Kim, Hyun Na & Lee, Sung Keun

Atomic structure of alumina nanoparticle

1	
2	
3	
4	Effect of particle size on phase transitions in metastable alumina
5	nanoparticles: A view from high-resolution
6	solid-state ²⁷ Al NMR study
7	
8	
9	Kim, Hyun Na ¹ and Lee, Sung Keun ^{1,*}
10	School of Earth and Environmental Sciences
11	Seoul National University
12	Seoul, 151-742 Korea
13	
14	
15	
16	
17	*Corresponding author,
18	Lee, Sung Keun
19	Associate Professor
20	School of Earth and Environmental Sciences,
21	Seoul National University, Seoul, 151-742, Republic of Korea
22	E-mail: <u>sungklee@snu.ac.kr</u>
23	Web: http://plaza.snu.ac.kr/~sungklee
26	
27	Revised version submitted to "American Mineralogist (MS# 4364)"
28	2-5-2013

Atomic structure of alumina nanoparticle

7/11

29 Abstract

30 Detailed knowledge of the atomic structures of diverse metastable/stable polymorphs in alumina nanoparticles with varying particle size is essential to understand their 31 32 macroscopic properties and their phase transition behaviors. In this study, we report high-33 resolution solid-state ²⁷Al 2D triple-quantum (3Q) magic-angle spinning (MAS) and 1D MAS 34 nuclear magnetic resonance (NMR) spectra for alumina nanoparticles with varying 35 temperature and particle size with an aim to explore the nature of phase transitions in alumina nanoparticles. Although the ²⁷Al MAS NMR spectra of alumina nanoparticles cannot 36 37 fully resolve all the crystallographically distinct Al sites for metastable aluminas such as γ -, δ -, and θ -Al₂O₃, the simulation of ²⁷Al MAS NMR spectra collected at different magnetic fields 38 39 following the Czjzek model allows us to obtain the quantitative fractions of alumina 40 polymorphs in nanoparticles and the NMR characteristics of their Al sites. The ²⁷Al 3QMAS 41 NMR spectra resolved crystallographically distinct ^[6]Al and ^[4]Al sites in (γ , δ)- and θ -Al₂O₃ in the isotropic dimension for the first time. The fraction of θ -Al₂O₃ gradually increases up to 42 43 ~1473 K at the expense of a decrease in (γ , δ)-Al₂O₃. The onset of formation of α -Al₂O₃ from 44 metastable aluminas is observed above ~1493 K. Several phase transitions in alumina nanoparticles observed in the current study include, γ , $\delta \rightarrow \theta$ -Al₂O₃, γ , $\delta \rightarrow \alpha$ -Al₂O₃, and $\theta \rightarrow \alpha$ -45 Al₂O₃. Although the phase transition γ , $\delta \rightarrow \theta$ -Al₂O₃ occurs gradually with increasing 46 47 annealing temperature from 873 K to 1473 K, the phase transitions γ , $\delta \rightarrow \alpha$ -Al₂O₃ and $\theta \rightarrow \alpha$ -48 Al₂O₃ occur dramatically within a narrow temperature range between 1473 K and 1573 K. The 49 observed difference in temperature range (gradual *vs.* dramatic) for phase transition γ , $\delta \rightarrow \theta$ -Al₂O₃ and γ , δ , $\theta \rightarrow \alpha$ -Al₂O₃ originates from the different structural disorder in the metastable 50 51 aluminas (i.e., γ -, δ -, θ -) and α -Al₂O₃. The effect of particle size on the phase transition (γ , δ) \rightarrow 52 θ -Al₂O₃ between 298 K and ~1473 K is not observed significantly. On the other hand, the 53 transition temperature for γ , δ , $\theta \rightarrow \alpha$ -Al₂O₃, where the 50 % for alumina is α -Al₂O₃, apparently increases as the particle size increases (as evidenced by TEM observation), indicating a larger

energy penalty for phase transitions into α -Al₂O₃ in larger alumina nanoparticles. This could

be due to higher surface energy of θ -Al₂O₃ than that of α -Al₂O₃ and/or the fact that transition

details of phase transitions among alumina polymorphs provided in the current study yield

from θ -Al₂O₃ to α -Al₂O₃ is kinetically favored for smaller nanoparticles. The mechanistic

insights into the nature of the phase transition mechanisms for other oxide nanoparticles

ubiquitous in the earth's surface environment.

63 The atomic structure of alumina and the phase transition mechanism have long been 64 investigated in many experimental and theoretical studies due to its fundamental interest as 65 one of the simplest covalent oxides (Fitzgerald et al., 1997; Gan et al., 2009; Hagaman et al., 66 2010; John et al., 1983; Kryukova et al., 2000; Levin and Brandon, 1998; MacKenzie and Smith, 67 2002; O'Dell et al., 2007; Ollivier et al., 1997; Perander et al., 2007; Pinto et al., 2004; Repelin 68 and Husson, 1990). Alumina also has diverse industrial uses, for example, in catalysts, 69 adsorbents, and gate microelectronic devices (e.g., Kresse et al., 2005). Given these important 70 roles of alumina, the atomic structures of diverse alumina polymorphs are relatively well 71 known (Levin and Brandon, 1998 and references therein). However, the nature of phase 72 transitions among alumina polymorphs is not fully understood due to manifested 73 configurational disorder and their pronounced metastability (see below for further discussion), 74 which leads to broad ranges of transition temperatures rather than a single well-defined 75 transition temperature between polymorphs. Additionally, the effect of particle size on phase 76 transitions among metastable phases in nanoparticles has not been fully investigated. Because 77 the large surface area of nanoparticles plays an essential role in controlling their phase 78 transition behaviors, it is necessary to explore the effect of particle size on the transition

2

Kim, Hyun Na & Lee, Sung Keun

54

55

56

57

58

59

60

61

62

Atomic structure of alumina nanoparticle

Kim, Hyun Na & Lee, Sung Keun Atomic structure of alumina nanoparticle 79 temperature of alumina nanoparticles. The objective of this study is to investigate the effect of 80 particle size on the nature of phase transitions among alumina polymorphs including 81 metastable phases in alumina nanoparticles. 82 In addition to the well-known stable α-Al₂O₃ with a corundum structure, diverse 83 metastable polymorphs have also been reported. These include γ -, δ -, θ -, κ -, γ -, and η -Al₂O₃, 84 and are often called metastable aluminas with their stability fields depending on the annealing 85 temperature, time, and types of precursor (Levin and Brandon, 1998 and references therein). For instance, γ -AlOOH (i.e., boehmite) transforms to α -Al₂O₃ via γ -, δ -, and θ -Al₂O₃. The 86 87 transition temperatures between γ - and δ -Al₂O₃, between δ - and θ -Al₂O₃, and between θ - and α 88 -Al₂O₃ are ~ 700–800, 900–1000, and 1000–1100°C, respectively (Levin and Brandon, 1998; 89 Santos and Santos, 1992 and references therein). Extensive studies of temperature-induced 90 phase transitions of alumina have revealed that the temperature of the transition from 91 metastable alumina such as γ - and θ -Al₂O₃ into stable α -Al₂O₃ varied with the particle size 92 (Bokhimi et al., 2001; Gan et al., 2009), defects density (Liu et al., 2005), and presence of seeds

93 (Nordahl and Messing, 2002; Rajendran, 1994).

94 In particular, the particle size (i.e., surface area) of alumina nanoparticles has been identified as one of the crucial factors controlling the relative stability of γ -Al₂O₃ and its phase 95 96 transitions (McHale et al., 1997a; Navrotsky, 2001). The effect of particle size on the nature of 97 the phase transitions among alumina polymorphs is due to an increased role of the surface 98 energy with decreasing particle size (e.g., Navrotsky, 2001). An alumina polymorph with 99 lower surface energy becomes more stable than one with higher surface energy as the particle 100 size decreases (i.e., the surface area increases). A molecular dynamics simulation 101 demonstrated that surface energy of α -Al₂O₃ is larger than that of γ -Al₂O₃, which is consistent 102 with calorimetric data for nanocrystalline alumina (Blonski and Garofalini, 1993; McHale et al., 103 1997b). Additional differential thermal analysis for phase transition from boehmite into α -

Atomic structure of alumina nanoparticle

104 Al_2O_3 showed that transition temperature for $\gamma \rightarrow \alpha$ - Al_2O_3 decreases from 1565 K to 1465 K as 105 the crystallite size of boehmite decreases (Bokhimi et al., 2001). The systematic, spectroscopic 106 study of the effect of particle size of γ - Al_2O_3 nanoparticles and other alumina polymorphs 107 remains to be explored.

