1 Magnesite formation from MgO and CO₂ at the pressures and temperatures of Earth's 2 mantle 3 Henry P. Scott¹, Vincent M. Doczy¹, Mark R. Frank², Maggie Hasan², Jung-Fu Lin³, and Jing 4 Yang³ 5 6 7 ¹Department of Physics and Astronomy, IU South Bend, South Bend, IN 46634 8 ²Department of Geology and Environmental Geosciences, Northern Illinois University, 9 DeKalb, IL 60115 10 ³Department of Geological Sciences, Jackson School of Geosciences, The University of Texas 11 at Austin, Austin, TX 78712 12 Abstract 13

14 Magnesite formation from mixed oxides (MgO and CO₂) was observed in situ using synchrotron X-ray diffraction, coupled with laser-heated diamond anvil cells (DACs), at 15 pressures and temperatures of Earth's mantle. Despite the existence of multiple high-pressure 16 17 CO_2 polymorphs, the magnesite-forming reaction was observed to proceed at pressures 18 ranging from 5 to 40 GPa and temperatures between 1,400 and 1,800 K. No other pressurequenchable materials were observed to form via the MgO + CO_2 = MgCO₃ reaction. A large 19 20 body of previous work has documented the stability of magnesite at elevated pressures and 21 temperatures but, to the best of our knowledge, this is the first study to systematically 22 demonstrate the formation of magnesite, rather than just the lack of a breakdown reaction, at This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4260 Scott et al., Magnesite formation in Earth's mantle [REVISION 02]

mantle pressures. Accordingly, this work further strengthens the notion that magnesite may
indeed be the primary host phase for oxidized carbon in the deep Earth.
Keywords: Deep-carbon; magnesite; carbon dioxide; polymorphism
Introduction
The geological significance of carbon is clear due to its key roles in magmatic, metamorphic,
arrutiva and are formation processes (Ganino and Arndt 2009; Hajilon et al. 2008; Poherga et

29 eruptive and ore-formation processes (Ganino and Arndt 2009; Heijlen et al. 2008; Roberge et 30 al. 2009; Tappert et al. 2009). Furthermore, the transport, cycling and storage of deep-Earth 31 carbon are areas of intense, long-standing interest in which the interplay between 32 atmospheric, crustal and mantle reservoirs is well appreciated (Hayes and Waldbauer 2006; 33 Hirschmann and Dasgupta 2009; Ridgwell and Zeebe 2005; Sleep and Zahnle 2001). Due to its large volume (and therefore potentially large total carbon content), convective nature and 34 35 direct connection to Earth's surface via subduction and volcanic exchanges, the mantle is particularly important for understanding carbon on a planetary scale. The relative abundance 36 37 of oxidized carbon versus reduced carbon is difficult to quantify and is likely to vary with 38 depth (e.g.Dasgupta and Hirschmann 2010), and there is abundant evidence regarding its 39 complex mantle speciation, as indicated by the occurrence of carbonates in mantle-derived 40 xenoliths (Berg 1986; Hervig and Smith 1981; McGetchin and Besancon 1973), kimberlitic 41 diamonds, carbonatite magmas (Bell 1989) and prolific volcanic outgassing of CO₂ 42 (Oppenheimer and Kyle 2008; Werner and Brantley 2003) and, occasionally, CH₄ (Fiebig et 43 al. 2004).

There have been many petrologic studies in the CaO-MgO-SiO₂-CO₂-H₂O system (or a subset or slight expansion thereof) (Berg 1986; Brey et al. 1983; Brey and Green 1977; Katsura and Ito 1990; Koziol and Newton 1998; Kushiro 1975; Martinez et al. 1998; Newton and Sharp 1975; Olafsson and Eggler 1983; Wyllie 1977). The majority of these studies have been carried out in large-volume presses at pressures and temperatures (P-T) representative of the lower crust and upper mantle, where much of our current knowledge about the carboncontaining system lies.

52

53 A key conclusion from these early studies is the remarkable stability of carbonate minerals prior to decarbonation reactions at high temperatures. Although carbonate inclusions in 54 xenoliths are fairly rare, likely due to decarbonation during exhumation (Canil 1990), 55 56 numerous subsequent experimental studies have documented the striking stability of magnesite (MgCO₃) to very high P-T (Berg 1986; Biellmann et al. 1993; Canil 1990; Fiquet 57 58 et al. 2002; Fiquet and Reynard 1999; Isshiki et al. 2004; Katsura and Ito 1990; Katsura et al. 59 1991; Litasov et al. 2008; Martinez et al. 1998; Ross 1997; Santillan et al. 2005). The high 60 temperatures (3,000 K at 85 GPa (Isshiki et al. 2004)) achieved via laser-heated DACs 61 strongly support the stability of magnesite to extreme P-T. Accordingly, carbonate is 62 generally considered to be the dominant oxidized carbon species throughout much of the mantle, with magnesite, specifically, as the most abundant carbonate. 63

64

The predominance of magnesite at deep lower-mantle conditions, however, is less clear, as a structural transition to magnesite II at pressures greater than ~115 GPa has been observed (Isshiki et al. 2004; Panero and Kabbes 2008; Skorodumova et al. 2005). Additionally,

Boulard et al. (2011) demonstrated the formation of a $(CO_4)^{4-}$ structured phase in iron-68 69 containing magnesite ($(Mg,Fe)CO_3$) at pressures greater than 60 GPa, which is similar to a 70 computationally predicted phase (Oganov et al. 2008), yet this new phase is expected to 71 coexist with magnesite and diamond to great depths, especially if transported within a 72 relatively cold subducting slab (Boulard et al. 2011). And, although pure magnesite has not been observed to dissociate into separate oxides such as MgO and CO₂ at the P-T of Earth's 73 mantle, decarbonation reactions between magnesite and SiO₂, forming an assemblage of 74 75 MgSiO₃-perovskite and CO₂, have been documented at lower-mantle P-T (Seto et al. 2008; 76 Takafuji et al. 2006).

