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Abstract. With the advent of techniques that preclude mineral separation, ages from specific 6 

compositional domains in monazite [(Ce, La, Th)PO4] have provided a wealth of information 7 

regarding the timing of the geologic evolution of numerous regions. However, confusion can 8 

arise when single grains show large differences in age that fail to correlate to chemistry or 9 

location within the monazite. Generalizations that lead to incorrect age interpretations include 10 

that monazite zoning in Y, Th, and/or the rare earth elements (REE) always identify (1) distinct 11 

tectonic events, (2) environment of crystallization, and (3) provenance of detrital grains. 12 

Increasing Th contents in monazite do not always reflect (1) increasing grade in metamorphic 13 

grains, (2) changes in silicate melt composition in igneous grains, (3) make the mineral more 14 

susceptible to alteration, nor (4) control the mineral’s uptake of REE. Metamorphic monazites 15 

from Himalayan garnet-bearing rocks with co-existing allanite show no relationship between Th 16 

content and REE. Instead, chondrite-normalized REE patterns of the allanite mirror those of the 17 

monazite, indicating the variations are related to the reactant that formed the mineral. 18 

Generalizations about Pb behavior in monazite remain problematic. Incorporation of Pb into 19 

monazite has thus far been precluded by experimental studies, yet common Pb has been 20 

measured in many studies of natural monazite. A clear understanding about controls of monazite 21 

composition and the role of the chemical and/or pressure-temperature (P-T) environment of the 22 

rocks in which it forms is required to correctly interpret the meaning of the mineral’s age(s).  23 



2 
 

Keywords. GEOCHRONOLOGY: ANALYSIS, CHEMICAL (MINERAL): ANALYSIS, 24 

CHEMICAL (ROCK): TRACE ELEMENTS AND REE: METAMORPHIC PETROLOGY 25 

INTRODUCTION 26 

Monazite (Ce, La, Th)PO4 is often found in nature as a complexly zoned mineral (e.g., 27 

Zhu and O’Nions 1999a; Catlos et al. 2002; Foster et al. 2002; Pyle and Spear 2003; Gibson et 28 

al. 2004; Goncalves et al. 2005; Hinchey et al. 2007; Williams et al. 2007; Gasser et al. 2012). It 29 

typically contains large amount of radiogenic elements and can be dated using a variety of 30 

methods (isotope dilution, electron microprobe, ion microprobe; see reviews by Harrison et al. 31 

2002 and Williams et al. 2007). Differences in the chemistry of specific zones in monazite are 32 

often attributed to differences in age and, in some cases, these regions can vary by many millions 33 

of years (e.g., Ayers et al. 1999; Gibson et al. 2004; Mahan et al. 2006; Santosh et al. 2006). 34 

However, some grains have unexpected internal age relationships. For example, some monazite 35 

grains show older ages near apparent rims and younger ages near the core (Fig. 1 in Ayers et al. 36 

1999; Fig. 7A in Gibson et al. 2004; Fig. 9 in Catlos et al. 2008; multiple grains in Triantafyllidis 37 

et al. 2010). Some grains have clear correlations between Y content and age (e.g., Shaw et al. 38 

2001; Gibson et al. 2004; Krenn et al. 2009; Martins et al. 2009), yet in others no such obvious 39 

relationship exists (e.g., Hokada and Motoyoshi 2006; Hinchey et al. 2007; Martin et al. 2007; 40 

Triantafyllidis et al. 2010; Reno et al. 2012). Compositional differences among zones in 41 

monazite, although providing a qualitative impression of the evolution of the crystal through 42 

time, may not always record a clear age progression (e.g., Spear and Pyle 2010) nor reflect a 43 

simple evolution of a given system (e.g., Wark and Miller 1993; Kelly et al. 2012). Chemical 44 

variations can create misleading expectations regarding its number of growth stages, and thus the 45 
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number of temporally distinct tectonic episodes the mineral, rock, and/or region experienced and 46 

recorded.  47 

In addition, monazite composition, zoning, and even its shape have been suggested to 48 

identify its origin in specific rock types (e.g., Overstreet 1967; Mohr 1984; Schandl and Gorton 49 

2004; Förster 1998; Broska et al. 2000; Townsend et al. 2000; Dawood and El-Naby 2007; Dill 50 

et al. 2012). The distribution of specific elements in monazite, like Y, Th, and rare earth 51 

elements (REE) as a tool to discriminate for provenance would be beneficial if they could 52 

decipher the source of detrital grains (e.g., Iizuka et al. 2010). Here, correlations between 53 

monazite chemistry, zoning, morphology and provenance are explored to test some of these 54 

generalizations and examine their use for environmental discrimination. 55 

MONAZITE ZONING AND STRUCTURE 56 

The monazite structure consists of distorted PO4 tetrahedra (Huminicki and Hawthorne 57 

2002). Monazite is considered a “large cation” phosphate mineral with a space group of P21/n 58 

(Z=4) (Mooney 1948; Beall et al. 1981; Deer et al. 1992; Ni et al. 1995; Huminicki and 59 

Hawthorne 2002; Clavier et al. 2011). The mineral preferentially incorporates light rare earth 60 

elements (LREE3+) (Amli 1975; Ilupin et al. l971), which are coordinated with nine O-atoms (Ni 61 

et al. 1995; Huminicki and Hawthorne 2002). The nine-fold coordination polyhedra share edges 62 

to form chains in the b-direction of the mineral and stack in the a-direction (Fig. 1) (e.g., Ni et al. 63 

1995; Huminicki and Hawthorne 2002; Clavier et al. 2011). REE-P distances vary with atomic 64 

number and decrease with decreasing REE3+ radius (Ni et al. 1995). Because of this, the size of 65 

the REE3+ cation influences the probability of uptake in specific sites, and these sites 66 

discriminate between REE3+ depending on growth surface (Cressey et al. 1999; Popova and 67 

Churin 2010). The ability of its 9-fold coordination polyhedra to distort and accommodate a 68 
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large variety of cations (e.g., Th4+, Y3+, U4+, Pb2+) allows the structure to exhibit chemical 69 

flexibility and is likely the explanation for why the monazite is stable over a range of pressure-70 

temperature (P-T) conditions, is durable, and resistant to radiation damage (Dubrail et al. 2009; 71 

Huang et al. 2010; Clavier et al. 2011; Seydoux-Guillaume et al. 2002a). 72 

Sector-zoned minerals are indicative of a metastable state (e.g., Dowty 1976) and are 73 

unavoidable in crystals, like monazite, that exhibit selective enrichment (e.g., Cressey et al. 74 

