1	
2	
3	
4	
5	
6	
7	
8	Structure of mixed-layer corrensite-chlorite revealed by
9	high-resolution transmission electron microcopy (HRTEM)
10	
11	Toshihiro KOGURE ¹ Victor A DRITS ² and Savako INOUE ¹
12	
13	¹ Department of Earth and Planetary Science Graduate School of Science The University of Tokyo
14	7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
15	² Geological Institute of the Russian Academy of Sciences, Pyzhevsky per 7, Moscow, Russia
16	
17	Running title proposed: Structure of corrensite-chlorite revealed by HRTEM
18	Corresponding author:
19	Toshihiro Kogure
20	Department of Earth and Planetary Science, Graduate School of Science,
21	The University of Tokyo
22	-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
23 26	E-man. Kogure@eps.s.u-toky0.ac.jp
27	
28	
29	Revision 2
30	C-lau itte d
31 22	Submitted
32 33	January 2015
33 34	
35	
36	
37	

38

ABSTRACT

39	Mixed-layer corrensite-chlorite in a glauconitic sandy-clayey rock has been investigated and the
40	three-dimensional stacking structure of corrensite was determined for the first time using
41	high-resolution transmission electron microscopy (HRTEM), as well as suggesting the
42	corrensite-chlorite transition mechanism. The crystals consist of corrensite and chlorite packets
43	excluding successive smectite layers, consistent with the result of XRD analysis previously reported
44	for the same specimen. One-dimensional HRTEM imaging of corrensite with dark contrast
45	corresponding to the cation sheets indicated two types of the smectite-like interlayers in corrensite,
46	probably containing one atomic plane and without any distinct material, which results in the
47	corrensite basal heights of ca. 26.5 Å and 24.4 Å, respectively, in TEM. Two-dimensional HRTEM
48	imaging revealed that the polytypic stacking sequence in the chlorite-like layer (the two 2:1 layers
49	and the brucite-like sheet (B-sheet) between them) in the corrensite unit is always IIbb type. The
50	intralayer displacements of the two 2:1 layers in the unit are well-ordered to show a "two-layer"
51	character, which can be regarded as combination of two different one-layer chlorite polytypes
52	belonging to IIbb. These regulated features of corrensite structure support the proposals in previous
53	works that corrensite has a thermodynamic stability field and precipitated directly from solution
54	probably in an environment with a high water/rock ratio, without inheriting smectite structures,
55	during the smectite-to-chlorite transition. The number of the successive B-sheets in the
56	corrensite-chlorite interstratification is always odd. Along with frequent observation of the transition
57	from the smectite-like interlayer to the B-sheet and similarity of polytypic stacking sequence between
58	corrensite and chlorite, this result strongly supports the transformation from corrensite to chlorite, by
59	replacing the smectite-like interlayer with the B-sheet.
60	Key Words: corrensite, chlorite, mixed-layer minerals, polytypic stacking sequence, transformation,
61	HRTEM

62

INTRODUCTION

2

7/11

63	Corrensite is a trioctahedral 2:1 phyllosilicate with 1:1 ordered interstratifications of chlorite and
64	smectite (or vermiculite) layers. The mineral name "corrensite" is usable for specimens with a high
65	"rationality" for 00 <i>l</i> reflections in their X-ray diffraction (XRD) patterns beside the low-angle 001
66	reflection with $d \sim 28$ Å, otherwise they are usually called mixed-layered or interstratified
67	chlorite-smectite/vermiculite (Bailey, 1982; Reynolds, 1988). Geological occurrences of corrensite
68	reported to date are diverse but often related to prograde or retrograde transition between smectite
69	(saponite) and chlorite (Reynolds, 1988; Beaufort et al., 1997; Drits et al., 2011). Among them,
70	prograde transitions from smectite to chlorite in burial diagenesis, hydrothermal alteration, contact-
71	or regional metamorphism, etc. in rocks with mafic compositions were given the most attention, as
72	the counterpart of dioctahedral smectite to illite transitions.
73	Two modes were suggested or reported for such prograde smectite-to-chlorite transition. In one of
74	them the transition proceeds through mixed-layer smectite-chlorite (S-C), in which the content of
75	chlorite layers continuously increases from 0 to 100% following the similar layer stacking sequences
76	observed in illite-smectite subjected to burial diagenesis (Reynolds, 1980; Bettison and Schiffman,
77	1988; Chang et al., 1986). The second is stepwise evolution of the transition with gaps restricting
78	possible concentration of the interstratified layer types in S-C structures (Drits and Sakharov, 1976;
79	Kossovskaya and Drits, 1985; Inoue et al., 1984; Inoue, 1987; Drits and Kossovskaya, 1990; Inoue
80	and Utada, 1991). This stepwise evolution has been well explained by the formation of corrensite
81	with a particular thermodynamical stability field and defined phase relations with smectite,
82	vermiculite and chlorite (Velde, 1977; Reynolds, 1988; Shau et al., 1990; Beaufort et al., 1997; Shau
83	and Peacor, 1992; Murakami et al., 1999). In this case, the clays with $< 50\%$ or $> 50\%$ chlorite layers
84	should be interstratifications of either smectite-corrensite (S-Co) or corrensite-chlorite (Co-C), and a
85	random S-C interstratification does not exist. It was suggested that the selection between the two
86	different modes is related to water/rock ratios in the microenvironments where the transition proceeds
87	(Shau and Peacor, 1992; Bettison-Varga and Mackinnon, 1997). However, it seems that important

88 details of the transition, and its structural pathways and mechanisms are still not understood

89 completely.

