REVISION #3 1 Generalizations about monazite: Implications for geochronologic studies 2 Elizabeth J. Catlos 3 University of Texas at Austin, Jackson School of Geosciences, Dept. of Geological Sciences, 1 4 University Sta. C9000 EPS 1.130, Austin, TX 78712, USA 5 6 Abstract. With the advent of techniques that preclude mineral separation, ages from specific compositional domains in monazite [(Ce, La, Th)PO₄] have provided a wealth of information 7 8 regarding the timing of the geologic evolution of numerous regions. However, confusion can 9 arise when single grains show large differences in age that fail to correlate to chemistry or 10 location within the monazite. Generalizations that lead to incorrect age interpretations include 11 that monazite zoning in Y, Th, and/or the rare earth elements (REE) always identify (1) distinct tectonic events, (2) environment of crystallization, and (3) provenance of detrital grains. 12 Increasing Th contents in monazite do not always reflect (1) increasing grade in metamorphic 13 grains, (2) changes in silicate melt composition in igneous grains, (3) make the mineral more 14 susceptible to alteration, nor (4) control the mineral's uptake of REE. Metamorphic monazites 15 16 from Himalayan garnet-bearing rocks with co-existing allanite show no relationship between Th content and REE. Instead, chondrite-normalized REE patterns of the allanite mirror those of the 17 monazite, indicating the variations are related to the reactant that formed the mineral. 18 19 Generalizations about Pb behavior in monazite remain problematic. Incorporation of Pb into 20 monazite has thus far been precluded by experimental studies, yet common Pb has been measured in many studies of natural monazite. A clear understanding about controls of monazite 21 22 composition and the role of the chemical and/or pressure-temperature (P-T) environment of the rocks in which it forms is required to correctly interpret the meaning of the mineral's age(s). 23

1

7/23

Keywords. GEOCHRONOLOGY: ANALYSIS, CHEMICAL (MINERAL): ANALYSIS, CHEMICAL (ROCK): TRACE ELEMENTS AND REE: METAMORPHIC PETROLOGY INTRODUCTION

Monazite (Ce, La, Th)PO₄ is often found in nature as a complexly zoned mineral (e.g., 27 Zhu and O'Nions 1999a; Catlos et al. 2002; Foster et al. 2002; Pyle and Spear 2003; Gibson et 28 29 al. 2004; Goncalves et al. 2005; Hinchey et al. 2007; Williams et al. 2007; Gasser et al. 2012). It 30 typically contains large amount of radiogenic elements and can be dated using a variety of methods (isotope dilution, electron microprobe, ion microprobe; see reviews by Harrison et al. 31 32 2002 and Williams et al. 2007). Differences in the chemistry of specific zones in monazite are 33 often attributed to differences in age and, in some cases, these regions can vary by many millions of years (e.g., Ayers et al. 1999; Gibson et al. 2004; Mahan et al. 2006; Santosh et al. 2006). 34 35 However, some grains have unexpected internal age relationships. For example, some monazite 36 grains show older ages near apparent rims and younger ages near the core (Fig. 1 in Ayers et al. 37 1999; Fig. 7A in Gibson et al. 2004; Fig. 9 in Catlos et al. 2008; multiple grains in Triantafyllidis et al. 2010). Some grains have clear correlations between Y content and age (e.g., Shaw et al. 38 39 2001; Gibson et al. 2004; Krenn et al. 2009; Martins et al. 2009), yet in others no such obvious 40 relationship exists (e.g., Hokada and Motoyoshi 2006; Hinchey et al. 2007; Martin et al. 2007; 41 Triantafyllidis et al. 2010; Reno et al. 2012). Compositional differences among zones in monazite, although providing a qualitative impression of the evolution of the crystal through 42 43 time, may not always record a clear age progression (e.g., Spear and Pyle 2010) nor reflect a simple evolution of a given system (e.g., Wark and Miller 1993; Kelly et al. 2012). Chemical 44 45 variations can create misleading expectations regarding its number of growth stages, and thus the number of temporally distinct tectonic episodes the mineral, rock, and/or region experienced and
recorded.

In addition, monazite composition, zoning, and even its shape have been suggested to 48 identify its origin in specific rock types (e.g., Overstreet 1967; Mohr 1984; Schandl and Gorton 49 2004; Förster 1998; Broska et al. 2000; Townsend et al. 2000; Dawood and El-Naby 2007; Dill 50 et al. 2012). The distribution of specific elements in monazite, like Y, Th, and rare earth 51 52 elements (REE) as a tool to discriminate for provenance would be beneficial if they could 53 decipher the source of detrital grains (e.g., Iizuka et al. 2010). Here, correlations between monazite chemistry, zoning, morphology and provenance are explored to test some of these 54 generalizations and examine their use for environmental discrimination. 55

56

MONAZITE ZONING AND STRUCTURE

The monazite structure consists of distorted PO₄ tetrahedra (Huminicki and Hawthorne 57 2002). Monazite is considered a "large cation" phosphate mineral with a space group of $P2_1/n$ 58 59 (Z=4) (Mooney 1948; Beall et al. 1981; Deer et al. 1992; Ni et al. 1995; Huminicki and Hawthorne 2002; Clavier et al. 2011). The mineral preferentially incorporates light rare earth 60 elements (LREE³⁺) (Amli 1975; Ilupin et al. 1971), which are coordinated with nine O-atoms (Ni 61 et al. 1995; Huminicki and Hawthorne 2002). The nine-fold coordination polyhedra share edges 62 to form chains in the b-direction of the mineral and stack in the a-direction (Fig. 1) (e.g., Ni et al. 63 1995; Huminicki and Hawthorne 2002; Clavier et al. 2011). REE-P distances vary with atomic 64 number and decrease with decreasing REE^{3+} radius (Ni et al. 1995). Because of this, the size of 65 the REE^{3+} cation influences the probability of uptake in specific sites, and these sites 66 discriminate between REE³⁺ depending on growth surface (Cressev et al. 1999; Popova and 67 Churin 2010). The ability of its 9-fold coordination polyhedra to distort and accommodate a 68

69	large variety of cations (e.g., Th ⁴⁺ , Y ³⁺ , U ⁴⁺ , Pb ²⁺) allows the structure to exhibit chemical
70	flexibility and is likely the explanation for why the monazite is stable over a range of pressure-
71	temperature (P-T) conditions, is durable, and resistant to radiation damage (Dubrail et al. 2009;
72	Huang et al. 2010; Clavier et al. 2011; Seydoux-Guillaume et al. 2002a).
73	Sector-zoned minerals are indicative of a metastable state (e.g., Dowty 1976) and are
74	unavoidable in crystals, like monazite, that exhibit selective enrichment (e.g., Cressey et al.
75	1999) and slow lattice diffusion (e.g., Watson and Liang 1995; Teufel and Heinrich 1997;
76	Seydoux-Guillaume et al. 2002a,b; Cherniak et al. 2004; Harlov et al. 2007). Two major
77	mechanisms contribute to sector zoning: (1) selective adsorption on the crystal surface or (2)
78	different attachment kinetics on different facets (Shtukenberg et al. 2009). Sector-zoned
79	monazite has been produced during monazite/melt partitioning experiments (Stepanov et al.
80	2012). The complex interplay between compositionally distinct sectors in different crystals of
81	monazite can lead to some of the types of zoning patterns observed in nature as multiple crystals
82	develop into an apparent single grain, similar as to what has been observed in tourmaline and
83	epidote (e.g., Choo 2002; 2003) and could be related to what has been described in monazite as
84	"spotted zoning" (e.g., Fig. 15A in Aleinikoff et al. 2000).
85	Secondary processes, like interactions with fluids and recrystallization, can alter
86	monazite's primary zoning and lead to a host of variations in the appearance of the mineral in
87	backscattered electron (BSE) images and X-ray element maps (e.g., Harlov and Hetherington
88	2010; Harlov et al. 2011; Kelly et al. 2012). Although a long residence time at high temperature
89	can alter sector zoning (e.g., Loomis 1983), this is unlikely to operate in monazite as diffusion of
90	large cations is slow (Watson and Liang 1995; Teufel and Heinrich 1997; Seydoux-Guillaume et
91	al. 2002a.b; Cherniak et al. 2004; Harlov et al. 2007; Cherniak and Pyle 2008; Cherniak 2010;

92	Chen et al. 2012). Primary sector zoning of monazite is rarely reported (Cressey et al. 1999;
93	Williams et al. 2007; Iizuka et al. 2010; Popova and Churin 2010) and is sometimes seen in
94	combination with other types of zoning (Hawkings and Bowing 1997; Crowley and Ghent 1999;
95	Crowley et al. 2008). Some monazite grains described as "sector zoned" show differences in
96	BSE more consistent with secondary zoning, such as curved rims and embayed grain interiors
97	(e.g., Fig. 7B in Wan et al. 2005). Some single monazite grains display combinations of zoning
98	types in BSE (e.g., patchy and oscillatory, Catlos et al. 2002, Aleinikoff et al. 2000; patchy and
99	irregular, Rubatto et al. 2006).
100	Table 1 attempts to describe and define the types of monazite zoning with examples from
101	the literature. These examples suggest that it can be difficult to distinguish between "oscillatory"
102	and "patchy" or "irregular" zoning (e.g., Fig. 15B in Aleinikoff et al. 2000; Fig. 3A in Sindern et
103	al. 2012). The mineral's appearance in BSE is important in evaluating the role of secondary
104	reactions that could affect its age. In an analysis of 324 detrital monazite grains, Triantafyllidis et
105	al. (2010) suggests monazite zoning type can be divided into two categories: (1) simple, with a
106	core surrounded by a simple rim, and (2) more complex, where a core of variable shape is
107	enveloped by two or more circular rims that may be discontinuous. Most grains with BSE images
108	reported in the literature fall in the "more complex" category, with concentric, patchy, and
109	intergrowth-like zoning (Table 1, Ayers et al. 1999; Zhu and O'Nions 1999a). In BSE images,
110	concentric zoning is reported to be the most common (Ayers et al. 1999; Zhu and O'Nions
111	1999a; Vavra and Schaltegger 1999; Swain et al. 2005; Williams et al. 2007; Bruguier et al.
112	2009), although this is disputed in Faure et al. (2008). Unzoned (examples in Amli 1975; Pe-pier
113	and McKay 2006; Chen et al. 2012) and oscillatory zoned (Hawkings and Bowing 1997;
114	Crowley et al. 2008; Kohn and Vervoot 2008) grains are more rare.

7/23

115	Although some attribute BSE zoning primarily to differences in Th content (Swain et al.
116	2005), linking the mineral's elemental contents to differences in contrast in BSE images can be
117	challenging (e.g., Fig. 4 in Williams et al. 2007). Quantitative chemical analysis or qualitative X-
118	ray element mapping is required to understand which elements cause differences in brightness in
119	BSE. Although Th is likely a major factor because of its large atomic number, different zoning
120	types can exist within single grains, and the degree of contrast can be a result of multiple
121	elements. For example, monazite grains have been reported showing oscillatory zoning in one
122	element and normal zoning in others (e.g., Th and Y, Pe-pier and McKay 2006). Some grains
123	with patchy zoning even show differences in the location of specific compositional domains
124	(compare Th, Y, and Ce zoning in Kelly et al. 2012). Monazite can also recrystallize along
125	microcracks, modifying compositions, and resulting in brightness differences (e.g., Crowley et
126	al. 2008). Some grains show obvious internal recrystallization textures along what could have
127	been healed microcracks; interestingly, ages from these recrystallization zones are similar to
128	those from regions on the intact grain (e.g., Fig. 2 in Ayers et al. 2006; Fig. 2A in Shaw et al.
129	2001).
130	ROLE OF TH IN MONAZITE
131	Monazite is typically seen in nature as a Th-rich (as opposed to a U-rich) mineral (e.g.,
132	Overstreet 1967; Gramacciolii and Segalstad 1978; Deer et al. 1992). Normal zoning of monazite
133	is defined as low Th cores and high Th rims (Zhu and O'Nions 1999a; Majka et al. 2012),
134	although the terms "normal" and "reverse" to describe monazite appearance is uncommon.
135	Monazite grains that grew along a prograde path show high Th cores and low Th rims (Kohn and

Monazite grains that grew along a prograde path show high Th cores and low Th rims (Kohn andMalloy 2004).

7/23

137	Thorium is commonly thought to enter the monazite structure with a 4+ oxidation state
138	(Kelly et al. 1981; Hazen et al. 2009) via a coupled substitution with Si (Th ⁴⁺ + Si ⁴⁺ \rightarrow REE ³⁺ +
139	P^{5+} e.g., monazite-huttonite join; Della Ventura et al. 1996), with Ca (Th ⁴⁺ + Ca ²⁺ \rightarrow 2REE ³⁺ ,
140	monazite-brabanite join) (Starynkevitch 1922; Burt 1989; Förster 1998; Förster and Harlov
141	1999), and/or by other substitutions (see Table 2). Monazite/melt experiments conducted at 10-
142	50 kbar and 750-1200°C show that partition coefficients for Th are 30% higher than those for the
143	LREE (Stepanov et al. 2012). The pure huttonite substitution can be used to explain the presence
144	of ThO_2 up to 27 wt% and REE_2O_3 to at least 20 wt%, at which divalent cations, F, and/or OH
145	may be incorporated to maintain charge balance (Kucha 1980; Clavier et al. 2011). In synthetic
146	monazite, Th may also enter the structure accompanied by a vacancy via $3Th^{4+}$ + vacancy \rightarrow
147	4REE^{3+} , which appears to be restricted to ~17.68 wt% ThO ₂ (Podor 1994; Clavier et al. 2011).
148	Thorium may also be accompanied by a divalent cation: $\text{REE}^{3+}\text{PO}_4 + xM^{2+} + x\text{Th}^{4+} \rightarrow (\text{REE}^{3+}_{(1-)})^{1-1}$
149	$_{2x}M^{2+}_{x}Th^{4+}_{x}PO_{4} + 2xREE^{3+}$, where M^{2+} can be Ca^{2+} , Cd^{2+} , Sr^{2+} , Pb^{2+} , and Ba^{2+} (Quarton et al.
150	1984; Clavier et al. 2011).
151	Thorium contents have been suggested to increase with increasing metamorphic grade,
152	with igneous monazite grains typically having the higher amounts (Overstreet 1967; Mohr 1984).
153	However, Zhu and Onions (1999b) did not find this correlation. Carbonatites commonly contain

monazite with low Th contents (e.g., Wall and Mariano 1996; Cressey et al. 1999; Pilipiuk et al.