1999) and slow lattice diffusion (e.g., Watson and Liang 1995; Teufel and Heinrich 1997; 75 

Seydoux-Guillaume et al. 2002a,b; Cherniak et al. 2004; Harlov et al. 2007). Two major 76 

mechanisms contribute to sector zoning: (1) selective adsorption on the crystal surface or (2) 77 

different attachment kinetics on different facets (Shtukenberg et al. 2009). Sector-zoned 78 

monazite has been produced during monazite/melt partitioning experiments (Stepanov et al. 79 

2012). The complex interplay between compositionally distinct sectors in different crystals of 80 

monazite can lead to some of the types of zoning patterns observed in nature as multiple crystals 81 

develop into an apparent single grain, similar as to what has been observed in tourmaline and 82 

epidote (e.g., Choo 2002; 2003) and could be related to what has been described in monazite as 83 

“spotted zoning” (e.g., Fig. 15A in Aleinikoff et al. 2000). 84 

Secondary processes, like interactions with fluids and recrystallization, can alter 85 

monazite’s primary zoning and lead to a host of variations in the appearance of the mineral in 86 

backscattered electron (BSE) images and X-ray element maps (e.g., Harlov and Hetherington 87 

2010; Harlov et al. 2011; Kelly et al. 2012). Although a long residence time at high temperature 88 

can alter sector zoning (e.g., Loomis 1983), this is unlikely to operate in monazite as diffusion of 89 

large cations is slow (Watson and Liang 1995; Teufel and Heinrich 1997; Seydoux-Guillaume et 90 

al. 2002a.b; Cherniak et al. 2004; Harlov et al. 2007; Cherniak and Pyle 2008; Cherniak 2010; 91 
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Chen et al. 2012). Primary sector zoning of monazite is rarely reported (Cressey et al. 1999; 92 

Williams et al. 2007; Iizuka et al. 2010; Popova and Churin 2010) and is sometimes seen in 93 

combination with other types of zoning (Hawkings and Bowing 1997; Crowley and Ghent 1999; 94 

Crowley et al. 2008). Some monazite grains described as “sector zoned” show differences in 95 

BSE more consistent with secondary zoning, such as curved rims and embayed grain interiors 96 

(e.g., Fig. 7B in Wan et al. 2005). Some single monazite grains display combinations of zoning 97 

types in BSE (e.g., patchy and oscillatory, Catlos et al. 2002, Aleinikoff et al. 2000; patchy and 98 

irregular, Rubatto et al. 2006). 99 

Table 1 attempts to describe and define the types of monazite zoning with examples from 100 

the literature. These examples suggest that it can be difficult to distinguish between “oscillatory” 101 

and “patchy” or “irregular” zoning (e.g., Fig. 15B in Aleinikoff et al. 2000; Fig. 3A in Sindern et 102 

al. 2012). The mineral’s appearance in BSE is important in evaluating the role of secondary 103 

reactions that could affect its age. In an analysis of 324 detrital monazite grains, Triantafyllidis et 104 

al. (2010) suggests monazite zoning type can be divided into two categories: (1) simple, with a 105 

core surrounded by a simple rim, and (2) more complex, where a core of variable shape is 106 

enveloped by two or more circular rims that may be discontinuous. Most grains with BSE images 107 

reported in the literature fall in the “more complex” category, with concentric, patchy, and 108 

intergrowth-like zoning (Table 1, Ayers et al. 1999; Zhu and O’Nions 1999a). In BSE images, 109 

concentric zoning is reported to be the most common (Ayers et al. 1999; Zhu and O’Nions 110 

1999a; Vavra and Schaltegger 1999; Swain et al. 2005; Williams et al. 2007; Bruguier et al. 111 

2009), although this is disputed in Faure et al. (2008). Unzoned (examples in Amli 1975; Pe-pier 112 

and McKay 2006; Chen et al. 2012) and oscillatory zoned (Hawkings and Bowing 1997; 113 

Crowley et al. 2008; Kohn and Vervoot 2008) grains are more rare. 114 
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Although some attribute BSE zoning primarily to differences in Th content (Swain et al. 115 

2005), linking the mineral’s elemental contents to differences in contrast in BSE images can be 116 

challenging (e.g., Fig. 4 in Williams et al. 2007). Quantitative chemical analysis or qualitative X-117 

ray element mapping is required to understand which elements cause differences in brightness in 118 

BSE. Although Th is likely a major factor because of its large atomic number, different zoning 119 

types can exist within single grains, and the degree of contrast can be a result of multiple 120 

elements. For example, monazite grains have been reported showing oscillatory zoning in one 121 

element and normal zoning in others (e.g., Th and Y, Pe-pier and McKay 2006). Some grains 122 

with patchy zoning even show differences in the location of specific compositional domains 123 

(compare Th, Y, and Ce zoning in Kelly et al. 2012). Monazite can also recrystallize along 124 

microcracks, modifying compositions, and resulting in brightness differences (e.g., Crowley et 125 

al. 2008). Some grains show obvious internal recrystallization textures along what could have 126 

been healed microcracks; interestingly, ages from these recrystallization zones are similar to 127 

those from regions on the intact grain (e.g., Fig. 2 in Ayers et al. 2006; Fig. 2A in Shaw et al. 128 

2001). 129 

ROLE OF Th IN MONAZITE 130 

Monazite is typically seen in nature as a Th-rich (as opposed to a U-rich) mineral (e.g., 131 

Overstreet 1967; Gramacciolii and Segalstad 1978; Deer et al. 1992). Normal zoning of monazite 132 

is defined as low Th cores and high Th rims (Zhu and O’Nions 1999a; Majka et al. 2012), 133 

although the terms “normal” and “reverse” to describe monazite appearance is uncommon. 134 

Monazite grains that grew along a prograde path show high Th cores and low Th rims (Kohn and 135 

Malloy 2004).  136 
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Thorium is commonly thought to enter the monazite structure with a 4+ oxidation state 137 

(Kelly et al. 1981; Hazen et al. 2009) via a coupled substitution with Si (Th4+ + Si4+ → REE3+ + 138 

P5+ e.g., monazite-huttonite join; Della Ventura et al. 1996), with Ca (Th4+ + Ca2+ → 2REE3+, 139 

monazite-brabanite join) (Starynkevitch 1922; Burt 1989; Förster 1998; Förster and Harlov 140 

1999), and/or by other substitutions (see Table 2). Monazite/melt experiments conducted at 10-141 

50 kbar and 750-1200°C show that partition coefficients for Th are 30% higher than those for the 142 