90	XRD, high-resolution transmission electron microscopy (HRTEM) and especially their combination
91	are the most powerful tools to investigate mixed-layer phyllosilicate minerals including the
92	mixed-layer S-C, as evidenced by the many previous works cited above. However, it seems that more
93	accurate and/or detailed analyses are necessary to characterize these minerals. For example,
94	interpretation of the experimental XRD patterns has been based on their simulation using the
95	NEWMOD program (Reynolds, 1985), decomposition of broad and asymmetrical basal reflections,
96	or both (e.g., Beaufort et al., 1997; Leoni et al., 2010). In these investigations, the structural models
97	were restricted by mixed-layer S-C and Co-C having either random $(R = 0)$ or ordered $(R = 1)$
98	interstratification of the layer types. Moreover, identification of corrensite as the periodic structure is
99	usually based on the value of the coefficient of variation (CV) describing the deviation from the
100	rationality for 00 <i>l</i> reflections. According to Bailey (1982) criterion the sample with $CV \le 0.7\%$ can be
101	considered as a periodic corrensite. It turned out that these approaches failed to provide unambiguous
102	interpretation of the experimental XRD data (e.g. Beaufort et al., 1997).
103	With respect to HRTEM, many previous works (e.g., Shau and Peacor, 1992; Beaufort et al., 1997;
104	Bettison-Varga and Mackinnon, 1997) recorded only one-dimensional lattice images to show the
105	distribution of different layer types in crystals. Although these images are still valuable to observe
106	"directly" the structure of mixed-layer minerals, they cannot display three-dimensional stacking
107	structures or polytypic aspects of phyllosilicates. It was demonstrated that detailed analyses of the
108	polytypic stacking sequences in mixed-layer phyllosilicates using two-dimensional HRTEM images
109	could reach reliable transition models for serpentine-chlorite (Banfield and Bailey, 1996),
110	chlorite-vermiculite (Banfield and Murakami, 1998) and biotite-chlorite (Kogure and Banfield,
111	2000). However, with respect to mixed-layer S-C or Co-C, similar HRTEM analyses have been never.
112	Even the three-dimensional "crystal" structure of corrensite has not been reported, probably because
113	of its fine particle size and highly-defective structure.

114	In this situation, Drits et al. (2011) investigated extensively mixed-layer corrensite-chlorite formed
115	in the cement of glauconitic sandstone-clayey rocks, mainly using XRD and X-ray chemical analyses.
116	In particular, their detailed XRD analyses have shown that one of the studied specimen in
117	ethylene-glycolated state with $CV = 0.17\%$ as corrensite actually contains 40% chlorite and 60%
118	corrensite units. Moreover, in contrast to the previous works, their modeling has reproduced perfectly
119	the positions, intensities and profiles of basal reflections in the experimental XRD patterns, using the
120	model in which Co and C components are interstratified at $R = 1$ with a significant tendency to
121	segregation with $P_{chch} = 0.75$, where P_{chch} is the conditional probability for the continuity of the
122	chlorite layers (Drits et al., 2011). This result suggests that Bailey' criterion must be used with high
123	caution.
124	In the present study, we further analyzed the same sample using TEM, to verify the mixed-layer
125	structure model derived by the XRD analysis. Furthermore, beyond this purpose, we determined the
126	three-dimensional stacking structure of corrensite, which has not been reported yet, using distinct
127	two-dimensional HRTEM images along the two principal zone axes (Kogure and Nespolo, 1999a,
128	1999b, Kogure et al., 2008). Finally, from the stacking structures of corrensite and intercalated
129	chlorite, we discuss the corrensite-chlorite transition model.
130	SAMPLES AND METHODS
131	The specimen investigated was mixed-layer corrensite-chlorite that forms brownish grains of
132	0.1-0.4 mm (sample 500L) in a glauconitic sandy-clayey rock, taken from the basal portion of the
133	lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia) (Drits et
134	al., 2011).
135	The specimens for TEM examination with the electron beam parallel to the layers were prepared
136	using the method described in Kogure (2002). The powdered specimen was embedded with epoxy
137	resin between two glass slides. After hardening, the glass slides were cut using a diamond wheel to
138	laths of ~ 1 mm thick. The laths were thinned to $\sim 70~\mu m$ by mechanical grinding and then argon ion
139	milled. HRTEM examination was performed at 200 kV using a JEOL JEM-2010 UHR with a