108 The atomic structure and phase transitions of alumina polymorphs have been studied 109 mainly using X-ray diffraction (XRD), transmission electron microscopy (TEM), and solid-110 state nuclear magnetic resonance (NMR) spectroscopy. XRD and TEM studies have 111 successfully provided the atomic structure of crystalline alumina of the γ -, θ -, and α -Al₂O₃, 112 (Figure 1). These studies using TEM and XRD studies have furthered our understanding of the 113 atomic structure and phase transition mechanism of metastable aluminas (Gan et al., 2009; 114 Levin et al., 1997; Lin et al., 2004; Macedo et al., 2007; Ollivier et al., 1997; Yang et al., 1988). Its 115 application to heterogeneous metastable aluminas can, however, be limited because the XRD 116 patterns for those alumina phases are not well distinguished due to low crystallinity and 117 significant degree of disorder in the metastable aluminas, (e.g., γ - and δ -Al₂O₃). Furthermore, 118 because the temperature ranges of stability of each metastable alumina overlap, two or more 119 phases can coexist in a sample within a given temperature range. It is often difficult to obtain 120 the quantitative fractions of alumina polymorphs using either XRD or TEM (Levin et al., 1997; 121 Ollivier et al., 1997; Yang et al., 1988).

122 NMR spectroscopy providing short-range structures around a specific nuclide of 123 interest has been particularly effective in exploring the atomic structure of disordered oxide 124 materials. Previous ²⁷Al magic-angle spinning (MAS) NMR studies have provided the atomic 125 configuration of oxygen and aluminum atoms in crystalline alumina (Fitzgerald et al., 1997; 126 John et al., 1983; MacKenzie and Smith, 2002; Mastikhin et al., 1981; O'Dell et al., 2007; Piedra 127 et al., 1996) as well as amorphous alumina thin films (Lee et al., 2009b; Lee et al., 2010b). The 128 atomic scale structure of quadrupolar nuclei (e.g., ²⁷Al) in alumina can be described by

Atomic structure of alumina nanoparticle

7/11

129 structurally relevant NMR parameters such as the quadrupolar coupling constant (C_a), 130 asymmetry parameter (η), and isotropic chemical shift (δ_{iso}). Simulation of the 1D MAS NMR 131 spectra with these NMR parameters allows us to obtain the quantitative fraction of each phase 132 in a sample with heterogeneous mixtures of multiple phases (as is the case for the current 133 nanoparticles) (Ashbrook and Duer, 2006; Ashbrook and Smith, 2006; Duer, 2004; Lee and 134 Stebbins, 2003; Lee et al., 2003; Lee and Weiss, 2008; Phillips, 2000). To confirm the NMR 135 characteristics of Al sites in alumina polymorphs, previous ²⁷Al NMR studies of alumina have 136 analyzed the spinning sideband and simultaneously simulated 27 Al MAS NMR spectra θ - and 137 α -Al₂O₃ collected at different magnetic fields (O'Dell et al., 2007; Pecharroman et al., 1999; 138 Perander et al., 2007; Sabarinathan et al., 2010). The analysis of spinning sideband patterns in 139 ²⁷Al MAS NMR spectra has yielded excellent results and confirmed the NMR parameters of Al 140 sites in α -Al₂O₃ (Pecharroman et al., 1999; Sabarinathan et al., 2010). A simulation of the central 141 transition peak in ²⁷Al MAS NMR spectra measured at different magnetic fields (e.g., 8.4 T and 142 14.1 T) also successfully obtained the NMR parameters for Al sites in θ -Al₂O₃ (O'Dell et al., 143 2007). A recent study also reported the simulation of 27 Al MAS NMR spectra for γ -Al₂O₃ using 144 the Czjzek model that have been effective in resolving Al sites in the disordered oxides (de 145 Lacaillerie et al., 2008; Lee et al., 2009a; Massiot et al., 2002; Neuville et al., 2004). 146 Recent progress in 2D triple-quantum (3Q) MAS also provide much improved 147 resolution among the different sites for quadrupolar nuclides (e.g., ²⁷Al, ¹⁷O) (Lee, 2005; Lee et 148 al., 2010a; Massiot et al., 1996; Neuville et al., 2004; Stebbins et al., 2000; Stebbins et al., 1999; 149 Tangeman et al., 2004; Xue et al., 2010). ²⁷Al 3QMAS NMR method has been used to elucidate the atomic scale structures of a single phase of crystalline and amorphous alumina (e.g., γ -150 151 Al₂O₃ or α -Al₂O₃) as well as aluminum (oxy)hydroxides (e.g., boehmite, bayerite, gibbsite) 152 (Chupas et al., 2001; Damodaran et al., 2002; Hagaman et al., 2010; Lee et al., 2009b; Lee et al., 153 2010b), and thus it may also be useful to resolve crystallographically distinct Al sites in

177

Atomic structure of alumina nanoparticle

154 multiple phases of alumina with varying temperature.

155	Here, we explore the atomic structure of alumina polymorphs and the effect of
156	particle size on the nature of phase transitions in alumina nanoparticles using high-resolution
157	solid-state NMR. The NMR characteristics as well as fractions of Al sites in metastable
158	aluminas are obtained by simulating ²⁷ Al MAS NMR spectra measured at different magnetic
159	fields. We also report the first ²⁷ Al 3QMAS NMR spectra of resolved alumina nanoparticles
160	resolving alumina polymorphs including (γ , δ)-, θ - and α -Al ₂ O ₃ . On the basis of the data from
161	these NMR results, we provide an improved insight into the nature of phase transitions of
162	alumina nanoparticles with emphasis on the effect of particle size.
163	
164	2. Experimental Methods
165	2.1. Sample Preparation and Characterization
166	Three types of alumina nanoparticles, FA51, FA81, and FA100 (Cabot Co., SpectAl
167	series) with surface areas of 55 ± 10 , 79 ± 10 , and 97 ± 19 m ² /g, respectively, were used. The
168	particle sizes (i.e., diameters) of the alumina nanoparticles calculated using a spherical
169	approximation ($d = 6/S_0\rho$, where d is the average particle size, S_0 is the specific surface area,
170	and ρ is the true density of the material) are 27, 19, and 15 nm for FA51, FA81, and FA100,
171	respectively. Here, we refer to FA51, FA81, and FA100 as 27, 19, and 15 nm alumina
172	nanoparticles, respectively. The alumina nanoparticles were heated for 2 h at temperatures
173	ranging from 873 to 1473 K in a vertical tube furnace. As for standard metastable alumina, the
174	crystalline γ -alumina was also purchased from Sigma Aldrich (product no. 544833).
175	
176	2.2. X-ray Diffraction Spectroscopy and Transmission Electron Microscopy

The X-ray diffraction patterns were collected on New D8 Advance (Bruker) using Cu

Atomic structure of alumina nanoparticle

K_α X-rays, a 2*θ* range of 15–75°, a step width of 0.02°, and a scan rate of 1°/min. The
transmission electron microscopy (TEM) study was performed on a 300 kV JEM-2100
instrument (JEOL Ltd.) with a Gatan digital camera. The specimens for electron microscopy
were prepared by suspending them in ethanol and placing a few droplets of the suspension
on a carbon-coated film.

183

184 2.3. ²⁷Al NMR Spectroscopy

185 ²⁷Al MAS spectra were collected at various magnetic fields on Varian 400 MHz (9.4 T), 186 Bruker 500 MHz (11.7 T), and Varian 600 MHz (14.1 T) spectrometers with a triple resonance 4 187 mm Bruker probe, 4 mm Doty Scientific MAS probe, and 2.5 mm Varian probe, respectively. 188 Single-pulse acquisition with a pulse length of 0.2 µs [radio frequency tip angle of about 15° 189 for solids] was used with a recycle delay of 1 s and spinning speeds of 15 kHz at 9.4 and 11.7 T 190 and 20 kHz at 14.1 T. The simulation of ²⁷Al MAS spectra was performed with the Dmfit 191 program (Massiot et al., 2002). ²⁷Al 3QMAS NMR spectra were collected on the Varian 400 192 MHz (9.4 T) spectrometer using a fast amplitude modulation- (FAM-) based shifted-echo 193 pulse sequences (1 s relaxation delay-3.0 μ s pulse for 3Q excitation- t_1 delay-FAM pulse train 194 with a 0.6 µs pulse-echo delay-15 µs soft pulse for echo reconversion- t_2 acquisition) with a 195 spinning speed of 15 kHz (Kentgens and Verhagen, 1999; Madhu et al., 1999). An AlCl₃

196 solution of 2 mol% was used as an external frequency standard.