LREE (Stepanov et al. 2012). The pure huttonite substitution can be used to explain the presence 143 

of ThO2 up to 27 wt% and REE2O3 to at least 20 wt%, at which divalent cations, F, and/or OH 144 

may be incorporated to maintain charge balance (Kucha 1980; Clavier et al. 2011). In synthetic 145 

monazite, Th may also enter the structure accompanied by a vacancy via 3Th4+ + vacancy→ 146 

4REE3+, which appears to be restricted to ~17.68 wt% ThO2 (Podor 1994; Clavier et al. 2011). 147 

Thorium may also be accompanied by a divalent cation: REE3+PO4 + xM2+ +xTh4+ → (REE3+ (1-148 

2x)M2+
xTh4+

x)PO4 + 2xREE3+ , where M2+ can be Ca2+, Cd2+, Sr2+, Pb2+, and Ba2+ (Quarton et al. 149 

1984; Clavier et al. 2011). 150 

Thorium contents have been suggested to increase with increasing metamorphic grade, 151 

with igneous monazite grains typically having the higher amounts (Overstreet 1967; Mohr 1984). 152 

However, Zhu and Onions (1999b) did not find this correlation. Carbonatites commonly contain 153 

monazite with low Th contents (e.g., Wall and Mariano 1996; Cressey et al. 1999; Pilipiuk et al. 154 

2001; Catlos et al. 2008) as do authigenic monazite (Cabella et al. 2001; Čopjaková et al. 2011). 155 

ThO2 content has been suggested as a means to distinguish hydrothermal (0-1 wt% ThO2) from 156 

igneous monazite (3 to >5 wt% ThO2; see Schandl and Gorton 2004) and many hydrothermal ore 157 

deposits also contain monazite with low Th (<2 wt% ThO2, e.g., Bearss and Pitman 1996; Zhu 158 

and Onions 1999b; Pršek et al. 2010; Bonyadi et al. 2011; Sheard et al. 2012). Low Th (“Th-159 
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free”, ~0.2 ppm Th) grains have been found in hydrothermal tin vein deposits (Kempe et al. 160 

2008). However, exceptions to this rule exist as hydrothermal monazite with 1.33 to 4.08 wt % 161 

ThO2 has been observed (Janots et al. 2012). 162 

Monazite Th content in igneous rocks appears independent of that of the silicate melt 163 

(Förster 1998) and Th-rich patches and/or variable compositions in monazite have been shown to 164 

reflect fluid-induced alteration (e.g., Crowley et al. 2008; Harlov and Hetherington 2010; Kelly 165 

et al. 2012; Janots et al. 2012). Thermometers involving monazite also rely on REE content 166 

rather than Th (e.g., Gd, Gratz and Heinrich 1998; Y, Dy, and Gd, Pyle et al. 2001). Monazite 167 

that has experienced dissolution and reprecipitation can show increases in Th at the rims (e.g., 168 

Watt 1995; Harlov and Hetherington 2010) and grains with mottled overgrowths that likely 169 

interacted or grew via a fluid phase have high Th mid-rim contents (e.g., Rasmussen et al. 2007; 170 

Rasmussen and Muhling 2007; 2009). Thorium may also be depleted in grains that have 171 

experienced metasomatism (e.g., Schandl and Gorton 2004), but this depends largely on fluid 172 

composition (Harlov et al. 2011; Janots et al. 2012).  173 

Thorium-rich monazite has been suggested to be more susceptible to alteration than Th-174 

poor accessory minerals (Berger et al. 2008), although monazite is quite durable and is often 175 

found as a detrital mineral (e.g., Pe-piper and McKay 2006; Triantafyllidis et al. 2010; Hietpas et 176 

al. 2011). Experiments with monazite dissolution suggest that its Th-rich surfaces may dissolve 177 

slower than those that are Th-poor (Oelkers and Poitrasson 2002). Monazite solubility has also 178 

been shown to increase with increasing pressure with Th remaining relatively constant over the 179 

range of experimental conditions (10-50 kbar and 750-1200°C, Stepanov et al. 2012). Monazite 180 

is rarely found in nature in a metamict form; this may be due to the asymmetry of its structure 181 

(e.g., Black et al. 1984; Clavier et al. 2011) and its ability to recover from radiation damage at 182 
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low temperature (e.g., Boatner and Sales 1988; Meldrum et al. 1998). The long half-life of 232Th 183 

also contributes to the stability of monazite because the mineral, although containing large 184 

amounts of this radiogenic isotope, will not be subjected to the degree of radiation damage, Pb 185 

production, and auto-oxidation that are experienced by U-bearing minerals (Hazen et al. 2009). 186 

Ancient monazite (~2-3 Ga) with high ThO2 contents (14.1-16.2 wt. %) have been found to be 187 

“not badly damaged” (Black et al. 1984). Monazite grains with high ThO2 (up to 14.52 wt%) 188 

subjected to intense hydrothermal alteration were found to be the “most stable” when compared 189 

to zircon, fluorite, bastnasite, thorite, and xenotime (Breiter et al. 2009). Consistent with this 190 

observation, hydrothermally treated monazite grains of different size fractions have been shown 191 

to exhibit only minor dissolution features confined to the grain surfaces (Teufel and Heinrich 192 

1997). However, Poitrasson et al. (2000) found that monazite can undergo changes at low 193 

temperature (260 to 340°C) when exposed to saline fluids. 194 

Andrehs and Heinrich (1998) suggest that the incorporation of smaller cations of UO2 + 195 

ThO2 at levels >4 mol% saturate the monazite structure and suppress incorporation of HREE3+. 196 

Table 3 lists the size of these cations in 9-fold coordination, which appear largely similar 197 

(Shannon 1976). Note that it can be difficult to measure the HREE contents in monazite due to 198 

low concentrations of these elements in the mineral, and many compositional analyses reported 199 

in the literature omit these analyses. In-line with the expected trend, monazite grains from 200 

granulite facies rocks with unusually high HREE2O3 +Y2O3 (12.5-25 wt%) show a systematic 201 

decrease in Er2O3 +Yb2O3 contents with increasing UO2+ThO2 (Fig. 2A; Krenn and Finger 202 

2010). However, monazite grains from A-type granites (Xie et al. 2006) do not follow this trend 203 

(Fig. 2A). Instead, these grains remain constant in Er2O3 +Yb2O3 but exponentially decrease in 204 

LREE with increasing UO2+ThO2 (Fig. 2B), indicating that environment plays a role. In 205 
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metamorphic rocks, monazite grains that form after garnet breakdown contain higher amounts of 206 

