaves et al., 2009; Kounaves et al., 2010a; Kounaves et al.,
323	2010b; Quinn et al., 2011).
324	In each case, dissolution caused retreat of the original rock surface (Figures 3-5).
325	The overall retreat of the surface, the distance from the original surface of the rock to the
326	outermost mineral present after reaction, increased with decreasing pH of the initial fluid,
327	which was systematically varied for Scenario 2 (Figure 3). This trend is seen for both the
328	magnesite-siderite and the magnesite-siderite-calcite-rhodochrosite starting materials.
329	Although it may not be possible to identify the original surface of a reacted rock
330	in a natural system, other changes in the rock with dissolution often can be identified.
331	Differences in dissolution behavior of each mineral may cause a granular, pitted surface
332	of the rock, which is consistent with the observations of the carbonate outcrop by the
333	Mars Exploration Rover Spirit on Mars (Morris et al., 2010).
334	In addition to characteristic depths to reaction front, or weathering advance, the
335	change in the volume of minerals with depth varied characteristically between minerals
336	for both rock types. Siderite had a characteristically sharp front, often increasing from
337	close to zero to tens of percents over a small distance (Figure 3). In contrast, the increase
338	in percentage of calcite was often much more gradual (Figure 3). The change in the
339	volume of the minerals with depth as a function of weathering results in a weathering
340	profile that can be characterized in natural environments, and has been documented to
341	record the conditions of formation e.g. (Lichtner, 1988; Steefel et al., 1990; White, 2002;

342	Sak et al., 2004; Steefel et al., 2005; Hausrath et al., 2008a; Maher et al., 2009; Navarre-
343	Sitchler et al., 2009; Sak et al., 2010; Hausrath et al., 2011; Navarre-Sitchler et al., 2011).
344	The shape of a reaction front generally results from the relationship between dissolution
345	rate and rate of transport; when the dissolution rate is fast relative to transport, reaction
346	fronts are abrupt, and when transport is fast relative to dissolution, reaction fronts are
347	more gradual (Lichtner, 1988; White, 2002).
348	Precipitation of secondary carbonate minerals generally occurs under low
349	oxidation conditions (Figures 3 - 5). For the magnesite-siderite rock, siderite usually is
350	the only secondary mineral formed, precipitating in various amounts under different
351	aqueous conditions. Rhodochrosite and calcite also precipitated in the magnesite-
352	siderite-calcite-rhodochrosite rock under different pH conditions (Figure 3). When the
353	carbonate rocks are reacted with Ca-enriched solutions (Table 2), both calcite and siderite
354	precipitate (Figure 5). Under high oxidation conditions, siderite did not precipitate, and
355	in contrast, siderite dissolved rapidly, and goethite precipitated (Figure 4).
356	The precipitation of rhodochrosite and siderite replacing magnesite may be an
357	example of the common ion effect, whereby more soluble minerals are replaced by less
358	soluble minerals (Table 1). In contrast, calcite has much faster precipitation kinetics
359	(Figure 2, Table 1). In some cases under low oxidation conditions, goethite precipitated
360	in the outermost cell of the model (not plotted here). Under high oxidation conditions,
361	goethite replaced siderite.
362	The interaction between dissolution and precipitation of carbonates is
363	undoubtedly more complicated than that presented here. Modeling a natural system as a

364 mathematical problem requires many simplifications and assumptions, and if conditions

365	on Mars differ from those used in the model here, then observations from Mars could be
366	different from the results modeled here. Additionally, we here address a targeted
367	question (the interaction of carbonates with liquid water), rather than other related
368	processes such as evaporation. However, the use of reactive transport modeling allows
369	important predictions to be made of signatures resulting from carbonates interacting with
370	aqueous solutions on Mars.
371	
372	Comparison to observations from Mars and predictions regarding future
373	discoveries
374	Our modeling results indicate that variation in carbonate composition under Mars-
375	relevant conditions can be a result of interaction of solutions with mixed carbonate rocks,
376	causing the precipitation of siderite, calcite, rhodochrosite and goethite. Interactions of
377	carbonate minerals with liquid water could therefore cause characteristic changes
378	observable from orbit. For example, a rock containing only magnesite and small amounts
379	of siderite after Morris et al. (2010), would become enriched in siderite upon interaction
380	with acidic water under low oxidation conditions, and calcite upon interaction with Ca-
381	enriched solutions. In contrast, rocks that had interacted under high oxidation conditions
382	would become preferentially enriched in Mg-rich carbonates due to dissolution of other
383	phases. Therefore, the surface of a rock that had interacted with liquid water under low
384	oxidation conditions would likely appear more Fe- or Ca-rich than the unaltered rock, and
385	observations of Mg-rich carbonates over the Mars surface are consistent with interaction
386	with solutions under high oxidation conditions.