77

78 Furthermore, whereas some of the earlier large-volume press studies observed the formation 79 of magnesite from CO_2 (typically introduced as $Ag_2C_2O_4$, silver oxalate), subsequent diamond 80 anvil studies on the high-pressure (>~10 GPa) stability and high-temperature decarbonation of 81 magnesite have generally relied on magnesite as a starting material as opposed to observing 82 its formation from oxides. An exception to this is the work of Boulard et al (2011) who 83 reacted both pure and iron-bearing MgO with CO₂ at pressures greater than 80 GPa in their work demonstrating the formation of a high-pressure carbon-bearing phase based on CO₄⁴⁻ 84 85 units.

86

Notably, the phase diagram of CO_2 is complicated, and the high-pressure polymorphs are relatively dense and incompressible compared to "dry ice" (CO_2 -I), which forms from the low-temperature deposition of gaseous CO_2 at ambient pressure or by the compression of liquid CO_2 to roughly 0.5 GPa at ambient temperature. Figure 1 shows an approximated

91 phase diagram for CO₂ as it is currently known for the P-T relevant to this study, following 92 the recent experimental results and compilation of earlier work as summarized by Litasov et al. (2011); the figure is supported by data and interpretations from Tschauner et al. (2001), 93 94 Santoro et al. (2004), Giordano et al. (2006), Giordano and Datchi (2007), Iota et al. (2007) 95 and Datchi et al. (2009). It is important to note, however, that kinetic effects can be quite 96 significant, and these are not necessarily equilibrium boundaries; Figure 1 is intended simply 97 to summarize the CO_2 phases that one may expect in a study such as this, and some boundary locations, such as for the breakdown reaction from CO₂ to C + O₂, have been placed in 98 99 different locations by previous workers. The reader is encouraged to refer to Litasov et al. (2011) or Sengupta et al. (2011) for a more thorough illustration of where these boundaries 100 have been placed by different workers, or to Yoo et al. (2011a; 2011b) for extensions to even 101

102 higher pressure conditions.

103

104 It is conceivable that such high-pressure CO₂ polymorphism could hinder the formation of 105 magnesite even at moderate pressures. The motivation of the present study was to investigate 106 magnesite formation in situ from CO₂ and MgO well within its range of expected stability. It 107 is important to recognize a key caveat regarding these experiments, however, which is that 108 they were all performed under CO₂-saturated conditions, and it is certainly not realistic to portray the mantle as having an activity of CO_2 close to unity ($a_{CO2} = 1$). That said, direct 109 observations of the forward reaction, rather than the lack of a breakdown reaction, would 110 111 strengthen the case for magnesite as a primary storage mineral for oxidized carbon in much of 112 Earth's mantle.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4260

Scott et al., Magnesite formation in Earth's mantle [REVISION 02]

114 115	Experimental
116	Symmetric-type diamond anvil cells (DACs) were used to contain and compress samples for
117	all experiments, and infrared lasers were used for heating. The DACs utilized type I anvils
118	with either 350 or 500 μ m-diameter culets, depending on the desired experimental pressure,
119	and 250-µm thick stainless steel (Type 301) was used as a gasket material. The gaskets were
120	pre-indented to a thickness of between 60 and 80 μ m, and sample chambers were drilled with
121	diameters between 100 and 200 µm. For starting material, high-purity (>99.9%) Pt-black was
122	added to pure MgO at the 3 wt% level to absorb infrared laser radiation, and this mixture was
123	finely ground and pressed between two opposing anvils to form platelets approximately 20
124	μm thick.
125	
126	A few grains of pure MgO were placed into the bottom of the sample chamber to hold the
127	platelet above the anvil surface in order to avoid direct thermal contact with the anvil during
128	laser heating. A piece of an MgO-Pt platelet, smaller than the diameter of the sample

chamber, was then placed on the pure MgO grains in the center of the sample chamber. One or two grains of ruby of tens of microns in diameter were placed directly on the upper culet so that ruby fluorescence could be used to determine pressure during compression (Mao et al. 1978). The pressures reported in this paper, however, were determined by using X-ray diffraction and the equation of state (EoS) for MgO (Jacobsen et al. 2008); a 5% relative uncertainty in pressure was estimated for these measurements. Figure 2 shows a schematic illustration of the sample geometry and a photograph of an actual sample.

136

137 After loading and positioning the solid materials in the sample chamber, the entire cell was 138 surrounded by liquid CO₂ using either the gas-loading system at the Carnegie Institution of Washington's Geophysical Laboratory in Washington D.C. or the gas-loading system at the 139 140 GeoSoilEnviro Consortium for Advanced Radiation Sources (GSECARS) at Argonne 141 National Laboratory. This was accomplished at room temperature by placing a slightly open 142 DAC into a vessel that was subsequently pressurized to ~ 0.06 GPa ($\sim 8,000$ p.s.i.) with pure CO_2 . The DACs were then closed by remotely turning their screws to trap the CO_2 . Raman 143 spectroscopy was used subsequently to confirm the presence of CO₂ before further 144 145 compression and heating.

146

147 X-ray diffraction measurements were conducted at the Advanced Photon Source (APS) of the Argonne National Laboratory at three different beamlines: 16-ID-B and 16-BM-D of the 148 149 High-Pressure Collaborative Access Team (HPCAT) and 13-ID-D of GSECARS. The double-150 sided laser heating systems at 16-ID-B and 13-ID-D were used to overcome potential kinetic 151 barriers for the formation of equilibrium assemblages. The temperatures reported here are not 152 intended to represent the location of equilibrium phase boundaries in P-T space and, in most 153 cases, are simply the lowest temperature at which sustained and consistent heating could be 154 pyrometrically measured.

155

Analyses of diffraction patterns, after they were converted to one-dimensional profiles using FIT2D (Hammersley et al. 1996), were conducted in two stages. First, peak positions and intensities for expected phases were approximated using previously published diffraction information: unit cell data (i.e., crystal system and lattice parameters), Miller indicies (hkl's)

160	and observed relative intensities. For phases with well-known ambient-pressure structures
161	and equations of state (K _{0T} and dK/dP), such as Pt, MgO, CO ₂ -I and magnesite, the high-
162	pressure lattice parameters, and therefore d-spacings for the expected hkl's, could be readily
163	calculated. Because the equations of state for the high-pressure CO ₂ polymorphs are less
164	well-constrained, estimates were made to calculate the lattice parameters at the pressure being
165	considered. Unambiguous individual diffraction peaks attributed to each phase were then fit
166	by Gaussian profiles to determine their d-spacings, and linear least-squares regression,
167	coupled with their associated hkl's, was utilized to estimate the lattice parameters for each
168	phase.