Y and HREE, a feature unrelated to their Th content (Zhu and Onions 1999b). 207 

Because the size of the Th4+ ion is similar to Ce3+ (Table 3) (e.g., Demartin et al. 1991a), 208 

expectations exist that monazite LREE contents are controlled by Th (Brouand and Cuney 1990; 209 

Förster 1998). Chondrite-normalized REE patterns of monazite have been suggested to be 210 

dependent on Th (Förster 1998; Stepanov et al. 2012). For example, a high-Th (~42 wt%) grain 211 

termed “huttonitic monazite-Ce” from peraluminous granites has a steep chondrite-normalized 212 

REE pattern, whereas those from low-Th (<1 wt%) grains are flat (Förster 1998). Figure 3A 213 

shows that monazite from granulite facies rocks that contain UO2 + ThO2 > 4 wt% have, in 214 

general, depleted HREE and enriched MREE compared to those with <4 wt% UO2 + ThO2 215 

(Krenn and Finger 2010). However, monazite from A-type granites with UO2 + ThO2 < 1 wt% 216 

show enriched LREE contents and overlap in their MREE and HREE compositions compared to 217 

grains that range from 8.4 to 25.7 wt% UO2 + ThO2 (Fig 3B). Steepness in the REE patterns 218 

appears unaffected by UO2 and ThO2 content. Further exploration of this trend using many high-219 

quality compositional analyses of detrital monazite grains reported by Triantafyllidis et al. 220 

(2010) show monazite with UO2 + ThO2 of 8-17 wt% in general showing steeper LREE 221 

chondrite-normalized patterns than those with low UO2 + ThO2 (<1 wt%) (Fig. 3C and D). 222 

However, overlaps exist in the chondrite-normalized patterns between the high and low UO2 + 223 

ThO2 monazite grains from these studies. The high UO2 + ThO2 monazite grains do appear to 224 

have a more restricted range in LREE compositions. Triantafyllidis et al. (2010) filter their REE 225 

patterns into 6 distinct trends in an attempt to link them to provenance.  226 

Figure 4 shows chondrite-normalized REE patterns of metamorphic (Himalayan) 227 

monazite with varying Th contents (from 0.29 to 15.8 wt%, see supplementary data). These 228 
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grains were collected from four garnet- and allanite-bearing assemblages of the Lesser 229 

Himalayan Formations (see Catlos et al. 2001 for sample locations and mineral assemblages) and 230 

analyzed using an electron microprobe following methods outlined in Catlos et al. (2002). These 231 

monazite grains do not show significant changes in REE patterns depending on ThO2 + UO2 232 

content. Instead, variations appear related to allanite, the reactant that formed the mineral since 233 

the REE patterns of co-existing allanite grains in these rocks mirror those of the monazite. 234 

Although the monazite contains overall higher REE than co-existing allanite, they show no 235 

fractionation in their compositions, consistent with observations that REE can be largely 236 

immobile during metamorphism (e.g., Exley 1980; Bernard-Griffiths et al. 1985).  237 

In addition, the chondrite normalized REE patterns of Himalayan monazite and allanite 238 

grains do not reflect the composition of the whole rock. Figure 5A shows the whole rock REE 239 

patterns from samples shown in Figure 4 and those from the same unit of the Lesser Himalayan 240 

formation that contain either monazite + allanite or allanite only (see Catlos 2000 for 241 

compositions). The whole-rock chondrite-normalized REE patterns differ from those of the 242 

monazite or co-existing allanite in that they show no Sm anomalies. The results support the 243 

observation that monazite composition in these rocks is dependent on the REE contents of the 244 

allanite, rather than the whole rock itself. This is consistent with the analysis of monazite and co-245 

existing accessory minerals in metamorphic rocks elsewhere (Pan 1997; Upadhyay and Pruseth 246 

2012). No relationship exists between the presence of these accessory minerals and (1) REE 247 

patterns nor (2) the Ca or Al contents of the whole rock (Fig. 5B, Wing et al. 2003).  248 

Pb BEHAVIOR IN MONAZITE 249 

A common assumptions about the presence of Pb in monazite is that radiogenic Pb is 250 

stable in natural monazite (e.g., Suzuki et al. 1994; Podor and Cuney 1997; Dubrail et al. 2009) 251 
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and that the mineral excludes common Pb during crystallization (e.g., Corfu 1988; Seydoux-252 

Guillaume et al. 2002b). This assumption forms the basis for electron microprobe dating of 253 

monazite, as the method measures the total Pb, rather than each of the separate Pb isotopes in the 254 

mineral (e.g., Suzuki et al. 1994; Montel et al. 1996). The validity of this assumption has been 255 

tested by Williams et al. (2012) via experimental fluid-mediated alteration of monazite grains 256 

which resulted in complete “resetting” of monazite age and exclusion of Pb from the altered 257 

domains. Geochronologic methods that measure Pb isotopes in monazite, however, report 258 

common Pb (e.g., Tilton and Nicolaysen 1957; Parrish 1990; Boggs et al. 2002; Catlos and 259 

Cemen 2005; Hoisch et al. 2008; Kempe et al. 2008; Kohn and Vervoot 2008; Krenn et al. 260 

2008a,b; Morelli et al. 2010; Aleinikoff et al. 2012; Janots et al. 2012; Seydoux-Guillaume et al. 261 

2012). Higher amounts of common Pb are often found in monazite that forms in Pb-rich 262 

environments, like ore deposits (e.g., Lobato et al. 2007; Kempe et al. 2008; Krenn et al. 2008a; 263 

Krenn et al. 2011; Li et al. 2011). The monazite grain with the highest common Pb content ever 264 

reported is likely a hydrothermally-generated monazite grain from the Llallagua tin ore deposit 265 

in Bolivia, which has 99.9% common 206Pb (Kempe et al. 2008).  266 

Although some experimental studies have shown that common Pb is difficult to 267 

impossible to incorporate into the mineral structure (e.g., Corfu 1988; Seydoux-Guillaume et al. 268 

2002b; Williams et al. 2012), fluids have been speculated as a mechanism to increase the 269 

common Pb contents of the mineral via dissolution-reprecipitation reactions (e.g., Janots et al. 270 

2012). However, experiments with natural monazite by other workers show that it is also 271 

possible to increase common Pb contamination under conditions where hydrothermal alteration 272 

is not a factor (Teufel and Heinrich 1997). Common Pb measured during the analysis of 273 

monazite is also speculated to originate at grain boundaries or within microfractures rather than 274 
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intrinsic to the grain itself (e.g., Hoisch et al. 2008; Janots et al. 2012; Seydoux-Guillaume et al. 275 