155 2001; Catlos et al. 2008) as do authigenic monazite (Cabella et al. 2001; Čopjaková et al. 2011).

156 ThO₂ content has been suggested as a means to distinguish hydrothermal $(0-1 \text{ wt\% ThO}_2)$ from

igneous monazite (3 to >5 wt% ThO₂; see Schandl and Gorton 2004) and many hydrothermal ore

deposits also contain monazite with low Th (<2 wt% ThO₂, e.g., Bearss and Pitman 1996; Zhu

and Onions 1999b; Pršek et al. 2010; Bonyadi et al. 2011; Sheard et al. 2012). Low Th ("Th-

7/23

160 free", ~0.2 ppm Th) grains have been found in hydrothermal tin vein deposits (Kempe et al.

161 2008). However, exceptions to this rule exist as hydrothermal monazite with 1.33 to 4.08 wt %

162 ThO₂ has been observed (Janots et al. 2012).

163 Monazite Th content in igneous rocks appears independent of that of the silicate melt

164 (Förster 1998) and Th-rich patches and/or variable compositions in monazite have been shown to

reflect fluid-induced alteration (e.g., Crowley et al. 2008; Harlov and Hetherington 2010; Kelly

166 et al. 2012; Janots et al. 2012). Thermometers involving monazite also rely on REE content

167 rather than Th (e.g., Gd, Gratz and Heinrich 1998; Y, Dy, and Gd, Pyle et al. 2001). Monazite

that has experienced dissolution and reprecipitation can show increases in Th at the rims (e.g.,

169 Watt 1995; Harlov and Hetherington 2010) and grains with mottled overgrowths that likely

interacted or grew via a fluid phase have high Th mid-rim contents (e.g., Rasmussen et al. 2007;

171 Rasmussen and Muhling 2007; 2009). Thorium may also be depleted in grains that have

experienced metasomatism (e.g., Schandl and Gorton 2004), but this depends largely on fluid

173 composition (Harlov et al. 2011; Janots et al. 2012).

Thorium-rich monazite has been suggested to be more susceptible to alteration than Th-174 poor accessory minerals (Berger et al. 2008), although monazite is guite durable and is often 175 found as a detrital mineral (e.g., Pe-piper and McKay 2006; Triantafyllidis et al. 2010; Hietpas et 176 al. 2011). Experiments with monazite dissolution suggest that its Th-rich surfaces may dissolve 177 178 slower than those that are Th-poor (Oelkers and Poitrasson 2002). Monazite solubility has also been shown to increase with increasing pressure with Th remaining relatively constant over the 179 range of experimental conditions (10-50 kbar and 750-1200°C, Stepanov et al. 2012). Monazite 180 181 is rarely found in nature in a metamict form; this may be due to the asymmetry of its structure (e.g., Black et al. 1984; Clavier et al. 2011) and its ability to recover from radiation damage at 182

183	low temperature (e.g., Boatner and Sales 1988; Meldrum et al. 1998). The long half-life of ²³² Th
184	also contributes to the stability of monazite because the mineral, although containing large
185	amounts of this radiogenic isotope, will not be subjected to the degree of radiation damage, Pb
186	production, and auto-oxidation that are experienced by U-bearing minerals (Hazen et al. 2009).
187	Ancient monazite (~2-3 Ga) with high ThO ₂ contents (14.1-16.2 wt. %) have been found to be
188	"not badly damaged" (Black et al. 1984). Monazite grains with high ThO ₂ (up to 14.52 wt%)
189	subjected to intense hydrothermal alteration were found to be the "most stable" when compared
190	to zircon, fluorite, bastnasite, thorite, and xenotime (Breiter et al. 2009). Consistent with this
191	observation, hydrothermally treated monazite grains of different size fractions have been shown
192	to exhibit only minor dissolution features confined to the grain surfaces (Teufel and Heinrich
193	1997). However, Poitrasson et al. (2000) found that monazite can undergo changes at low
194	temperature (260 to 340°C) when exposed to saline fluids.
195	Andrehs and Heinrich (1998) suggest that the incorporation of smaller cations of UO_2 +
196	ThO ₂ at levels >4 mol% saturate the monazite structure and suppress incorporation of HREE ³⁺ .
197	Table 3 lists the size of these cations in 9-fold coordination, which appear largely similar
198	(Shannon 1976). Note that it can be difficult to measure the HREE contents in monazite due to
199	low concentrations of these elements in the mineral, and many compositional analyses reported
200	in the literature omit these analyses. In-line with the expected trend, monazite grains from
201	granulite facies rocks with unusually high HREE ₂ O ₃ + Y_2O_3 (12.5-25 wt%) show a systematic
202	decrease in Er ₂ O ₃ +Yb ₂ O ₃ contents with increasing UO ₂ +ThO ₂ (Fig. 2A; Krenn and Finger
203	2010). However, monazite grains from A-type granites (Xie et al. 2006) do not follow this trend
204	(Fig. 2A). Instead, these grains remain constant in Er ₂ O ₃ +Yb ₂ O ₃ but exponentially decrease in
205	LREE with increasing UO ₂ +ThO ₂ (Fig. 2B), indicating that environment plays a role. In

206	metamorphic rocks, monazite grains that form after garnet breakdown contain higher amounts of
207	Y and HREE, a feature unrelated to their Th content (Zhu and Onions 1999b).
208	Because the size of the Th^{4+} ion is similar to Ce^{3+} (Table 3) (e.g., Demartin et al. 1991a),
209	expectations exist that monazite LREE contents are controlled by Th (Brouand and Cuney 1990;
210	Förster 1998). Chondrite-normalized REE patterns of monazite have been suggested to be
211	dependent on Th (Förster 1998; Stepanov et al. 2012). For example, a high-Th (~42 wt%) grain
212	termed "huttonitic monazite-Ce" from peraluminous granites has a steep chondrite-normalized
213	REE pattern, whereas those from low-Th (<1 wt%) grains are flat (Förster 1998). Figure 3A
214	shows that monazite from granulite facies rocks that contain $UO_2 + ThO_2 > 4$ wt% have, in
215	general, depleted HREE and enriched MREE compared to those with <4 wt% UO ₂ + ThO ₂
216	(Krenn and Finger 2010). However, monazite from A-type granites with $UO_2 + ThO_2 < 1 \text{ wt\%}$
217	show enriched LREE contents and overlap in their MREE and HREE compositions compared to
218	grains that range from 8.4 to 25.7 wt% $UO_2 + ThO_2$ (Fig 3B). Steepness in the REE patterns
219	appears unaffected by UO ₂ and ThO ₂ content. Further exploration of this trend using many high-
220	quality compositional analyses of detrital monazite grains reported by Triantafyllidis et al.
221	(2010) show monazite with $UO_2 + ThO_2$ of 8-17 wt% in general showing steeper LREE
222	chondrite-normalized patterns than those with low $UO_2 + ThO_2$ (<1 wt%) (Fig. 3C and D).
223	However, overlaps exist in the chondrite-normalized patterns between the high and low UO_2 +
224	ThO_2 monazite grains from these studies. The high $UO_2 + ThO_2$ monazite grains do appear to
225	have a more restricted range in LREE compositions. Triantafyllidis et al. (2010) filter their REE
226	patterns into 6 distinct trends in an attempt to link them to provenance.
227	Figure 4 shows chondrite-normalized REE patterns of metamorphic (Himalayan)
228	monazite with varying Th contents (from 0.29 to 15.8 wt%, see supplementary data). These

229	grains were collected from four garnet- and allanite-bearing assemblages of the Lesser
230	Himalayan Formations (see Catlos et al. 2001 for sample locations and mineral assemblages) and
231	analyzed using an electron microprobe following methods outlined in Catlos et al. (2002). These
232	monazite grains do not show significant changes in REE patterns depending on $ThO_2 + UO_2$
233	content. Instead, variations appear related to allanite, the reactant that formed the mineral since
234	the REE patterns of co-existing allanite grains in these rocks mirror those of the monazite.
235	Although the monazite contains overall higher REE than co-existing allanite, they show no
236	fractionation in their compositions, consistent with observations that REE can be largely
237	immobile during metamorphism (e.g., Exley 1980; Bernard-Griffiths et al. 1985).
238	In addition, the chondrite normalized REE patterns of Himalayan monazite and allanite
239	grains do not reflect the composition of the whole rock. Figure 5A shows the whole rock REE
240	patterns from samples shown in Figure 4 and those from the same unit of the Lesser Himalayan
241	formation that contain either monazite + allanite or allanite only (see Catlos 2000 for
242	compositions). The whole-rock chondrite-normalized REE patterns differ from those of the
243	monazite or co-existing allanite in that they show no Sm anomalies. The results support the
244	observation that monazite composition in these rocks is dependent on the REE contents of the
245	allanite, rather than the whole rock itself. This is consistent with the analysis of monazite and co-
246	existing accessory minerals in metamorphic rocks elsewhere (Pan 1997; Upadhyay and Pruseth
247	2012). No relationship exists between the presence of these accessory minerals and (1) REE
248	patterns nor (2) the Ca or Al contents of the whole rock (Fig. 5B, Wing et al. 2003).
249	Pb BEHAVIOR IN MONAZITE
250	A common assumptions about the presence of Pb in monazite is that radiogenic Pb is
251	stable in natural monazite (e.g., Suzuki et al. 1994; Podor and Cuney 1997; Dubrail et al. 2009)

252	and that the mineral excludes common Pb during crystallization (e.g., Corfu 1988; Seydoux-
253	Guillaume et al. 2002b). This assumption forms the basis for electron microprobe dating of
254	monazite, as the method measures the total Pb, rather than each of the separate Pb isotopes in the
255	mineral (e.g., Suzuki et al. 1994; Montel et al. 1996). The validity of this assumption has been
256	tested by Williams et al. (2012) via experimental fluid-mediated alteration of monazite grains
257	which resulted in complete "resetting" of monazite age and exclusion of Pb from the altered
258	domains. Geochronologic methods that measure Pb isotopes in monazite, however, report
259	common Pb (e.g., Tilton and Nicolaysen 1957; Parrish 1990; Boggs et al. 2002; Catlos and
260	Cemen 2005; Hoisch et al. 2008; Kempe et al. 2008; Kohn and Vervoot 2008; Krenn et al.
261	2008a,b; Morelli et al. 2010; Aleinikoff et al. 2012; Janots et al. 2012; Seydoux-Guillaume et al.
262	2012). Higher amounts of common Pb are often found in monazite that forms in Pb-rich
263	environments, like ore deposits (e.g., Lobato et al. 2007; Kempe et al. 2008; Krenn et al. 2008a;
264	Krenn et al. 2011; Li et al. 2011). The monazite grain with the highest common Pb content ever
265	reported is likely a hydrothermally-generated monazite grain from the Llallagua tin ore deposit
266	in Bolivia, which has 99.9% common ²⁰⁶ Pb (Kempe et al. 2008).
267	Although some experimental studies have shown that common Pb is difficult to
268	impossible to incorporate into the mineral structure (e.g., Corfu 1988; Seydoux-Guillaume et al.
269	2002b; Williams et al. 2012), fluids have been speculated as a mechanism to increase the
270	common Pb contents of the mineral via dissolution-reprecipitation reactions (e.g., Janots et al.
271	2012). However, experiments with natural monazite by other workers show that it is also
272	possible to increase common Pb contamination under conditions where hydrothermal alteration
273	is not a factor (Teufel and Heinrich 1997). Common Pb measured during the analysis of
274	monazite is also speculated to originate at grain boundaries or within microfractures rather than

intrinsic to the grain itself (e.g., Hoisch et al. 2008; Janots et al. 2012; Seydoux-Guillaume et al.
2012).