169

Subsequently, these estimated lattice parameters were used as starting values for wholeprofile fitting with GSAS (Larson and Von Dreele 2000) utilizing the EXPGUI interface (Toby 2001). Due to the presence of multiple phases (up to five in some patterns) and some overlapping peaks, Rietveld structure refinement was found to be not feasible, but Le Bail whole-profile fitting was used to refine the lattice parameters for all phases satisfactorily.

175

176

Results and Discussion

177 Overview of Experiments Performed

Six laser-heating experiments were conducted at pre-heating pressures of 4.8(2), 10.9(5), 14.4(7), 22.3(11), 30.3(15) and 41.7(20) GPa, with a measured pressure drop of less than 10% after heating for most experiments. Although multiple diffraction patterns were typically collected before, during and after heating, these results will be discussed and presented as pre

and post heating diffraction pairs and grouped based on the CO_2 polymorphs observed prior to

183 heating.

184

185 CO₂ Initially as CO₂-I

The experiments conducted at 4.8 and 10.9 GPa are relatively straightforward because they are in the CO_2 -I stability field at room temperature, in which CO_2 crystalizes in the cubic system (space group Pa-3 (Downs and Somayazulu 1998)) with a well-constrained EoS (Giordano et al. 2010; Liu 1984; Olinger 1982). All pre-heating diffraction peaks at both pressures can be readily indexed as CO_2 -I, MgO or Pt.

191

Measurable heating for the experiment at 4.8 GPa started at 1,300 K, but a temperature measurement could only be made from one side of the DAC, and this heating was sustained for forty minutes. Slightly higher laser power was used for the experiment at 10.9 GPa to facilitate pyrometric measurements from both sides of the DAC, and temperatures between 1,550 and 1,650 K were recorded and sustained for forty-five minutes. In both experiments new diffraction peaks were observed immediately upon heating, and the extended heating was conducted to see if it had a noticeable effect, but it appears to have been unnecessary.

199

The formation of magnesite after heating at 4.8 GPa (and a subsequent pressure drop to 4.7 GPa) can be unambiguously confirmed based on the new diffraction peaks observed, and there is no evidence for the formation of any other phases. The experiment at 10.9 GPa (10.3 GPa after heating) produced largely similar results in terms of clear magnesite formation, but only the strongest peak from CO_2 -I remained readily apparent, and several new, but low-

intensity, peaks were present. Based on the pressure and heating history, either orthorhombic CO₂-III (space group Cmca (Aoki et al. 1994)) or rhombohedral CO₂-IV (space group *R*-3*c* (Datchi et al. 2009)) would be plausible candidate phases (e.g., Datchi et al. 2009; Park et al. 2003), but CO₂-IV is a much better match with the observed data. Table 1 presents a summary of unit-cell data for all phases observed in these experiments.

210

211 Decompression data were also collected for CO_2 -I from the cell that was heated at 10.9 GPa, 212 away from the heated region, to verify the EoS for CO₂-I. This was done due to an apparent 213 discrepancy in the literature, with the earlier studies of Olinger (1982) and Liu (1984) producing similar EoS values ($K_{0T} = 2.2$ GPa, dK/dP = 6.4 and $V_0 = 197.9$ [Å³ per unit cell] 214 (our fit to the pressure-volume (P-V) data in Olinger (1982)) and $K_{0T} = 2.93$ GPa, dK/dP = 215 7.8 and $V_0 = 208.6$ [Å³ per unit cell], respectively) compared to a more recent value of $K_{0T} =$ 216 12 GPa reported by Yoo et al. (1999). Notably, Giordano et al. (2010) presented high-quality 217 P-V-T EoS data with values quite similar to the earlier studies: $K_{0T} = 3$ GPa, dK/dP = 8.4 and 218 $V_0 = 200$ [Å³ per unit cell]. The results determined here are also similar: $K_{0T} = 3.5$ GPa, 219 dK/dP = 9.1 GPa and $V_0 = 197.9$ [Å³ per unit cell] (fixed based on the estimate of Olinger 220 (1982)) and, as pointed out by Giordano et al. (2010), the variations in the studies with K_{0T} 221 values near 3 GPa can be explained by the small differences in V₀ and covariance between 222 223 K_{0T} and dK/dP. The much higher K_{0T} value reported by Yoo et al. (Yoo et al. 1999), however, is hard to interpret because it was not reported with values for V_0 or dK/dP. 224

225 226

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4260 Scott et al., Magnesite formation in Earth's mantle [REVISION 02]

227 CO₂ Initially as CO₂-III

As expected, carbon dioxide was present entirely as CO_2 -III (space group Cmca (Aoki et al. 1994)) in the pre-heating patterns of experiments conducted at 14.4 and 22.0 GPa. Temperatures between 1,350 and 1,450 K were recorded during a heating duration of 20 minutes for the cell at 14.4 GPa, and the cell at 22.0 GPa heated stably at 1,550 K, which was sustained for 15 minutes. A summary of unit-cell data for all phases encountered both before and after heating can be seen in Table 2.

234

Post-heating, the cell initially at 14.4 GPa dropped to 13.1 GPa, whereas the cell initially at 22.0 GPa increased in pressure to 25.0 GPa – the only heating experiment observed to result in an increase in pressure after heating. As with the experiment at 10.9 GPa, temperaturequenched patterns from both of these experiments included CO₂-IV, rather than CO₂-III, but tetragonal CO₂-II (space group $P4_2/mnm$ (Yoo et al. 2002)) is present in the post-heat pattern at 25 GPa as well.