2012).  276 

Dates generated from the same region in monazite grains using both the electron 277 

microprobe and high-resolution secondary ion mass spectrometery have been found to differ 278 

slightly, a difference ascribed to the lack of measurement of common Pb with the electron 279 

microprobe (Sano et al. 2006). The difference appears to become more pronounced as the dates 280 

get older (see Sano et al. 2006 and compare the Triassic and Proterozoic results). Radiogenic 281 

208Pb* contents of monazite grains from Turkish metagranites (Catlos et al. 2010) measured 282 

using in situ (in thin section) using an ion microprobe average 68.9±3.4%, whereas grains from 283 

metapelites average 80.3±1.4% (Catlos and Cemen 2005) (Figure 6). Monazite grains dated from 284 

the same granite body using isotopic dilution methods are ~97% 208Pb* (Glodny and Hetzel 285 

2007). The ion microprobe method sputters ions to depths of < 1μm of the grain surface during a 286 

typical analysis, so common Pb contents may be higher if the element is hosted in fractures, 287 

along grain boundaries, and/or as surface contamination, rather than in the grains themselves 288 

(e.g., Hoisch et al. 2008; Janots et al. 2012). In their ion microprobe study of monazite, Santo et 289 

al. (2006) state the source common Pb in their dated grains “is not easy to assess.” 290 

To understand where Pb could reside in the monazite structure requires some knowledge 291 

of its oxidation state. However, disagreements exist regarding the oxidation state of radiogenic 292 

Pb in monazite. For example, Petrik and Konecny (2009) suggest both Pb2+ and Pb4+ can be 293 

accommodated in the monazite structure and that radiogenic Pb may change oxidation state in 294 

the mineral (see Hazen et al. 2009 for a description of the process in zircon). Frei et al. (1997) 295 

suggests that during radiogenic decay, all Pb exists in the 4+ oxidation state as valence electrons 296 

are stripped during the recoil process. Alternatively, Pb4+ may not exist in nature because it is a 297 
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powerful oxidant (Podor and Cuney 1997). X-ray Absorption Near Edge Structure (XANES) 298 

studies show Pb2+ is present and stable in natural monazite and likely substitutes for La3+ 299 

(Dubrail et al. 2009). These cations are similar in their ionic radii (Table 3). These studies also 300 

suggest that natural monazite grains will reject Pb due to its larger size when it crystallizes, and 301 

thus most of the element present in the mineral will be due to radiogenic decay of Th and U 302 

(Dubrail et al. 2009). Podor and Cuney (1997) suggest Pb2+ can substitute for Ca2+ in its original 303 

site and for REE if charge is compensated by U4+ or Th4+. Lead in the 2+ and 4+ oxidation states 304 

differ significantly (1.35 vs. 0.94Å) (Table 3). The difference between the ionic radius of Th4+ 305 

and Pb2+ is almost 20% (Table 3), suggesting the site increases in size to accommodate the 306 

daughter product after radiogenic decay if the Pb2+ cation remains in the same site as the parent.  307 

A second assumption regarding Pb behavior in monazite is that diffusion of the cation in 308 

monazite is negligible, even at high-grade conditions (e.g., Cherniak et al. 2004; Gardes et al. 309 

2006). However, depth profiling studies directly measuring the distribution of Pb in the 310 

outermost rims of unpolished monazite show behavior consistent with Pb diffusion in rocks that 311 

experienced peak T of ~500ºC (~20 km depth assuming geothermal gradient of 25ºC/km, Grove 312 

and Harrison 1999) and ~900±25°C (McFarlane and Harrison 2006). The discrepancy between 313 

studies of monazite that suggest the mineral can lose Pb via diffusion at moderate crustal 314 

conditions (e.g., Suzuki et al. 1994; Smith and Giletti 1997) and those that suggest it is highly 315 

retentive even at high (>800ºC) temperatures (e.g., Cherniak et al. 2004; Gardes et al. 2006) may 316 

be attributed to differences in (1) trace element variations and potential for vacancies in natural 317 

versus synthetic monazites, (2) experimental conditions in the diffusive Pb loss studies, and/or 318 

(3) potential for diffusion along different crystal faces in the mineral (e.g., Gardes et al. 2006; 319 

McFarlane and Harrison 2006). 320 
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THE Y PROBLEM 321 

Correlations exist in some monazite grains between Y content and age (e.g., Dahl et al. 322 

2005; Mahan et al. 2006; Chatterjee et al. 2010), but the absence of this observation in others 323 

(e.g., Hokada and Motoyoshi 2006; Hinchey et al. 2007; Martin et al. 2007; Triantafyllidis et al. 324 

2010; Reno et al. 2012) makes the generalization that significant fluctuations Y monazite always 325 

relate to changes in large-scale tectonic conditions suspect. The presence of Y in high amounts in 326 

monazite is unusual. The element is smaller and heavier than LREE (Table 3) and would is more 327 

typically hosted in xenotime (e.g., Felsche 1976; Ni et al. 1995; Andrehs and Heinrich 1998; 328 

Huminicki and Hawthorne 2002; Krenn and Finger 2010). The presence of Y is thought to 329 

contract the monazite structure (e.g., Bowie and Horne 1953; Ni et al. 1995; Petrik and Konecny 330 

2009). Although the radius of Y3+ and Gd3+ are similar (Table 3), fractionation between the two 331 

in the monazite structure is not solely governed by ionic radii (e.g., Demartin et al.1991a,b) and 332 

these elements do not behave in a similar fashion. 333 

Monazite and xenotime have a well-known miscibility gap (e.g., Gratz and Heinrich 334 

1997; Mogilevsky 2007) and higher amounts of Y in monazite in metamorphic rocks may be 335 

related to increasing grade (e.g., Heinrich et al. 1997; Zhou et al. 2008; Krenn and Finger 2010). 336 

In synthetic monazite, increasing temperature and pressure leads to an increase in the solid state 337 

solubility of YPO4 in LREEPO4 compounds (Van Emden et al. 1997a; Andrehs and Heinrich 338 

1998; Gratz and Heinrich 1998; Seydoux-Guillaume et al. 2002b; Mogilevsky 2007; 339 

Maslennikova et al. 2010; Clavier et al. 2011). Thus, it seems reasonable to expect that high Y 340 

monazite likely formed at higher-grade conditions (e.g., Krenn and Finger 2010), although some 341 

high Y zones in monazite in metamorphic rocks can also be related to increases in Y in the 342 
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crystallization environment due to the breakdown of garnet and/or other accessory minerals (e.g., 343 