197

198 3. Results and Discussion

199 **3.1.** Characterization of Alumina Nanoparticles

Figure 2 shows TEM images of alumina nanoparticles of several sizes with increasing annealing temperature. The as-received alumina nanoparticles are mostly spherical and aggregated. Although the particle sizes varies (from ~16 to ~50 nm for FA51, from ~14 to ~26

Atomic structure of alumina nanoparticle

203 nm for FA81, and from ~8 to~16 nm for FA100), the average particle sizes are similar to the 204 calculated sizes (i.e., 27, 19, and 15 nm for FA51, FA81, and FA100, respectively). The particle 205 size of γ , δ , and θ phases seems invariant upon annealing and drastically increases up to ~100 206 nm with phase transition into α-Al₂O₃ above 1473 K. This result is consistent with the result 207 from previous electron microscopic observation [e.g., TEM and scanning electron microscope 208 (SEM) images] (Nordahl and Messing, 2002; Wu et al., 1996). 209 Figure 3 presents the XRD patterns of as-received alumina nanoparticles and γ -Al₂O₃. 210 The results show that the multiple phases of alumina exist in the samples: the XRD pattern for 211 27 nm alumina nanoparticles shows diffraction peaks for crystalline γ -, δ -, and θ -Al₂O₃, and 212 those for 15 and 19 nm alumina nanoparticles mainly consists of γ - and δ -Al₂O₃. We note that 213 the quantitative estimation of the fractions of alumina polymorphs in the nanoparticles using 214 XRD is often difficult because metastable alumina phases are not well distinguished (Cava et 215 al., 2007; Macedo et al., 2007). Furthermore, the diffraction peak positions (i.e., 2θ values) for 216 metastable aluminas are similar (for instance, see diffraction peaks for δ - and θ -Al₂O₃ in Figure 217 3). Thus, we attempt to yield quantitative fraction of each alumina phase using NMR (see 218 results and discussion below).

219

220 3.2. ²⁷Al MAS NMR Spectra

221 Figure 4A shows the ²⁷Al MAS NMR spectra at 11.7 T for 27, 19, and 15 nm alumina 222 nanoparticles. The [4]Al and [6]Al peaks are well resolved at 0~20 and 50~80 ppm, respectively, 223 showing unique quadrupolar peak shapes. The ²⁷Al MAS NMR spectrum for 27 nm alumina 224 nanoparticles differs from those for 15 and 19 nm alumina nanoparticles and shows an 225 additional sharp feature at ~10 ppm that is due to $^{[6]}Al$ peak for θ -Al₂O₃ (in addition to γ - and 226 δ -Al₂O₃) in the 27 nm alumina nanoparticles, as also indicated by the XRD result. 227

Figure 4B shows the ²⁷Al MAS NMR spectra for 27 nm alumina nanoparticles collected

Atomic structure of alumina nanoparticle

228	at 9.4, 11.7, and 14.1 T. As the magnetic field (B_0) increases, the widths of the [4]Al and [6]Al
229	peaks decrease because the contribution of quadrupolar broadening in the peak decreases
230	with static magnetic field (i.e., quadrupolar broadening $\propto 1/B_0$) (Ashbrook and Duer, 2006;
231	Duer, 2004; MacKenzie and Smith, 2002). Crystallographically distinct aluminum sites in γ -, δ -,
232	and θ -Al ₂ O ₃ are not fully resolved in the ²⁷ Al MAS NMR spectra even at 11.7 T, mainly due to
233	their similar peak positions for $^{[4.6]}\text{Al}$ sites and disordered structure of $\gamma\text{-}$ and $\delta\text{-Al}_2\text{O}_3$. In the
234	current ^{27}Al MAS NMR results, γ - and δ - Al_2O_3 are not well distinguished from each other. The
235	lack of resolution between γ - and δ -Al_2O_3 in alumina nanoparticles is due to their similar
236	atomic environments and pronounced topological disorder and thus to similarities in the peak
237	positions of γ -, δ -, and θ -Al ₂ O ₃ (Pecharroman et al., 1999): the δ -Al ₂ O ₃ consists of a superlattice
238	of the γ -Al ₂ O ₃ structure with ordered cation vacancies (Jayaram and Levi, 1989). Simulation of
239	the central transition peaks in these 27Al MAS NMR spectra collected at varying static
240	magnetic field allows us to quantitatively discriminate crystallographically distinct Al sites in
241	metastable alumina nanoparticles (see section 3.3. below for further information).
242	Figure 5A–C present the ²⁷ Al MAS NMR spectra at 11.7 T for 27, 19, and 15 nm
243	alumina nanoparticles, respectively, with increasing annealing temperature up to 1573 K. The
244	spectra show subtle, gradual changes in the quadrupolar peak shapes for the [4]Al and [6]Al
245	sites. With increasing temperature up to 1473 K, an increase in the intensity of the sharp
246	feature at ~10 ppm, the ^[6] Al site in θ -Al ₂ O ₃ , is obvious. Though slight, changes in ^[4] Al peak
247	shape are indeed observed with increasing temperature, which may indicate changes in the
248	atomic environment around Al during the phase transition $\gamma \rightarrow \delta \rightarrow \theta$ -Al ₂ O ₃ (see Figure 5D).
249	Above 1473 K, a new ^[6] Al peak for α -Al ₂ O ₃ appears at ~14 ppm. The peak is partially resolved
250	from the [6]Al peaks for metastable aluminas owing to its symmetric shape and distinct peak
251	position. The peak intensity for [6]Al in α -Al ₂ O ₃ increases dramatically with increasing
252	temperature from 1473 K up to 1573 K: the peak intensity for [4]Al decreases with increasing

Kim, Hyun Na & Lee, Sung Keun Atomic structure of alumina nanoparticle 253 temperature above 1473 K because the structure of α -Al₂O₃ has only a [6]Al site. 254 Figure 5D compares the 6Al peaks in the 2Al MAS NMR spectra of alumina 255 nanoparticles with varying particle size at various temperatures. The fraction of α -Al₂O₃ in 256 alumina nanoparticles annealed between 1473 K and 1573 K varies with the particle size. For 257 instance, the phase transition into α -Al₂O₃ is apparently complete at 1523 K for 15 nm 258 nanoparticles, with α -Al₂O₃ being the only Al site in the nanoparticles. Thus, the 15 nm 259 alumina nanoparticles consist only of α-Al₂O₃ after annealing at 1523 K. However, the 19 and 260 27 nm nanoparticles still have a significant fraction of metastable aluminas at 1523 K. The 261 phase transition into α -Al₂O₃ is apparently complete at ~1573 K for 27 and 19 nm alumina 262 nanoparticles. These results indicate that transition temperature for $\theta \rightarrow \alpha$ -Al₂O₃ decreases 263 with decreasing particle size.

264

265 3.3. Quantification of Metastable Alumina Phases in Nanoparticles

266 The quantitative fraction of each alumina polymorph in nanoparticles can be estimated 267 from the analysis of the unique quadrupolar peak shape for each Al sites with NMR 268 parameters including C_q , η , and δ_{iso} . The NMR parameters for ^[4,6]Al sites in the metastable 269 aluminas studied in previous and current studies are given in Table 1. Although the NMR 270 parameters for the [4.6]Al sites of θ - and α -Al₂O₃ were generally confirmed, those for γ -Al₂O₃ 271 show a wide range of variation (Hagaman et al., 2010; Kraus et al., 1996; O'Dell et al., 2007; 272 Pecharroman et al., 1999; Sabarinathan et al., 2010; Skibsted et al., 1991): reported C_q values for 273 the [6]Al site in γ -Al₂O₃ varies from 4±1 to 7.5±1 MHz (Hagaman et al., 2010; Kraus et al., 1996; 274 Perander et al., 2007). Additionally, the NMR parameters for the [4,6]Al sites in δ -Al₂O₃ have not 275 been reported. The simultaneous simulation of ²⁷Al NMR spectra collected at different magnetic fields allows us to obtain robust NMR parameters (O'Dell et al., 2007; Perander et al., 276 277 2007). In the current study, following protocols has been used to obtain NMR parameters for

Kim, Hyun Na & Lee, Sung Keun

Atomic structure of alumina nanoparticle

the Al sites in the alumina phases. First, we roughly simulated the spectra at 11.7 T using the
previously reported NMR parameters for each phase (Table 1). Then, we adjusted the detailed
NMR parameters by simulating the spectra collected at 9.4 T, 11.7, and 14.1 T simultaneously,
with a constraints of intensity ratio between ^[4]Al and ^[6]Al for each alumina phase. Detailed
information on the NMR parameters for alumina nanoparticles studied in the current study is
also given in Table 2.

284 Figure 6 shows the ²⁷Al MAS NMR spectra that were simulated simultaneously at 9.4, 285 11.7, and 14.1 T. The simulation of the ^[4]Al and ^[6]Al peaks for (γ, δ) -Al₂O₃ in the ²⁷Al MAS 286 NMR spectrum were performed using the Czjzek model (de Lacaillerie et al., 2008; Lee et al., 287 2009a; Massiot et al., 2002; Neuville et al., 2004). Taking into consideration expected similarity 288 between NMR parameters for ^[4,6]Al sites in (γ , δ)-Al₂O₃, we consider a single ^[4]Al and ^[6]Al 289 peak for (γ, δ) -Al₂O₃. The average C_q and δ_{iso} for ^[4]Al in (γ, δ) -Al₂O₃ are 5.7±1.0 MHz and 72±3 290 ppm, respectively, and those for ^[6]Al are 4.2±1.0 MHz and 14±3 ppm. We also collected the 291 27 Al MAS NMR spectrum for standard γ -Al₂O₃ [single phase, Sigma Aldrich, product no. 292 544833, mixture of nanorods (~ 50 nm length) and nanoparticles (~ 10 nm diameter)]. The 293 spectrum was also simulated well with similar approach: $\delta_{iso} = 72.5 \pm 3.0$ ppm, $C_q = 5.7 \pm 1.0$ 294 MHz for the ^[4]Al site and δ_{iso} = 14±2 ppm, C_q = 4.7±1.0 MHz for the ^[6]Al site. These NMR 295 parameters for the ^[4,6]Al sites in (γ , δ)-Al₂O₃ show intermediate value between those reported 296 in previous studies of γ -Al₂O₃ (Hagaman et al., 2010; Kraus et al., 1996; O'Dell et al., 2007; 297 Pecharroman et al., 1999; Perander et al., 2007).