140	nominal point resolution of ca. 2 Å. Images were recorded on films or Gatan MSC 794
141	bottom-mounted CCD camera. HRTEM images were taken at sufficiently thin regions of the
142	specimen. The defocus value was adjusted to record the contrast that corresponds to the projected
143	potential of the crystal structure (Kogure 2002). The corrensite parts were beam sensitive and
144	amorphization proceeded during HRTEM recording. Noisy contrast from amorphous materials in
145	HRTEM images was removed using a Wiener-filter (Marks 1996; Kilaas 1998) developed by K.
146	Ishizuka (HREM Research Inc.) and implemented with Gatan DigitalMicrograph version 3.1 0.0
147	(Kogure et al., 2008).
148	RESULTS AND DISCUSSION
149	Identification of corrensite with two types of smectite-like interlayers and interstratified
150	chlorite
151	Generally the corrensite-chlorite layers are often curved in their cross-sectional views. Lenticular
152	microcleavages are common in the crystals, which were presumably formed by the collapse of
153	hydrated smectite-like interlayers in the vacuum environment during ion-milling or TEM
154	examination. Energy dispersive X-ray analyses in TEM for many grains indicated that they are
155	categorized as Mg or Mg-Fe compositional variety described in Drits et al. (2011). HRTEM with
156	proper defocus and orientation reveals one-dimensional lattice images by using only 00l reflections,
157	or two-dimensional ones if the incident beam is along one of $\pm X_i$ or $\pm Y_i$ directions (Bailey, 1988a), in
158	which the brucite-like hydroxide sheets (hereafter called "B-sheet") in corrensite and chlorite are
159	unambiguously identified as the boldest dark lines, as indicated by the arrows with "B" in Figure 1
160	(e.g., Bons and Schryvers, 1989; Banfield and Bailey, 1996; Kogure and Murakami, 1998). The
161	chlorite packets are commonly identified with successive interlayers with B-sheets and ca.14 ${\rm \AA}$
162	periodicity, which supports well our previous XRD analysis (Drits et al., 2011) that although the
163	corrensite basal 00 l reflections are highly rational with the coefficient of variation (CV) of 0.3 %
164	(air-dried state) or 0.17% (ethyleneglycolated state), the specimen is not pure corrensite but contains
165	40% chlorite units. On the other hand, alternating B-sheets at the interlayers indicate corrensite

166 packets. B-sheets separated by more than one smectite-like interlayer were never observed. 167 confirming that the specimen is definitely the interstratifications of corrensite and chlorite (Co-C), 168 not smectite and chlorite (S-C). Corrensite units or chlorite layers with different orientations sharing 169 (001) planes are often interstratified in a crystal (Fig. 1). The boundaries of such different layer 170 orientation are always at the smectite-like interlayers in corrensite, as indicated with the arrows "1" and "2" in Figure 1. 171 172 Careful examination of the images revealed the existence of two types of smectite-like interlayers in 173 the specimen (Fig. 1b). In the figure, six or seven dark thin lines are observed between the adjacent 174 B-sheets. Among them, six lines must correspond to tetrahedral and octahedral sheets in the two 2:1 175 layers. Hence, one extra line among the seven thin lines should correspond to one atomic plane at the 176 interlayer. Hereafter this interlayer is denoted as I_w (smectite-like Interlayer with a Wider space) and 177 that without the dark line as I_n (with a Narrower space). The basal height of one corrensite unit with I_w 178 is 26.5 Å and that with I_n is 24.4Å (Fig. 1a). If we assume the height of the chlorite-like layer in the 179 corrensite unit to be 14.14 Å (Drits et al., 2011), the residual thickness of smectite-like layer with I_w is 180 12.4 Å. Hence, I_w probably contains one atomic plane presumably consisting of water molecules and 181 cations coordinated by the water molecules. Similarly, the height of the smectite-like layer with I_n 182 interlayer is 10.2 Å. In the specimen, both two types of the smectite-like interlayers were observed 183 with similar frequency, as shown in the several HRTEM images presented in this study. The two 184 kinds of the corrensite units with the different smectite-like interlayers are finely interstratified (Fig. 185 1) or either is dominant in a view (I_w is dominant in Figure 2 whereas only I_n is observed in Figures 3 186 and 4). Transition between I_w and I_n , I_w and B-sheet, and I_n and B-sheet are also frequently recorded, 187 as indicated by the white $(I_n/I_w \text{ to B-sheet})$ and black $(I_n \text{ to } I_w)$ circles in Figure 1. 188 In previous works, the basal height of the corrensite unit observed in TEM was also varied between 189 ca. 24 Å (Shau et al., 1990; Beaufort et al., 1997; Sugimori et al., 2008) and 26.5 Å (Murakami et al., 190 1999). It is a characteristic of the present specimen that the two heights coexist intimately. Drits et al.

191 (2011) found that the XRD pattern of the present specimen in the air-dry state was well reproduced

192	with three types of corrensite units whose heights are 29.00, 26.94 and 24.02 A, with their proportion
193	of $0.45: 0.05: 0.10$, respectively though they all became 30.74 Å when treated with ethylene glycol.
194	Hence, it is likely that the specimen contains smectite-like interlayers with different characters.
195	Possible coexistence of 12.5Å and 10.2Å smectite-like layers in the present specimen is almost in
196	agreement with the behavior of dioctahedral smectites in vacuum (Ferrage et al., 2005, 2007). In
197	Ferrage et al. (2007), the layer thicknesses of the monohydrated (1W) and dehydrated (0W) smectite
198	layers were 11.7 -12.0 Å and 10.0 Å, respectively. Because the layer thickness of 10.0 Å is larger than
199	that of talc (9.35 Å) in which the interlayer is completely vacant, it was suggested that a certain
200	amount of residual H_2O (or H_3O^+) was present in the interlayer related to 10.0 Å. In vacuum,
201	generally the two kinds of smectite layers coexisted but the population of 1W layers was larger in the
202	smectite specimen with higher layer charge (Ferrage et al., 2007). Hence, the two types of
203	smectite(-like) interlayers observed in Ferrage et al. (2007) and the present specimen may reflect the
204	difference of layer charge. Drits et al. (2011) reported that this specimen (sample 500L) is
205	characterized by a high heterogeneity of cationic composition, from the electron microprobe analyses.
206	This heterogeneity, which presumably causes variance of layer charge owing to the different amounts
207	of tetrahedral aluminum, may correspond to the two types of smectite-like interlayers. However, as
208	shown in Figure 1, the two types are interstratified with a monolayer level. It is not certain whether
209	such fine interstratification really reflects the compositional difference.
210	Polytynic sequence in the corrensite units