241

The formation of magnesite was clear and unambiguous in both experiments, but the experiment at 14.4 GPa produced a few unaccounted for peaks at 1.669, 1.587 and 1.423 Å. These peaks are low in intensity, but they are sharp and spotty, and clearly form distinct diffraction rings on the image plate. Notably, quenching from the liquid phase of CO_2 at this pressure would be consistent with the formation of orthorhombic CO_2 -VII (space group *Cmca* (Giordano and Datchi 2007)), but with so much of the pattern obscured by stronger reflections from other phases, it is not possible to make a conclusive determination.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4260 Scott et al., Magnesite formation in Earth's mantle [REVISION 02]

250 CO₂ Initially as CO₂-IV

251 Prior to heating, only one diffraction line is visually attributable to CO_2 for either of the 252 experiments conducted at 30.3 and 41.7 GPa, and in both cases it appears to be due to 253 overlapping (024) and (220) reflections from the CO₂-IV structure. Given that these are pre-254 heating patterns one may expect the CO_2 -III structure, but it should be noted that spatially 255 separated locations in both DACs, from the same loading, had already been heated at lower 256 pressures. Neither of the pre-heating patterns shows evidence for the presence of magnesite, 257 yet it is likely that heating elsewhere in the cells (approximately 50 to 100 μ m away) warmed the cells sufficiently to convert all of the CO₂ to the CO₂-IV structure. 258

259

260 During heating, however, more CO_2 diffraction lines became apparent from both cells, and some of the CO₂ transformed to the tetragonal CO₂-V structure (space group *I*-42*d* (Datchi et 261 al. 2012)), whereas some remained as CO₂-IV. The cell at 30.3 GPa was heated for 262 approximately 60 minutes, with momentary peak temperature measurements of >2,700 K for 263 264 both sides, but sustainable measurements were in the range of 1,900 to 2,100 K. The post-265 heating pressure was 30.1 GPa. For the cell at 41.7 GPa, sustained temperature measurements 266 were between 1,600 and 1,800 K with a similar duration of 60 minutes; upon temperature 267 quench, the pressure was 37.8 GPa. Notably, this was the only heating experiment for which 268 all of the CO_2 should have remained within the solid state, as can be seen in Figure 1.

269

As with the lower-pressure experiments, the heating experiments at 30.3 and 41.7 GPa both produced clear and unambiguous diffraction patterns indicative of magnesite, and a summary of all phases observed pre and post heating can be seen in Table 3. Figure 3 shows pre- and post-heating patterns for the 41.7 GPa heating experiment. This experiment was chosen to display representative patterns because, as the highest-pressure experiment conducted in this study, it is arguably the most significant in terms of demonstrating the formation of magnesite at mantle pressures.

277

The upper panels in Figure 3 show the results of fitting from within EXPGUI / GSAS, and the 278 279 residuals are shown at the bottom. The lower panels show the same patterns, but they have 280 been converted to d-spacing, the backgrounds have been subtracted, and the dominant MgO 281 peaks have been truncated to better show peaks from the other phases. Furthermore, the vertical sticks on the lower panel have been scaled so that the most intense peak for each 282 283 phase matches the greatest intensity observed for that phase. The remaining relative scaled intensities, however, are from the previously determined structures of other workers, and they 284 285 are intended to provide an additional indication of the overall appropriateness of the phase identifications. 286

287

Although the integrated relative intensities for magnesite peaks show good agreement with those of previous workers, this is somewhat fortuitous because the data from the actual image plate are spotty as shown in Figure 4, which would be expected for crystal growth during laser heating. Although the most intense reflection from (104) can be identified as an individual ring, other reflections such as (202) manifest primarily as a few discrete spots with only very faint rings visible, if at all.

295	Both of these cells were subsequently decompressed, and all peaks in the ambient-pressure
296	diffraction patterns can be readily indexed as magnesite, MgO or Pt. No peaks ascribed to
297	CO ₂ at high pressures persist to ambient pressure, and there are no unexpected peaks.

298

299 Anisotropic Compression in Magnesite

Because all of the magnesite observed in these experiments crystallized under simultaneous high P-T conditions, with the surrounding CO_2 above or very near its melting point, we would expect the deviatoric stress on the crystals to be fairly low. This is superficially supported by their narrow diffraction lines at all pressures. Our measured lattice-parameter axial ratios (i.e. c/a), along with those from previous workers (Fiquet et al. 2002; Fiquet and Reynard 1999; Ross 1997), are plotted against pressure in Figure 5 to compare our results with previous compressional data collected in both hydrostatic and non-hydrostatic conditions.

307

308 Figuet et al. (1999) used a variety of pressure-transmitting media to surround the magnesite; 309 their data collected in Argon and methanol-ethanol water (MEW) are essentially 310 indistinguishable from the single-crystal data collected in methanol-ethanol (ME) by Ross 311 (1997) over the pressure range for which they overlap, which is limited to pressures below 312 about 9 GPa. Notably, this pressure is approximately where both ME and MEW solidify and, 313 accordingly, non-hydrostaticity is expected. Figuet et al. (2002), conversely, did not use any pressure-transmitting medium and, instead, used laser heating to thoroughly anneal the sample 314 at each pressure step. An exponential trend can readily fit both their high-pressure data and 315 316 the truly hydrostatic data points of Ross (1997) and Figuet et al. (1999). The non-hydrostatic data points from Figuet et al. (1999), however, clearly deviate to lower c/a values, strongly 317

318 suggesting that deviatoric stress enhances the known anisotropic compression of magnesite.

Our data show good agreement with this trend, but our datum at 25 GPa is at a higher c/avalue than it would predict. Overall, however, it appears that the laser-annealing technique employed by Fiquet et al. (2002) does indeed relieve the deviatoric stress as intended.

322

323 Thermodynamics of Magnesite Formation

To accurately model the thermodynamic stability of magnesite relative to CO_2 and MgO at elevated P-T, one would need not only reference-state free energies, but also P-T-dependent entropy and EoS data for all phases. Fiquet et al. (2002) created such a model using a combination of theoretically calculated and experimentally measured values to predict the equilibrium curve to pressures of 150 GPa and temperatures of 5,000 K. They noted the importance of volumetric effects, particularly at high pressure, and they concluded that temperatures well above the geotherm would be necessary for the decarbonation of magnesite.