We note that there is a minor but detectable difference in NMR line shape for ^[6]Al sites and relative peak intensity (^[4]Al/^[6]Al) in the standard γ-phase (from Sigma Aldrich, 544833) and the γ-Al₂O₃ in the mixed phases, indicating that the particle size and morphology of the particles may lead to a slight change in structural distortion and thus NMR parameters. Similar particle size effect on NMR parameters, particularly C_q, has been observed for α-

Kim, Hyun Na & Lee, Sung Keun Atomic structure of alumina nanoparticle 303 alumina nanoparticles (Sabarinathan et al., 2010). Currently, the changes in these NMR 304 parameters are relatively small (see Table 2) and thus are within uncertainty. Yet this 305 potentially interesting effect of particle size remains to be explored. 306 The ²⁷Al NMR parameters for θ -Al₂O₃ are δ_{iso} = 80.5 ppm, C_q = 6.0 MHz, and η_q = 0.7 for the ^[4]Al site and δ_{iso} = 10.5 ppm, C_q = 3.45 MHz, and η = 0.0 for the ^[6]Al site, respectively. 307 These results are consistent with those from previous studies (O'Dell et al., 2007; Pecharroman 308 309 et al., 1999). Note that the quadrupolar NMR parameters are correlated with deviation from 310 perfect tetrahedral or octahedral symmetry (Ghose and Tsang, 1973). The current results 311 imply that deviation from perfect cubic symmetry for Al site in θ -Al₂O₃ is larger than those for 312 γ -Al₂O₃. In contrast, as also deduced from XRD patterns, the dispersion of NMR parameters 313 for Al sites in γ - and δ -Al₂O₃ phases indicate a moderate degree of structural disorder around 314 Al sites in γ - and δ -Al₂O₃ as previously reported (Lippens and Deboer, 1964). θ -Al₂O₃ shows 315 less disordered structures as indicated by narrow dispersions in the NMR spectra and XRD 316 patterns (Figures 3 and 5).

317 Figure 7 shows the simulated ²⁷Al MAS NMR spectra for alumina nanoparticles with 318 varying particle size and annealing temperature, which provides the quantitative changes in 319 the fractions of each alumina phase in the nanoparticles (see supporting on-line materials for 320 the complete sets of NMR spectra with varying temperature). For the NMR parameters of the 321 ^[6]Al site in α -Al₂O₃, we follow the previously reported values (i.e., $\delta_{iso} = 15.9$ ppm, $C_q = 2.4$ 322 MHz, and $\eta_q = 0$ (Kraus et al., 1998; O'Dell et al., 2007; Sabarinathan et al., 2010; Skibsted et al., 323 1991). The intensity ratio between the [4]Al and [6]Al sites in θ -Al₂O₃ is ~50±5:50±5, which is 324 consistent with the previously reported ratio for the ideal structure of θ -Al₂O₃ (O'Dell et al., 325 2007; Pecharroman et al., 1999). Though indirect, ^[4]Al and ^[6]Al ratio in the (γ , δ)-Al₂O₃ may 326 provide quantitative fraction of γ - and δ -Al₂O₃. The ratios between ^[4]Al and ^[6]Al for (γ , δ)-327 Al₂O₃ in 15, 19, and 27 nm alumina nanoparticles are ~26±8:74±8, 30±8:70±8, and 32±8:68±8,

Atomic structure of alumina nanoparticle

respectively. These are intermediate between the values for the ideal structures of γ - and δ -328 329 Al₂O₃: the ^[4]Al:^[6]Al ratios in ideal γ - and δ -Al₂O₃ are about 25:75 and 38:62, respectively 330 (Pecharroman et al., 1999; Repelin and Husson, 1990). The current result may indicate that the 331 fraction of γ -Al₂O₃ is more significant in a smaller nanoparticles, because the [4]Al:[6]Al ratio in 332 (γ, δ) -Al₂O₃ approaches the ideal ratio for γ -Al₂O₃ as the particle size decreases from 27 nm to 333 15 nm. The fraction of each alumina phase in alumina nanoparticles based on NMR results in 334 the current remains to be tested with other quantitative experimental techniques. 335 Figure 8A–C show the variations in the population of each alumina phase in 27, 19, 336 and 15 nm alumina nanoparticles, respectively, with increasing annealing temperature up to 337 1573 K, which demonstrates the effect of particle size on the stability field for alumina 338 polymorphs. The population of alumina polymorphs in as-received alumina nanoparticles 339 varies with the particle size. The (γ, δ) -Al₂O₃: θ -Al₂O₃ ratio is approximately 99±0.5:1±0.5, 340 96±2:4±2, and 80±3:20±3 for the 15, 19, and 27 nm alumina nanoparticles, respectively. With 341 increasing temperature above ~873 K, the population of θ -Al₂O₃ gradually increases up to 342 ~1473 K at the expense of (γ, δ) -Al₂O₃. The fractions of θ -Al₂O₃ after annealing at 1473 K are 343 ~16±5%, 18±5%, and 38±5% for 15, 19, and 27 nm alumina nanoparticles, respectively, and 344 thus a major fraction (62%~84%) of the alumina nanoparticles exist as (γ , δ)-Al₂O₃. The error 345 bar in the fraction of each alumina phase stems from the deviation from a perfect match 346 between experimental and simulated spectra (\sim 3%), the contribution from the uncertainties in 347 estimated NMR parameters (~3%), and possible artifacts introducing fixed value for NMR 348 parameters upon simulations (~3%). Taking into consideration of those uncertainties, the total 349 error bar of ±5 % is estimated. The significant fraction of (γ , δ)-Al₂O₃ in the nanoparticles at 350 1473 K is somewhat unexpected, considering the previously known transition temperatures 351 for $\gamma \rightarrow \delta$ -Al₂O (700–800°C) and $\delta \rightarrow \theta$ -Al₂O (900–1000°C) (Levin and Brandon, 1998 and 352 references therein). However, the presence of γ -Al₂O₃ above 1473 K also has been reported in

previously XRD studies for both nanocrystalline and bulk alumina (heating rate of 3-50

K/min) (Bokhimi et al., 2001; Gan et al., 2009). Note that kinetic broadening upon phase

transition among nanoparticles may contribute to the presence of larger fractions of (γ, δ) -

 Al_2O_3 . This effect of kinetic broadening on phase transition needs to be explored using further

 Al_2O_3 occur dramatically within a narrow temperature range between 1473 K and 1573 K.

370

353

354

355

356

371 3.4. ²⁷Al 3QMAS NMR Spectra

Kim, Hyun Na & Lee, Sung Keun

Figure 9A and 9B show the ²⁷Al 3QMAS NMR spectra for 27 nm alumina nanoparticles before and after annealing at 1497 K for 2 h; the resolution is considerably better than that of the ²⁷Al MAS NMR spectra. The crystallographically distinct ^[6]Al and ^[4]Al sites in (γ , δ)- and θ -Al₂O₃ as well as α -Al₂O₃ are resolved in the isotropic dimension. For robust peak assignment, we calculated the expected position for the center of gravity of the ^[4,6]Al sites in γ -, θ -, and α -Al₂O₃ using previously reported NMR parameters shown in Table 1. Figure 9C shows the

14

Atomic structure of alumina nanoparticle

Kim, Hyun Na & Lee, Sung Keun

Atomic structure of alumina nanoparticle

378 expected position of the center of gravity of the [4,6]Al sites for γ -, θ -, and α -Al₂O₃ in ²⁷Al 379 3QMAS NMR spectra (Hagaman et al., 2010; Kraus et al., 1996; O'Dell et al., 2007; 380 Pecharroman et al., 1999; Perander et al., 2007; Sabarinathan et al., 2010; Skibsted et al., 1991). 381 On the basis of plots in figure 9C, the peak at -10 ppm in the isotropic dimension is assigned to 382 the [6]Al site in α -Al₂O₃, which appears after annealing at 1497 K (Hagaman et al., 2010; Kraus 383 et al., 1996; O'Dell et al., 2007; Sabarinathan et al., 2010; Skibsted et al., 1991). The peaks at -8 ppm and -53 ppm in the isotropic dimension are assigned to the [6]Al and [4]Al sites in θ -Al₂O₃, 384 385 respectively (O'Dell et al., 2007; Pecharroman et al., 1999). These [6]Al and [4]Al peak intensities 386 for θ -Al₂O₃ increase after annealing at 1497 K, following the γ , $\delta \rightarrow \theta$ phase transition. The 387 broad peaks ranging from -10 to -20 ppm and at \sim -45 ppm are assigned to unresolved [6]Al 388 and [4]Al sites in γ - and δ -Al₂O₃, respectively as their intensities decrease significantly after 389 annealing at 1497 K (Hagaman et al., 2010; Kraus et al., 1996; Perander et al., 2007). These 390 results are consistent with the temperature-induced phase transition sequence of alumina (i.e., $\gamma \rightarrow \delta \rightarrow \theta \rightarrow \alpha - Al_2O_3).$ 391