387	Comparing the altered surface and near-surface characteristics of a rock with the
388	unaltered interior would be an excellent way to constrain aqueous alteration. This type of
389	comparison is possible when the altered surface has been removed by physical
390	weathering, or by drilling by landers. Weathering profiles through the weathered
391	surfaces of rocks on Mars into the unaltered interiors have been identified and interpreted
392	previously (Haskin et al., 2005; Hurowitz et al., 2006; Hausrath et al., 2008a). Detailed
393	chemical and mineralogical profiles through weathered surfaces into the unaltered
394	interior allow the relative comparison of mineral persistence within the profile, and allow
395	a quantitative interpretation of the aqueous history of those profiles. Future exploration
396	of Mars, including depth profiles into carbonate rocks to compare altered surfaces to
397	unaltered interiors, could allow quantification of the record of aqueous alteration and
398	possible habitability of those locations.
399	
400	Acknowledgements:
401	Many thanks are offered to Carl Steefel, Jennell Miller, Kirellos Sefein, R.
402	Hadjigeorgalis, and A.K. Navarre-Sitchler for their assistance. We also thank Paul Niles,
403	Mikhail Zolotov, and an anonymous reviewer whose thoughtful reviews greatly
404	strengthened this work.
405	Deferrer
405	Keterences:
406 407 408	Alkattan, M., Oelkers, E.H., Dandurand, J.L., and Schott, J. (1998) An experimental study of calcite and limestone dissolution rates as a function of pH from -1 to 3 and temperature from 25 to 80°C. Chemical Geology, 151(1-4), 199-214.
409 410	Altheide, T., Chevrier, V., Nicholson, C., and Denson, J. (2009) Experimental investigation of the stability and evaporation of sulfate and chloride brines on

411 Mars. Earth and Planetary Science Letters, 282(1-4), 69-78.

412 413	Amundson, R., S. Ewing, W. Dietrich, B. Sutter, J. Owen, O. Chadwick, K. Nishiizumi, Walvoord, M., and McKay, C. (2008) On the <i>in situ</i> aqueous alteration of soils on
414	Mars. Geochimica et Cosmochimica Acta, 72, 3845-3864.
415	Arvidson, R.S., Collier, M., Davis, K.J., Vinson, M.D., Amonette, J.E., and Luttge, A.
416	(2006) Magnesium inhibition of calcite dissolution kinetics. Geochimica et
417	Cosmochimica Acta $70(3)$ 583-594
418	Arvidson R S and Mackenzie F T (1999) The dolomite problem: control of
419	precipitation kinetics by temperature and saturation state Am I Sci 299(4) 257-
420	288.
421	Azar, J.H., Javaherian, A., Pishvaie, M.R., and Nabi-Bidhendi, M. (2008) An approach to
422	defining tortuosity and cementation factor in carbonate reservoir rocks. Journal of
423	Petroleum Science and Engineering, 60(2), 125-131.
424	Bandfield J Glotch T and Christensen P (2003) Spectroscopic identification of
425	carbonate minerals in the martian dust Science 301(5636) 1084-1087
426	Banin A Han F X Kan I and Cicelsky A (1997) Acidic volatiles and the Mars soil
427	Journal of Geophysical Research 102(F6) 13341-13356
428	Boynton WV Ming DW Kounaves SP Young SMM Arvidson RE Hecht
429	M H Hoffman I Niles P B Hamara D K Ouinn R C Smith P H Sutter
430	B Catling D C and Morris R V (2009) Evidence for Calcium Carbonate at the
431	Mars Phoenix Landing Site, Science, 325(5936), 61-64
432	Brass G W (1980) Stability of Brines on Mars Jearns 42, 20-28
433	Burkin A R (2001) Chemical Hydrometallurgy Imperial College Press London
434	Busenberg E and Plummer L N (1982) The kinetics of dissolution of dolomite in CO ₂
435	- H ₂ O systems at 1.5 to 65 $^{\circ}$ C and 0 to 1 atm pCO ₂ Am J Sci 282(1) 45-78
436	Calvin, W.M., King, T.V.V., and Clark, R.N. (1994) Hydrous carbonates on Mars?:
437	Evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic
438	spectra, J. Geophys. Res., 99(E7), 14659-14675.
439	Carr. M.H. (1996) Water on Mars. 229 p. Oxford University Press. New York.
440	Casey, W.H., and Westrich, H.R. (1992) Control of dissolution rates of orthosilicate
441	minerals by divalent metal-oxygen bonds. Nature, 355, 157-159.
442	Chou, L., Garrels, R.M., and Wollast, R. (1989) Comparative study of the kinetics and
443	mechanisms of dissolution of carbonate minerals. Chemical Geology, 78, 269-
444	282.
445	Christensen, P.R., Bandfield, J.L., Clark, R.N., Edgett, K.S., Hamilton, V.E., Hoefen,
446	T.M., Kieffer, H.H., Kuzmin, R.O., Lane, M.D., Malin, M.C., Morris, R.V., Pearl,
447	J.C., Pearson, R., Roush, T.L., Ruff, S.W., and Smith, M.D. (2000) Detection of
448	crystalline hematite mineralization on Mars by the Thermal Emission
449	Spectrometer: Evidence for near-surface water. Journal of Geophysical Research,
450	105(E4), 9623-9642.
451	Cull, S.C., Arvidson, R.E., Catalano, J.G., Ming, D.W., Morris, R.V., Mellon, M.T., and
452	Lemmon, M. (2010) Concentrated perchlorate at the Mars Phoenix landing site:
453	Evidence for thin film liquid water on Mars. Geophys. Res. Lett., 37(22).
454	Deleuze, M., and Brantley, S.L. (1997) Inhibition of calcite crystal growth by Mg ²⁺ at
455	100°C and100 bars: influence of growth regime. Geochimica et Cosmochimica
456	Acta, 61, 1475-1487.