332 As a simple demonstration of this volumetric importance using the data presented in this study, Figure 6 shows the ΔV , in terms of molar volumes, of the reaction $CO_2 + MgO =$ 333 334 MgCO₃ upon temperature quench. The negative ΔV for calculations based on observations of 335 quenched CO₂-I and CO₂-IV would indeed serve to drive the reaction toward magnesite production. However, the positive ΔV for calculations based on observations of quenched 336 CO₂-V would serve to inhibit the reaction. This does not, of course, suggest that the reaction 337 should not proceed at high temperatures, but rather that an entropic term, or thermal 338 339 expansion, dominates in this case. That said, this is a significant observation because it does

suggest that relatively dense high-pressure polymorphs in CO₂, such as CO₂-V, could serve to
 disfavor the magnesite-forming reaction at low temperatures.

342

343

Concluding Remarks

As expected based on a large body of previous work demonstrating its remarkable stability at high P-T, magnesite readily forms from CO_2 and MgO at pressures between 5 and 40 GPa and temperatures from 1,400 to 1,800 K. Indeed, even at the highest pressure of this study, and with CO_2 in the relatively dense CO_2 -IV structure, the reaction to form magnesite proceeded at temperatures below 1,800 K.

349

350 The true significance of magnesite for carbon storage in the lower mantle remains a 351 complicated issue that will, of course, depend on a number of critical parameters such as total carbon budget, relative partitioning between carbonates and silicates (Panero and Kabbes 352 353 2008) and oxygen fugacity (Frost and McCammon 2008). Indeed, the redox state at which 354 carbonate would be reduced to diamond has been determined, based on buffered multianvil 355 experiments, to be well above the iron-wüstite buffer (Stagno et al. 2011). Furthermore, 356 recent work demonstrates that fO_2 decreases with increasing depth, at least in the upper 357 mantle and, accordingly, carbon is likely present in reduced phases and oxidation does not 358 occur until there is upwelling (Stagno et al. 2013).

359

Additionally, observations of high-pressure polymorphism (Isshiki et al. 2004) and newly discovered carbon-bearing phases (Boulard et al. 2011; Oganov et al. 2008) obscure the significance of the ambient-pressure magnesite structure at the greatest mantle depths. That

- said, the remarkable ease with which magnesite forms from MgO and CO_2 , as shown in this study, further supports the notion that it is indeed one of the dominant storage phases for oxidized carbon in much of Earth's interior.
- 366

367 Acknowledgements

We gratefully acknowledge M. Somayazulu for gas loading at the Geophysical Lab; Y. Meng 368 369 and D. Popov (HPCAT) and V. Prakapenka (GSECARS) for scientific and beamline support 370 at APS; and E. Borkholder, E. Cotter and T. Kinney for experimental assistance. The 371 majority of this work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV and LLNL 372 373 through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, 374 under Contract No. DE-AC02-06CH11357. Use of 16-IDB was supported by HiPSEC, 375 UNLV, through NNSA Cooperative agreement DE-FC-06NA27684. A portion of this work 376 was also performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), 377 Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science 378 Foundation - Earth Sciences (EAR-0217473), Department of Energy - Geosciences (DE-379 FG02-94ER14466) and the State of Illinois. This research was partially supported by 380 COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11-57758. H. Scott thanks the IUSB R&D committee for 381 faculty research support and the SMART committee for supporting several undergraduate 382 researchers who helped with this project. J.F. Lin acknowledges supports from NSF-EAR 383 384 Geophysics, CDAC (Carnegie-DOE Alliance Center), and EFree (Energy Frontier Research 385 in Extreme Environments).

386 **References Cited**

387	Aoki, K., Yamawaki, M., Sakashita, M., Gotoh, Y., and Takemura, K. (1994) Crystal
388	Structure of the High-Pressure Phase of Solid CO ₂ . Science, 263, 356-358.
389	Bell, K. (1989) Carbonatites: Genesis and evolution, p. 618. Unwin Hyman, London.
390	Berg, G.W. (1986) Evidence for carbonate in the mantle. Geology, 324, 50-51.
391	Biellmann, C., Gillet, P., Guyot, F., Peyronneau, J., and Reynard, B. (1993) Experimental
392	evidence for carbonate stability in the Earth's lower mantle. Earth and Planetary
393	Science Letters, 118, 31-41.
394	Boulard, E., Gloter, A., Corgne, A., Antonangeli, D., Auzende, A.L., Perrillat, J.P., Guyot, F.,
395	and Fiquet, G. (2011) New host for carbon in the deep Earth. Proceedings of the
396	National Academy of Sciences of the United States of America, 108, 5184-5187.
397	Brey, G., Brice, W.R., Ellis, D.J., Green, D.H., Harris, K.L., and Ryabchikov, I.D. (1983)
398	Pyroxene-carbonate reactions in the upper mantle. Earth and Planetary Science
399	Letters, 62, 63-74.
400	Brey, G., and Green, D.H. (1977) Systematic study of liquidus phase relations in olivine
401	melilitite + H_2O + CO_2 at high pressures and petrogenesis of an olivine melilitite
402	magma. Contributions to Mineralogy and Petrology, 61, 141-162.
403	Canil, D. (1990) Experimental study bearing on the absence of carbonate in mantle-
404	derived zenoliths. Geology, 18, 1011-1013.
405	Dasgupta, R., and Hirschmann, M.M. (2010) The deep carbon cycle and melting in Earth's
406	interior. Earth and Planetary Science Letters, 298, 1-13.
407	Datchi, F., Giordano, V.M., Munsch, P., and Saitta, A.M. (2009) Structure of Carbon
408	Dioxide Phase IV: Breakdown of the Intermediate Bonding State Scenario.
409	Physical Review Letters, 103, 10.1103/PhysRevLett.103.185701.
410	Datchi, F., Mallick, B., Salamat, A., and Ninet, S. (2012) Structure of Polymeric Carbon
411	Dioxide CO ₂ -V. Physical Review Letters, 108, 10.1103/PhysRevLett.108.125701.
412	Downs, R.T., and Somayazulu, M.S. (1998) Carbon dioxide at 1.0 GPa. Acta
413	Crystallographica Section C-Crystal Structure Communications, 54, 897-898.
414	Fiebig, J., Chiodini, G., Caliro, S., Rizzo, A., Spangenberg, J., and Hunziker, J.C. (2004)
415	Chemical and isotopic equilibrium between CO_2 and CH_4 in fumarolic gas
416	discharges: Generation of CH_4 in arc magmatic-hydrothermal systems.
417	Geochimica et Cosmochimica Acta, 68, 2321-2334.
418	Fiquet, G., Guyot, F., Kunz, M., Matas, J., Andrault, D., and Hanfland, M. (2002) Structural
419	refinements of magnesite at very high pressure. American Mineralogist, 87, 1261-
420	1265.
421	Fiquet, G., and Reynard, B. (1999) High-pressure equation of state of magnesite: New
422	data and a reappraisal. American Mineralogist, 84, 856-860.
423	Frost, D.J., and McCammon, C.A. (2008) The redox state of Earth's mantle. Annual Review
424	of Earth and Planetary Sciences, 36, 389-420.
425	Ganino, C., and Arndt, N.T. (2009) Climate changes caused by degassing of sediments
426	during the emplacement of large igneous provinces. Geology, 37, 323-326.
427	Giordano, V.M., and Datchi, F. (2007) Molecular carbon dioxide at high pressure and high
428	temperature. Europhysics Letters, 77, 10.1209/0295-5075/77/46002.