392 Figure 10 shows the ²⁷Al 3QMAS NMR spectra for alumina nanoparticles with varying 393 particle size and annealing temperature; the ^[4]Al and ^[6]Al peaks for (γ , δ)-, θ -, and α -Al₂O₃ are 394 resolved (see supporting on-line materials for the complete sets of NMR spectra with varying 395 temperature). The [4,6]Al peaks for θ -Al₂O₃ are observed in the ²⁷Al 3QMAS NMR spectra for 396 the 15 and 19 nm alumina nanoparticles as well as the 27 nm alumina nanoparticles. We note 397 that the presence of θ -Al₂O₃ is not clear in the XRD patterns for 15 nm and 19 nm alumina 398 nanoparticles (see Figure 3). The discrepancy may be due to that small fraction (\sim 3±2 %) of θ -399 Al_2O_3 is not detected using XRD. As the annealing temperature increases to ~1473 K, the peak 400 intensities for the ^[4,6]Al sites in (γ , δ)-Al₂O₃ decrease, whereas those for θ -Al₂O₃ increase. 401 Above 1473 K, the [6]Al peak for α -Al₂O₃ is observed, indicating the onset of the $\theta \rightarrow \alpha$ phase 402 transition. These results are consistent with those of the ²⁷Al MAS NMR spectra.

Kim, Hyun Na & Lee, Sung Keun

Atomic structure of alumina nanoparticle

403

404 3.5. Effect of Particle Size on Phase Transitions of Metastable Alumina

405 Several phase transitions in alumina nanoparticles observed in the current study include, (1) γ , $\delta \rightarrow \theta$ -Al₂O₃, (2) γ , $\delta \rightarrow \alpha$ -Al₂O₃, and (3) $\theta \rightarrow \alpha$ -Al₂O₃. Although the phase 406 407 transition γ , $\delta \rightarrow \theta$ -Al₂O₃ occurs gradually within a broad temperature range between ~ 873 K 408 and 1473 K, both phase transitions, γ , $\delta \rightarrow \alpha$ -Al₂O₃ and $\theta \rightarrow \alpha$ -Al₂O₃ occurs within narrow 409 temperature range between ~ 1473 K and 1573 K. The different temperature range between 410 phase transition γ , $\delta \rightarrow \theta$ and γ , δ , $\theta \rightarrow \alpha$ may originate from the different structural disorder between the metastable aluminas (i.e., γ -, δ -, θ -) and α -Al₂O₃. The configurational disorder of γ -411 412 and δ -Al₂O₃ may induce a gradual γ , $\delta \rightarrow \theta$ phase transition from 873 K to 1473 K as has been observed for structural transitions in compressed amorphous oxides (see (Lee et al., 2008). 413

414 Figure 11 presents the normalized variation in the (γ , δ)-, θ - and α -Al₂O₃ population 415 with varying particle size and annealing temperature. The normalized variations of (γ, δ) - and 416 θ-Al₂O₃ population in 27, 19, and 15 nm nanoparticles between 298 K and ~1473 K are similar to each other, indicating that the effect of particle size on the phase transition (γ , δ) $\rightarrow \theta$ -Al₂O₃ 417 418 is not significant. On the other hand, effect of particle size on the variation of α -Al₂O₃ 419 population is obvious between ~ 1473 K and ~ 1673 K. The transition temperature for γ , δ , $\theta \rightarrow$ 420 α-Al₂O₃, where a 50 % for alumina is α-Al₂O₃, is 1523±10, 1518±10, and 1490±10 K for 27, 19, 421 and 15 nm alumina nanoparticles, respectively. This result indicates that the phase transition γ , 422 $\delta, \theta \rightarrow \alpha$ -Al₂O₃ occurs at lower temperatures for smaller alumina nanoparticles. Although the 423 transition temperature in this study may change with the annealing time because the 424 equilibrium or steady state for phase transitions of alumina may not be reached with an 425 annealing duration of 2 h, the current results can yield insights into the relative difficulty for 426 phase transition γ , δ , $\theta \rightarrow \alpha$ -Al₂O₃. This could be due to higher surface energy of θ -Al₂O₃ than that of α -Al₂O₃ and/or it could be due to the fact that transition from θ -Al₂O₃ to α -Al₂O₃ is 427

Kim, Hyun Na & Lee, Sung Keun

Atomic structure of alumina nanoparticle

428 kinetically favored for smaller nanoparticles. A detailed study for surface energy of θ-Al₂O₃
429 phase remains to be explored.

430 In this study, we quantified the fractions of alumina polymorphs in nanoparticles and 431 reported the NMR characteristics of their Al sites using both high-resolution 1D ²⁷Al MAS and 432 3QMAS NMR. Particularly, first 2D NMR spectra for complex nanoparticles resolved 433 crystallographically distinct ^[6]Al and ^[4]Al sites in (γ , δ)- and θ -Al₂O₃. The results show that 434 phase transition γ , $\delta \rightarrow \theta$ -Al₂O₃ occurs gradually with increasing annealing temperature from 435 873 K to 1473 K and the phase transitions γ , δ , $\theta \rightarrow \alpha$ -Al₂O₃ occur dramatically within a narrow 436 temperature range between 1473 K and 1573 K. In addition to that, the results clearly 437 demonstrate that phase transition γ , δ , $\theta \rightarrow \alpha$ -Al₂O₃ occurs at lower temperatures for smaller 438 alumina nanoparticles. The current results may be helpful to account for a transition behavior 439 in other simple and complex oxide nanoparticles. Nanoparticles with complex compositions 440 are produced through geochemical (Banfield and Zhang, 2001; Foissner et al., 2009; Hochella 441 et al., 2008) and mechanical processes (Han et al., 2007) in diverse geological settings. 442 Although the alumina nanoparticles in this study are not ubiquitous in the earth, they are the 443 simplest compound that exhibits the complexities of diverse earth materials. In addition to 444 Al_2O_3 , other minerals including Fe₂O₃, TiO₂, and ZrO₂ also exhibit different surface energies 445 among stable and metastable polymorphs, indicating a similar effect of particle size on their 446 relative stability in nanoparticles (Navrotsky, 2004). The potential metastability of earth 447 materials in nano-sized domain may induce heterogeneity of mantle (e.g., nanoscale spinel 448 phases at the olivine-spinel transition at 400 km depth) (Banfield and Zhang, 2001). The 449 structural information on alumina polymorphs and the mechanistic details obtained from the 450 experiments described here provide insights into the nature of the phase transitions of other 451 oxide nanoparticles, highlighting the effects of particle size.

Atomic structure of alumina nanoparticle

453 Acknowledgment

- 454 This research was supported by Korean Science and Engineering Foundation grants
- through the National Research Laboratory Program (2012-026-411) and partly supported by
- 456 the Korea Meteorological Administration Research and Development Program under Grant
- 457 CATER 2012-8030. We deeply appreciate constructive and careful suggestions by the two
- 458 anonymous reviewers, Dr. Ganapathy, and Dr. Phillips.