Dates generated from the same region in monazite grains using both the electron 277 278 microprobe and high-resolution secondary ion mass spectrometery have been found to differ slightly, a difference ascribed to the lack of measurement of common Pb with the electron 279 280 microprobe (Sano et al. 2006). The difference appears to become more pronounced as the dates get older (see Sano et al. 2006 and compare the Triassic and Proterozoic results). Radiogenic 281 ²⁰⁸Pb* contents of monazite grains from Turkish metagranites (Catlos et al. 2010) measured 282 283 using in situ (in thin section) using an ion microprobe average $68.9\pm3.4\%$, whereas grains from metapelites average 80.3±1.4% (Catlos and Cemen 2005) (Figure 6). Monazite grains dated from 284 the same granite body using isotopic dilution methods are $\sim 97\%^{208}$ Pb* (Glodny and Hetzel 285 2007). The ion microprobe method sputters ions to depths of $< 1 \mu m$ of the grain surface during a 286 287 typical analysis, so common Pb contents may be higher if the element is hosted in fractures, along grain boundaries, and/or as surface contamination, rather than in the grains themselves 288 (e.g., Hoisch et al. 2008; Janots et al. 2012). In their ion microprobe study of monazite, Santo et 289 al. (2006) state the source common Pb in their dated grains "is not easy to assess." 290 291 To understand where Pb could reside in the monazite structure requires some knowledge of its oxidation state. However, disagreements exist regarding the oxidation state of radiogenic 292

293 Pb in monazite. For example, Petrik and Konecny (2009) suggest both Pb^{2+} and Pb^{4+} can be

accommodated in the monazite structure and that radiogenic Pb may change oxidation state in

the mineral (see Hazen et al. 2009 for a description of the process in zircon). Frei et al. (1997)

suggests that during radiogenic decay, all Pb exists in the 4+ oxidation state as valence electrons

are stripped during the recoil process. Alternatively, Pb^{4+} may not exist in nature because it is a

7/23

13

298	powerful oxidant (Podor and Cuney 1997). X-ray Absorption Near Edge Structure (XANES)
299	studies show Pb ²⁺ is present and stable in natural monazite and likely substitutes for La ³⁺
300	(Dubrail et al. 2009). These cations are similar in their ionic radii (Table 3). These studies also
301	suggest that natural monazite grains will reject Pb due to its larger size when it crystallizes, and
302	thus most of the element present in the mineral will be due to radiogenic decay of Th and U
303	(Dubrail et al. 2009). Podor and Cuney (1997) suggest Pb^{2+} can substitute for Ca^{2+} in its original
304	site and for REE if charge is compensated by U^{4+} or Th^{4+} . Lead in the 2+ and 4+ oxidation states
305	differ significantly (1.35 vs. 0.94Å) (Table 3). The difference between the ionic radius of Th^{4+}
306	and Pb^{2+} is almost 20% (Table 3), suggesting the site increases in size to accommodate the
307	daughter product after radiogenic decay if the Pb ²⁺ cation remains in the same site as the parent.
308	A second assumption regarding Pb behavior in monazite is that diffusion of the cation in
309	monazite is negligible, even at high-grade conditions (e.g., Cherniak et al. 2004; Gardes et al.
310	2006). However, depth profiling studies directly measuring the distribution of Pb in the
311	outermost rims of unpolished monazite show behavior consistent with Pb diffusion in rocks that
312	experienced peak T of ~500°C (~20 km depth assuming geothermal gradient of 25°C/km, Grove
313	and Harrison 1999) and ~900±25°C (McFarlane and Harrison 2006). The discrepancy between
314	studies of monazite that suggest the mineral can lose Pb via diffusion at moderate crustal
315	conditions (e.g., Suzuki et al. 1994; Smith and Giletti 1997) and those that suggest it is highly
316	retentive even at high (>800°C) temperatures (e.g., Cherniak et al. 2004; Gardes et al. 2006) may
317	be attributed to differences in (1) trace element variations and potential for vacancies in natural
318	versus synthetic monazites, (2) experimental conditions in the diffusive Pb loss studies, and/or
319	(3) potential for diffusion along different crystal faces in the mineral (e.g., Gardes et al. 2006;
320	McFarlane and Harrison 2006).

321	THE Y PROBLEM
322	Correlations exist in some monazite grains between Y content and age (e.g., Dahl et al.
323	2005; Mahan et al. 2006; Chatterjee et al. 2010), but the absence of this observation in others
324	(e.g., Hokada and Motoyoshi 2006; Hinchey et al. 2007; Martin et al. 2007; Triantafyllidis et al.
325	2010; Reno et al. 2012) makes the generalization that significant fluctuations Y monazite always
326	relate to changes in large-scale tectonic conditions suspect. The presence of Y in high amounts in
327	monazite is unusual. The element is smaller and heavier than LREE (Table 3) and would is more
328	typically hosted in xenotime (e.g., Felsche 1976; Ni et al. 1995; Andrehs and Heinrich 1998;
329	Huminicki and Hawthorne 2002; Krenn and Finger 2010). The presence of Y is thought to
330	contract the monazite structure (e.g., Bowie and Horne 1953; Ni et al. 1995; Petrik and Konecny
331	2009). Although the radius of Y^{3+} and Gd^{3+} are similar (Table 3), fractionation between the two
332	in the monazite structure is not solely governed by ionic radii (e.g., Demartin et al.1991a,b) and
333	these elements do not behave in a similar fashion.
334	Monazite and xenotime have a well-known miscibility gap (e.g., Gratz and Heinrich
335	1997; Mogilevsky 2007) and higher amounts of Y in monazite in metamorphic rocks may be
336	related to increasing grade (e.g., Heinrich et al. 1997; Zhou et al. 2008; Krenn and Finger 2010).
337	In synthetic monazite, increasing temperature and pressure leads to an increase in the solid state
338	solubility of YPO ₄ in LREEPO ₄ compounds (Van Emden et al. 1997a; Andrehs and Heinrich
339	1998; Gratz and Heinrich 1998; Seydoux-Guillaume et al. 2002b; Mogilevsky 2007;
340	Maslennikova et al. 2010; Clavier et al. 2011). Thus, it seems reasonable to expect that high Y
341	monazite likely formed at higher-grade conditions (e.g., Krenn and Finger 2010), although some
342	high Y zones in monazite in metamorphic rocks can also be related to increases in Y in the

343	crystallization environment due to the breakdown of garnet and/or other accessory minerals (e.g.,
344	Mahan et al. 2006; Zhu and Onions 1999b; Spear and Pyle 2010).
345	The source of Y in monazite in metamorphosed pelites is speculated to be reactions
346	involving garnet, and high-Y rings (annuli) in garnet appear at conditions linked to the
347	appearance of the mineral in the rock (e.g., Kohn and Malloy 2004; Catlos et al. 2001).
348	Alternatively, the presence of Y in garnet has been speculated to be due to the breakdown of
349	accessory minerals, like xenotime or allanite (Yang and Rivers 2002; Yang and Pattison 2006;
350	Giere et al. 2011; Marsh et al. 2012). High-Y garnets typically contain only $\sim 1\%$ Y ₂ O ₃ (Zeh
351	2006; Honig et al. 2010). In low-grade metamorphic assemblages, allanite or xenotime are the
352	dominant sinks for Y (e.g., Regis et al. 2012) and are also major contributors of Y to monazite
353	during metamorphism (Spear and Pyle 2010). Petrogenetic modeling of low Ca pelites suggests
354	monazite mode and composition are controlled by the presence of xenotime in metamorphic
355	rocks, and when this mineral is absent, by the growth or consumption of garnet (Spear and Pyle
356	2010).
357	The roles of reactant availability, open system behavior, and the preference of the mineral
358	structure in determining the composition of monazite is exemplified by its Y content. Although
359	Y zoning in monazite provides a map for geochronologists in choosing specific zones in the
360	mineral to date, the lack of correlation between age and Y contents in some monazite (e.g.,
361	Martins et al. 2009; Triantafyllidis et al. 2010) suggests that no expectations should exist that

362 variations in Y content directly correlate to temporal or tectonic changes. A complexly zoned

363 grain may form at a single time or within the ability of an instrument to resolve the time frame

over which it grew. In metamorphic rocks, the breakdown of different minerals that provide its

constituents (i.e., allanite, xenotime, garnet) at different points along its path though P-T space
contributes to its compositional differences (e.g., Spear and Pyle 2010).

367

MONAZITE COMPOSITION, SHAPE, AND PROVENANCE

368 Monazite zoning has been speculated to be a useful indicator of environment as the

369 mineral can preserve complex internal zonation patterns at high metamorphic grade (e.g.,

Williams et al. 2007). Sector- and oscillatory-zoned monazite is thought to be typical of igneous

371 rocks and patchy zoning characteristic of metamorphic assemblages (Broska et al. 2000;

Townsend et al. 2000; Dawood and El-Naby 2007). This assumption would be useful in

deciphering the provenance of detrital monazite. However, oscillatory zoning has been found in

amphibolite-granulite grade monazite (e.g., Aleinikoff et al. 2006) and a monazite that

375 experienced amphibolite facies shows both sector zoning and oscillatory zoning (Crowley and

376 Ghent 1999). Monazite with patchy zoning has been found in granitic assemblages that

experienced metamorphism and metasomatism during exhumation (e.g., Catlos et al. 2010).

Monazite composition and zoning will be influenced by reactants available in its chemical environment, the P-T path that the rock follows (e.g., Wark and Miller 1993; Spear and Pyle 2010), the preference of the crystal to accept specific elements during growth (e.g., Cressey et al. 1999), and interaction with fluids (e.g., Harlov and Hetherington 2010; Harlov et al. 2011). The assumption that monazite composition in plutonic rocks will simply reflect the fractional crystallization of the melt has been shown to be complicated by the potential for magma mixing, metasomatism, and alteration (Wark and Miller 1993; Catlos et al. 2010).

However, some monazite zoning and textural relationships can be indicative of the environment in which it formed. Pure sector-zoned monazite is likely common in igneous rocks that have experienced little alteration (e.g., Cressey et al. 1999; Popova and Churin 2010). Sieve

388	textures are characteristic of authigenic monazite nodules (e.g., Burnotte et al. 1989; Milodowski
389	and Zalasiewicz 1991; Evans et al. 2002; Čopjaková et al. 2011). Grains that appear to have
390	undergone dissolution and reprecipitation reactions commonly show mottled overgrowths (e.g.,
391	Rasmussen and Muhling 2007; 2009; Mahan et al. 2010). Although rare, monazite has been
392	found as filling cracks in host minerals or along grain boundaries with apatite (e.g., Mathieu et
393	al. 2001; Catlos et al. 2008; Wawrzenitz et al. 2012), indicative of precipitation from a fluid
394	(Harlov et al. 2002; Harlov and Förster 2002; 2003; Harlov et al. 2005; Harlov 2011). Monazite
395	grains from ancient impact sites preserve fracture planes and granular textures characteristic of
396	high P metamorphism (Cavosie et al. 2010). Surfaces of individual monazite grains can also
397	indicate corrosion textures associated with fluids (Vavra and Schaltegger 1999). Baker et al.
398	(2008) report fibrous monazite grains from a garnet-bearing metapelite from western Turkey.
399	The garnet shows considerable internal zonation, consistent with multiple episodes of growth
400	and retrogression and the monazite grains likely experienced significant alteration.
401	Because of the nature of compositional substitutions (e.g., Table 2), primary monazite
402	can show a variety of shapes depending on its chemistry, which may be ideal for pinpointing
403	their origin (see examples in Popova and Churin 2010; Dill et al. 2012), although Montel et al.
404	(2011) found the shape and size of detrital monazite the "least useful" in identifying provenance.
405	Low-Th monazite may form a different morphology than high-Th grains (Fig. 7; Cressey et al.
406	1999). In primary low-Th monazite from a carbonatite, eight single crystal sectors develop with
407	La concentrated in {011} sectors and Nd, Pr, and other mid-REE are present in higher amounts
408	in $\{\overline{I}01\}$ and $\{100\}$. In addition, low-Th monazites appear to have growth rates faster
409	perpendicular to the $\{011\}$ direction relative to $\{\overline{I}01\}$ and $\{100\}$. Sr will also concentrate in the
410	$\{100\}$ sectors, whereas Ce is relatively constant across sectors. Thorium-rich (9-16 ThO ₂ wt %)

411	sector-zoned monazite from granitic pegmatites do not follow these trends, with Ce enrichment
412	found along some surfaces (e.g., Popova and Churin 2009). The presence of higher amounts of
413	Th changes monazite morphology as crystals become flattened on $\{100\}$, show smaller $\{\overline{I}01\}$
414	faces, and may not develop the {011} sectors (Fig. 7) (Cressey et al. 1999). This observation
415	suggests that the Th content of the environment in which the mineral is crystallizing plays an

- 416 important role in determining the morphology of monazite.
- 417

DISCUSSION

418 Monazite is typically a Th-rich mineral, with a number of possible substitution 419 mechanisms allowing access for this radiogenic element to be incorporated into its structure 420 (Table 2). Zoning of Th in monazite varies and is likely controlled by precursor reactants (e.g., 421 allanite or REE oxides), P-T conditions, and the extent of fluid-rock interactions. These factors play major roles in controlling Th composition, as opposed to its crystal chemistry or its 422 inclusion of other elements, like REE. Chondrite-normalized REE patterns of Himalayan 423 424 monazite with allanite are similar (Figure 4), indicating that the reactant (allanite) controls the 425 composition of product (monazite) in these metamorphic rocks. Note that the REE contents of 426 the Himalayan monazites and their presence are independent of whole rock chemistry (Figure 5). Any correlations between the amount of Th in monazite and metamorphic grade may be 427 coincidental, but authigenic monazite typically contains low ThO₂. Monazite Th content is 428 429 independent of that of silicate melts, but carbonatites typically contain low ThO₂ monazite. 430 Thorium-rich patches and/or variable compositions likely reflect fluid-induced alteration; many low ThO₂ grains affected by fluids have been reported. Thorium-rich monazite is also no more 431 432 susceptible to alteration than Th-poor accessory minerals. The long half-life of Th may be partly responsible for the ability of monazite to remain intact over long geological timescales. 433

19

7/23

434	Generalizations about Pb in monazite advocated by experimentalists contradict those
435	working with natural samples. For example, one reason for the discrepancy in closure
436	temperature reported by studies of Pb diffusion in monazite has been attributed to the difference
437	in the behavior of natural and synthetic grains. Common Pb has been measured during the
438	analysis of natural monazite grains using ion microprobe and isotope dilution techniques, but
439	incorporating Pb into the monazite structure has been difficult to produce experimentally. Lead
440	likely exists in monazite in its 2+ oxidation state and this cation is larger than others that can
441	reside in its structure in 9-fold coordination (Table 3). Monazite grains from ore and/or
442	hydrothermal deposits show higher amounts of the non-radiogenic Pb, which may provide clues
443	into the conditions at which Pb incorporation into the mineral lattice is possible. Common Pb can
444	be introduced via hydrothermal fluids, but other mechanisms may exist.
445	Correlations exist in some rocks between Y content and monazite age, but to generalize
446	that all monazite grains will show this relationship ignores the potential for a complex reaction
447	history for the rock and a range of potential sources of Y, which include the breakdown of
448	accessory minerals (e.g., allanite, xenotime, and/or rare-earth oxides) and/or major minerals
449	considered sinks for Y (e.g., garnet). When a relationship is observed between Y and age, the
450	rock likely experienced a unique set of P-T and fluid conditions and considerable insight can be
451	gained into its tectonic history. X-ray mapping of Y in garnet and monazite can assist in
452	identifying the chemical relationship between these minerals.
453	The inability to develop a consistent language and identify effective descriptors of
454	monazite zoning can be problematic because the appearance of the mineral can shed significant
455	insight into its potential origin and degree of interaction with fluids. The monazite structure is

456 flexible in that it can incorporate a large variety of cations and lattice distortions. The external

7/23

457 morphology of euhedral monazite crystals can be influenced by Th content (Fig. 7). Monazite grains are commonly zoned. Zoning is a function of crystal structure, what elements are present 458 459 when the monazite grain forms or is altered, and the P-T and fluid conditions during formation or alteration. The mineral can crystallize initially with primary sector zoning, but the grains can be 460 461 altered by secondary reactions. Authigenic and metasomatic monazite develop textures specific 462 to these environments, but generalizations that insist that specific types of monazite zoning (Table 1) are restricted to igneous or metamorphic environments should be avoided because 463 464 exceptions exist. Correlating mineral zoning in BSE images to the abundance of a specific 465 element, like Th or Y, can be done using high-resolution X-ray element mapping or generating 466 quantitative chemical data. A range of elements can display different types of zoning within 467 single grains and contribute to mineral appearance in BSE images.