Polytypic sequence in the corrensite units 210

211 Figures 2 and 3 show HRTEM images of corrensite along $\pm Y_i$ directions, where the basal height of 212 the corrensite unit is mainly 26.5 Å (Fig. 2) and 24.4 Å (Fig. 3). First of all, it is evident that the 213 contrasts of all 2:1 layers in the corrensite packets in these figures are identical, implying that mutual 214 rotation with (±60°, 180°) does not occur with respect to the 2:1 layers (Kogure and Nespolo, 1999a, 215 1999b; Kogure et al., 2008). Next, HRTEM contrast at thin parts of the corrensite packets definitely 216 shows the opposite directions of the octahedral slant between octahedral sheet in the 2:1 layer and 217 B-sheet (Kogure and Banfield, 1998). Hence the polytypic stacking sequence of the chlorite-like

218	layer in the corrensite unit should be II-types (IIaa, IIbb or IIab) among the six semi-random stacking
219	sequences defined by Bailey and Brown (1962). These three sequences are distinguished in HRTEM
220	images along the $\pm Y_i$ -directions by the angle between the (001) plane and direction connecting the
221	equivalent positions in the two 2:1 layers across the B-sheets (Kogure and Banfield, 1998). In Figures
222	2 and 3, these angles are all corresponding to that expected for IIbb chlorite, indicating that the
223	chlorite-like layer in the corrensite units adopts IIbb stacking sequence.
224	On the other hand, an HRTEM image of corrensite along $\pm X_i$ direction is shown in Figure 4. In the
225	figure, we denote the feature of stacking sequence in the chlorite layer (two 2:1 layers and B-sheet
226	between them or TOT-B-TOT) in corrensite by the way used in Kameda et al. (2007), which
227	originally presented in Baronnet and Kang (1989). First, we connect the closest dark spots at the two
228	tetrahedral sheets in a 2:1 layer with a white bar (see, for instance, Kogure (2002) for the
229	interpretation of the HRTEM contrast at the 2:1 layer). The slant of the bar with respect to the (001)
230	plane corresponds to the projection of the intralayer displacement in the 2:1 layer (Guggenheim et al.,
231	2009). If the slant direction is right-hand, the character "+" is given to the layer. If slanted to the left,
232	it is designated with a "-", and if there is no slant, it is noted with a "0". Similarly, if the ends of the
233	adjacent bars are shifted to right-hand, left-hand, or not shifted across the interlayer with B-sheet,
234	which corresponds to the projection of the interlayer displacement (Guggenheim et al., 2009), the
235	character "+", "-", or "0" is given to the interlayer, respectively. Consequently, three characters, for
236	instance " $+-0$ " around the bottom-left of the figure, are given to the chlorite layer (TOT-B-TOT) in
237	the corrensite unit. In the figure, the projections of the intralayer displacements (or layer orientations)
238	in the two 2:1 layers are always "+" and "0", whereas the interlayer displacement at the B-sheet is
239	varied with "+" and "-".
240	These stacking features are expressed here using the symbolic notation by Zvyagin (Z-symbol)

241 (1963, 1967). In Z-symbol, the character σ_n (n = 1 to 6) corresponds to the (001) projection of the

242 vector connecting the center of the ditrigonal ring in the lower tetrahedral sheet to the octahedral M1

site in the upper octahedral sheet (or the M1 site to the center of the ditrigonal rings in the upper

7/11

244	tetrahedral sheet), while the character τ_k ($k = 1$ to 6) expresses the interlayer displacement between the
245	adjacent tetrahedral sheets across the interlayer. In the idealized structure, the fractional x and y
246	components for σ_1 and τ_4 are $(a/3, b/3)$; for σ_2 and τ_5 are $(-a/3, b/3)$; for σ_3 and τ_6 are $(a/3, 0)$; for σ_4
247	and τ_1 are $(-a/3, -b/3)$; for σ_5 and τ_2 are $(a/3, -b/3)$, and for σ_6 and τ_3 are $(-a/3, 0)$, respectively, where
248	a and b are the parameters of the idealized based-centered unit cell. The three one-layer polytypes in
249	chlorite belonging to IIbb (IIbb-2, IIbb-4 and IIbb-6) in Bailey and Brown (1962) can be expressed as
250	$\sigma_6\tau_6\sigma_6$, $\sigma_2\tau_4\sigma_2$ and $\sigma_4\tau_2\sigma_4$, respectively, using Z-symbol (Zvyagin, 1967, Bailey, 1988b). However,
251	in this study, the polytypic sequences are not restricted to the "one-layer" types and it is better to
252	modify the expression for chlorite a little. In the original expressions, the origin of the stacking is at
253	the octahedral M1 site. If the origin is changed to the center of the ditrigonal ring of the lower
254	tetrahedral sheet, for instance, $\sigma_2 \tau_4 \sigma_2$ is expressed as $\sigma_2 \sigma_2 \tau_4$. Furthermore, $\sigma_2 \sigma_2$ is equivalent to σ_5 if
255	we assimilate the two σ symbols into one which corresponds to the intralayer displacement of a 2:1
256	layer. Consequently, II <i>bb</i> -2, II <i>bb</i> -4 and II <i>bb</i> -6 are expressed as $\sigma_3\tau_6$, $\sigma_5\tau_4$ and $\sigma_1\tau_2$, respectively.
257	As the HRTEM images along the $\pm Y_i$ directions (Figs. 2 and 3) show that the slant directions of all
258	2:1 layers are uniform, which means that the parity of <i>n</i> in σ_n is the same for all 2:1 layers. Here we
259	can select odd parity for n without losing generality. On the other hand, the shifts between the two
260	tetrahedral sheets across the B-sheet are also uniform and the same direction as the slants of the 2:1
261	layers. Hence, the parity of k in τ_k is the same for all chlorite-like interlayers and different from n in σ_n ,
262	namely even parity. Next, the stacking sequences appeared in the HRTEM image along the $\pm X_{\rm i}$
263	direction (Fig. 4) will be expressed with Z-symbol. If we assume that the beam direction is
264	antiparallel to the a -axis, the sequence "+ – 0" corresponds to $\sigma_5 \tau_4 \sigma_3$. Similarly "+ + 0" corresponds
265	to $\sigma_5\tau_2\sigma_3$. It is understood that the stacking sequence $\sigma_5\tau_4\sigma_3$ is the combination of II <i>bb</i> -4 ($\sigma_5\tau_4$) and
266	II <i>bb</i> -6 ($\tau_2\sigma_1$), because if the vectors $\tau_2\sigma_1$ are rotated counterclockwise by 120°, they are expressed as
267	$\tau_4\sigma_3$. Similarly, $\sigma_5\tau_2\sigma_3$ is regarded as the combination of II <i>bb</i> -2 and II <i>bb</i> -4. As summary, the stacking