	Kim, Hyun Na & Lee, Sung Keun	Atomic structure of alumina nanoparticle
459	References	
460 461	Ashbrook, S.E., and Duer, M.J. (2006) Strustate NMR. Concepts Magn. Reson.	actural information from quadrupolar nuclei in solid Part A, 28A(3), 183-248.
462 463 464	Ashbrook, S.E., and Smith, M.E. (2006) So background principles and applicat 718-735.	lid state O-17 NMR - an introduction to the ions to inorganic materials. Chem. Soc. Rev., 35(8),
465 466	Banfield, J.F., and Zhang, H.Z. (2001) Nar Environment, 44, p. 1-58. Mineralog	noparticles in the environment. Nanoparticles and the gical Soc America, Washington.
467 468	Blonski, S., and Garofalini, S.H. (1993) Mo alumina surfaces. Surf. Sci., 295(1-2)	plecular-dynamics simulations of α-alumin and γ-), 263-274.
469 470 471	Bokhimi, X., Toledo-Antonio, J.A., Guzm and Navarrete, J. (2001) Dependenc lengths and crystallite size. J. Solid S	an-Castillo, M.L., Mar-Mar, B., Hernandez-Beltran, F., e of boehmite thermal evolution on its atom bond State Chem., 161(2), 319-326.
472 473 474	Chupas, P.J., Ciraolo, M.F., Hanson, J.C., solid-state NMR study of the fluorin 123(8), 1694-1702.	and Grey, C.P. (2001) In situ X-ray diffraction and nation of γ -Al ₂ O ₃ with HCF ₂ Cl. J. Am. Chem. Soc.,
475 476 477	Damodaran, K., Rajamohanan, P.R., Chak C., Amoureux, J.P., and Ganapathy NMR of aluminum hydroxides. J. A	krabarty, D., Racherla, U.S., Manohar, V., Fernandez, S. (2002) Triple-quantum magic angle spinning ²⁷ Al am. Chem. Soc., 124(13), 3200-3201.
478 479	de Lacaillerie, J.B.D., Fretigny, C., and Ma nuclei in disordered solids: The Czj	assiot, D. (2008) MAS NMR spectra of quadrupolar zek model. J. Magn. Reson., 192(2), 244-251.
480	Duer, M.J. (2004) Introduction to solid-sta	te NMR spectroscopy. Blackwell
481 482 483	Fitzgerald, J.J., Piedra, G., Dec, S.F., Seger a high-surface-area alumina (pseud Am. Chem. Soc., 119(33), 7832-7842	r, M., and Maciel, G.E. (1997) Dehydration studies of o-boehmite) using solid-state ¹ H and ²⁷ Al NMR. J.
484 485	Foissner, W., Weissenbacher, B., Krautga glass: First report of biomineralized	rtner, W.D., and Lutz-Meindl, U. (2009) A cover of silicon in a ciliate, Maryna umbrellata (ciliophora:

	Kim, Hyun Na & Lee, Sung Keun	Atomic structure of alumina nanoparticle
486	Colpodea). J. Eukaryot. Microbi	ol., 56(6), 519-530.
487 488 489	Gan, B.K., Madsen, I.C., and Hockrid transformation of gibbsite to alp and heating rate. J. Appl. Crysta	ge, J.G. (2009) In situ X-ray diffraction of the bha-alumina through calcination: effect of particle size Illogr., 42, 697-705.
490 491 492	Hagaman, E.W., Jiao, J.A., Chen, B.H. species on modified titanium di investigation of catalyst suppor	, Ma, Z., Yin, H.F., and Dai, S. (2010) Surface alumina oxide: A solid-state ²⁷ Al MAS and 3QMAS NMR ts. Solid State Nucl. Magn. Reson., 37(3-4), 82-90.
493 494	Han, R., Shimamoto, T., Hirose, T., Re faults caused by thermal decom	ee, J.H., and Ando, J. (2007) Ultralow friction of carbonate position. Science, 316(5826), 878-881.
495 496 497	Hochella, M.F., Jr., Lower, S.K., Maur B.S. (2008) Nanominerals, Mine 1631-1635.	ice, P.A., Penn, R.L., Sahai, N., Sparks, D.L., and Twining, ral Nanoparticles, and Earth Systems. Science, 319(5870),
498 499	Jayaram, V., and Levi, C.G. (1989) The γ–δ transformation. Acta Metall	e structure of δ-alumina evolved from the melt and the ., 37(2), 569-578.
500 501	John, C.S., Alma, N.C.M., and Hays, G solid-state magic angle spinning	G.R. (1983) Characterization of transitional alumina by g aluminum NMR. Appl. Catal., 6(3), 341-346.
502 503	Kentgens, A.P.M., and Verhagen, R. (MAS and MQMAS NMR of spin	1999) Advantages of double frequency sweeps in static, n I=3/2 nuclei. Chem. Phys. Lett., 300(3-4), 435-443.
504 505	Kraus, H., Muller, M., Prins, R., and K visibility of aluminas. J. Phys. C	Centgens, A.P.M. (1998) Comments on the ²⁷ Al NMR hem. B, 102(20), 3862-3865.
506 507 508	Kraus, H., Prins, R., and Kentgens, A. NMR investigation of Mo-P/ga Chem., 100(40), 16336-16345.	P.M. (1996) A 27 Al MQMAS and off-resonance nutation mma-Al ₂ O ₃ hydrotreating catalyst precursors. J. Phys.
509 510 511	Kresse, G., Schmid, M., Napetschnig, Structure of the ultrathin alumit 1442.	E., Shishkin, M., Kohler, L., and Varga, P. (2005) num oxide film on NiAl(110). Science, 308(5727), 1440-
512	Kryukova, G.N., Klenov, D.O., Ivanov	va, A.S., and Tsybulya, S.V. (2000) Vacancy ordering in

	Kim, Hyun Na & Lee, Sung Keun Atomic structure of alumina nanoparticle	
513	the structure of γ -Al ₂ O ₃ . J. Eur. Ceram. Soc. , 20(8), 1187-1189.	
514 515 516	Lee, S.K. (2005) Microscopic origins of macroscopic properties of silicate melts and glasses a ambient and high pressure: Implications for melt generation and dynamics. Geochim. Cosmochim. Ac. , 69(14), 3695-3710.	t
517 518 519	Lee, S.K., Deschamps, M., Hiet, J., Massiot, D., and Park, S.Y. (2009a) Connectivity and proximity between quadrupolar nuclides in oxide glasses: Insights from through-bond and through-space correlations in solid-state NMR. J. Phys. Chem. B, 113(15), 5162-516	1 57.
520 521 522	Lee, S.K., Eng, P.J., Mao, H.K., and Shu, J.F. (2008) Probing and modeling of pressure-induce coordination transformation in borate glasses: Inelastic x-ray scattering study at high pressure. Phys. Rev. B, 78(21).	ed
523 524 525	Lee, S.K., Kim, H.N., Lee, B.H., Kim, H.I., and Kim, E.J. (2010a) Nature of chemical and topological disorder in borogermanate glasses: Insights from B-11 and O-17 solid-State NMR and quantum chemical calculations. J. Phys. Chem. B 114(1), 412-420.	ž
526 527	Lee, S.K., Lee, S.B., Park, S.Y., Yi, Y.S., and Ahn, C.W. (2009b) Structure of amorphous aluminum oxide. Phys. Rev. Lett., 103(9), 095501.	
528 529 530	Lee, S.K., Park, S.Y., Yi, Y.S., and Moon, J. (2010b) Structure and disorder in amorphous alumina thin films: Insights from high-resolution solid-state NMR. J. Phys. Chem. C 114(32), 13890-13894.	
531 532	Lee, S.K., and Stebbins, J.F. (2003) O atom sites in natural kaolinite and muscovite: ¹⁷ O MAS and 3QMAS NMR study. Am. Mineral., 88(4), 493-500.	
533 534 535	Lee, S.K., Stebbins, J.F., Weiss, C.A., and Kirkpatrick, R.J. (2003) O-17 and Al-27 MAS and 3QMAS NMR study of synthetic and natural layer silicates. Chem. Mater., 15(13), 2605 2613.)-
536 537	Lee, S.K., and Weiss, C.A. (2008) Multiple oxygen sites in synthetic phyllosilicates with expandable layers: ¹⁷ O solid-state NMR study. Am. Mineral., 93(7), 1066-1071.	
538 539	Levin, I., Bendersky, L.A., Brandon, D.G., and Ruhle, M. (1997) Cubic to monoclinic phase transformations in alumina. Acta Materialia, 45(9), 3659-3669.	

	Kim, Hyun Na & Lee, Sung Keun	Atomic structure of alumina nanoparticle
540 541	Levin, I., and Brandon, D. (1998) Metastable alumina transition sequences. J. Am. Ceram. Soc., 81(8), 1	polymorphs: Crystal structures and 1995-2012.
542 543 544	Lin, J.F., Degtyareva, O., Prewitt, C.T., Dera, P., Sata, Hemley, R.J. (2004) Crystal structure of a high-p alumina by in situ X-ray diffraction. Nat. Mater	N., Gregoryanz, E., Mao, H.K., and pressure/high-temperature phase of . , 3(6), 389-393.
545 546	Liu, S.F., Zhang, L.G., and An, L.N. (2005) Phase trans sized γ-alumina. J. Am. Ceram. Soc., 88(9), 2559-	formation of mechanically milled nano- 2563.
547 548	Macedo, M.I.F., Bertran, C.A., and Osawa, C.C. (2007) transformation by quantitative X-ray diffraction	Kinetics of the $\gamma \rightarrow \alpha$ -alumina phase n. J. Mater. Sci., 42(8), 2830-2836.
549 550	MacKenzie, K.J.D., and Smith, M.E. (2002) Multinucle Materials. Pergamon.	ar Solid-State NMR of Inorganic
551 552 553	Madhu, P.K., Goldbourt, A., Frydman, L., and Vega, S MQMAS NMR experiment by fast amplitude n Lett., 307(1-2), 41-47.	5. (1999) Sensitivity enhancement of the nodulation of the pulses. Chem. Phys.
554 555 556	Massiot, D., Conanec, R., Feldmann, W., Marchand, R characterization of the Na ₃ AlP ₃ O ₉ N and Na ₂ M ₈ the (NaAl)/Mg ⁻² substitution. Inorg. Chem., 35(., and Laurent, Y. (1996) NMR g2P3O9N nitridophosphates: Location of (17), 4957-4960.
557 558 559	Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, Gan, Z.H., and Hoatson, G. (2002) Modelling on spectra. Magn. Reson. Chem., 40(1), 70-76.	S., Alonso, B., Durand, J.O., Bujoli, B., ne- and two-dimensional solid-state NMR
560	Mastikhin, V.M., Krivoruchko, O.P., Zolotovskii, B.P.,	, and Buyanov, R.A. (1981) Study of local
561	environment and cation distribution in Al-(III) o	xides by ²⁷ Al NMR with sample rotation
562	at a magic angle. React. Kinet. Catal. Lett., 18(1-	2), 117-120.
563 564	McHale, J.M., Auroux, A., Perrotta, A.J., and Navrots thermodynamic phase stability in nanocrystallin	ky, A. (1997a) Surface energies and ne aluminas. Science, 277(5327), 788-791.
565	McHale, J.M., Navrotsky, A., and Perrotta, A.J. (1997b) Effects of increased surface area and