Although much has been done in terms of understanding the behavior of monazite, key 468 controversies remain, including the influence of the mineral's chemistry and/or structure on 469 470 controlling the diffusion of Pb and the reason for the occurrence of monazite grains with larger 471 amounts of non-radiogenic Pb. Reactant availability, open system behavior, and the preference of the mineral structure in determining the composition of monazite is exemplified by its Y 472 content. Competition between the breakdown of accessory and major minerals that contain 473 elements necessary for monazite growth can complicate the mineral's chemistry in garnet-474 475 bearing assemblages. Some attribute monazite composition to its provenance, and these generalizations may be effective for a given field area and specific system that is being studied, 476 but to transfer them to a general understanding of monazite behavior can be problematic and 477 478 incorrect.

479 ACKNOWLEDGEMENTS

Comments from Drs. Dan Harlov, Michael Williams, and Gregory Dumond greatly improved the
 original manuscript. Samples analyzed in this study were collected and analyzed with the support

482 of the National Science Foundation.

483 **REFERENCES CITED**

- Aleinikoff, J.N., Burton, W.C., Lyttle, P.T., Nelson, A.E., and Southworth, S. (2000) U-Pb
 geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the
 northern Blue Ridge, Virginia and Maryland, USA. Precambrian Research, 99, 113-146.
- 487 Aleinikoff, J.N., Hayes, T.S., Evans, K.V., Mazdab, F.K., Pillers, R.M., and Fanning, C. (2012)
- SHRIMP U-Pb Ages of xenotime and monazite from the Spar Lake Red Bed-associated
 Cu-Ag Deposit, Western Montana: Implications for ore genesis. Economic Geology, 107,
 1251-1274.
- 491 Aleinikoff, J.N., Schenck, W.S., Plank, M.O., Srogi, L., Fanning, C.M., Kamo, S.L., and
- 492 Bosbyshell, H. (2006) Deciphering igneous and metamorphic events in high-grade rocks
- 493 of the Wilmington Complex, Delaware: Morphology, cathodoluminescence and
- 494 backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and

495 monazite. Geological Society of America Bulletin, 118, 39-64.

- 496 Amli, R. (1975) Mineralogy and rare earth geochemistry of apatite and xenotime from the
- 497 Gloserheia granite pegmatite, Froland, southern Norway. American Mineralogist, 60,498 607-620.
- Andrehs, G. and Heinrich, W. (1998) Experimental determination of REE distributions between
 monazite and xenotime: Potential for temperature-calibrated geochronology. Chemical
 Geology, 149, 83-96.

502	Ayers, J.C., Loflin, M., Miller, C.F., Barton M.D., and Coath, C.D. (2006) In situ oxygen isotope
503	analysis of monazite as a monitor of fluid infiltration during contact metamorphism:
504	Birch Creek Pluton aureole, White Mountains eastern California. Geology, 34, 654-656.
505	Ayers, J.C., Miller, C., Gorisch, B., and Milleman, J. (1999) Textural development of monazite
506	during high-grade metamorphism: Hydrothermal growth kinetics, with implications for
507	U,Th-Pb geochronology. American Mineralogist, 84, 1766-1780.
508	Baker, C.B., Catlos, E.J., Sorensen, S.S., Cemen, I., and Hancer, M. (2008) Evidence for
509	polymetamorphic garnet growth in the Çine (southern Menderes) Massif, Western
510	Turkey. IOP Conf. Series: Earth and Environmental Science, 2, 012020
511	doi:10.1088/1755-1307/2/1/012020.
512	Bea F. (1996) Residence of REE, Y, Th and U in granites and crustal protoliths: Implications for
513	the chemistry of crustal melts. Journal of Petrology, 37, 521-552.
514	Beall, G.W., Boatner, L.A., Mullica, D.F., and Milligan, W.O. (1981) The structure of cerium
515	ortho-phosphate, a synthetic analog of monazite. Journal of Inorganic and Nuclear
516	Chemistry, 43, 101-105.
517	Bearss, G.T. and Pitman, L.C. (1996) Monazite-(Ce) from the Buckwheat dolomite at Franklin,
518	New Jersey. The Mineralogical Record, 27.6, 439.
519	Berger A., Gnos, E., Janots, E., Fernandez, A., and Giese, J. (2008) Formation and composition
520	of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications
521	for geochronology and low-temperature processes. Chemical Geology, 254, 238-248.
522	Bernard-Griffiths, J., Peucat, J.J., Cornichet, J.J., Ponce de Leon, M.I., and Ibarguchi, J.I.G.
523	(1985) U-Pb, Nd Isotope and REE geochemistry in eclogites from the Cabortegal

- 524 complex, Galicia, Spain: An example of REE immobility conserving MORB-like patterns
- during high-grade metamorphism. Chemical Geology, 52, 217-225.
- 526 Black, L.P., Fitzgerald, J.D., and Harley, S.L. (1984) Pb isotopic composition, colour, and
- microstructure of monazites from a polymetamorphic rock in Antarctica. Contributions toMineralogy and Petrology, 85, 141-148.
- 529 Boatner, L.A. and Sales, B.C. (1988) Radioactive waste forms for the future: monazite. In: W.
- 530 Lutze, R.C. Ewing, Ed., Radioactive Waste Forms for the Future, p.495-564, North-
- 531 Holland Publishers, Amsterdam.
- Boggs, K.J. E., Kamo, S.L. Simony, P. Moore, J., and Archibald, D. (2002) A comparison of
- 533 CHIME and ID-TIMS U-Pb monazite ages from the Rocky Mountain Trench near
- Golden, British Columbia, Canada and the importance of CHIME analyses. Abstracts
 with Programs, Geological Society of America, 34, 68.
- Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S., and Ghazban, F. (2011) Significance of
- apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-
- apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chemical
 Geology, 281, 253-269.
- 540 Bowie, S.H.U. and Horne, J.E.T. (1953) Cheralite a new mineral of the monazite group.
- 541 Mineralogical Magazine, 30, 93-99.
- 542 Breiter, K., Čopjaková, R., and Skoda, R. (2009) The involvement of F,CO₂, and As in the
- alteration of Zr-Th-REE bearing accessory minerals in the Hora Svate Kateriny A-type
- 544 granite, Czech Republic. The Canadian Mineralogist, 47, 1375-1398.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4336

- granitoids of the Tribec Mountains, Western Carpathians. American Mineralogist, 85, 2232.
- 548 Brouand, M. and Cuney, M. (1990) Substitution des radioe'le'ments dans la monazite des
- 549 granites hyperalumineux. Conse'quences pour la de'finition de leur potentialite'
- 550 me'talloge'nique. Bulletin de la Socie'te' Franc, aise de Mine'ralogie et de
- 551 Cristallographie, 2/3, 124-125.

545

552 Bruguier, O., Hammor, D., Bosch, D., and Caby, R. (2009) Miocene incorporation of peridotite

into the Hercynian basement of the Maghrebides (Edough massif, NE Algeria):

- 554 Implications for the geodynamic evolution of the Western Mediterranean. Chemical 555 Geology, 261, 172-184.
- Burnotte, E., Pirard, E., and Michel, G. (1989) Genesis of gray monazites: Evidence from the
 Paleozoic of Belgium. Economic Geology, 84, 1417-1429.
- 558 Burt, D.M. (1989) Compositional and phase relations among rare earth elements. In
- 559 Geochemistry and mineralogy of rare earth elements. In B.R. Lipin and G.A. McKay,
- Eds., Reviews in Mineralogy, 21, Mineralogical Society of America, pp. 259-307.
- 561 Cabella, R., Lucchetti, G., and Marescotti, P. (2001) Authigenic monazite and xenotime from
- 562 pelitic metacherts in pumpellyite-actinolite-facies conditions, Sestri-Voltaggio Zone,
- 563 Central Liguria, Italy. The Canadian Mineralogist, 39, 717-727.
- Catlos, E.J. (2000). Geochronologic and thermobarometric constraints on the evolution of the
 Main Central Thrust, Himalayan orogen. PhD Thesis. University of California.
- 566 Catlos, E.J., Baker, C., Sorensen, S.S., Çemen, I., and Hancer, M. (2010) Geochemistry,
- 567 geochronology, and cathodoluminescence imagery of the Salihli and Turgutlu granites

(central Menderes Massif, western Turkey): Implications for Aegean tectonics.

Catlos, E.J. and Cemen, I. (2005) Monazite ages and rapid exhumation of the Menderes Massif,

Tectonophysics, 488, 110-130.

568

569

570

26

571	western Turkey. International Journal of Earth Sciences, 94, 204-217.
572	Catlos, E.J., Dubey, C.S., and Sivasubramanian, P. (2008) Monazite ages from carbonatites and
573	high-grade assemblages along the Kambam Fault Southern Granulite Terrain, South
574	India. American Mineralogist, 93, 1230-1244.
575	Catlos, E.J., Gilley, L.D., and Harrison, T.M. (2002) Interpretation of monazite ages obtained via
576	in situ analysis. Chemical Geology, 188, 193-215.
577	Catlos, E.J., Harrison, T.M., Kohn, M.J., Grove, M., Ryerson, F.J., Manning, C.E., and Upreti,
578	B.N. (2001) Geochronologic and thermobarometric constraints on the evolution of the
579	Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research, 106,
580	16177-16204.
581	Cavosie, A.J., Quintero, R.R., Radovan, H.A., and Moser D.E. (2010) A record of ancient
582	cataclysm in modern sand: Shock microstructures in detrital minerals from the Vaal
583	River, Vredefort Dome, South Africa. Geological Society of America Bulletin, 122,
584	1968-1980.
585	Chatterjeea, N., Banerjeeb, M., Bhattacharyab, A., and Majic A.K. (2010) Monazite chronology,
586	metamorphism-anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian
587	Tectonic Zone. Precambrian Research, 179, 99-120.

- Chen, C-H., Liu, Y-H., Lee, C-Y., Xiang, H., and Zhou, H-W. (2012) Geochronology of 588
- granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai 589

590	massif), South China: Emphasis on the in-situ EMP monazite dating. Lithos, 144-145,
591	109-129.
592	Cherniak, D.J. (2010) Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and
593	Xenotime. Reviews in Mineralogy and Geochemistry, 72, 827-869.
594	Cherniak, D.J. and Pyle, J.M. (2008) Thorium diffusion in monazite. Chemical Geology, 256,
595	52-61.
596	Cherniak, D.J., Watson, E.B., Grove, M., and Harrison, T.M. (2004) Pb diffusion in monazite: a
597	combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829-840.
598	Choo, C.O. (2002) Complex compositional zoning in epidote from rhyodacitic tuff, Bobae
599	sericite deposit, southeastern Korea. Nues Jahrbuch für Mineralogie, 177, 181-197.
600	Choo, C.O. (2003) Mineralogical studies on complex zoned tourmaline in diaspore nodules from
601	the Milyang clay deposit, Korea. Geosciences Journal, 7, 151-156.
602	Clavier, N., Podor, R., and Dacheux, N. (2011) Crystal chemistry of the monazite structure.
603	Journal of the European Ceramic Society, 31, 941-976.
604	Čopjaková, R., Novak, M., and Francu, E. (2011) Formation of authigenic monazite-(Ce) to
605	monazite-(Nd) from Upper Carboniferousgraywackes of the Drahany Upland: Roles of
606	the chemical composition of host rock and burial temperature. Lithos, 127, 373-385.
607	Corfu, F. (1988) Differential response of U-Pb systems in coexisting accessory minerals,
608	Winnipeg River Subprovince, Canadian Shield: implications for Archean crustal growth
609	and stabilization. Contributions to Mineralogy and Petrology, 98, 312-325.
610	Cressey, G., Wall, I.F., and Cressey, B.A. (1999) Differential REE uptake by sector growth of
611	monazite. Mineralogical Magazine, 63, 813-828.