sequence of TOT-B-TOT unit in the corrensite packets is expressed by the combination of differentpolytypes in II*bb*.

One may insist to analyze the stacking sequence of whole layers in the corrensite unit, including the smectite-like interlayer from Figures 2 to 4. However, it seems not important due to two reasons. First, the structure of the smectite-like interlayer is "artificial" in a sense, formed by collapse in the vacuum environment and may have little to do with the original structure when the corrensite was formed. Secondly, it is still not certain, for instance, whether the interlayer displacement at the collapsed smectite-like interlayer has certain directions or lengths like chlorite-like interlayer with B-sheet. It is evident that HRTEM contrast is not so accurate to unambiguously determine these directions and

lengths.

278 Transition from corrensite to chlorite

279 Beside the frequent observation of transition between the smectite-like interlayer and B-sheets as

shown in Figure 1, additional evidences support the assumption that the chlorite packets were

transformed from corrensite in this specimen via the conversion of the interlayer structure. For

instance, the numbers of successive B-sheets in the chlorite packets are always odd-numbered (Fig. 5),

as predicted in Drits et al. (2011). This is definitely accountable by the transition from corrensite to

284 chlorite by replacing smectite-like interlayers with B sheets (Fig. 6). This transition mechanism also

285 limits the minimum packet of chlorite to three layers, which will contribute the result of the XRD

simulation in which chlorite and corrensite tend to segregate ($P_{chch} = 0.75$ for 40% chlorite) in the

287 present specimen (Drits et al., 2011).

288 If the conversion of the interlayer is the pathway from corrensite to chlorite, the stacking sequence in

289 corrensite should be inherited. For instance, HRTEM images of the chlorite packets along the $\pm Y_i$

290 directions indicate that the packet clearly has the IIbb polytypic character (Fig. 7), which must inherit

the same stacking sequence of the chlorite layer in corrensite (Figs. 2 and 3). Moreover, the

²⁹² "two-layer" character with respect to the orientation of the 2:1 layer in corrensite (Fig. 4) was also

found in chlorite packets (Fig. 8). In the figure, only three 2:1 layers violate the "two-layer" character

294 of the layer orientation (alternating σ_5 and σ_3) among twenty-seven layers in the image. On the other 295 hand, the interlayer displacements (τ_k) are almost random. According to the transformation process 296 suggested here, the alternating chlorite interlayers were converted from the smectite-like interlayers 297 in corrensite. Although the new chlorite-like interlayers adopted IIbb because this sequence is 298 considered energetically most stable, further regulation (preference among τ_2 , τ_4 or τ_6) did not occur 299 because of their similar formation energies. Moreover, τ_k for the chlorite-like interlayer in the original 300 corrensite is also not ordered, as shown in Figure 4. In spite of the disorder of τ_k and partial disorder 301 of σ_n , the stacking of chlorite in Figure 8 is very unique and it definitely comes from that this chlorite 302 was converted from corrensite via the transition pathway as described above. It is interesting that 303 Shau and Peacor (1992) reported a HRTEM image of chlorite to show a "two-layer" periodicity, in a 304 specimen (hydrothermally altered basalt) where corrensite and chlorite coexist. Analyses of the 305 stacking sequence using HRTEM as demonstrated in the present study will bring us further 306 understanding for the smectite-corrensite-chlorite transition in variable geological environments. 307

- 307
- 308

CONCLUDING REMARKS

309 As mentioned above, this work started to verify the results of our XRD analyses for the present 310 sample (Drits et al., 2011). The high content of chlorite layers and the particular character of their 311 distribution among corrensite layers observed in the HRTEM images are in a perfect agreement with 312 those determined by modeling of the XRD pattern. It turned out therefore that 40% chlorite layers 313 distributed with a certain tendency to segregation with 60% ethylene-glycolated corrensite layers 314 produce the XRD pattern with the almost rational set of basal reflections. It means that Bailey' 315 criterion (Bailey, 1992) cannot be used alone for identification of corrensite. In addition, the studied 316 corrensite structure consists of different types of smectite-like interlayers, identified both by HRTEM 317 in vacuum (the present study) and by XRD in air-dried state (Drits et al., 2011). Finally, it was 318 demonstrated that the model should include a set of intermediate mixed-layer members in which 319 several layer types are interstratified not only from a pure random to completely ordered structures as