	Kim, Hyun Na & Lee, Sung Keun	Atomic structure of alumina nanoparticle
566	chemisorbed H_2O on the relative stability	of nanocrystalline gamma-Al ₂ O ₃ and alpha-
567	Al ₂ O ₃ . J. Phys. Chem. B 101(4), 603-613.	
568 569	Navrotsky, A. (2001) Thermochemistry of nanor Eds. Nanoparticles and the Environment,	naterials. In J.F. Banfield, and A. Navrotsky, 44, p. 73-103.
570		
570 571	(2004) Energetic clues to pathways to biomine nanoparticles. Proc. Natl. Acad. Sci. U. S. A	A., 101(33), 12096-12101.
572	Neuville, D.R., Cormier, L., and Massiot, D. (200	04) Al environment in tectosilicate and
573	peraluminous glasses: A Al-27 MQ-MAS I	NMR, Raman, and XANES investigation.
574	Geochim. Cosmochim. Ac., 68(24), 5071-50)79.
575	Nordahl, C.S., and Messing, G.L. (2002) Sinterin	g of α -Al ₂ O ₃ -seeded nanocrystalline γ -Al ₂ O ₃
576	powders. J. Eur. Ceram. Soc., 22(4), 415-42	2.
577	O'Dell, L.A., Savin, S.L.P., Chadwick, A.V., and	Smith, M.E. (2007) A ²⁷ Al MAS NMR study of
578	a sol-gel produced alumina: Identification	of the NMR parameters of the θ -Al ₂ O ₃
579	transition alumina phase. Solid State Nucl	. Magn. Reson., 31(4), 169-173.
580	Ollivier, B., Retoux, R., Lacorre, P., Massiot, D.,	and Ferey, G. (1997) Crystal structure of
581	kappa-alumina: An X-ray powder diffract	ion, TEM and NMR study. J. Mater. Chem.,
582	7(6), 1049-1056.	
583	Pecharroman, C., Sobrados, I., Iglesias, J.E., Gon	zalez-Carreno, T., and Sanz, J. (1999) Thermal
584	evolution of transitional aluminas followe	d by NMR and IR spectroscopies. J. Phys.
585	Chem. B, 103(30), 6160-6170.	
586	Perander, L.M., Zujovic, Z.D., Groutso, T., Hyla	nd, M.M., Smith, M.E., O'Dell, L.A., and
587	Metson, J.B. (2007) Characterization of me	tallurgical-grade aluminas and their
588	precursors by ²⁷ AI NMR and XRD. Can. J.	ChemRev. Can. Chim., 85(10), 889-897.
589	Phillips, B.L. (2000) NMR spectroscopy of phase	transitions in minerals. Transformation
590	Processes in Minerals, 39, 203-240.	
591	Piedra, G., Fitzgerald, J.J., Dando, N., Dec, S.F., a	and Maciel, G.E. (1996) Solid-state ¹ H NMR
592	studies of aluminum oxide hydroxides an	d hydroxides. Inorg. Chem., 35(12), 3474-3478.

593	Kim, Hyun Na & Lee, Sung Keun Pinto, H.P., Nieminen, R.M., and Elliott, S.D. (2004) Ab Phys. Roy. B 70(12)	Atomic structure of alumina nanoparticle initio study of gamma-Al ₂ O ₃ surfaces.					
595 596	Rajendran, S. (1994) Production of ultrafine α-alumina powders and fabrication of fine- grained strong ceramics. J. Mater. Sci., 29(21), 5664-5672.						
597 598	Repelin, Y., and Husson, E. (1990) Structureal studies on transition aluminas. 1. γ-alumina and δ-alumina Mat. Res. Bull., 25(5), 611-621.						
599 600 601	Sabarinathan, V., Ramasamy, S., and Ganapathy, S. (20 Gradients in Nanocrystalline α-Al ₂ O ₃ Studied by Phys. Chem. B 114(5), 1775-1781.	10) Perturbations to ²⁷ Al Electric Field High-Resolution Solid-State NMR. J.					
602 603	Santos, H.D., and Santos, P.D. (1992) Pseudomorphic for pseudoboehmite. Mater. Lett., 13(4-5), 175-179.	ormation of aluminas from fibrillar					
604 605	Skibsted, J., Nielsen, N.C., Bildsoe, H., and Jakobsen, H. NMR-spectra of quadrupolar nuclei. J. Magn. Res	I.J. (1991) Satellite transitions in MAS son., 95(1), 88-117.					
606 607 608	Stebbins, J.F., Kroeker, S., Lee, S.K., and Kiczenski, T.J. coordinated aluminum ions in aluminosilicate ar field, high-resolution Al-27 NMR. J. Non-Cryst. S	(2000) Quantification of five- and six- ad fluoride-containing glasses by high- colids 275(1-2), 1-6.					
609 610 611	Stebbins, J.F., Lee, S.K., and Oglesby, J.V. (1999) Al-O-A and aluminosilicate glasses: High-resolution oxy 84(5-6), 983-986.	Al oxygen sites in crystalline aluminates gen-17 NMR results. Am. Mineral.,					
612 613 614	Tangeman, J.A., Phillips, B.L., Nordine, P.C., and Webe structure of single- and two-phase yttria-alumina 10663-10671.	er, J.K.R. (2004) Thermodynamics and a glasses. J. Phys. Chem. B, 108(30),					
615 616	Wu, S.J., DeJonghe, L.C., and Rahaman, M.N. (1996) Si Am. Ceram. Soc., 79(8), 2207-2211.	ntering of nanophase γ -Al ₂ O ₃ powder. J.					
617 618	Xue, X.Y., Kanzaki, M., and Fukui, H. (2010) Unique cr topaz-OH: A multi-nuclear NMR and Raman stu	ystal chemistry of two polymorphs of dy. Am. Mineral., 95(8-9), 1276-1293.					
619	Yang, X., Pierre, A.C., and Uhlmann, D.R. (1988) TEM a	study of boehmite gels and their					

7/11

620 transformation to α-alumina. J. Non-Cryst. Solids 100(1-3), 371-377.

Kim, Hyun Na & Lee, Sung Keun

Atomic structure of alumina nanoparticle

Phase	[n]A]	Larmor frequency (MHz)	C _q (MHz)	η	δ _{iso} (ppm)	Reference
(γ, δ)	[6]Al	130.3	4.5±1	-	14±3	This work
	[4]Al	130.3	5.7±1	-	72±3	This work
γ	[6]A]	130.3	4.6±1	-	14±3	This work
		93.81	7±1	-	16±2	Perander et al., 2007
		130.32	4.5±0.5	0.3	9±1	Kraus et al., 1996
		182.4	4±1	0.8±0.1	8±2	Hagaman et al., 2010
		182.4	7.5±1	0.8±0.1	10 ± 2	Hagaman et al., 2010
	[4]Al	130.3	5.7±1	-	72±3	This work
		93.81	5.5±3	-	71±2	Perander et al., 2007
		130.32	5±0.5	0.3	67±1	Kraus et al., 1996
		182.4	6±1	0.6±0.1	74±5	Hagaman et al., 2010
θ	[6]A]	104.3	3.45±0.2	0±0.1	10.5±0.3	This work
		156.4	3.5±0.3	0+0.1	10.5±0.3	O'Dell et al., 2007
		104.23	3.1±0.2	0.4±0.1	11.3±0.7	Pecharroman et al., 1999
	[4]Al	104.3	6.15±0.2	0.7±0.1	80.5±1.0	This work
		156.4	6.4±0.1	0.65 ± 0.02	80±0.5	O'Dell et al., 2007
		104.23	5.5±0.2	0.8±0.1	80±0.7	Pecharroman et al., 1999
α	[6]A]	104.3	2.4±0.2	0	16.0±0.2	This work
		130.32	2.38±0.5	0	14±1	Kraus et al., 1996
		78.172	2.4±0.0031	0.05±0.001	16±0.48	Sabarinathan et al., 2010
		104.23	2.38±0.01	0+0.03	16±0.2	Skibsted et al., 1991
		104.23	2.38	0	13.5	O'Dell et al., 2007
		182.4	2.5±1	0	14±2	Hagaman et al., 2010

621 **Table 1.** ²⁷Al NMR parameters for metastable and α alumina

	Kim, Hyun Na & Lee, Sung Keun	Atomic structure of alumina nanoparticle
622	Table 2. 27Al NMR parameters for simulation	on of ²⁷ Al NMR spectra. $\delta_{ m iso}$ is the isotropic
623	chemical shift, C_q is the quadrupo	lar coupling constant, η is the asymmetry parameter.
624	The $\Delta \delta_{ m iso}$ is the full width at half-r	naximum of the distribution of the isotropic
625	chemical shift in the Czjzek mode	l, which is used for simulation of the ${}^{[4]}Al$ and ${}^{[6]}Al$
626	peaks for (γ , δ)-Al ₂ O ₃ . The ^[4] Al: ^[6] A	Al ratio in ideal γ -, δ -, θ - and α -Al ₂ O ₃ is 25:75, 38:62,
627	50:50, and 0: 100, respectively (Peo	harroman et al., 1999; Repelin and Husson, 1990).