612	Crowley, J.L., Brown, R.L., Gervais, F., and Gibson, H.D. (2008) Assessing inheritance of
613	zircon and monazite in granitic rocks from the Monashee Complex, Canadian Cordillera.
614	Journal of Petrology, 49, 1915-1929.
615	Crowley, J.L. and Ghent, E.D. (1999) An electron microprobe study of the U-Th-Pb systematics
616	of metamorphosed monazite: the role of Pb diffusion versus overgrowth and
617	recrystallization. Chemical Geology, 157, 285-302.
618	Dahl, P.S., Hamilton, M.A., Jercinovic, M.J., Terry, M.P., Williams, M.L. and Frei, R. (2005)
619	Comparative isotopic and chemical geochronometry of monazite, with implications for
620	U-Th-Pb dating by electron microprobe: an example from metamorphic rocks of the
621	eastern Wyoming Craton (U.S.A.). American Mineralogist, 90, 619-638.
622	Dana, J.D., Dana, E.S., Palach, Ch., Berman, G. and Frondel, K. (1951) System of Mineralogy.
623	Vol. 2 (Wiley, New York, 1951; Inostrannaya Literatura, Moscow, 1954).
624	Dawood, Y.H., and El-Naby, H.H. (2007) Mineral chemistry of monazite from the black sand
625	deposits, northern Sinai, Egypt: a provenance perspective. Mineralogical Magazine, 71,
626	389-406.
627	Deer, W.A., Howie, R.A., and Zussman, J. (1992) An Introduction to the Rock-Forming
628	Minerals (2nd Edition). Prentice Hall, New York, 712pp.
629	Della Ventura, G., Mottana, A., Parodi, G.C., Raudsepp, M., Bellatreccia, F., Caprilli, E., Rossi,
630	P., and Fiori, S. (1996) Monazite-huttonite solid-solutions from the Vico Volcanic
631	Complex, Latium, Italy. Mineralogical Magazine, 60, 751-758.
632	Demartin, F., Pilati, T., Diella, V., Donzelli, S., Gentile, P., and Gramaccioli, C.M. (1991a) The
633	chemical composition of xenotime from fissures and pegmatites in the Alps. The
634	Canadian Mineralogist, 29, 69-75.

- Demartin, F., Pilati, T., Diella, V., Donzelli, S., and Gramaccioli, C.M. (1991b) Alpine monazite:
 Further data. The Canadian Mineralogist, 29, 61-67.
- DeWolf, C.P., Belshaw, N., and O'Nions, R.K. (1993) A metamorphic history from micron-scale
 ²⁰⁷Pb-²⁰⁶Pb chronometry of Archean monazite. Earth and Planetary Science Letters, 120,
 207-220.
- 640 Dill, H.G., Weber, B., and Klosa, D. (2012) Morphology and mineral chemistry of monazite-
- and provenance marker. Journal of Geochemical Exploration, 112, 322-346.
- Dowty, E. (1976) Crystal structure and crystal growth: II. Sector zoning in minerals. American
 Mineralogist, 61, 460-469.
- Dubrail, J., Farges, F., Gautron, L., Harfouche, M., Borca, C., and Grolimund, D. (2009) Pb in
- naturally irradiated monazites and zircons. Journal of Physics: Conference Series, 190,
- 647 012180, doi:10.1088/1742-6596/190/1/012180.
- Evans, J.A., Zalasiewicz, J.A., Fletcher, I., Rasmussen, B., and Pearce, N.J.G. (2002) Dating
- diagenetic monazite in mudrocks: constraining the oil window? Journal of the GeologicalSociety, London, 159, 619-622.
- Exley, R.A. (1980) Microprobe studies of REE-rich accessory minerals: Implications for Skye
- 652 granite petrogenesis and REE mobility in hydrothermal systems. Earth and Planetary653 Science Letters, 48, 97-110.
- Faure, M., Mezeme, E.B., Cocherie, A., Rossi, P., Chemenda, A., and Boutelier, D. (2008)
- 655 Devonian geodynamic evolution of the Variscan Belt, insights from the French Massif
- 656 Central and Massif Armoricain. Tectonics, 27, TC2005, doi:10.1029/2007TC002115.

657	Felsche, J. (1976) Yttrium and lanthanides, section A. In K. H. Wedepohl, Ed., Handbook of
658	Geochemistry, v.II, section 39, 57-71, p. Al-A42.

- 659 Förster, H.J. (1998) The chemical composition of REE-Y-Th-Urich accessory minerals in
- 660 peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany: Part I. The
- 661 monazite-(Ce)-brabantite solid solution series. American Mineralogist, 83, 259-272.
- Förster, H.J. and Harlov, D.E. (1999) Monazite-(Ce) huttonite solid solutions in granulite-facies
- 663 metabasites from the Ivrea-Verbano Zone, Italy. Mineralogical Magazine, 63, 587-594.
- 664 Foster, G., Gibson, H.D., Parrish, R., Horstwood, M., Fraser, J., and Tindle, A. (2002) Textural,
- chemical and isotopic insights into the nature and behaviour of metamorphic monaziteChemical Geology, 191, 183- 207.
- 667 Frei, R., Villa, I.M., Nagler, Th-F., Kramers, J.D., Przybylowicz, W.J., Prozesky, V.M.,
- Hofmann, B.A., Kamber, B.S. (1997) Single mineral dating by the Pb-Pb step-leaching
- 669 method: Assessing the mechanisms. Geochimica et Cosmochimica Acta, 61, 393-414.
- Gagne, S., Jamieson, R.A., MacKay, R., Wodicka, N., and Corrigan, D. (2009) Texture,
- composition, and age variations in monazite from the lower amphibolite to the granulite
 facies Longstaff Bluff formation, Baffin Island, Canada. The Canadian Mineralogist, 47,
 847-869.
- Gardes, E., Jaoul, O., Montel, J.M., Seydoux-Guillaume, A.M., and Wirth R. (2006) Pb diffusion
 in monazite: an experimental study of Pb²⁺ +Th⁴⁺ ↔2Nd³⁺ interdiffusion. Geochimica et
 Cosmochimica Acta, 70, 2325-2336.
- Gasser, D., Bruand, E., Rubatto, D., and Stuwe, K. (2012) The behaviour of monazite from
- 678 greenschist facies phyllites to anatectic gneisses: An example from the Chugach
- 679 Metamorphic Complex, southern Alaska. Lithos, 134-135, 108-122.

680	Gibson, H.D., Carra, S.D., Brown, R.L., and Hamilton, M.A. (2004) Correlations between
681	chemical and age domains in monazite, and metamorphic reactions involving major
682	pelitic phases: an integration of ID-TIMS and SHRIMP geochronology with Y-Th-U X-
683	ray mapping. Chemical Geology, 211, 237-260.
684	Giere, R., Rumble, D., Gunther, D., Connolly, J., and Caddick, M.J. (2011) Correlation of
685	growth and breakdown of major and accessory minerals in metapelites from
686	Campolungo, Central Alps. Journal of Petrology, 52, 2293-2334.
687	Glodny, J. and Hetzel, R. (2007) Precise U-Pb ages of syn-extensional Miocene intrusions in the
688	central Menderes Massif, western Turkey. Geological Magazine, 144, 235-246.
689	Goncalves, P., Williams, M.I., and Jercinovic, M.J. (2005) Electron-microprobe age mapping of
690	monazite. American Mineralogist, 90, 578-585.
691	Gramaccioli, C.M. and Segalstad, T.V. (1978) A uranium- and thorium-rich monazite from
692	south-alpine pegmatite at Piona, Italy. American Mineralogist, 63, 757-761.
693	Gratz, R. and Heinrich, W. (1997) Monazite-xenotime thermobarometry: Experimental
694	calibration of the miscibility gap in the binary system CePO ₄ -YPO ₄ . American
695	Mineralogist, 82, 772-780.
696	Gratz, R. and Heinrich, W. (1998) Monazite-xenotime thermometry: III. Experimental
697	calibration of the partitioning of gadolinium between monazite and xenotime. European
698	Journal of Mineralogy, 10, 579-588.
699	Grove, M. and Harrison, T.M. (1999) Monazite Th-Pb age depth profiling Geology, 27, 487-490.
700	Harlov, D. (2011) Petrological and experimental application of REE- and actinide-bearing
701	accessory minerals to the study of Precambrian high-grade gneiss terranes. Geological
702	Society of America Memoirs, 207, 13-24.

703	Harlov, D.E., and Förster, HJ. (2002) High-grade fl uid metasomatism on both a local and
704	regional scale: The Seward Peninsula, Alaska, and the Val Strona di Omegna, Ivrea-
705	Verbano Zone, northern Italy. Part I: Petrography and silicate mineral chemistry. Journal
706	of Petrology, 43, 769-799.
707	Harlov, D.E., and Förster, HJ. (2003) Fluid-induced nucleation of (Y+REE)-phosphate
708	minerals within apatite: Nature and experiment. Part II. Fluorapatite. American
709	Mineralogist, 88, 1209-1229.
710	Harlov, D.E., Förster, HJ., and Nijland, T.G. (2002) Fluid-induced nucleation of (Y + REE)-
711	phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite. American
712	Mineralogist, 87, 245-261.
713	Harlov, D.E. and Hetherington, C.J. (2010) Partial high-grade alteration of monazite using alkali-
714	bearing fluids: experiment and nature. American Mineralogist, 95, 1105-1108.
715	Harlov, D.E., Wirth, R., and Förster, HJ. (2005) An experimental study of dissolution-
716	reprecipitation in fluorapatite: fluid infiltration and the formation of monazite.
717	Contributions to Mineralogy and Petrology, 150, 268-286.
718	Harlov, D.E., Wirth, R., and Hetherington, C.J. (2007) The relative stability of monazite and
719	huttonite at 300-900 °C and 200-1000 MPa: metasomatism and the propagation of
720	metastable mineral phases. American Mineralogist, 92, 1652-1664.
721	Harlov, D.E., Wirth, R., and Hetherington, C.J. (2011) Fluid-mediated partial alteration in
722	monazite: the role of coupled dissolution-reprecipitation in element redistribution and
723	mass transfer. Contributions to Petrology and Mineralogy, 162, 329-348.
724	Harrison, T.M., Catlos, E.J., and Montel, J-M. (2002) U-Th-Pb Dating of Phosphate Minerals.
725	In: J.M. Hughes, M. Kohn and J. Rakovan, Eds., Phosphates: Geochemical,

32

7/23

726	Geobiological and Materials Importance. Mineralogical Society of America, Washington
727	D.C., pp. 523-558.
728	Hawkins, D.P. and Bowring, S.A. (1997) U-Pb systematics of monazite and xenotime: case
729	studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contributions to
730	Mineralogy and Petrology, 127, 87-103.
731	Hazen, R.M., Ewing, R.C., and Sverjensky, D.A. (2009) Evolution of uranium and thorium
732	minerals. American Mineralogist, 94, 1293-1311.
733	Heinrich, W., Andrehs, G., and Franz, G. (1997) Monazite-xenotime miscibility gap
734	thermometry. I. An empirical calibration. Journal of Metamorphic Geology, 15, 3-16.
735	Hietpas, J., Samson, S., and Moecher, D. (2011) A direct comparison of the ages of detrital
736	monazite versus detrital zircon in Appalachian foreland basin sandstones: Searching for
737	the record of Phanerozoic orogenic events. Earth and Planetary Science Letters, 310, 488-
738	497.
739	Hinchey, A.M., Carr, S.D., and Rayner, N. (2007) Bulk compositional controls on the
740	preservation of age domains within metamorphic monazite: A case study from quartzite
741	and garnet-cordierite-gedrite gneiss of Thor-Odin dome, Monashee complex, Canadian
742	Cordillera. Chemical Geology, 240, 85-102.
743	Hoisch, T.D., Wells, M.L., and Grove, M. (2008) Age trends in garnet-hosted monazite
744	inclusions from upper amphibolite facies schist in the northern Grouse Creek Mountains,
745	Utah. Geochimica et Cosmochimica Acta, 72, 5505-5520.
746	Hokada, T. and Motoyoshi, Y. (2006) Electron microprobe technique for U-Th-Pb and REE
747	chemistry of monazite, and its implications for pre-, peak-, and post-metamorphic events

33

748	pf the Lutzow-Holm Complex and the Napier Complex, East Antartica. Polar
749	Geoscience, 19, 118-151.
750	Honig, S., Leichmann, J., and Novak, M. (2010) Unidirectional solidification textures and garnet
751	layering in Y-enriched garnet-bearing aplite-pegmatites in the Cadomian Brno Batholith,
752	Czech Republic. Journal of Geosciences, 55, 113-129.
753	Huang, T, Lee, J-S., Kung, J., and Lin, C-M. (2010) Study of monazite under high pressure.
754	Solid State Communications, 150, 1845-1850.
755	Huminicki, D.M.C. and Hawthorne, F.C. (2002) The Crystal Chemistry of the Phosphate
756	Minerals. In: J.M. Hughes, M. Kohn and J. Rakovan, Eds., Phosphates: Geochemical,
757	Geobiological and Materials Importance. Mineralogical Society of America, Washington
758	D.C., pp 123-253.
759	Iizuka, T., McCulloch M.T., Komiya, T., Shibuya, T., Ohta, K., Ozawa, H., Sugimura, E., and
760	Collerson, K.D. (2010) Monazite geochronology and geochemistry of meta-sediments in
761	the Narryer Gneiss Complex, Western Australia: constraints on the tectonothermal
762	history and provenance. Contributions to Mineralogy and Petrology, 160, 803-823.
763	Ilupin, I. P., Khomyakov, A. P., and Balashov, Yu. A. (1971) Rare earths in accessory minerals
764	of Yakutian kimberlite. Doklady Akademii Nauk SSSR, 201,1214-1217 (transl. Doklady
765	of the Academy of Sciences of the U.S.S.R.,201,272-274, 1971)
766	Janots, E., Berger, A., Gnos, E., Whitehouse, M., Lewin, E., and Pettke, T. (2012) Constraints on
767	fluid evolution during metamorphism from U-Th-Pb systematics in Alpine hydrothermal
768	monazite. Chemical Geology, 326-327, 61-71.