429	Giordano, V.M., Datchi, F., and Dewaele, A. (2006) Melting curve and fluid equation of
430	state of carbon dioxide at high pressure and high temperature. Journal of
431	Chemical Physics, 125, 10.1063/1.2215609
432	Giordano, V.M., Datchi, F., Gorelli, F.A., and Bini, R. (2010) Equation of State and
433	Anharmonicity of Carbon Dioxide Phase I Up to 12 GPa and 800 K. Journal of
434	Chemical Physics, 133, 10.1063/1.3495951.
435	Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Häusermann, D. (1996)
436	Two-dimensional detector software: From real detector to idealised image or
437	two-theta scan. High Pressure Research, 14, 235-248.
438	Hayes, J.M., and Waldbauer, J.R. (2006) The carbon cycle and associated redox processes
439	through time. Phil. Trans. R. Soc. Lond., 361, 931-950.
440	Heijlen, W., Banks, D.A., Muchez, P., Stensgard, B.M., and Yardley, B.W.D. (2008) The
441	Nature of Mineralizing Fluids of the Kipushi Zn-Cu Deposit, Katanga, Democratic
442	Repubic of Congo: Quantitative Fluid Inclusion Analysis using Laser Ablation ICP-
443	MS and Bulk Crush-Leach Methods. Economic Geology, 103, 1459-1482.
444	Hervig, R.L., and Smith, J.V. (1981) Dolomite-apatite incluion in chrome-diapside crystal,
445	Bellsbank kimberliet, South Africa. American Mineralogist, 66, 346-349.
446	Hirschmann, M.M., and Dasgupta, R. (2009) The H/C ratios of Earth's near-surface and
447	deep reservoirs, and consequences for deep Earth volatile cycles. Chemical
448	Geology, 262, 4-16.
449	Iota, V., Yoo, C.S., Klepeis, J.H., Jenei, Z., Evans, W., and Cynn, H. (2007) Six-fold
450	coordinated carbon dioxide VI. Nature Materials, 6, 34-38.
451	Isshiki, M., Irifune, T., Hirose, K., Ono, S., Ohishi, Y., Watanuki, T., Nishibori, E., Takata, M.,
452	and Sakata, M. (2004) Stability of magnesite and its high-pressure form in the
453	lowermost mantle. Nature, 427, 60-63.
454	Jacobsen, S.D., Holl, C.M., Adams, K.A., Fischer, R.A., Martin, E.S., Bina, C.R., Lin, J.F.,
455	Prakapenka, V.B., Kubo, A., and Dera, P. (2008) Compression of single-crystal
456	magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure
457	media. American Mineralogist, 93, 1823 - 1828.
458	Katsura, T., and Ito, E. (1990) Melting and subsolidus phas relations in the MgSiO $_3$ -
459	$MgCO_3$ system at high-pressures: Implications to evolution of the Earth's
460	atmosphere. Earth and Planetary Science Letters, 99, 110-117.
461	Katsura, T., Tsuchida, Y., Ito, E., Yagi, T., Utsumi, W., and Akimoto, S. (1991) Stability of
462	magnesite under the lower mantle conditions. Proceedings of the Japan Academy,
463	67, 57-60.
464	Koziol, A.M., and Newton, R.C. (1998) Experimental determination of the reaction:
465	Magnesite + enstatite = forsterite + CO_2 in the ranges 6-25 kbar and 700-1100 °C.
466	American Mineralogist, 83, 213-219.
467	Kushiro, I. (1975) Carbonate-silicate reactions at high pressures and possible presence
468	of dolomite and magnesite in the upper mantle. Earth and Planetary Science
469	Letters, 28, 116-120.
470	Larson, A.C., and Von Dreele, R.B. (2000) General Structure Analysis System (GSAS), p.
471	86-748. Los Alamos National Laboratory Report LAUR.
472	Litasov, K.D., Fei, Y.W., Ohtani, E., Kuribayashi, T., and Funakoshi, K. (2008) Thermal
473	equation of state of magnesite to 32 GPa and 2073 K. Physics of the Earth and
474	Planetary Interiors, 168, 191-203.