457	Duckworth, O.W., and Martin, S.T. (2003) Connections between surface complexation
458	and geometric models of mineral dissolution investigated for rhodochrosite.
459	Geochimica et Cosmochimica Acta, 67(10), 1787-1801.
460	(2004) Role of molecular oxygen in the dissolution of siderite and rhodochrosite.
461	Geochimica et Cosmochimica Acta, 68(3), 607-621.
462	Ehlmann, B.L., Mustard, J.F., Murchie, S.L., Poulet, F., Bishop, J.L., Brown, A.J.,
463	Calvin, W.M., Clark, R.N., Marais, D.J.D., Milliken, R.E., Roach, L.H., Roush,
464	T.L., Swayze, G.A., and Wray, J.J. (2008) Orbital Identification of Carbonate-
465	Bearing Rocks on Mars. Science, 322(5909), 1828-1832.
466	Elwood Madden, M.E., Madden, A.S., and Rimstidt, J.D. (2009) How long was
467	Meridiani Planum wet? Applying a jarosite stopwatch to determine the duration
468	of aqueous diagenesis. Geology, 37(7), 635-638.
469	Gautier, JM., Oelkers, E.H., and Schott, J. (2001) Are quartz dissolution rates
470	proportional to BET surface areas? Geochimica et Cosmochimica Acta, 65(7),
471	1059-1070.
472	Giambalvo, E.R., Steefel, C.I., Fisher, A.T., Rosenberg, N.D., and Wheat, C.G. (2002)
473	Effect of fluid-sediment reaction on hydrothermal fluxes of major elements,
474	eastern flank of the Juan de Fuca Ridge. Geochimica et Cosmochimica Acta,
475	66(10), 1739-1757.
476	Golden, D.C., Ming, D.W., Morris, R.V., and Mertzman, S.A. (2005) Laboratory-
477	simulated acid-sulfate weathering of basaltic materials: Implications for formation
478	of sulfates at Meridiani Planum and Gusev crater, Mars. Journal of Geophysical
479	Research, 110(E12S07), doi:10.1029/2005JE002451.
480	Gooding, J.L., Wentworth, S.J., and Zolensky, M.E. (1988) Calcium carbonate and
481	sulfate of possible extraterrestrial origin in the EETA 79001 meteorite.
482	Geochimica et Cosmochimica Acta, 52, 909-915.
483	Hamilton, V.E., McSween, H.Y., Jr., and Hapke, B. (2005) Mineralogy of Martian
484	atmospheric dust inferred from thermal infrared spectra of aerosols. J. Geophys.
485	Res., 110.
486	Harvey, R.P., and McSween, H.Y. (1996) A possible high-temperature origin for the
487	carbonates in the martian meteorite ALH84001. Nature, 382, 49-51.
488	Haskin, L.A., Wang, A., Jolliff, B.L., McSween, H.Y., Clark, B.C., Des Marais, D.J.,
489	McLennan, S.M., Tosca, N.J., Hurowitz, J.A., Farmer, J.D., Yen, A., Squyres,
490	S.W., Arvidson, R.E., Klingelhofer, G., Schroder, C., de Souza, P.A., Ming,
491	D.W., Gellert, R., Zipfel, J., Bruckner, J., Bell, J.F., Herkenhoff, K., Christensen,
492	P.R., Ruff, S., Blaney, D., Gorevan, S., Cabrol, N.A., Crumpler, L., Grant, J., and
493	Soderblom, L. (2005) Water alteration of rocks and soils on Mars at the Spirit
494	rover site in Gusev crater. Nature, 436(7047), 66-69.
495	Hausrath, E.M., and Brantley, S.L. (2010) Basalt and olivine dissolution under cold,
496	salty, and acidic conditions: What can we learn about recent aqueous weathering
497	on Mars? J. Geophys. Res., 115(E12), E12001.
498	Hausrath, E.M., Golden, D.C., Morris, R.V., Agresti, D.G., and Ming, D.W. (in press)
499	Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal
500	vapors and fluids: Implications for fumarolic activity and secondary phosphate
501	phases in sulfate-rich Paso Robles soil at Gusev Crater, Mars. Journal of
502	Geophysical Research Planets.