Mahan et al. 2006; Zhu and Onions 1999b; Spear and Pyle 2010).  344 

The source of Y in monazite in metamorphosed pelites is speculated to be reactions 345 

involving garnet, and high-Y rings (annuli) in garnet appear at conditions linked to the 346 

appearance of the mineral in the rock (e.g., Kohn and Malloy 2004; Catlos et al. 2001). 347 

Alternatively, the presence of Y in garnet has been speculated to be due to the breakdown of 348 

accessory minerals, like xenotime or allanite (Yang and Rivers 2002; Yang and Pattison 2006; 349 

Giere et al. 2011; Marsh et al. 2012). High-Y garnets typically contain only ~1% Y2O3 (Zeh 350 

2006; Honig et al. 2010). In low-grade metamorphic assemblages, allanite or xenotime are the 351 

dominant sinks for Y (e.g., Regis et al. 2012) and are also major contributors of Y to monazite 352 

during metamorphism (Spear and Pyle 2010). Petrogenetic modeling of low Ca pelites suggests 353 

monazite mode and composition are controlled by the presence of xenotime in metamorphic 354 

rocks, and when this mineral is absent, by the growth or consumption of garnet (Spear and Pyle 355 

2010).  356 

The roles of reactant availability, open system behavior, and the preference of the mineral 357 

structure in determining the composition of monazite is exemplified by its Y content. Although 358 

Y zoning in monazite provides a map for geochronologists in choosing specific zones in the 359 

mineral to date, the lack of correlation between age and Y contents in some monazite (e.g., 360 

Martins et al. 2009; Triantafyllidis et al. 2010) suggests that no expectations should exist that 361 

variations in Y content directly correlate to temporal or tectonic changes. A complexly zoned 362 

grain may form at a single time or within the ability of an instrument to resolve the time frame 363 

over which it grew. In metamorphic rocks, the breakdown of different minerals that provide its 364 
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constituents (i.e., allanite, xenotime, garnet) at different points along its path though P-T space 365 

contributes to its compositional differences (e.g., Spear and Pyle 2010).  366 

MONAZITE COMPOSITION, SHAPE, AND PROVENANCE 367 

Monazite zoning has been speculated to be a useful indicator of environment as the 368 

mineral can preserve complex internal zonation patterns at high metamorphic grade (e.g., 369 

Williams et al. 2007). Sector- and oscillatory-zoned monazite is thought to be typical of igneous 370 

rocks and patchy zoning characteristic of metamorphic assemblages (Broska et al. 2000; 371 

Townsend et al. 2000; Dawood and El-Naby 2007). This assumption would be useful in 372 

deciphering the provenance of detrital monazite. However, oscillatory zoning has been found in 373 

amphibolite-granulite grade monazite (e.g., Aleinikoff et al. 2006) and a monazite that 374 

experienced amphibolite facies shows both sector zoning and oscillatory zoning (Crowley and 375 

Ghent 1999). Monazite with patchy zoning has been found in granitic assemblages that 376 

experienced metamorphism and metasomatism during exhumation (e.g., Catlos et al. 2010).  377 

Monazite composition and zoning will be influenced by reactants available in its 378 

chemical environment, the P-T path that the rock follows (e.g., Wark and Miller 1993; Spear and 379 

Pyle 2010), the preference of the crystal to accept specific elements during growth (e.g., Cressey 380 

et al. 1999), and interaction with fluids (e.g., Harlov and Hetherington 2010; Harlov et al. 2011). 381 

The assumption that monazite composition in plutonic rocks will simply reflect the fractional 382 

crystallization of the melt has been shown to be complicated by the potential for magma mixing, 383 

metasomatism, and alteration (Wark and Miller 1993; Catlos et al. 2010). 384 

However, some monazite zoning and textural relationships can be indicative of the 385 

environment in which it formed. Pure sector-zoned monazite is likely common in igneous rocks 386 

that have experienced little alteration (e.g., Cressey et al. 1999; Popova and Churin 2010). Sieve 387 
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textures are characteristic of authigenic monazite nodules (e.g., Burnotte et al. 1989; Milodowski 388 

and Zalasiewicz 1991; Evans et al. 2002; Čopjaková et al. 2011). Grains that appear to have 389 

undergone dissolution and reprecipitation reactions commonly show mottled overgrowths (e.g., 390 

Rasmussen and Muhling 2007; 2009; Mahan et al. 2010). Although rare, monazite has been 391 

found as filling cracks in host minerals or along grain boundaries with apatite (e.g., Mathieu et 392 

al. 2001; Catlos et al. 2008; Wawrzenitz et al. 2012), indicative of precipitation from a fluid 393 

(Harlov et al. 2002; Harlov and Förster 2002; 2003; Harlov et al. 2005; Harlov 2011). Monazite 394 

grains from ancient impact sites preserve fracture planes and granular textures characteristic of 395 

high P metamorphism (Cavosie et al. 2010). Surfaces of individual monazite grains can also 396 

indicate corrosion textures associated with fluids (Vavra and Schaltegger 1999). Baker et al. 397 

(2008) report fibrous monazite grains from a garnet-bearing metapelite from western Turkey. 398 

The garnet shows considerable internal zonation, consistent with multiple episodes of growth 399 

and retrogression and the monazite grains likely experienced significant alteration. 400 

Because of the nature of compositional substitutions (e.g., Table 2), primary monazite 401 

can show a variety of shapes depending on its chemistry, which may be ideal for pinpointing 402 

their origin (see examples in Popova and Churin 2010; Dill et al. 2012), although Montel et al. 403 

(2011) found the shape and size of detrital monazite the “least useful” in identifying provenance. 404 

Low-Th monazite may form a different morphology than high-Th grains (Fig. 7; Cressey et al. 405 

1999). In primary low-Th monazite from a carbonatite, eight single crystal sectors develop with 406 

La concentrated in {011} sectors and Nd, Pr, and other mid-REE are present in higher amounts 407 

in {Ī01} and {100}. In addition, low-Th monazites appear to have growth rates faster 408 

perpendicular to the {011} direction relative to {Ī01} and {100}. Sr will also concentrate in the 409 

{100} sectors, whereas Ce is relatively constant across sectors. Thorium-rich (9-16 ThO2 wt %) 410 
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sector-zoned monazite from granitic pegmatites do not follow these trends, with Ce enrichment 411 

found along some surfaces (e.g., Popova and Churin 2009). The presence of higher amounts of 412 

Th changes monazite morphology as crystals become flattened on {100}, show smaller {Ī01} 413 

faces, and may not develop the {011} sectors (Fig. 7) (Cressey et al. 1999). This observation 414 

suggests that the Th content of the environment in which the mineral is crystallizing plays an 415 

important role in determining the morphology of monazite. 416 

DISCUSSION 417 

Monazite is typically a Th-rich mineral, with a number of possible substitution 418 

mechanisms allowing access for this radiogenic element to be incorporated into its structure 419 