475	Litasov, K.D., Goncharov, A.F., and Hemley, R.J. (2011) Crossover from melting to
476	dissociation of CO ₂ under pressure: Implications for the lower mantle. Earth and
477	Planetary Science Letters, 10.1016/j.epsl.2011.07.006.
478	Liu, L. (1984) Compression of Solid CO_2 to half a megabar. Earth and Planetary Science
479	Letters, 71, 104-110.
480	Mao, H.K., Bell, P.M., Shaner, J.W., and Steinberg, D.J. (1978) Specific volume
481	measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R ₁ fluorescence
482	pressure gauge from 0.06 to 1 Mbar. Journal of Applied Physics, 49, 3276-3283.
483	Martinez, I., Perez, E.M.C., Matas, J., Gillet, P., and Vidal, G. (1998) Experimental
484	investigation of silicate-carbonate system at high pressure and high temperature.
485	Journal of Geophysical Research, 103, 5143-5163.
486	McGetchin, T.R., and Besancon, J.R. (1973) Carbonate inclusions in mantle-derived
487	pyropes. Earth and Planetary Science Letters, 18, 408-410.
488	Newton, R.C., and Sharp, W.E. (1975) Stability of forsterite + CO ₂ and its bearing on the
489	role of CO_2 in the mantle. Earth and Planetary Science Letters, 26, 239-244.
490	Oganov, A.R., Ono, S., Ma, Y.M., Glass, C.W., and Garcia, A. (2008) Novel high-pressure
491	structures of MgCO ₃ , CaCO ₃ and CO ₂ and their role in Earth's lower mantle. Earth
492	and Planetary Science Letters, 273, 38-47.
493	Olafsson, M., and Eggler, D.H. (1983) Phase Relations of Amphibole, Ambibole-
494	Carbonate, and phlogopite-carbonate peridotite: petrologic constraints on the
495	asthenosphere. Earth and Planetary Science Letters, 64, 305-315.
496	Olinger, B. (1982) The compression of solid CO ₂ at 296 K to 10 GPa. Journal of Chemical
497	Physics, 77, 6255-6258.
498	Oppenheimer, C., and Kyle, P.R. (2008) Probing the magma plumbing of Erebus volcano,
499	Antarctica, by open-path FTIR spectroscopy of gas emissions. Journal of
500	Volcanology and Geothermal Research, 177, 743-754.
501	Panero, W.R., and Kabbes, J.E. (2008) Mantle-wide sequestration of carbon in silicates
502	and the structure of magnesite II. Geophysical Research Letters, 35,
503	10.1029/2008gl034442.
504	Park, J.H., Yoo, C.S., Iota, V., Cynn, H., Nicol, M.F., and Le Bihan, T. (2003) Crystal structure
505	of bent carbon dioxide phase IV. Physical Review B, 68,
506	10.1103/PhysRevE.68.014107.
507	Ridgwell, A., and Zeebe, R.E. (2005) The role of the global carbonate cycle in the
508	regulation and evolution of the Earth system. Earth and Planetary Science
509	Letters, 234, 299-315.
510	Roberge, J., Delgado-Granados, H., and Wallace, P.J. (2009) Mafic magma recharge
511	supplies high CO ₂ and SO ₂ gas fluxes from Popocatepetl volcano, Mexico. Geology,
512	37, 107-110.
513	Ross, N.L. (1997) The equation of state and high-pressure behavior of magnesite.
514	American Mineralogist, 82, 682-688.
515	Santillan, J., Catalli, K., and Williams, Q. (2005) An infrared study of carbon-oxygen
516	bonding in magnesite to 60 GPa. American Mineralogist, 90, 1669-1673.
517	Santoro, M., Lin, J.F., Mao, H.K., and Hemley, R.J. (2004) In situ high P-T Raman
518	spectroscopy and laser heating of carbon dioxide. Journal of Chemical Physics,
519	121, 2/80-2/8/.

520 521	Sengupta, A., Kim, M., Yoo, C.S., and Tse, J.S. (2011) Polymerization of carbon dioxide: A chemistry view of molecular-to-nonmolecular phase transitions. The Journal of
522	Physical Chemistry C, 116, 2061-2067.
523	Seto, Y., Hamane, D., Nagai, T., and Fujino, K. (2008) Fate of carbonates within oceanic
524	plates subducted to the lower mantle, and a possible mechanism of diamond
525	formation. Physics and Chemistry of Minerals, 35, 223-229.
526	Skorodumova, N.V., Belonoshko, A.B., Huang, L., Ahuja, R., and Johansson, B. (2005)
527	Stability of the MgCO $_3$ structures under lower mantle conditions. American
528	Mineralogist, 90, 1008-1011.
529	Sleep, N.H., and Zahnle, K. (2001) Carbon dioxide cycling and implications for climate on
530	ancient Earth. Journal of Geophysical Research, 106, 1373-1399.
531	Stagno, V., Ojwang, D.O., McCammon, C.A., and Frost, D.J. (2013) The oxidation state of
532	the mantle and the extraction of carbon from Earth's interior. Nature, 493, 84-88.
533	Stagno, V., Tange, Y., Miyajima, N., McCammon, C.A., Irifune, T., and Frost, D.J. (2011) The
534	stability of magnesite in the transition zone and the lower mantle as function of
535	oxygen fugacity. Geophysical Research Letters, 38, L19309.
536	Takafuji, N., Fujino, K., Nagai, T., Seto, Y., and Hamane, D. (2006) Decarbonation reaction
537	of magnesite in subducting slabs at the lower mantle. Physics and Chemistry of
538	Minerals, 33, 651-654.
539	Tappert, R., Foden, J., Stachel, T., Muehlenbachs, K., Tappert, M., and Wills, K. (2009)
540	Deep mantle diamonds from South Australia: A record of Pacific subduction at
541	the Gondwanan margin. Geology, 37, 43-46.
542	Toby, A.P. (2001) EXPGUI, a graphical user interface for GSAS. J. Appl. Cryst., 34, 210-
543	213.
544	Tschauner, O., Mao, H.K., and Hemley, R.J. (2001) New transformations of CO_2 at high
545	pressures and temperatures. Physical Review Letters, 87,
546	10.1103/PhysRevLett.87.075701.
547	Werner, C., and Brantley, S. (2003) CO ₂ emissions from the Yellowstone volcanic system.
548	Geochemistry Geophysics Geosystems, 4, 10.1029/2002gc000473.
549	Wyllie, P.J. (1977) Mantle fluid compositions buffered by carbonates in peridotite-CO ₂ -
550	H_2O . Journal of Geology, 85, 187 - 207.
551	Yoo, C.S., Cynn, H., Gygi, F., Galli, G., Iota, V., Nicol, M., Carlson, S., Hausermann, D., and
552	Mailhiot, C. (1999) Crystal structure of carbon dioxide at high pressure:
553	"Superhard" polymeric carbon dioxide. Physical Review Letters, 83, 5527-5530.
554	Yoo, C.S., Kohlmann, H., Cynn, H., Nicol, M.F., Iota, V., and LeBihan, T. (2002) Crystal
555	structure of pseudo-six-fold carbon dioxide phase II at high pressures and
556	temperatures. Physical Review B, 65, 10.1103/PhysRevB.65.104103.
557	Yoo, C.S., Sengupta, A., and Kim, M. (2011a) Carbon dioxide carbonates in the Earth's
558	mantle: Implications to the deep carbon cycle. Angewandte Chemie International
559	Edition, 50, 11219-11222.
560	(2011b) Phase diagram of carbon dioxide: update and challenges. High Pressure
561	Research, 31, 68-74.
562	
563	

7/11

564

565 **Figure and Table Captions**

566

Figure 1. A simplified phase diagram of CO_2 , after the summarizing figure of recent work presented by Litasov et al. (2011). The superimposed data points are the P-T conditions encountered during the laser-heating measurements of this study.