503 504	Hausrath, E.M., Navarre-Sitchler, A.K., Sak, P.B., Steefel., C.I., and Brantley, S.L. (2008a) Basalt weathering rates on Earth and the duration of liquid water on the
505	plains of Gusov Crater, Mars, Goology, 26(1), 67,70
505	Hausrath E.M. Navarra Sitablar A.V. Sale D.D. Williams I.Z. and Prontlay S.I.
507	(2011) Soil profiles as indicators of mineral weathering rates and organic
509	(2011) Son promes as indicators of mineral weathering fates and organic
508	Interactions on an Pennsylvania diabase. Chemical Geology, 290, 89-100.
510	Tausiaui, E.M., Heinian, A.H., Vicenzi, E., Disn, D.L., Diake, D., Sanazin, P., Hoenier,
510	1., Midikandal, I., Steele, A., and Brantley, S.L. (2008b) Short- and Long-Term
511	Olivine weathering in Svalbard: Implications for Mars. Astrobiology, 8(6), 10/9-
512	1092. $M_{\rm eff} = 15(2) M_{\rm eff} = 11111 + 111111$
513	Hecht, M.H. (2002) Metastability of Liquid water on Mars. Icarus, 156(2), 3/3-386.
514	Hurowitz, J.A., McLennan, S.M., McSween, H.Y., DeSouza, P.A.J., and Klingelnoter, G.
515	(2006) Mixing relationships and the effects of secondary alteration in the
516	Wishstone and Watchtower Classes of Husband Hill, Gusev Crater, Mars,.
517	Journal of Geophysical Research, $111(E12S14)$, doi:10.1029/2006JE002/95.
518	Ingersoll, A.P. (1970) Mars: Occurrence of Liquid Water. Science, 168(3934), 972-973.
519	Jimenez-Lopez, C., Caballero, E., Huertas, F.J., and Romanek, C.S. (2001) Chemical,
520	mineralogical and isotope behavior, and phase transformation during the
521	precipitation of calcium carbonate minerals from intermediate ionic solution at
522	25°C. Geochimica et Cosmochimica Acta, 65(19), 3219-3231.
523	Jimenez-Lopez, C., and Romanek, C.S. (2004) Precipitation kinetics and carbon isotope
524	partitioning of inorganic siderite at 25°C and 1 atm. Geochimica et
525	Cosmochimica Acta, 68(3), 557-571.
526	Jordan, G., Pokrovsky, O.S., Guichet, X., and Schmahl, W.W. (2007) Organic and
527	inorganic ligand effects on magnesite dissolution at 100 °C and $pH = 5$ to 10.
528	Chemical Geology, 242(3-4), 484-496.
529	Knauth, L.P., and Burt, D.M. (2002) Eutectic Brines on Mars: Origin and Possible
530	Relation to Young Seepage Features. Icarus, 158(1), 267-271.
531	Kounaves, S.P., Hecht, M.H., Kapit, J., Gospodinova, K., DeFlores, L., Quinn, R.C.,
532	Boynton, W.V., Clark, B.C., Catling, D.C., Hredzak, P., Ming, D.W., Moore, Q.,
533	Shusterman, J., Stroble, S., West, S.J., and Young, S.M.M. (2010a) Wet
534	Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data
535	analysis and results. J. Geophys. Res., 115.
536	Kounaves, S.P., Hecht, M.H., Kapit, J., Quinn, R.C., Catling, D.C., Clark, B.C., Ming,
537	D.W., Gospodinova, K., Hredzak, P., McElhoney, K., and Shusterman, J. (2010b)
538	Soluble sulfate in the martian soil at the Phoenix landing site. Geophys. Res. Lett.,
539	37(9), L09201.
540	Kounaves, S.P., Hecht, M.H., West, S.J., Morookian, JM., Young, S.M.M., Quinn, R.,
541	Grunthaner, P., Wen, X., Weilert, M., Cable, C.A., Fisher, A., Gospodinova, K.,
542	Kapit, J., Stroble, S., Hsu, PC., Clark, B.C., Ming, D.W., and Smith, P.H. (2009)
543	The MECA Wet Chemistry Laboratory on the 2007 Phoenix Mars Scout Lander.
544	J. Geophys. Res., 114(E3), E00A19.
545	Lasaga, A. (1998) Kinetic Theory in the Earth Sciences. 811 p. Princeton University
546	Press, Princeton, NJ.
547	Lellouch, E., Encrenaz, T., de Graauw, T., Erard, S., Morris, P., Crovisier, J.,
548	Feuchtgruber, H., Girard, T., and Burgdorf, M. (2000) The 2.4-45 µm spectrum of

549	Mars observed with the infrared space observatory. Planetary and Space Science,
550	48(12-14), 1393-1405.
551	Levenspiel, O. (1972) Chemical Reaction Engineering. John Wiley & Sons, New York.
552	Lichtner, P.C. (1988) The quasi-stationary state approximation to coupled mass transit
553	and fluid-rock interaction in a porous medium. Gecochimica et Cosmochimica
554	Acta, 52, 143-165.
555	Lippmann, F. (1973) Mineral, Rocks and Inorganic Materials. Pringer-Verlag Berlin-
556	Heidelberg, New York.
557	Maher, K., Steefel, C.I., DePaolo, D.J., and Viani, B.E. (2006) The mineral dissolution
558	rate conundrum: Insights from reactive transport modeling of U isotopes and pore
559	fluid chemistry in marine sediments. Geochimica et Cosmochimica Acta, 70(2),
560	337-363.
561	Maher, K., Steefel, C.I., White, A.F., and Stonestrom, D.A. (2009) The role of reaction
562	affinity and secondary minerals in regulating chemical weathering rates at the
563	Santa Cruz Soil Chronosequence, California. Geochimica et Cosmochimica Acta,
564	73(10), 2804-2831.
565	Mair, R.W., Wong, G.P., Hoffmann, D., Hürlimann, M.D., Patz, S., Schwartz, L.M., and
566	Walsworth, R.L. (1999) Probing Porous Media with Gas Diffusion NMR.
567	Physical Review Journal, 83.
568	McEwen, A.S., Ojha, L., Dundas, C.M., Mattson, S.S., Byrne, S., Wray, J.J., Cull, S.C.,
569	Murchie, S.L., Thomas, N., and Gulick, V.C. (2011) Seasonal Flows on Warm
570	Martian Slopes. Science, 333(6043), 740-743.
571	Michalski, J.R., and Niles, P.B. (2010) Deep crustal carbonate rocks exposed by meteor
572	impact on Mars. Nature Geoscience, 3(11), 751-755.
573	Milliken, R.E., Grotzinger, J.P., and Thomson, B.J. (2010) Paleoclimate of Mars as
574	captured by the stratigraphic record in Gale Crater. Geophys. Res. Lett., 37(4),
575	L04201.
576	Ming, D.W., Gellert, R., Morris, R.V., Arvidson, R.E., Brückner, J., Clark, B.C., Cohen,
577	B.A., d'Uston, C., Economou, T., Fleischer, I., Klingelhöfer, G., McCoy, T.J.,
578	Mittlefehldt, D.W., Schmidt, M.E., Schröder, C., Squyres, S.W., Tréguier, E.,
579	Yen, A.S., and Zipfel, J. (2008) Geochemical properties of rocks and soils in
580	Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from
581	Cumberland Ridge to Home Plate. J. Geophys. Res., 113(E12), E12S39.
582	Mittlefehldt, D.W. (1994) ALH84001, a cumulate orthopyroxenite member of the
583	martian meteorite clan. Meteoritics, 29(2), 214-221.
584	Moore, C.H. (2001) Carbonate Reservoirs Porosity Evolution and Diagenesis in a
585	sequence stratigraphic framework. 444 p. Elsevier, Amsterdam.
586	Morris, R.V., Ruff, S.W., Gellert, R., Ming, D.W., Arvidson, R.E., Clark, B.C., Golden,
587	D.C., Siebach, K., Klingelhofer, G., Schroder, C., Fleischer, I., Yen, A.S., and
588	Squyres, S.W. (2010) Identification of Carbonate-Rich Outcrops on Mars by the
589	Spirit Rover. Science, 329(5990), 421-424.
590	Mucci, A. (1987) Influence of temperature on the composition of magnesian calcite
591	overgrowth precipitated from seawater. Geochemica et Cosmochimica Acta, 51,
592	1977-1984.