769	Kartashov, P.M., Bogatikov, O.A., Mokhov, A.V., Gorshkov, A.I., Ashikhmina, N. A.
770	Magazina, L.O., and Koporulina, E.V. (2006) Lunar monazites. Doklady Earth Sciences,
771	407A, 498-502.
772	Kelly, K.L., Beall, G.W., Young, J.P., and Boatner, L.A. (1981) Valence states of actinides in
773	synthetic monazites. In J.G. Moore, Ed., The Scientific Basis For Nuclear Waste
774	Management 3, p. 189-195. Plenum, New York.
775	Kelly, N.M., Harley, S.L., and Möller, A. (2012) Complexity in the behavior and
776	recrystallization of monazite during high-T metamorphism and fluid infiltration.
777	Chemical Geology, 322-323, 192-208.
778	Kempe, U., Lehmann, B. Wolf, D., Rodionov, N., Bombach, K., Schwengfelder, U., and
779	Dietrich, A. (2008) U-Pb SHRIMP geochronology of Th-poor, hydrothermal monazite:
780	An example from the Llallagua tin-porphyry deposit, Bolivia. Geochimica et
781	Cosmochimica Acta, 72, 4352-4366.
782	Kohn, M.J. and Malloy, M.A. (2004) Formation of monazite via prograde metamorphic reactions
783	among common silicates: implications for age determinations. Geochimica et
784	Cosmochimica Acta, 68, 101-113.
785	Kohn, M.J. and Vervoot, J. D. (2008) U-Th-Pb dating of monazite by single-collector ICP-MS:
786	Pitfalls and potential. Geochemistry, Geophysics and Geosystems, 9, 1-16.
787	Krenn, E. and Finger, F. (2010) Unusually Y-rich monazite-(Ce) with 6-14 wt.% Y2O3 in a
788	granulite from the Bohemian Massif: implications for high-temperature monazite growth
789	from the monazite-xenotime miscibility gap thermometry. Mineralogical Magazine, 74,
790	217-225.

Krenn, E., Janak, M., Fritz, F., Broska I., and Konecny, P. (2009) Two types of metamorphic 791 792 monazite with contrasting La/Nd, Th and Y signature in a (ultra) high pressure metapelite 793 from the Pohorje Mountains, Slovenia: Indications for a pressured ependent REE 794 exchange between apatite and monazite? American Mineralogist, 94, 801-815. Krenn, E., Putz, H., Finger, F., and Paa, W. (2008a) Unusual monazite with high S, Sr, Eu and 795 796 common Pb contents in ore bearing mylonites from the Schellgaden mining district, 797 Austria. EGU General Assembly Geophysical Research Abstracts, 10, EGU2008-A-11796. 798 799 Krenn, E., Ustaszewski, K., and Finger, F. (2008b) Detrital and newly formed metamorphic 800 monazite in amphibolite-facies metapelites from the Motajica Massif, Bosnia. Chemical 801 Geology, 254, 164-174. 802 Krenn, E., Putz, H., Finger, F., and Paar, W.H. (2011) Sulfur-rich monazite with high common 803 Pb in ore-bearing schists from the Schellgaden mining district (Tauern Window, Eastern 804 Alps). Mineralogy and Petrology, 102, 51-62. 805 Kucha, H. (1980) Continuity in the monazite-huttonite series. Mineralogical Magazine, 43, 1031-806 1034. 807 Kusiak M.A., Suzuki, K., Dunkley, D.J., Lekki, J., Bakun-Czubarow, N., Paszkowski, M., and 808 Budzyn, B. (2008) EPMA and PIXE dating of monazite in granulites from Stary Gierałtów, NE Bohemian Massif, Poland. Gondwana Research, 14, 675-685. 809 810 Li, N., Chen, Y-J., Fletcher, I.R., and Zeng, Q-T. (2011) Triassic mineralization with Cretaceous 811 overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province: Constraints from 812 SHRIMP monazite U-Th-Pb geochronology. Gondwana Research, 20, 543-552.

36

- Lobato, L.M., Santos, J.O.S., McNaughton, N.J. Fletcher, I.R., and Noce, C.M. (2007) U-Pb
- 814 SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das
- 815 Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology

816 Reviews 32, 674-680.

- Loomis, T.P. (1983) Compositional zoning of crystals: a record of growth and reaction history.
- 818 In: Saxena, S.K. (ed) Kinetics and equilibrium in mineral reactions (Advances in physical
- geochemistry, vol 3). Springer, New York, pp 1-60.
- 820 Mahan, K.H., Goncalves, P., Williams, M.L., and Jercinovic, M.J. (2006) Dating metamorphic
- reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale
- shear zone, western Canadian Shield. Journal of Metamorphic Geology, 24, 193-217.
- 823 Mahan, K.H., Wernicke, B.P., and Jercinovic, M.J. (2010) Th-U-total Pb geochronology of
- authigenic monazite in the Adelaide rift complex, South Australia, and implications for
- the age of the type Sturtian and Marinoan glacial deposits. Earth and Planetary Science
- Letters, 289, 76-86.
- Majka, J., Beeri-Shlevin, Y., Geel, D.G., Ladenberger, A., Claesson, S., Konecny, P., and
- 828 Klonowskai, I. (2012) Multiple monazite growth in the Åreskutan migmatite: evidence
- for a polymetamorphic Late Ordovician to Late Silurian evolution in the Seve Nappe
- 830 Complex of west-central Jämtland, Sweden. Journal of Geosciences, 57, 3-23.
- Marsh, J.H., Grew, E.S., Gerbi, C.C., Yates, M.G., and Culshaw, N.G. (2012) The petrogenesis
- of the garnet menzerite-(Y) in granulite facies rocks of the Parry Sound Domain,
- 633 Grenville Province, Ontario. The Canadian Mineralogist, 50, 73-99.

834	Martin, A.J., Gehrels, G.E., and DeCelles, P.G. (2007) The tectonic significance of (U,Th)/Pb
835	ages of monazite inclusions in garnet from the Himalaya of central Nepal. Chemical
836	Geology, 244, 1-24.
837	Martins, L., Vlach, S.R.F., and Janasi, V-dA. (2009) Reaction microtextures of monazite:
838	Correlation between chemical and age domains in the Nazaré Paulista migmatite, SE
839	Brazil. Chemical Geology, 261, 271-285.
840	Maslennikova, T.P., Osipov, A.V. Mezentseva L.P., Drozdova, I.A., Kuchaeva, S.K., Ugolkov,
841	V. L., and Gusarov, V. V. (2010) Synthesis, mutual solubility, and thermal behavior of
842	nanocrystals in the LaPO ₄ -YPO ₄ -H ₂ O system. Glass Physics and Chemistry, 36, 351-357.
843	Mathieu, R., Zetterstrom, L., Cuney, M., Gauthier-Lafaye, F., and Hidaka, H. (2001) Alteration
844	of monazite and zircon and lead migration as geochemical tracers of fluid
845	paleocirculations around the Oklo-Okelobondo and Bangombe natural nuclear reaction
846	zones (Franceville basin, Gabon). Chemical Geology 171, 147-171.
847	McFarlane, C.R.M. and Harrison, T.M. (2006) Pb-diffusion in monazite: Constraints from a
848	high-T contact aureole setting. Earth and Planetary Science Letters, 250, 376-384.
849	Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C. (1998) Radiation damage in zircon
850	and monazite. Geochimica et Cosmochimica Acta, 62, 2509-2520.
851	Milodowski, A.E. and Zalasiewicz, J.A. (1991) Redistribution of rare earth elements during
852	diagenesis of turbidite/ hemipelagite mudrock sequences of Llandovery age from central
853	Wales. In A. C. Morton, S.P. Todd, and P.D.W. Haughton, Eds., Developments in
854	Sedimentary Provenance Studies. Geological Society Special Publication, 57, 101-124.
855	Mogilevsky, P. (2007) On the miscibility gap in monazite-xenotime systems. Physics and
856	Chemistry of Minerals, 34, 201-214.

857	Mohr, D.W.	(1984) Zoned	porphyroblasts	of metamorphic r	monazite in the	Anakeesta Formation,

- Great Smoky Mountains, North Carolina. American Mineralogist, 69, 98-103.
- Mooney, R.C.L. (1948) Crystal Structures of a Series of Rare Earth phosphates. Journal of
- Chemical Physics, 16, 1003, doi: 10.1063/1.1746668.
- Montel, J-M., Foret, S., Veschambre, M., Nicollet, C., and Provost, A. (1996) Electron
 microprobe dating of monazite. Chemical Geology, 131, 37-53.
- Montel, J-M., Razafimahatratra, D., Ralison, B., De Parseval, P., Thibault, M., and Randranja, R.
- 864 (2011) Monazite from mountain to ocean: a case study from Trolognaro (Fort-Dauphin),
- Madagascar. European Journal of Mineralogy, 23, 745-757.
- Morelli, R.M., Bell, C.C., Creaser, R.A., and Simonetti, A. (2010) Constraints on the genesis of
- gold mineralization at the Homestake Gold Deposit, Black Hills, South Dakota from

rhenium-osmium sulfide geochronology. Mineralium Deposita, 45, 461-480.

- Ni, Y., Hughes, J.M., and Mariano, A.N. (1995. Crystal chemistry of the monazite and xenotime
 structures. American Mineralogist, 80, 21-26.
- 871 Oelkers, E.H. and Poitrasson, F. (2002) An experimental study of the dissolution stoichiometry
- and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH
- from 1.5 to 10. Chemical Geology, 191, 73-87.
- 874 Overstreet, W.C. (1967) The geological occurrence of monazite. U.S. Geological Survey
- 875 Progress Paper, 530.
- Pan, Y. (1997) Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario.
 The Canadian Mineralogist, 35, 105-118.

878	Panda, N.K., Rajagopalan, V., and Ravi, G.S. (2003) Rare-earth-element geochemistry of placer
879	monazites from Kalingapatnam Coast, Srikakulam District, Andhra Pradesh. Journal of
880	the Geological Society of India, 62, 429-438.
881	Parrish, R.R. (1990) U-Pb dating of monazite and its application to geological problems.
882	Canadian Journal of Earth Science, 27, 1431-1450.
883	Pe-pier, G. and McKay, R.M. (2006) Provenance of Lower Cretaceous sandstones onshore and
884	offshore Nova Scotia from electron microprobe geochronology and chemical variation of
885	detrital monazite. Bulletin of Canadian Petroleum Geology, 54, 366-379.
886	Petrik, I. and Konecny, P. (2009) Metasomatic replacement of inherited metamorphic monazite
887	in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians,
888	Slovakia: Chemical dating and evidence for disequilibrium melting. American
889	Mineralogist, 94, 957-974.
890	Pilipiuk A.N., Ivanikov V.V., and Bulakh A.G. (2001) Unusual rocks and mineralisation in a
890 891	Pilipiuk A.N., Ivanikov V.V., and Bulakh A.G. (2001) Unusual rocks and mineralisation in a new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347.
891	new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347.
891 892	new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347. Podor R. (1994) Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of
891 892 893	new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347. Podor R. (1994) Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of Université Henri Poincaré, Nancy (France).
891 892 893 894	new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347. Podor R. (1994) Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of Université Henri Poincaré, Nancy (France). Podor R. and Cuney M. (1997) Experimental study of Th-bearing LaPO4 (780 °C, 200MPa):
891 892 893 894 895	 new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347. Podor R. (1994) Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of Université Henri Poincaré, Nancy (France). Podor R. and Cuney M. (1997) Experimental study of Th-bearing LaPO4 (780 °C, 200MPa): implications for monazite and actinide orthophosphate stability. American Mineralogist,
891 892 893 894 895 896	 new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos, 56, 333-347. Podor R. (1994) Synthèse et caractérisation des monazites uranifères et thorifères. PhD thesis of Université Henri Poincaré, Nancy (France). Podor R. and Cuney M. (1997) Experimental study of Th-bearing LaPO4 (780 °C, 200MPa): implications for monazite and actinide orthophosphate stability. American Mineralogist, 82, 765-771.

900	Popova, V.I., and Churin, E. I. (2010) Zoning and sectoriality of monazite-(Ce) from granite
901	pegmatites of the central and south Urals. Geology of Ore Deposits, 52, 646-655.
902	Pršek, J., Ondrejka, M., Bačík, P., Budzyń, B., and Uher, P. (2010) Metamorphic-hydrothermal
903	REE minerals in the Bacúch magnetite deposit, western Carpathians, Slovakia: (Sr, S)-
904	rich monazite-(Ce) and Nd-dominant hingganite. The Canadian Mineralogist, 48, 81-94.
905	Pyle, J.M. and Spear, F.S. (2003) Four generations of accessory-phase growth in low-pressure
906	migmatites from SW New Hampshire. American Mineralogist, 88, 338-351.
907	Pyle, J.M., Spear, F.S., Rudnick, R.L., and McDonough, W.F. (2001) Monazite-xenotime-garnet
908	equilibria in metapelites and a new monazite-garnet thermometer. Journal of Petrology
909	42, 2083- 2107.
910	Quarton, M., Zouiri, M., and Freundlich, W. (1984) Cristallochimie des orthophosphates doubles
911	de thorium et de plomb. C R Acad Sci Ser II, 299, 785-788.
912	Rasmussen, B. and Muhling, J.R. (2007) Monazite begets monazite: evidence for dissolution of
913	detrital monazite and reprecipitation of syntectonic monazite during lowgrade regional
914	metamorphism. Contributions to Mineralogy and Petrology 154, 675-689.
915	Rasmussen, B. and Muhling, J.R. (2009) Reactions destroying detrital monazite in greenschist-
916	facies sandstones from the Witwatersrand basin, South Africa. Chemical Geology, 264,
917	311-327.
918	Rasmussen, B., Fletcher, I.R., and Muhling, J.R. (2007) In situ U-Pb dating and element
919	mapping of three generations of monazite: unravelling cryptic tectonothermal events in
920	low-grade terranes. Geochimica et Cosmochimica Acta, 71, 670-690.