570

Figure 2. (a) Schematic for loaded sample chamber: Pt black was used to absorb infrared laser radiation and the pure MgO grains were used as a substrate to thermally isolate the MgO-Pt platelet from the anvils during heating. (b) A photograph of a loaded sample as viewed from above. This particular loading had to spatially separate platelets, one that is roughly square and the other roughly triangular; this readily allowed for two heating experiments to be conducted at different pressures.

577

Figure 3. Diffraction patterns collected before and after leaser heating at 41.7 GPa; a
detailed description is provided in the text.

580

Figure 4. A portion of the detector image, for the post-heating X-ray measurement shown in Figure 3, prior to integration and conversion to a one-dimensional diffraction pattern. The labels are the hkl's for the magnesite reflections observed in the integrated patterns.

585

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4260 Scott et al., Magnesite formation in Earth's mantle [REVISION 02]

Figure 5. Ratio of lattice parameters, a and c, for the magnesite formed in this study compared to what has been observed by previous workers. The dashed vertical line roughly indicates the pressure below which the organic solvent pressure-transmitting media of previous workers would be in a liquid state and thus truly hydrostatic.

590

Figure 6. Change in molar volume (ΔV) for the magnesite-forming reaction upon temperature quench. The molar volumes were determined from the unit-cell volumes observed in this study using Z=4 for CO₂-I (Downs and Somayazulu 1998), CO₂-V (Datchi et al. 2012) and MgO, Z=6 for magnesite, and Z=24 for CO₂-IV (Datchi et al. 2009). The solid curves were determined using EoS data for magnesite (Fiquet et al. 2002), MgO (Jacobsen et al. 2008), CO₂-I (Giordano et al. 2010) and CO₂-V (Datchi et al. 2012).

597

Tables 1-3 Summary of all crystalline phases observed for each heating experiment with the measured pressures indicated both before and after heating. Parenthetical values represent uncertainty in the last digit.

P (GPa)	Phase	a (Å)	c (Å)	V (Å ³)
Pre: 4.8	MgO	4.1730(2)		72.67(1)
	Pt	3.904(3)		59.5(1)
	CO ₂ -I	5.1826(1)		139.20(1)
Deet: 47	Mao	4 4724(2)		70 60(1)
POSt: 4.7	MgO Dí	4.1734(2)		72.09(1)
	Pt	3.8989(3)		59.27(2)
	CO ₂ -I	5.2366(10)		143.59(8)
	Magnesite	4.6081(5)	14.717(5)	270.64(6)
Pre: 10.9	MgO	4,1287(1)		70.378(7)
	Pt	3.854(2)		57.24(9)
	CO ₂ -I	4.9426(9)		120.76(7)
Post: 10.3	MgO	4.1331(1)		70.602(4)
	Pt	3.8695(2)		57.94(1)
	CO ₂ -I	4.960(3)		122.0(3)
	CO ₂ -IV	8.7934(8)	10.603(4)	710.0(3)
	Magnesite	4.5403(3)	14.432(1)	257.66(2)

Table 1: CO₂ Initially as CO₂-I

P (GPa)	Phase	a (Å)	b (Å)	c (Å)	V (Å ³)
Pre: 14.4	MgO	4.1060(1)			69.220(5)
	Pt	3.884(1)			58.58(6)
	CO ₂ -III	4.393(2)	4.562(4)	5.838(3)	117.0(1)
Post: 13.1	MgO	4.1143(1)			69.649(5)
	Pt	3.8644(1)			57.710(5)
	CO ₂ -IV	8.699(1)		10.641(3)	697.3(2)
	Magnesite	4.5249(5)		14.304(1)	253.63(4)
Pre: 22.0	MgO	4.0609(2)			66.97(1)
	Pt	3.840(2)			56.63(1)
	CO ₂ -III	4.22(1)	4.55(1)	5.791(9)	111.3(1)
Post: 25.0	MgO	4.0446(2)			66.16(1)
	Pt	3.8493(3)			57.04(1)
	CO ₂ -II	3.546(1)		4.2405(8)	53.31(2)
	CO ₂ -IV	8.475(1)		10.479(4)	651.9(2)
	Magnesite	4.4876(4)		14.005(1)	244.25(3)

Table 2: CO₂ Initially as CO₂-III

P (GPa)	Phase	a (Å)	c (Å)	V (Å ³)
Pre: 30.3	MgO	4.0170(1)		64.820(4)
	Pt	3.831(1)		56.22(6)
	CO ₂ -IV	8.410(3)	10.197(9)	624.5(7)
Post: 30.1	MgO	4.0179(1)		64.863(7)
	Pt	3.8164(6)		55.58(3)
	CO ₂ -IV	8.417(2)	10.210(3)	626.5(2)
	CO ₂ -V	3.608(1)	5.917(3)	77.03(2)
	Magnesite	4.4318(5)	13.650(2)	232.18(3)
Pre: 41.7	MgO	3.9643(1)		62.304(5)
	Pt	3.801(2)		54.93(6)
	CO ₂ -IV	8.177(3)	10.193(9)	590.3(4)
Post: 37.8	MgO	3.9817(2)		63.126(9)
	Pt	3.791(2)		54.49(8)
	CO ₂ -IV	8.130(2)	10.174(2)	582.4(2)
	CO ₂ -V	3.568(1)	5.913(4)	75.28(3)
	Magnesite	4.4030(9)	13.463(5)	226.08(8)

Table 3: CO₂ Initially as CO₂-IV