593	Mucci, A., and Morse, J.W. (1983) The incorporation of Mg^{2+} and Sr^{2+} into calcite
594	overgrowths: Influences of growth rate and solution composition. Geochimica et
595	Cosmochimica Acta, 47, 217-233.
596	Navarre-Sitchler, A., Steefel, C.I., Sak, P.B., and Brantley, S.L. (2011) A reactive-
597	transport model for weathering rind formation on basalt. Geochimica et
598	Cosmochimica Acta 75(23) 7644-7667
599	Navarre-Sitchler A Steefel C I Yang L Tomutsa L and Brantley S L (2009)
600	Evolution of porosity and diffusivity associated with chemical weathering of a
601	hasalt clast I Geonbys Res 114
602	Niles P.B. Boynton W.V. Hoffman I.H. Ming D.W. and Hamara D. (2010) Stable
603	Isotone Measurements of Martian Atmospheric CO2 at the Phoenix Landing Site
604	Science 329(5997) 1334-1337
605	Olsen A A and Rimstidt LD (2007) Using a mineral lifetime diagram to evaluate the
606	persistence of olivine on Mars American Mineralogist 92 598-602
607	Parkhurst D L and Appelo C A I (1999) User's guide to PHREEOC (ver 2)—A
608	computer program for speciation hatch-reaction
609	one-dimensional transport and inverse geochemical calcu-lations USGeol Surv Water-
610	Resources Invest Rent 99-4259
611	Plummer I N Wigley T M I and Parkhurst D I (1978) The kinetics of calcite
612	dissolution in COwater systems at 5 to 60° C and 0.0 to 1.0 atm CO. American
613	Iournal of Science 278 179-216
61 <i>4</i>	Pokrovsky OS Golubey SV and Iordan G (2009a) Effect of organic and inorganic
615	ligands on calcite and magnesite dissolution rates at 60 °C and 30 atm pCO2
616	Chemical Geology 265(1-2) 33-43
617	Pokrovsky OS Golubey SV and Schott I (2005) Dissolution kinetics of calcite
618	dolomite and magnesite at 25 °C and 0 to 50 atm nCO2. Chemical Geology
619	217(3-4) 239-255
620	Pokrovsky O.S. Golubey S.V. Schott I and Castillo A (2009b) Calcite dolomite and
621	magnesite dissolution kinetics in aqueous solutions at acid to circumneutral nH
622	25 to 150 °C and 1 to 55 atm nCO? New constraints on CO? sequestration in
623	sedimentary hasing Chemical Geology 265(1-2) 20-32
623 624	Pokrovsky OS and Schott I (1999) Processes at the magnesium-bearing
625	carbonates/solution interface II Kinetics and mechanism of magnesite
625 626	dissolution Geochimica Cosmochiica Acta 63, 881-897
627	- (2002) Surface Chemistry and Dissolution Kinetics of Divalent Metal Carbonates
628	Environmental Science & Technology 36(3) 426-432
620 629	Pollack LB Roush T Witteborn F Bregman L Wooden D Stoker C Toon OB
630	Rank D. Dalton B. and Freedman R (1990) Thermal Emission Spectra of
631	Mars: Evidence for Sulfates Carbonates and Hydrates I Geophys Res 95(B9)
632	14595-14627
633	Ouinn R C Chittenden ID Kounaves S P and Hecht M H (2011) The oxidation-
634	reduction potential of aqueous soil solutions at the Mars Phoenix landing site
635	Geophys Res Lett 38(14) L14202
636	Reddy M M and Wang K K (1980) Crystallization of calcium carbonate in the
637	presence of metal ions I Inhibition of magnesium ion at nH & & and 25 ° C
638	Journal of Crystal Growth 50 470-480
050	vouniui oi oi youri oi oi ui, 20, 170-100.