320 was accepted previously, but also from random to completely segregated structures as was found by 321 XRD and HRTEM in the present work. It is worth insisting that only such a rigorous model including 322 the actual number, content, and distribution of the various layer types can reproduce with a high 323 quality positions, intensities, and profiles of basal reflections in the experimental XRD pattern of the 324 mixed-layer minerals . 325 The present work has also reported for the first time the three dimensional stacking structure of 326 corrensite, including IIbb type stacking sequence of the chlorite-like layers and a "two-layer" 327 polytypic character for the two 2:1 layers in the corrensite unit. These regulated features of corrensite 328 structure can be a strong evidence that corrensite has a particular thermodynamic stability field, as 329 proposed in previous works. Moreover, such a "two-layer" character indicates that corrensite in this

330 study precipitated directly from solution (probably in an environment with a high water/rock ratio),

331 without inheriting the smectite structure in which such regular stacking is generally not expected.

332 On the other hand, the odd number of the successive B-sheets in the mixed-layer Co-C structure along

333 with the similarity of the polytypic stacking sequences between corrensite and chlorite can be

334 considered as the evidence of the transition from corrensite to chlorite by replacing the smectite-like

interlayers with B-sheets. Of course, the structural features described here may not be extended to

336 other corrensite and corrensite-containing specimens formed in different geological environments,

and it is our future works to investigate them based on methodologies applied to the present sample.

338 Investigation with accurate XRD and HRTEM analyses will give better understanding for the

formation mechanism of corrensite and its conversion path ways in various physico-chemicalconditions.

341

342

Acknowledgments

343 First of all, we are grateful to T. A. Ivanovskaya to prepare sufficient amount of the monomineral

344 corrensite-chlorite specimen. We also thank to E. Fujii for the preparation of the TEM specimens.

345 The quality of the paper has been significantly improved by the valuable comments by R.F. Yuretich

- and A. Baronnet. This work was supported by Grants-in-Aid for Scientific Research 24340133 and
- 347 21107005 from the Japan Society for the Promotion of Science (JSPS) and Ministry of Education,
- 348 Culture, Sports, Science and Technology (MEXT), respectively. A part of this work was supported by
- the Russian Foundation for Basic Research (project Nos. 12-05-00234).

350

352353 References

354	Bailey, S.W. and Brown, B.E. (1962) Chlorite polytypism: I. Regular and semi-random one-layer
355	structures. American Mineralogist, 47, 819-850.
356	Bailey, S.W. (1982) Nomenclature for regular interstratifications, American Mineralogist, 67,
357	394-398.
358	Bailey, S.W. (1988a) X-ray diffraction identification of the polytypes of mica, serpentine, and
359	chlorite. Clays and Clay Minerals, 36, 193–213.
360	Bailey, S.W. (1988b) Chlorites: structure and crystal chemistry. Ch. 10 in: Hydrous phyllosilicates,
361	Bailey, S.W. (Ed.) Vol. 19, Reviews in Mineralogy, Mineralogical Society of America,
362	225-280.
363	Banfield, J.F. and Bailey, S.W. (1996) Formation of regularly interstratified serpentine-chlorite
364	minerals by tetrahedral inversion in long-period serpentine polytypes. American Mineralogist,
365	81, 79-91.
366	Banfield, S.W. and Murakami, T. (1998) Atomic-resolution transmission electron microscope
367	evidence for the mechanism by which chlorite weathers to 1 : 1 semi-regular
368	chlorite-vermiculite, American Mineralogist, 83, 348-357.
369	Baronnet, A. and Kang, Z.C. (1989) About the origin of mica polytypes. Phase Transitions, 16/17,
370	477-493.
371	Beaufort, D., Baronnet, A., Lanson, B. and Meunier, A. (1997) Corrensite: A single phase or a
372	mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of
373	Sancerre-Coy deep drill hole (France), American Mineralogist, 82, 109-124.
374	Bettison, L.A. and Schiffman, P. (1988) Compositional and structural variations of phyllosilicates
375	from the Point Sal ophiolite, California, American Mineralogist 73, 62-76.
376	Bettison-Varga, L. and Mackinnon, I.D. (1997) The role of the randomly mixed-layered
377	chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45,
378	506-516.
379	Bons, A.J. and Schryvers, D. (1989) High-resolution electron microscopy of stacking irregularities in
380	chlorites from the central Pyrennes. American Mineralogist, 74, 1113-1123.

- 381 Chang, H.K., MacKenzie, F.T. and Schoonmaker, J. (1986) Comparison between the diagenesis of
- dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays and Clay Minerals, 34,
 407-423.
- Drits, V.A. and Kossovskaya, A.G. (1990) Clay minerals: smectites and mixed-layer minerals.
 Moscow: Nauka, 212pp (in Russian)
- 386 Drits, V.A. and Sakharov, B.A. (1976) The X-Ray diffraction analysis of mixed-layer minerals.

387 Moscow: Nauka, 255pp (in Russian)

- 388 Drits, V.A., Ivanovskaya, T.A., Sakharov, B.A., Zviagina, B.B., Gor'kova, N.V., Pokrovskaya, E.V.
- and Savichev, A.T. (2011) Mixed-layer corrensite-chlorite and their formation mechanism in
- 390 the glauconitic sandstone-clayey rocks (Riphean, Anabar Uplift), Lithology and Mineral

391 Resources, 46, 566-593.

- 392 Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N., Jacquot, E., and Drits, V.A. (2005)
- 393 Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction
- 394 profiles: Influence of layer charge and charge location. American Mineralogist, 92,

395 1731-1743.