(Table 2). Zoning of Th in monazite varies and is likely controlled by precursor reactants (e.g., 420 

allanite or REE oxides), P-T conditions, and the extent of fluid-rock interactions. These factors 421 

play major roles in controlling Th composition, as opposed to its crystal chemistry or its 422 

inclusion of other elements, like REE. Chondrite-normalized REE patterns of Himalayan 423 

monazite with allanite are similar (Figure 4), indicating that the reactant (allanite) controls the 424 

composition of product (monazite) in these metamorphic rocks. Note that the REE contents of 425 

the Himalayan monazites and their presence are independent of whole rock chemistry (Figure 5). 426 

Any correlations between the amount of Th in monazite and metamorphic grade may be  427 

coincidental, but authigenic monazite typically contains low ThO2. Monazite Th content is 428 

independent of that of silicate melts, but carbonatites typically contain low ThO2 monazite. 429 

Thorium-rich patches and/or variable compositions likely reflect fluid-induced alteration; many 430 

low ThO2 grains affected by fluids have been reported. Thorium-rich monazite is also no more 431 

susceptible to alteration than Th-poor accessory minerals. The long half-life of Th may be partly 432 

responsible for the ability of monazite to remain intact over long geological timescales. 433 
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Generalizations about Pb in monazite advocated by experimentalists contradict those 434 

working with natural samples. For example, one reason for the discrepancy in closure 435 

temperature reported by studies of Pb diffusion in monazite has been attributed to the difference 436 

in the behavior of natural and synthetic grains. Common Pb has been measured during the 437 

analysis of natural monazite grains using ion microprobe and isotope dilution techniques, but 438 

incorporating Pb into the monazite structure has been difficult to produce experimentally. Lead 439 

likely exists in monazite in its 2+ oxidation state and this cation is larger than others that can 440 

reside in its structure in 9-fold coordination (Table 3). Monazite grains from ore and/or 441 

hydrothermal deposits show higher amounts of the non-radiogenic Pb, which may provide clues 442 

into the conditions at which Pb incorporation into the mineral lattice is possible. Common Pb can 443 

be introduced via hydrothermal fluids, but other mechanisms may exist.  444 

Correlations exist in some rocks between Y content and monazite age, but to generalize 445 

that all monazite grains will show this relationship ignores the potential for a complex reaction 446 

history for the rock and a range of potential sources of Y, which include the breakdown of 447 

accessory minerals (e.g., allanite, xenotime, and/or rare-earth oxides) and/or major minerals 448 

considered sinks for Y (e.g., garnet). When a relationship is observed between Y and age, the 449 

rock likely experienced a unique set of P-T and fluid conditions and considerable insight can be 450 

gained into its tectonic history. X-ray mapping of Y in garnet and monazite can assist in 451 

identifying the chemical relationship between these minerals. 452 

The inability to develop a consistent language and identify effective descriptors of 453 

monazite zoning can be problematic because the appearance of the mineral can shed significant 454 

insight into its potential origin and degree of interaction with fluids. The monazite structure is 455 

flexible in that it can incorporate a large variety of cations and lattice distortions. The external 456 
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morphology of euhedral monazite crystals can be influenced by Th content (Fig. 7). Monazite 457 

grains are commonly zoned. Zoning is a function of crystal structure, what elements are present 458 

when the monazite grain forms or is altered, and the P-T and fluid conditions during formation or 459 

alteration. The mineral can crystallize initially with primary sector zoning, but the grains can be 460 

altered by secondary reactions. Authigenic and metasomatic monazite develop textures specific 461 

to these environments, but generalizations that insist that specific types of monazite zoning 462 

(Table 1) are restricted to igneous or metamorphic environments should be avoided because 463 

exceptions exist. Correlating mineral zoning in BSE images to the abundance of a specific 464 

element, like Th or Y, can be done using high-resolution X-ray element mapping or generating 465 

quantitative chemical data. A range of elements can display different types of zoning within 466 

single grains and contribute to mineral appearance in BSE images.  467 

Although much has been done in terms of understanding the behavior of monazite, key 468 

controversies remain, including the influence of the mineral’s chemistry and/or structure on 469 

controlling the diffusion of Pb and the reason for the occurrence of monazite grains with larger 470 

amounts of non-radiogenic Pb. Reactant availability, open system behavior, and the preference 471 

of the mineral structure in determining the composition of monazite is exemplified by its Y 472 

content. Competition between the breakdown of accessory and major minerals that contain 473 

elements necessary for monazite growth can complicate the mineral’s chemistry in garnet-474 

bearing assemblages. Some attribute monazite composition to its provenance, and these 475 

generalizations may be effective for a given field area and specific system that is being studied, 476 

but to transfer them to a general understanding of monazite behavior can be problematic and 477 

incorrect. 478 
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FIGURE CAPTIONS 1058 

Figure 1. Monazite structure after Ni et al. (1995). For other images of the structure, see 1059 

Huminicki and Hawthorne (2002), Williams et al. (2007), and Clavier et al. (2011). 1060 

Figure 2. Plots of ThO2+UO2 (wt%) versus (A) Er2O3+Yb2O3 (wt%) and (B) Ce2O3+La2O3 1061 

(wt%). Data from the granulite facies rocks from Krenn and Finger (2010) and from A-1062 

type granites from Xie et al. (2006). 1063 

Figure 3. Chondrite-normalized REE patterns for monazite grains from (A) a granulite facies 1064 

rock (Krenn and Finger 2010), (B) A-type granites (Xie et al. 2006), (C) sedimentary 1065 

rocks with low ThO2+UO2 (<1 wt%) and (D) with high ThO2+UO2 (8-17wt%) 1066 

(Triantafyllidis et al. 2010). The pink area in (C) shows the overlap of the patterns of the 1067 

high ThO2+UO2 grains and the pink area in (D) is the overlap of the patterns of the low 1068 

ThO2+UO2 analyses. REE normalized to chondrite values reported in Sun and 1069 

McDonough (1989). 1070 

Figure 4. Chondrite-normalized REE patterns for coexisting monazite and allanite in garnet-1071 

bearing rocks from the Himalayas. Panels are separated by sample number. See Catlos et 1072 

al. (2001) for sample locations and Catlos et al. (2002) for analytical conditions. REE 1073 

normalized to chondrite values reported in Sun and McDonough (1989). 1074 

Figure 5. (A) Chondrite-normalized REE patterns for garnet-bearing rocks from the Himalayas. 1075 