921	Regis, D., Cenki-Tok, B., Darling, J., and Engi, M. (2012) Redistribution of REE, Y, Th, and U
922	at high pressure: Allanite-forming reactions in impure meta-quartzites (Sesia Zone,
923	Western Italian Alps). American Mineralogist, 97, 315-328.
924	Reno, B.L., Piccoli, P.M., Brown, M., and Trouw, R.A.J. (2012) In situ monazite (U-Th)-Pb ages
925	from the Southern Brasılia Belt, Brazil: constraints on the high-temperature retrograde
926	evolution of HP granulites. Journal of Metamorphic Geology, 30, 81-112.
927	Rubatto, D., Hermann, J., and Buick, I.S. (2006) Temperature and bulk composition control on
928	the growth of monazite and zircon during low-pressure anatexis (Mount Stafford, Central
929	Australia). Journal of Petrology, 47, 1973-1996.
930	Sano, Y., Takahata, N., Tsutsumi, Y., and Miyamoto, T. (2006) Ion microprobe U-Pb dating of
931	monazite with about five micrometer spatial resolution. Geochemical Journal, 40, 597-
932	608.
933	Santosh, M., Collins, A.S., Tamashiro, I., Koshimoto, S., Tsutsumi, Y., and Yokoyama, K.
934	(2006) The timing of ultrahigh-temperature metamorphism in Southern India: U-Th-Pb
935	electron microprobe ages from zircon and monazite in sapphirine-bearing granulites.
936	Gondwana Research, 10, 128-155.
937	Schandl, E.S. and Gorton, M.P., 2004, A textural and geochemical guide to the identification of
938	hydrothermal monazite: Criteria for selection of samples for dating epigenetic
939	hydrothermal ore deposits: Economic Geology and Bulletin of the Society of Economic
940	Geologists, 99, 1027-1035.
941	Semenov, E.I. (2001) REE, Th, and U mineralization and ores (Lanthanides and Actinides)
942	(GEOS, Moscow) [in Russian].

943	Seydoux-Guillaume, AM., Montel, JM., Bingen, B., Bosse, V., de Parseval, P., Paquette, J
944	L., Janots, E., and Wirth, R. (2012) Low-temperature alteration of monazite: Fluid
945	mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-
946	Pb and Th-Pb chronometers. Chemical Geology, 330-331, 140-158.
947	Seydoux-Guillaume, AM., Paquette, JL., Wiedenbeck, M., Montel, JM., and Heinrich, W.
948	(2002b) Experimental resetting of the U-Th-Pb systems in monazite: Chemical Geology,
949	191, 165-181.
950	Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk, M. Montel, J. M., and Heinrich
951	W. (2002a) An XRD, TEM and Raman study of experimentally annealed natural
952	monazite. Phys Chem Minerals, 29, 240-253.
953	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomie
954	distances in halides and chaleogenides. Acta Crystallographica, A32, 751-767.
955	Shaw, D.M. (1956) Geochemistry of pelitic rocks: Part III. Major elements and general
956	geochemistry. Bulletin of the Geological Society of America 67, 919-934.
957	Shaw, C.A., Karlstrom, K.E., Williams, M.L., Jercinovic, M.J., and McCoy, A.M. (2001)
958	Electron-microprobe monazite dating of ca. 1.71-1.63 Ga and ca. 1.45-1.38 Ga
959	deformation in the Homestake shear zone, Colorado: Origin and early evolution of a
960	persistent intracontinental tectonic zone. Geology, 29, 739-742.
961	Sheard, E.R., Williams-Jones, A.E., Heiligmann, M., Pederson, C., and Trueman, D.L. (2012)
962	Controls on the Concentration of Zirconium, Niobium, and the Rare Earth Elements in
963	the Thor Lake Rare Metal Deposit, Northwest Territories, Canada. Economic Geology,
964	107, 81-104.

965	Shtukenberg, A.G., Punin, Y.O., and Artamonova, O.I. (2009) Effect of crystal composition and
966	growth rate on sector zoning in solid solutions grown from aqueous solutions.
967	Mineralogical Magazine, 73, 385-398.
968	Sindern, S., Gerdes, A., Ronkin, Y.L., Dziggel, A., Hetzel, R., and Schulte, B.A. (2012).
969	Monazite stability, composition and geochronology as tracers of Paleoproterozoic events
970	at the eastern margin of the East European Craton (Taratash complex, Middle Urals).
971	Lithos, 132-133, 82-97.
972	Smith, H.A. and Giletti, B.J. (1997) Lead diffusion in monazite. Geochimica et Cosmochimica
973	Acta, 61, 1047-1055.
974	Spear, F.S. and Pyle, J.M. (2010) Theoretical modeling of monazite growth in a low-Ca
975	metapelite. Chemical Geology, 273, 111-119.
976	Starynkevitch I. (1922) The chemical formula of monazite and several analyses of Russian
977	monazites. Doklady Akad Nauk SSSR, 31, 28-30.
978	Stepanov, A.S., Hermann, J., Rubatto, D., and Rapp, R.P (2012) Experimental study of
979	monazite/melt partitioning with implications for the REE, Th and U geochemistry of
980	crustal rocks. Chemical Geology, 300-301, 200-220.
981	Sun S-s. and McDonough, W.F. (1989) Chemical and isotopic systematic of ocean basalts:
982	implications for mantle composition and processes. Geological Society of London
983	Special Publications, 42, 313-345.
984	Suzuki, K., Adachi, M., and Kajizuka, I. (1994) Electron microprobe observations of Pb
985	diffusion in metamorphosed detrital monazites. Earth and Planetary Science Letters, 128,
986	391-405.

987	Swain, G.M., Teasdale, H.J., Rutherford, L., and Clark, C. (2005) Age constraints on terrane-
988	scale shear zones in the Gawler Craton, southern Australia. Precambrian Research, 139,
989	164-180.
990	Teufel, S. and Heinrich, W. (1997) Partial resetting of the U-Pb isotope system in monazite
991	through hydrothermal experiments: an SEM and U-Pb isotope study. Chemical Geology,
992	137, 273-281.
993	Tilton, G.R. and Nicolaysen, L.O. (1957) The use of monazite for age determination.
994	Geochimica and Cosmochimica Acta, 11, 28-40.
995	Townsend, K.J., Miller, C.F., D'Andrea, J.L., Ayers, J.C., Harrison, T.M., and Coath, C.D.
996	(2000) Low temperature replacement of monazite in the Ireteba granite, Southern
997	Nevada: Geochronological implications. Chemical Geology, 172, 95-112.
998	Triantafyllidis, S., Pe-Pier, G., MacKay, R., Piper, D.J.W., and Strathdee, G. (2010) Monazite as
999	a provenance indicator for the Lower Cretaceous reservoir sandstones, Scotian Basin.
1000	Geological Survey of Canada Open File, 6732, 452p.
1001	Upadhyay, D. and Pruseth, K.L. (2012) Fluid-induced dissolution breakdown of monazite from
1002	Tso Morari complex, NW Himalayas: evidence for immobility of trace elements.
1003	Contributions to Mineralogy and Petrology, 164, 303-316.
1004	Van Emden, B., Thornber, M.R., Graham, J. and Lincoln, F.J. (1997b) The incorporation of
1005	actinides in monazite and xenotime from placer deposits in western Australia. Canadiam
1006	Mineralogist, 35, 95-104.
1007	Van Emden, B., Thornber, M.R., Graham, J., and Lincoln, F.J. (1997a) Solid solution behaviour
1008	of synthetic monazite and xenotime structure refinement of powder data. Advances in X-
1009	ray Analysis, JCPDS-International Centre for Diffraction Data, 40, 402-412.

7/23

- 1010 Vavra, G. and Schaltegger, U. (1999) Post-granulite facies monazite growth and rejuvenation
- 1011 during Permian to Lower Jurassic thermal and fluid events in the Ivrea Zone (Southern
- 1012 Alps). Contributions to Mineralogy and Petrology, 134, 405-414.
- 1013 Wall, F. and Mariano, A.N. (1996) Rare earth minerals in carbonatites: a discussion centred on
- 1014 the Kangankunde Carbonatite, Malawi. In A.P. Jones, F. Wall and T.C. Williams, Eds.,
- 1015 Rare earth minerals: chemistry, origin and ore deposits. Mineralogical Society Series, 7,
- 1016 193-225, Chapman and Hall, London.
- 1017 Wan, Y., Li, R., Wilde, S., Liu, D., Chen, Z., Yan, L., Song, T., and Yin, X. (2005) UHP
- 1018 metamorphism and exhumation of the Dabie Orogen, China: Evidence from SHRIMP
- 1019 dating of zircon and monazite from a UHP granitic gneiss cobble from the Hefei Basin.
- 1020 Geochimica et Cosmochimica Acta, 69, 4333-4348.
- 1021 Wark, D.A. and Miller, C.F. (1993) Accessory mineral behavior during differentiation of a
- 1022 granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton,
- southeastern California, U.S.A. Chemical Geology, 110, 49-67.
- 1024 Watson, E.B. and Liang, Y. (1995) A simple model for sector zoning in slowly grown crystals:

1025 Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in1026 crustal rocks. American Mineralogist, 80, 1179-1187.

- 1027 Watt, G.R. (1995) High-thorium monazite-(Ce) formed during disequilibrium melting of
- 1028 metapelites under granulite-facies conditions. Mineralogical Magazine, 59, 735-743.
- 1029 Wawrzenitz, N., Krohe, N., Rhede, D., and Romer, R.L. (2012) Dating rock deformation with
- 1030 monazite: The impact of dissolution precipitation creep. Lithos, 134-135, 52-74.
- 1031 Williams, M.L., Jercinovic, M.J., Harlov, D.E., Budzyń, B., and Hetherington, C.J. (2012)
- 1032 Resetting monazite ages during fluid-related alteration. Chemical Geology, 283, 218-225.

Williams, M.L., Jercinovic, M.J., and Hetherington, C.J. (2007) Microprobe monazite

1033

1034	geochronology: understanding geologic processes by integrating composition and
1035	chronology. Annual Review of Earth and Planetary Sciences 35, 137-175.
1036	Wing, B.A., Ferry, J.M., and Harrison, T.M. (2003) Prograde destruction and formation of
1037	monazite and allanite during contact and regional metamorphism of pelites: petrology
1038	and geochronology. Contributions to Mineralogy and Petrology 145, 228-250.
1039	Xie, L., Wang, R.C., Wang, D.Z., and Qui, J.S. (2006) A survey of accessory mineral
1040	assemblages in peralkaline and more aluminous A-type granites of the southeast coastal
1041	area of China. Mineralogical Magazine, 70, 709-729.
1042	Yang, P. and Pattison, D. (2006) Genesis of monazite and Y zoning in garnet from the Black
1043	Hills, South Dakota. Lithos, 88, 233-253.
1044	Yang, P. and Rivers, T. (2002) The origin of Mn and Y annuli in garnet and the thermal
1045	dependence of P in garnet and Y in apatite in calc-pelite and pelite, Gagnon terrane,
1046	western Labrador. Geological Materials Research, 4, 1-35.
1047	Zeh, A. (2006) Calculation of garnet fractionation in metamorphic rocks, with application to a
1048	flat-top, Y-rich garnet population from the Ruhla Crystalline Complex, Central Germany.
1049	Journal of Petrology, 47, 2335-2356.
1050	Zhou, X., Zhao, G., Wei, C., Geng, Y., and Sun, M. (2008) EPMA U-Th-Pb monazite and
1051	SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei
1052	Massif of the North China craton. American Journal of Science, 308, 328-350.
1053	Zhu, X.K. and O'Nions, R.K. (1999a) Zonation of monazite in metamorphic rocks and its
1054	implications for high temperature thermochronology: a case study from the Lewisian
1055	terrain. Earth and Planetary Science Letters, 171, 209-220.

7/23

1056	Zhu, X.K. and O'Nions, R.K. (1999b) Monazite chemical composition: some implications for
1057	monazite geochronology. Contributions to Mineralogy and Petrology, 137, 351-363.
1058	FIGURE CAPTIONS
1059	Figure 1. Monazite structure after Ni et al. (1995). For other images of the structure, see
1060	Huminicki and Hawthorne (2002), Williams et al. (2007), and Clavier et al. (2011).
1061	Figure 2. Plots of ThO ₂ +UO ₂ (wt%) versus (A) Er ₂ O ₃ +Yb ₂ O ₃ (wt%) and (B) Ce ₂ O ₃ +La ₂ O ₃
1062	(wt%). Data from the granulite facies rocks from Krenn and Finger (2010) and from A-
1063	type granites from Xie et al. (2006).
1064	Figure 3. Chondrite-normalized REE patterns for monazite grains from (A) a granulite facies
1065	rock (Krenn and Finger 2010), (B) A-type granites (Xie et al. 2006), (C) sedimentary
1066	rocks with low ThO ₂ +UO ₂ (<1 wt%) and (D) with high ThO ₂ +UO ₂ (8-17wt%)
1067	(Triantafyllidis et al. 2010). The pink area in (C) shows the overlap of the patterns of the
1068	high ThO ₂ +UO ₂ grains and the pink area in (D) is the overlap of the patterns of the low
1069	ThO ₂ +UO ₂ analyses. REE normalized to chondrite values reported in Sun and
1070	McDonough (1989).
1071	Figure 4. Chondrite-normalized REE patterns for coexisting monazite and allanite in garnet-
1072	bearing rocks from the Himalayas. Panels are separated by sample number. See Catlos et
1073	al. (2001) for sample locations and Catlos et al. (2002) for analytical conditions. REE
1074	normalized to chondrite values reported in Sun and McDonough (1989).
1075	Figure 5. (A) Chondrite-normalized REE patterns for garnet-bearing rocks from the Himalayas.
1076	See Catlos et al. (2001) for sample locations and Catlos (2000) for compositions. The
1077	data include samples with coexisting monazite and allanite (MA27, MA37B, MA33,
1078	MA34B, MA86) and samples with allanite only (MA61A, MA78B, MA79). (B) Whole-

1079	rock Ca and Al contents of these samples averaged to Shaw's (1956) average pelite after
1080	Wing et al. (2003). We see no correlation between whole rock composition and the
1081	presence of these accessory minerals. Samples from Figure 3 are labeled (MA27,
1082	MA34B, MA37B). REE normalized to chondrite values reported in Sun and McDonough
1083	(1989).
1084	Figure 6. Radiogenic ²⁰⁸ Pb* contents of monazite grains from (A) Turkish metagranites (Catlos
1085	et al. 2010) and (B) metapelites (Catlos and Cemen 2005).
1086	Figure 7. (A) Crystal structure of Th-poor and (B) Th-rich monazite after Cressey et al. (1999).
1087	The structure of the Th-rich monazite grain was generated using the software
1088	JCrystalApplet.