- 396 Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V.A. (2007) Investigation of dioctahedral
- 397 smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I.
- 398 Montmorillonite hydration properties. American Mineralogist, 90, 1358-1374.
- 399 Guggenheim, S., Adams, J. M., Bergaya, F., Brigatti, M., Drits, V. A., Formoso, M., Galan, E.,
- 400 Kogure, T., Stanjek, H. and Stucki, J.W. (2009) Nomenclature for stacking in phyllosilicates:
- 401 report of the association international pour l'etude des argiles (AIPEA) nomenclature
- 402 committee for 2008. Clays and Clay Minerals, 57, 134–135.
- Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal diagenetic alterations, Hokuroku
 Kuroko Mineralization area, Northeast Japan, *Proc. Of the International Clay Conference*,
- 405 Denver. Clay Mineral Society, vol. 8, 158-164.
- Inoue, A. and Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed
 volcanoclastic rocks in the Kamicita area, Northem Honshu, Japan. American Mineralogist, 76,
 628-640.
- 409 Inoue, A., Utada, M., Nagata, H. and Watanabe, T. (1984) Conversion of trioctahedral smectite to

- 410 interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district,
- 411 Akita Prefecture, Japan. Clay Science, 6, 103-116.
- 412 Kameda, J., Miyawaki, R., Kitagawa, R. and Kogure, T. (2007) XRD and HRTEM analyses of
- 413 stacking structures in sudoite, di-trioctahedral chlorite. American Mineralogist, 92, 1586-1592.
- 414 Kilaas, R. (1998) Optical and near-optical filters in high-resolution electron microscopy. Journal of
- 415 Microscopy, 190, 45-51.
- 416 Kogure, T. (2002) Investigation of micas using advanced TEM. in "Micas: Crystal Chemistry &
- 417 Metamorphic Petrology, Reviews in Mineralogy and Geochemistry Vol. 46", A. Mottana, F.P.
- 418 Sassi, J.B. Thompson, JR., S. Guggenheim, ed. Mineralogical Society of America,
- 419 Washington, D.C., 281-312.
- Kogure, T. and Banfield, J.F. (1998) Direct identification of the six polytypes of chlorite
 characterized by semi-random stacking. American Mineralogist, 83, 925-930.
- 422 Kogure, T. and Banfield, J.F. (2000) New insights into the mechanism for chloritization of biotite
 423 using polytype analysis. American Mineralogist, 85, 1202-1208.
- Kogure T, and Murakami T (1996) Direct identification of biotite/vermiculite layers in hydrobiotite
 using high-resolution TEM. Mineral Journal, 18, 131-137
- Kogure, T. and Murakami, T. (1998) Structure and formation mechanism of low-angle grain
 boundaries in chlorite. American Mineralogist, 83, 358–364.
- 428 Kogure, T. and Nespolo, M. (1999a) A TEM study of long-period mica polytypes: determination of
- 429 the stacking sequence of oxybiotite by means of atomic resolution images and Periodic
- 430 Intensity Distribution (PID). Acta crystallographica. Section B, Structural science, 55,
 431 507-516.
- 432 Kogure, T and Nespolo, M (1999b) First occurrence of a stacking sequence including (+/- 60
- 433 degrees, 180 degrees) rotations in Mg-rich annite. Clays and Clay minerals, 47, 784-792.
- Kogure, T., Eilers, P.H.C., and Ishizuka, K. (2008) Application of optimum HRTEM noise filters in
 mineralogy and related sciences. Microscopy and Analysis, 22, S11-S14.
- 436 Kossovskaya, A.G. and Drits, V.A. (1975) Crystal chemistry of dioctahedral micas, chlorites, and
- 437 corrensites as indicators of geological setting. In: Crystal chemistry of minerals and geological
- 438 problems. Ed. Kossovskaya, A.G. Moscow: Nauka, 60-69 (in Russian)

439	Leoni, L., Lezzerihi, M., Battaglia, S. and Cavalcante, F. (2010) Corrensite and chlorite-rich Chl-S
440	mixed layers in sandstones from the 'Macigno' Formation (northwestern Tuscany, Italy), Clay
441	Minerals, 45, 87-106.
442	Marks, L.D. (1996) Wiener-filter enhancement of noisy HREM images. Ultramicroscopy, 62, 43-52.
443	Murakami, T., Sato, T. and Inoue, A. (1999) HRTEM evidence for the process and mechanism of
444	saponite-to-chlorite conversion through corrensite, American Mineralogist, 84, 1080-1087.
445	Reynolds, R.C. Jr. (1980) Interstratified clay minerals. Ch. 3. In: Crystal Structures of Clay Minerals
446	and their X-ray identification, G.W. Brindley and G. Brown eds. Mineralogical Society,
447	London.
448	Reynolds, R.C. Jr. (1985) NEWMOD© a computer program for the calculation of one-dimensional
449	diffraction patterns of mixed-layered clays. R.C. Reynolds, 8 Book Rd., Hanover, New
450	Hampshire 03755, U.S.A.
451	Reynolds, R.C. Jr. (1988) Mixed layer chlorite minerals. Ch. 15 in: Hydrous phyllosilicates, Bailey,
452	S.W. (Ed.) Vol. 19, Reviews in Mineralogy, Mineralogical Society of America, 601-629.
453	Shau, Y-H. and Peacor, D.R. (1992) Phyllosilicates in hydrothermally altered basalts from DSDP
454	Hole 504B, Leg 8 3- a TEM and AEM study. Contributions to Mineralogy and Petrology, 112,
455	119-133.
456	Shau, Y-H., Peacor, D.R. and Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in
457	metabasalt from nortahn Taiwan: TEM/AEM, EPMA, XRD, and optical studies, Contribution
458	to Mineralogy and Petrology, 105, 123-142.
459	Sugimori, H., Iwatsuki, T. and Murakami, T. (2008) Chlorite and biotite weathering, Fe ²⁺ -rich
460	corrensite formation, and Fe behavior under low $P_{\rm O2}$ conditions and their implication for
461	Precambrian weathering, American Mineralogist, 93, 1080-1089.
462	Velde, B. (1977) A proposed phase diagram for illite, expanding chlorite, corrensite and
463	illite-montmorillonite mixed layered minerals. Clays and Clay Minerals, 25, 264-270.
464	Zvyagin, B. B. (1963) The theory of chlorite polymorphism. Kristallografya, 8. 12-38.
465	Zvyagin, B. B. (1967) Electron-diffraction analysis of clay mineral structures. Prenum Press, New
466	York, 364p.
467 468	