639	Rickard, D., and Sjoberg, E.L. (1983) Mixed kinetic control of calcite dissolution rates.
640	American Journal of Science, 283, 815-830.
641	Romanek, C.S., Grossman, E.L., and Morse, J.W. (1992) Carbon isotopic fractionation in
642	synthetic aragonite and calcite: Effects of temperature and precipitation rate.
643	Geochimica et Cosmochimica Acta, 56(1), 419-430.
644	Sak, P.B., Fisher, D.M., Gardner, T.W., Murphy, K., and Brantley, S.L. (2004) Rates of
645	weathering rind formation on Costa Rican basalt. Geochimica et Cosmochimica
646	Acta, 68(7), 1453-1472.
647	Sak, P.B., Navarre-Sitchler, A.K., Miller, C.E., Daniel, C.C., Gaillardet, J., Buss, H.L.,
648	Lebedeva, M.I., and Brantley, S.L. (2010) Controls on rind thickness on basaltic
649	andesite clasts weathering in Guadeloupe. Chemical Geology, 276(3-4), 129-143.
650	Saldi, G.D., Jordan, G., Schott, J., and Oelkers, E.H. (2009) Magnesite growth rates as a
651	function of temperature and saturation state. Geochimica et Cosmochimica Acta,
652	73(19), 5646-5657.
653	Sanchez-Roman, M., McKenzie, J.A., Wagener, A.D.R., Rivadeneyra, M.A., and
654	Vasconcelos, C. (2009) Presence of sulfate does not inhibit low-temperature
655	dolomite precipitation. Earth and Planetary Science Letters, 285(1-2), 131-139.
656	Saner, S., Al-Harthi, A., and Htay, M.T. (1996) Use of tortuosity for discriminating
657	electro-facies to interpret the electrical parameters of carbonate reservoir rocks.
658	Journal of Petroleum Science and Engineering, 16(4), 237-249.
659	Schott, J., Brantley, S.L., Crerar, D., Guy, C., Borcsik, M., and Willaime, C. (1989)
660	Dissolution kinetics of strained calcite. Geochimica et Cosmochimica Acta, 53(2),
661	373-382.
662	Sears, D.W.G., and Chittenden, J.D. (2005) On laboratory simulation and the temperature
663	dependence of the evaporation rate of brine on Mars. Geophys. Res. Lett., 32(23),
664	L23203.
665	Settle, M. (1979) Formation and deposition of volcanic sulfate aerosols on Mars. Journal
666	of Geophysical Research, 84, 8343-8354.
667	Shiraki, R., Rock, P.A., and Casey, W.H. (2000) Dissolution kinetics of calcite in 0.1 M
668	NaCl solution at room temperature: An atomic force microscopic (AFM) study.
669	Aquatic Geochemistry, 6, 87-108.
670	Sibberg, E.L. (1976) A fundamental equation for calcite dissolution kinetics. Geochim
671	Cosmochim Acta. 40, 441-447.
672	Sibberg EL and Rickard D (1983) Calcite dissolution kinetics: Surface speciation and
673	the origin of the variable pH dependence Chemical Geology 42 119-136
674	Steefel C I DePaolo D J and Lichtner P C (2005) Reactive transport modeling. An
675	essential tool and a new research program for the Earth sciences. Earth and
676	Planetary Science Letters 240 539-558
677	Steefel C L and Lasaga A C (1994) A coupled model for transport of multiple chemical
678	species and kinetic precipitation/dissolution reactions with application to reactive
679	flow in single phase hydrothermal systems Am I Sci 294(5) 529-592
680	Steefel C I and MacQuarrie K T B (1996) Approaches to modeling of reactive
681	transport in porous media In PC Lightner CI Steefel and FH Oelkers Eds
687	Reactive Transport in Porous Media 34 n 83-120
002	$\mathbf{N} = 1 + $

683	Steefel, C.I., Van Capellen, P., Nagy, K.L., and Lasaga, A.C. (1990) Modeling water-
684	rock interaction in the surficial environment: The role of precursors, nucleation,
685	and Ostwald ripening. Chemical Geology, 84(1-4), 322-325.
686	Sternbeck, J. (1997) Kinetics of rhodochrosite crystal growth at 25°C: The role of surface
687	speciation. Geochimica et Cosmochimica Acta, 61(4), 785-793.
688	Stopar, J.D., Jeffrey Taylor, G., Hamilton, V.E., and Browning, L. (2006) Kinetic model
689	of olivine dissolution and extent of aqueous alteration on mars. Geochimica et
690	Cosmochimica Acta A Special Issue Dedicated to Larry A. Haskin, 70(24), 6136-
691	6152.
692	Sutter, B., Boynton, W.V., Ming, D.W., Niles, P.B., Morris, R.V., Golden, D.C., Lauer,
693	H.V., Fellows, C., Hamara, D.K., and Mertzman, S.A. (2012) The detection of
694	carbonate in the martian soil at the Phoenix Landing site: A laboratory
695	investigation and comparison with the Thermal and Evolved Gas Analyzer
696	(TEGA) data. Icarus, 218(1), 290-296.
697	Tosca, N.J., and McLennan, S.M. (2006) Chemical divides and evaporite assemblages on
698	Mars. Earth and Planetary Science Letters, 241(1-2), 21-31.
699	Tosca, N.J., McLennan, S.M., Lindsley, D.H., and Schoonen, M.A.A. (2004) Acid-
700	sulfate weathering of synthetic Martian basalt: The acid fog model revisited. J.
701	Geophys. Res., 109.
702	Velbel, M.A. (1993) Constancy of silicate-mineral weathering-rate ratios between natural
703	and experimental weathering: implications for hydrologic control of differences
704	in absolute rates. Chemical Geology, 105(1-3), 89-99.
705	Wang, A., Haskin, L.A., Squyres, S.W., Jolliff, B.L., Crumpler, L., Gellert, R., Schroder,
706	C., Herkenhoff, K., Hurowitz, J., Tosca, N.J., Farrand, W.H., Anderson, R., and
707	Knudson, A.T. (2006) Sulfate deposition in subsurface regolith in Gusev Crater,
708	Mars. Journal of Geophysical Research, 111(E02S17),
709	doi:10.1029/2005JE002513.
/10	White, A.F. (2002) Determining mineral weathering rates based on solid and solute
/11	weathering gradients and velocities: application to biotite weathering in saprolites.
/12	Chemical Geology, 190(1-4), 69-89.
/13	Zolotov, M. Y., and Mironenko, M. V. (200/a) Formation and Fate of Phyliosilicates on the Surface of Many Cooperational Medaling of Associate Weathering. Second
/14	International Conf. on Mora n. Abstract 2265
/15	International Conf. on Mars p. Abstract 3303.
/10	Zeletev MX and Minemente MX (2007h) Timing of each weathering on Mars. A
/1/	Zolotov, M. Y., and Milfonenko, M. V. (2007b) Timing of acid weathering on Mars. A
/10	Zeletev M.V. and Mirenenko, M.V. (2011) Chemical Models for Formation of Clay
719	Dich Levered Decks in the Meyerth Vallis Decien Mars. Mineralegical Journal
720	Rich Layered Rocks in the Mawrin Vanis Region, Mars. Mineralogical Journal.
721	Figure Contions:
122	rigure Captions.
723	
724	Figure 1. Dissolution rates of calcite, dolomite, rhodochrosite, siderite, and magnesite,
725	calculated from published rate laws (Chou et al., 1989, Duckworth and Martin., 2003,