See Catlos et al. (2001) for sample locations and Catlos (2000) for compositions. The 1076 

data include samples with coexisting monazite and allanite (MA27, MA37B, MA33, 1077 

MA34B, MA86) and samples with allanite only (MA61A, MA78B, MA79). (B) Whole-1078 
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rock Ca and Al contents of these samples averaged to Shaw’s (1956) average pelite after 1079 

Wing et al. (2003). We see no correlation between whole rock composition and the 1080 

presence of these accessory minerals. Samples from Figure 3 are labeled (MA27, 1081 

MA34B, MA37B). REE normalized to chondrite values reported in Sun and McDonough 1082 

(1989). 1083 

Figure 6. Radiogenic 208Pb* contents of monazite grains from (A) Turkish metagranites (Catlos 1084 

et al. 2010) and (B) metapelites (Catlos and Cemen 2005). 1085 

Figure 7. (A) Crystal structure of Th-poor and (B) Th-rich monazite after Cressey et al. (1999). 1086 

The structure of the Th-rich monazite grain was generated using the software 1087 

JCrystalApplet. 1088 

TABLES 1089 

Table 1. Types of monazite zoning. 1090 

Type Definition Reference(s) 

Sector  Existence of different compositions in 

different growth sectors of a single crystal, 

interpreted to be primary zoning 

Dowty (1976); Cressey et al. 

(1999); Williams et al. (2007); 

Popova and Churin (2010) 

Oscillatory General term for grain brightness that wavers 

in a regular fashion 

Aleinikoff et al. (2000); 

Crowley et al. (2008); Kohn 

and Vervoort (2008) 

Lamellar  Distinct 1-3μm-sized zones parallel a growth 

face, interpreted to be growth zoning 

DeWolf et al. (1993) 

Patchy, 

spotted, or 

Grain consists of regions marked by smaller, 

irregular regions of different brightness and 

Zhu and O’Nions (1999a) 

Crowley et al. (2008) Gagne et 
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patchwork-

zoned 

composition al. (2009) Faure et al. (2008) 

Gasser et al. 2012; Vavra and 

Schaltegger (1999) 

Unzoned, 

weak, faint, 

poorly defined 

Grain shows little to no zoning even when a 

high degree of contrast is applied 

Gagne et al. (2009); Bruguier 

et al. (2009) 

Moderately, 

slightly zoned 

or mostly 

unzoned 

Most of the grain consists of homogenous 

monazite with only a small region showing 

complex zoning 

Harlov and Förster (2002); 

Aleinikoff et al. (2000) 

Concentric 

 

A sub- to euhedral core surrounded by 

multiple concentric rings, interpreted as 

growth zoning 

Zhu and O’Nions (1999a) 

Williams et al. (2007); Swain 

et al. (2005) Bruguier et al. 

(2009) Ayers et al. (1999) 

Vavra and Schaltegger (1999) 

Simple Single distinct core surrounded by a single rim Zhu and O’Nions (1999a) 

Kusiak et al. (2008) Gagne et 

al. (2009) Triantafyllidis et al. 

(2010)  

Complex Single core of variable shape enveloped by 

two or more circular rims that may be 

discontinuous 

Zhu and O’Nions (1999a) 

Kusiak et al. (2008) Gagne et 

al. (2009) Triantafyllidis et al. 

(2010) Harlov and Förster 
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(2002) 

Mottled Region or entire grain that is inclusion-rich; 

characteristic of monazite dissolution-

reprecipitation  

Rasmussen and Muhling 

(2007) Mahan et al. (2010) 

Normal Grain has low Th core and high Th rim Zhu and O’Nions (1999a) 

Reverse Grain has high Th core and low Th rim Zhu and O’Nions (1999a) 

Sieve-like Inclusion-rich grain typical of authigenic 

nodules 

Čopjaková et al. (2011) 

Extreme Th 

zoning 

Grain contains regions of high Th content 

compared to the majority of the grain 

Williams et al. (2007); Harlov 

(2011) Gasser et al. 2012 

Intergrowth or 

irregular 

Internal microstructure similar to the 

intergrowth of two different minerals 

Zhu and O’Nions (1999a) 

Foster et al. (2002); Aleinikoff 

et al. (2006); Ayers et al. 

(1999) Gasser et al. 2012 

Veining or 

veined 

Grain shows differences in composition or 

brightness near cracks or veins  

Ayers et al. (1999) Ayers et al. 

(2006); Shaw et al. (2001) 
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Table 2. Th4+ substitution mechanisms speculated for natural monazite. 1098 

Substitution Reference 

Th4+ + Si4+ → REE3+ + P5+ Burt (1989); Kartashov et al. (2006); Panda et 

al. (2003) 

Th4+ + Ca2+ → 2REE3+ Mohr (1984); Bea (1996); Zhu and O’Nions 

(1999a); Kartashov et al. (2006); Panda et al. 

(2003) 

Coupled (Th,U)4+ + Ca2+ → 2REE3+ and  

(Th,U)4+ + Si4+ → REE3+ + P5+ 

Gramacciolii and Segalstad 1978; Van Emden 

et al. (1997b); Kartashov et al. (2006) 

Coupled (Th,U)4+ + Si4→ REE3+ + P5+

(Th,U)4+ + Ca2+ →2REE3+ 

 Förster (1998); Zhu and O’Nions (1999a); 

Dawood and El-Naby (2007) 

2(Th,U)4+ + Si4→ Ca2+ + 2P5+  

(rare in granites) 

 

Förster (1998) 

(Th4+ 1-x+ Ca2+
2+x) + Si4+ → REE3+ + P5+ Dana et al. (1951); Semenov (2001); Popova 

and Churin (2010) 

3(Th,U)4+ + vacancy → 4REE 3+  Podor 1994; Clavier et al. 2011 
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 1103 
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Table 3. Electronic Table of Shannon (1976) Ionic Radii. 1105 

Ion Configuration Coordination Number Ionic Radius 

Pb+2 6s2 9 1.35 

La+3 4d10 9 1.216 

Ce+3 6s1 9 1.196 

Ca+2 3p6 9 1.18 

Nd+3 4f3 9 1.163 

Gd3+ 4f7 9 1.107 

Th+4 6p6 9 1.09 

Y+3 4p6 9 1.075 

Er+3 4f11 9 1.062 

Yb+3 4f13 9 1.042 

U+4 5f2 9 1.05 

Pb+4 5d10 8 0.94 

Note: Data downloaded from the Electronic Table of Shannon Ionic Radii, J. David Van Horn 1106 

(2001). 1107 
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