1089 TABLES

1090	Table 1.	Types	of mor	nazite	zoning.
------	----------	-------	--------	--------	---------

Туре	Definition	Reference(s)	
Castar	Evistance of different compositions in	Devety (1076): Creasery et al	
Sector	Existence of different compositions in	Dowty (1976); Cressey et al.	
	different growth sectors of a single crystal,	(1999); Williams et al. (2007);	
	interpreted to be primary zoning	Popova and Churin (2010)	
Oscillatory	General term for grain brightness that wavers	Aleinikoff et al. (2000);	
	in a regular fashion	Crowley et al. (2008); Kohn	
		and Vervoort (2008)	
Lamellar	Distinct 1-3µm-sized zones parallel a growth	DeWolf et al. (1993)	
	face, interpreted to be growth zoning		
Patchy,	Grain consists of regions marked by smaller,	Zhu and O'Nions (1999a)	
spotted, or	irregular regions of different brightness and	Crowley et al. (2008) Gagne et	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4336

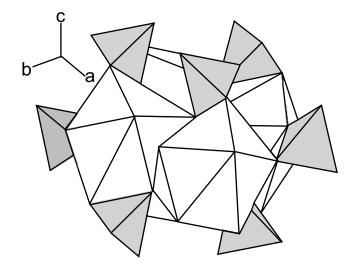
50

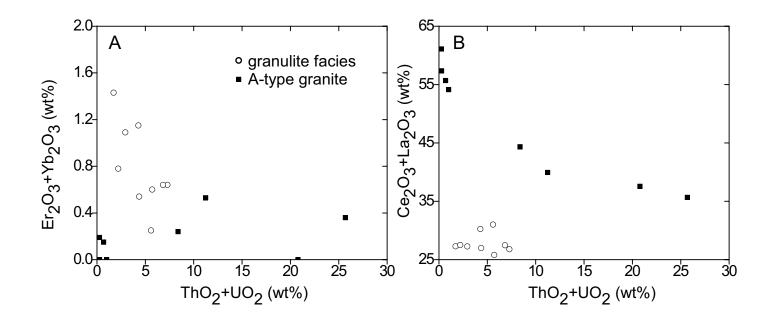
patchwork-	composition	al. (2009) Faure et al. (2008)	
zoned		Gasser et al. 2012; Vavra and	
		Schaltegger (1999)	
Unzoned,	Grain shows little to no zoning even when a	Gagne et al. (2009); Bruguier	
weak, faint,	high degree of contrast is applied	et al. (2009)	
poorly defined			
Moderately,	Most of the grain consists of homogenous	Harlov and Förster (2002);	
slightly zoned	monazite with only a small region showing	Aleinikoff et al. (2000)	
or mostly	complex zoning		
unzoned			
Concentric	A sub- to euhedral core surrounded by	Zhu and O'Nions (1999a)	
	multiple concentric rings, interpreted as	Williams et al. (2007); Swain	
	growth zoning	et al. (2005) Bruguier et al.	
		(2009) Ayers et al. (1999)	
		Vavra and Schaltegger (1999)	
Simple	Single distinct core surrounded by a single rim	Zhu and O'Nions (1999a)	
		Kusiak et al. (2008) Gagne et	
		al. (2009) Triantafyllidis et al.	
		(2010)	
Complex	Single core of variable shape enveloped by	Zhu and O'Nions (1999a)	
	two or more circular rims that may be	Kusiak et al. (2008) Gagne et	
	discontinuous	al. (2009) Triantafyllidis et al.	
		(2010) Harlov and Förster	

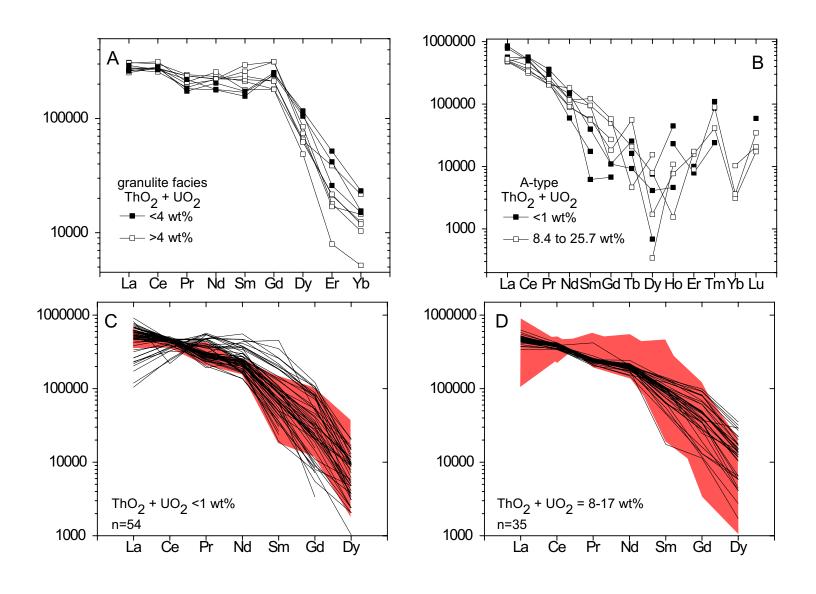
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4336

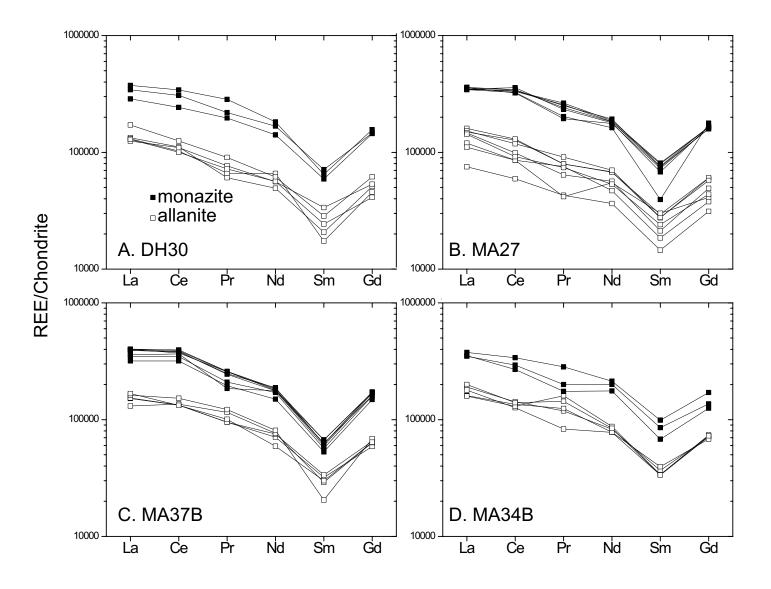
7/23

			(2002)
	Mottled	Region or entire grain that is inclusion-rich;	Rasmussen and Muhling
		characteristic of monazite dissolution-	(2007) Mahan et al. (2010)
		reprecipitation	
	Normal	Grain has low Th core and high Th rim	Zhu and O'Nions (1999a)
	Reverse	Grain has high Th core and low Th rim	Zhu and O'Nions (1999a)
Sieve-like Inclusion-rich graan nodules		Inclusion-rich grain typical of authigenic	Čopjaková et al. (2011)
		nodules	
	Extreme Th	Grain contains regions of high Th content	Williams et al. (2007); Harlov
	zoning	compared to the majority of the grain	(2011) Gasser et al. 2012
	Intergrowth or	Internal microstructure similar to the	Zhu and O'Nions (1999a)
	irregular	intergrowth of two different minerals	Foster et al. (2002); Aleinikoff
			et al. (2006); Ayers et al.
			(1999) Gasser et al. 2012
	Veining or	Grain shows differences in composition or	Ayers et al. (1999) Ayers et al.
	veined	brightness near cracks or veins	(2006); Shaw et al. (2001)
1091			
1092			
1093			
1094			
1095			
1096			
1097			

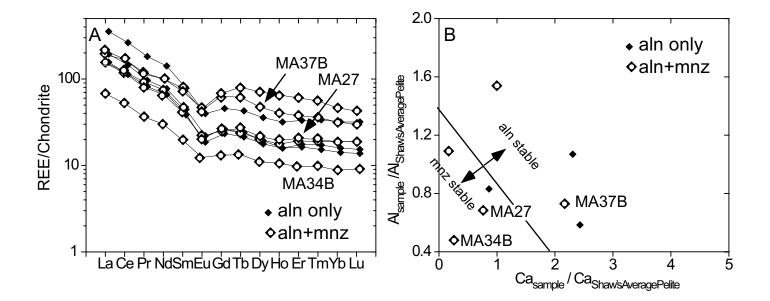

Substitution	Reference
$Th^{4+} + Si^{4+} \rightarrow REE^{3+} + P^{5+}$	Burt (1989); Kartashov et al. (2006); Panda et
	al. (2003)
$\mathrm{Th}^{4+} + \mathrm{Ca}^{2+} \to 2\mathrm{REE}^{3+}$	Mohr (1984); Bea (1996); Zhu and O'Nions
	(1999a); Kartashov et al. (2006); Panda et al.
	(2003)
Coupled $(Th,U)^{4+} + Ca^{2+} \rightarrow 2REE^{3+}$ and	Gramacciolii and Segalstad 1978; Van Emder
$(Th,U)^{4+} + Si^{4+} \rightarrow REE^{3+} + P^{5+}$	et al. (1997b); Kartashov et al. (2006)
Coupled $(Th,U)^{4+} + Si^4 \rightarrow REE^{3+} + P^{5+}$	Förster (1998); Zhu and O'Nions (1999a);
$(Th,U)^{4+} + Ca^{2+} \rightarrow 2REE^{3+}$	Dawood and El-Naby (2007)
$2(\mathrm{Th},\mathrm{U})^{4+} + \mathrm{Si}^4 \rightarrow \mathrm{Ca}^{2+} + 2\mathrm{P}^{5+}$	Förster (1998)
(rare in granites)	
$(Th^{4+}_{1-x} + Ca^{2+}_{2+x}) + Si^{4+} \rightarrow REE^{3+} + P^{5+}$	Dana et al. (1951); Semenov (2001); Popova
	and Churin (2010)
$3(\text{Th},\text{U})^{4+} + \text{vacancy} \rightarrow 4\text{REE}^{3+}$	Podor 1994; Clavier et al. 2011

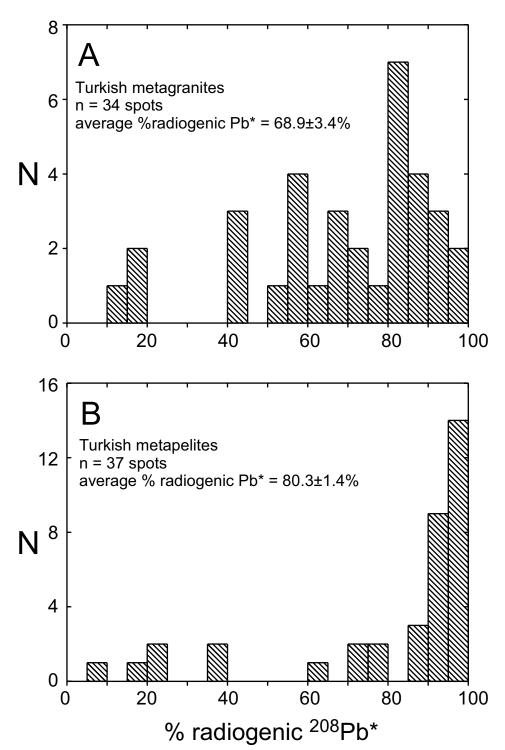

Table 2. Th⁴⁺ substitution mechanisms speculated for natural monazite.

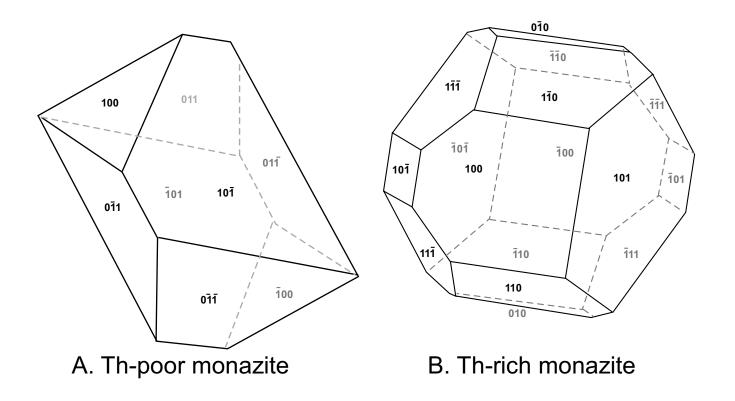

Ion	Configuration	Coordination Number	Ionic Radius
Pb^{+2}	$6s^2$	9	1.35
La^{+3}	$4d^{10}$	9	1.216
Ce ⁺³	6s ¹	9	1.196
Ca^{+2}	3p ⁶	9	1.18
Nd^{+3}	$4f^3$	9	1.163
Gd^{3^+}	$4f^7$	9	1.107
Th^{+4}	6p ⁶	9	1.09
Y ⁺³	4p ⁶	9	1.075
Er ⁺³	$4f^{11}$	9	1.062
Yb ⁺³	4f ¹³	9	1.042
U^{+4}	$5f^2$	9	1.05
Pb ⁺⁴	5d ¹⁰	8	0.94


Table 3. Electronic Table of Shannon (1976) Ionic Radii.

1106 Note: Data downloaded from the Electronic Table of Shannon Ionic Radii, J. David Van Horn1107 (2001).






Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4336