2004). Comparison suggests that dissolution rates on Mars would follow, as previously
documented (Pokrovsky and Schott, 2002), the order calcite > dolomite > rhodochrosite
> siderite > magnesite. The fast dissolution rates of carbonates may help provide
constraints on liquid water on the surface of Mars.
Figure 2. Precipitation rates of calcite, siderite, magnesite and rhodochrosite as a
function of saturation state (Romanek et al., 1992; Sternbeck, 1997; Jimenez-Lopez et al.,
2001; Jimenez-Lopez and Romanek, 2004 and Saldi et al., 2009). Precipitation rates

round round

735 magnesite.

736

737 Figure 3. Modelled mineral profiles through a hypothetical carbonate rock consisting of

magnesite, siderite, calcite and rhodochrosite after Morris et al. (2010) reacted with a

dilute solution resulting from reaction with basalt (Tosca et al., 2004) under low

oxidation conditions at a) pH = 2, time = 10 years b) pH = 4, time = 10 years c) pH = 6,

time = 500 years and d) pH = 8, time = 500 years. In each case a depth of zero indicates

the original surface of the rock, at time zero. The original porosity of the rock was 20%

volume. Enrichment and persistent of siderite appear to be important indicators of

744 aqueous alteration under low oxidation conditions.

745

Figure 4. Modeled mineral profiles through a hypothetical carbonate rock consisting of
magnesite, siderite, calcite and rhodochrosite after Morris et al. (2010) reacted with a

dilute solution resulting from reaction with basalt (Tosca et al. 2004) for 10 years at a)

749	pH = 8, under low oxidation conditions b) $pH = 8$, high oxidation conditions c) $pH = 2$,
750	low oxidation conditions and d) $pH = 2$, high oxidation conditions. In each case a depth
751	of zero indicates the original surface of the rock, at time zero. The original porosity of
752	the rock was equal to 20%. Results suggest that reaction of a magnesite- and siderite-
753	containing rock would be relatively enriched in magnesite and ferric oxide when reacted
754	with a high-oxygen solution due to dissolution of siderite, and in siderite when reacted
755	with a low-oxygen solution (such as beneath the land surface) due to precipitation of
756	siderite. Results are consistent with Mg-rich and Mg- and Fe-rich carbonates observed on
757	Mars.
758	
759	Figure 5. Modelled mineral profiles resulting from interaction of Ca-enriched solutions
760	with hypothetical carbonate rocks after Morris et al. (2010) a) Scenario 3 solution III with
761	a 2-carbonate rock under low oxygen conditions b) Scenario 3 solution II with a 2-
762	carbonate rock under low oxygen conditions c) Scenario 3 solution III with a 4-carbonate
763	rock under low oxygen conditions and d) Scenario 3 solution II with a 4-carbonate rock
764	under low oxygen conditions. Results indicate the precipitation of siderite and calcite,
765	suggesting that enrichment in siderite and calcite could be indications of interaction with
766	Ca-containing solutions under low oxidation conditions. Solutions were based on
767	calculations by Tosca et al. (2006) indicating enrichment by evaporation.