Sample	Phase	Al Site	δ _{iso} (ppm)	$\Delta \delta_{iso}$ (ppm)	C _q (MHz)	η	^[n] Al/(^[4] Al+ ^[6] Al) ×100 (%)
27 nm	(γ, δ)	[4]A1	72.5±1	10±3	5.70±1*	-	32±3
		[6]Al	14.0±1	6.5±2.5	4.40±1*	-	68±3
	θ	[4]Al	80.5±0.3	-	6.00±0.2	0.7 ± 0.1	52±3
		[6]Al	10.5±0.3	-	3.45±0.2	0	48±3
	α	[6]Al	15.9±0.2	-	2.40 ± 0.1	0	100
19 nm	(γ, δ)	[4]Al	73.0±1	10±3	5.70±1.0*	-	30±3
		[6]A1	14.0±1	6.5±2.5	4.50±1.0*	-	70±3
	θ	[4]Al	80.5±0.3	-	6.00±0.2	0.7 ± 0.1	51±3
		[6]Al	10.5±0.3	-	3.45±0.2	0	49±3
	α	[6]A1	16±±0.2	-	2.40±0.1	0	100
15 nm	(γ, δ)	[4]A1	72.5±1	10±3	5.70±1.0*	-	26±3
		[6]Al	14.0 ± 1	6.5±2.5	4.50±1.0*	-	74±3
	θ	[4]Al	80.5±0.3	-	6.00±0.2	0.7±0.1	51±3
		[6]A1	10.5±0.3	-	3.45±0.2	0	49±3
	α	[6]A1	15.9±0.2	-	2.40±0.1	0	100
Standard	γ	^[4] A1	72.5±1	10±3	5.70±1.0*	-	32±3
γ -Al ₂ O ₃		[6]A1	14.0±1	6.5±2.5	4.60±1*	-	68±3

628 * The quadrupolar NMR parameters, such as v_q , η and σ are correlated among each other. The

relations among them can be described with the following equation (de Lacaillerie et al., 2008):

630
$$\left\langle C_q^2 \right\rangle = \left(\frac{2}{3}I(2I-1)\right)^2 \left\langle v_q^2(1+\eta^2/3) \right\rangle = \left(\frac{2}{3}I(2I-1)\right)^2 5\sigma^2$$

Kim, Hyun Na & Lee, Sung KeunAtomic structure of alumina nanoparticle631In Dmfit program (version released in 2011) used in the current study, therefore, C_q is u sed as632an input parameter and the σ value is automatically adjusted depending on C_q value: the633estimated σ is ~380±60 kHz and 280±50 kHz for [4]Al and [6]Al sites in (γ , δ)-Al₂O₃, respectively.634

- 635† The Gaussian or Lorentzian broadening factor (~300Hz to 2000 Hz) is applied to simulate Al
- 636 sites in (γ, δ) -, θ -Al₂O₃ and α -Al₂O₃, respectively.

Kim, Hyun Na & Lee, Sung Keun Atomic structure of alumina nanoparticle 637 **Figure captions Figure 1.** Crystal structure of (A) γ -Al₂O₃, (B) θ -Al₂O₃, and (C) α -Al₂O₃ with 638 639 crystallographically distinctive aluminum sites. 640 641 Figure 2. TEM images of (A) 27 nm, (B) 19 nm, and (C) 15 nm alumina nanoparticles before 642 and after annealing at various temperatures. 643 644 **Figure 3.** XRD patterns for γ-Al₂O₃ and alumina nanoparticles. Red, blue, and purple vertical 645 lines correspond to the peak positions and intensities of γ -Al₂O₃ (JCPDS file no.00-646 050-0741), δ-Al₂O₃ (JCPDS file no.00-016-0394), and θ-Al₂O₃ (JCPDS file no.00-23-1009), 647 respectively. 648 649 Figure 4. (A) ²⁷Al MAS NMR spectra at 11.7 T for as-received alumina nanoparticles with 650 varying particle size. (B) ²⁷Al MAS NMR spectra for 27 nm alumina nanoparticles at 651 various magnetic fields. 652 Figure 5. ²⁷Al MAS NMR spectra at 11.7 T for (A) 27 nm, (B) 19 nm, and (C) 15 nm alumina 653 654 nanoparticles with increasing annealing temperature up to 1573 K. (D) Comparison 655 of [6]Al peaks in ²⁷Al MAS NMR spectra for alumina nanoparticles with varying 656 particle size. 657 658 Figure 6. Simulation of ²⁷Al MAS NMR spectra for as-received 27 nm alumina nanoparticles at 9.4, 11.7, and 14.1 T and for γ-Al₂O₃ at 11.7 T. 659 660 661

7/11

	Kim, Hyun Na & Lee, Sung Keun Atomic structure of alumina nar	oparticle
662	Figure 7. Simulation of ²⁷ Al MAS NMR spectra at 11.7 T for (A) 27 nm, (B) 19 nm,	, and (C) 15
663	nm alumina nanoparticles with increasing annealing temperature.	
664		
665	Figure 8. Variation in populations of (γ , δ)-, θ -, and α -Al ₂ O ₃ in (A) 27 nm, (B) 19 nm, and (C) 15	
666	nm alumina nanoparticles with increasing annealing temperature up to	1573 K. (D - F)
667	show enlarged plots of Figure 8A-C at temperatures of 1400 and 1600 K	
668		
669	Figure 9. ²⁷ Al 3QMAS NMR spectra for 27 nm alumina nanoparticles (A) as-recei	ved and (B)
670	annealed at 1497 K for 2 h. (C) Expected center of gravity for γ -, δ -, θ -, an	d α -Al ₂ O ₃
671	calculated on the basis of previous works: solid square (Kraus et al., 1990	5); solid
672	triangle (Perander et al., 2007); solid circle (Hagaman et al., 2010); solid c	liamond
673	(O'Dell et al., 2007); open circle (Sabarinathan et al., 2010); open diamono	1 (Skibsted et
674	al., 1991); open square (Pecharroman et al., 1999). Red, blue, and purple	symbols refer
675	to (γ, δ) -, θ -, and α -Al ₂ O ₃ , respectively.	
676		
677	Figure 10. ²⁷ Al 3QMAS NMR spectra for 15, 19, and 27 nm alumina nanoparticles	after
678	annealing at various temperatures.	
679		
680	Figure 11. Normalized variation in the (A) (γ , δ)- and θ - Al ₂ O ₃ , (B) α -Al ₂ O ₃ popula	ition in
681	particles of several sizes annealed at several temperatures.	
682		
683		
684		
685		

Atomic structure of alumina nanoparticle

699

700

7/11

708

Figure 3

711

- 721
- 722
- 723
- 724

725

Atomic structure of alumina nanoparticle

Kim, Hyun Na & Lee, Sung Keun

727

728

729

100 60 40 60 80 20 0 -20 100 80 40 20 0 -20 -40 -40 Frequency (ppm) Frequency (ppm)

731 732

Figure 7

7/11

734

735

740

754

753

756

Figure 10

767

764

765

766

769Supporting Materials770We present the complete set of 27Al MAS NMR spectra, which is not shown in the

- 771 manuscript. Figure S1 presents the simulated ²⁷Al MAS NMR spectra for alumina
- nanoparticles with varying particle size and annealing temperature up to 1573 K.

773

Atomic structure of alumina nanoparticle

775

Figure S1. Simulation of ²⁷Al MAS NMR spectra at 11.7 T for (A) 27 nm, (B) 19 nm, and (C) 15

777 nm alumina nanoparticles with increasing annealing temperature.

778

- Figure S2 presents the ²⁷Al 3QMAS NMR spectra for alumina nanoparticles with
- 781 varying particle size and annealing temperature.

782

Figure S2. ²⁷Al 3QMAS NMR spectra for 15, 19, and 27 nm alumina nanoparticles with
 increasing annealing temperature.