Mineral	Reaction stoichiometry	$\log \atop k_{\rm H+diss} \\ (mol m^{-2} \\ s^{-1})$	$n_{\mathrm{H^+}}$	$\begin{array}{c} log \; k_{\rm H2O} \\ _{diss} \; (mol \\ m^{-2} \; s^{-1}) \end{array}$	log k _{pp}	m	log K (298K) ^{§§j}	Initial volume fraction ^{‡‡}	surface area $(m^{2/g})^{\parallel \parallel}$	Ae (kJ/mol)
Calcite	$CaCO_3 + H^+ = Ca^{2+} + HCO_3^-$	-0.05*	1*	-6 .18 [*]	1.66 [‡]	1.09 [‡]	1.8487	0/0.09	3.64×10^{-6}	48.2
Magnesite	$MgCO_3 + H^+ = Mg^{2+} + HCO_3^-$	-4.6*	1*	-9.34*	-13.387	2∥	2.2936	0.6/0.5	9.17×10^{-6}	39.7 ^{//}
Siderite	$FeCO_3 + H^+ = Fe^{2+} + HCO_3^-$	-4.6 [#]	0.75#	-8.65	-6.34**	1.09**	-0.192	0.2/0.2	6.15x10 ⁻ 5	49.4 ^{§§}
Rhodochrosite	$MnCO_3 + H^+ = Mn^{2+} + HCO_3^-$	-4.93 [§]	0.5 [§]	-8.45 [§]	-3.25 ^{††}	1.724 ††	-0.1928	0/0.016	1.62x10 ⁻⁶	49.4 [«]
Goethite	$FeOOH + 3H^+ = Fe^{3+} + 2H_2O$			- 7.94 [†]	TST##		0.5345	0	$3.30_{-5} \times 10$	86 »
Gypsum	$CaSO_4 \cdot 2H_2O = Ca^{2+} + SO_4^{2-} + 2H_2O$			-2.79	TST##		-4.4823	0	3.30 x10	41.8 ///

768 Table 1. Input parameters for reactive transport modeling.

- ^{*}Chou et al. (1989)
- 771 [#] Duckworth and Martin (2004)
- [§]Duckworth and Martin (2003)
- [†]Ruan and Gilkes (1995)
- [‡]Jimenez-Lopez et al. (2001)
- 775 ^{II} Saldi et al. (2009)

- ^{**}Siderite precipitation rate constant estimated from Jimenez-Lopez et al. (2001) and Jimenez-Lopez and Romanek (2004). m
- estimated from Jimenez-Lopez et al. (2001).
- 778 ^{††} Sternbeck (1997)
- 779 ^{##} Transition State Theory
- 780 ^{§§} Thermodynamic data from the database based on Lawrence Livermore National Laboratory thermodynamic modeling
- 781 (thermo.com.V8.R6).
- [#]Volume fraction from Morris et al. (2010), with the first value for the magnesite-siderite rock, and the second value for the
- magnesite-siderite-calcite-rhodochrosite rock, with a porosity = 20%
- 784 For calculation of reactive surface area of carbonates see text.
- 785 / Pokrovsky et al. (2009)
- 786 // value used = the mean of values from Pokrovsky et al. (2009) and Higgins et al. (2002)
- 787 §§ value used = the mean of values from Greenberg et al. (1992) and Golbev et al. (2009)
- 788 « value used = value for siderite, as there were none found for rhodochrosite, and siderite and rhodochrosite have similar
- 789 dissolution rates
- % Nutrition 790 » Ruan and Gilkes (1995)
- 791 /// Liu and Nancollas (1971)

Table 2. Compositions for solutions modeled. Scenario 1 consists of acidic, sulfate-containing solution perhaps resulting from an acid vapor scenario (Settle, 1979; Banin et al., 1997; Tosca et al., 2004; Golden et al., 2005). Scenario 2 corresponds to a solution that would result from the weathering of a hypothetical martian basalt (Tosca et al., 2004). Scenario 3 corresponds to a series of solutions concentrated by evaporation that could result from aqueous interaction with a basalt (Tosca and McLennan, 2006), and

797 Scenario 4 corresponds to solution based on the results of the Phoenix Lander.

	Scenario 1	Scenario 2	Scenario 3					Scenario 4
			Ι	II	III	IV	V	
pН	2	2-8	4	4	4	4	4	7.7
$Mg^{2+}(m)$	0	4.97x10 ⁻⁴	4.97x10 ⁻	$4.97x_{3}10^{-3}$	$4.97x_{3}10^{-3}$	$4.97x_{3}10^{-3}$	4.97x10 ⁻	7.34x10-5
Ca ²⁺ (m)	0	1.65x10 ⁻⁴	$1.65x10^{-4}$	$1.65 x_{3} 10^{-3}$	$1.65x_{3}10^{-3}$	$1.65x_{4}10^{-1}$	$1.65x10^{-4}$	2.17x10-5
Na ⁺ (m)	0	2.50 x 10 ⁻⁵	$2.50 x_{4} 10^{-1}$	$2.50x_{4}10^{-1}$	$2.50x_{5}10^{-5}$	$2.50x_{4}10^{-1}$	$2.50 x 10^{-4}$	charge balance
K ⁺ (m)	0	1.00 x 10 ⁻⁵	1.00×10^{-4}	$1.00x_{5}10^{-5}$	$1.00x_{5}10^{-5}$	$1.00x10^{-4}$	$1.00 x 10^{-4}$	0.02968
$Fe^{2+}(m)$	0	0	0	0	0	0	0	0
HCO3 ⁻ (m)	0	0	$2.50x_{4}10^{-1}$	Atm CO ₂ *	Atm CO ₂ *	Atm CO ₂ *	Atm CO ₂ *	1.467
SO4 ²⁻ (m)	5x 10 ⁻³	5x 10 ⁻³ - 5x 10 ⁻⁹	$1.65 x 10^{-4}$	$1.00x_{5}^{-10^{-1}}$	$2.50x_{5}^{-10^{-1}}$	2.50×10^{-4}	1.00×10^{-4}	0.587

798 * HCO_3^- was in equilibrium with atmospheric CO_2