469 **Figure captions**

470

Figure 1. (a) HRTEM image of corrensite-chlorite interstratification. The arrowheads with "B", "I_w", 471 472 and "I_n" indicate the positions of the interlayers with the brucite-like sheet, smectite-like interlayer 473 with one atomic plane, and that with no distinct material, respectively. The white circles show the 474 areas with transition between the brucite-like sheet and smectite-like interlayer, whereas the black 475 circles indicate the transition between I_w and I_n at the smectite-like interlayer. (b) Magnified image 476 around the center of (a) to show two types of the smectite-like interlayer with I_w and I_n . (c, d) Magnified images at the squares around arrows "1" (c) and "2" (d). The 2:1 layers above the arrow 477 478 "1" show a 4.5 Å periodicity along the layers (c), indicating the beam direction close to $\pm X_i$ direction. On the other hand, the several layers below the arrow "2" show a 2.6 Å periodicity (d), indicating the 479 480 direction close to $\pm Y_i$.

481 Figure 2. (a) Filtered HRTEM image of corrensite recorded along the $\pm Y_i$ direction. The 482 smectite-like interlayers in the image are all I_w type except one indicated with "I_n". (b) Magnified image at the white square in (a). The arrowheads with "T" and "O" indicate the tetrahedral and 483 484 octahedral sheets in a 2:1 layer, respectively (see Kogure and Banfield, 1998). The other symbols are 485 the same as those in Figure 1. The white thin lines indicate the expected angles between the (001)486 plane and the line connecting the equivalent positions in the adjacent 2:1 layers across the B-sheets 487 for IIbb chlorite. The inset is the simulated image for IIbb chlorite along the [010] direction. See 488 Kogure and Banfield (1998) for the parameters used in the simulation.

Figure 3. (a) Filtered HRTEM image of a corrensite packet recorded along the $\pm Y_i$ direction. The smectite-like interlayers in the image are all I_n type. The contrast at the thin region indicates that the slant directions of the octahedra in the 2:1 layer and that in the B-sheet are opposite. The white thin lines indicate the angle between the (001) plane and the line connecting the equivalent positions in the adjacent 2:1 layers across B-sheets, expected for II*bb* chlorite. Note that the white lines between adjacent layers connect equivalent dark spots in the tetrahedral sheets, concluding that the stacking sequence across the brucite-like sheet is II*bb*. **Figure 4.** Filtered HRTEM image of corrensite recorded along the $\pm X_i$ direction. The crystal was considerably damaged by electron radiation during observation and recording. The smectite-like interlayers in the image are all I_n type with the 24 Å height for the corrensite unit. The white bar for each 2:1 layer connects the closest dark spots in the two tetrahedral sheets in a 2:1 layer and characters "+", "–" and "0" correspond to the slant of the bar and lateral shift of the bars across the interlayer (see the text).

502 **Figure 5.** One-dimensional HRTEM images of corrensite-chlorite interstratifications. The black 503 arrows indicate the positions of B-sheets. Notice that numbers of successive B-sheets in the chlorite 504 packets (indicated with the square blackest) are all odd, as indicated on the brackets.

505 **Figure 6.** Schematic drawing to show the formation of the chlorite packet in corrensite by replacing 506 the smectite-like interlayers with B-sheets, as indicated by the arrows. Note that the number of 507 successive B-sheets in the growing chlorite packet in the bracket is always odd.

508 Figure 7. Filtered HRTEM image of a chlorite packet along the $\pm Y_i$ directions. The Fourier transform

509 of the image is shown at the top-left and the magnified image at the white square at the top-right. The

510 opposite slant directions between the octahedral sheet in the 2:1 layer and B-sheet, and the feature in

511 the Fourier transform indicate that the stacking in the chlorite is IIbb (Kogure and Banfiled, 1998).

512 Figure 8. Filtered HRTEM image of a thick chlorite packet, viewed along the $\pm X_i$ direction. The

513 white bar at each 2:1 layer connects the closest dark spots in the two tetrahedral sheets in a layer, to

show the orientation of the 2:1 layer. The characters "0", "+" or "-" in the left rows correspond to the

515 direction of the slant of the white bar ("0" corresponds to no slant, "+" to slant to the left, "-" to right)

516 for each 2:1 layer, while those in the right row indicate the shift between the bars across the interlayer

517 (see the text).

Kogure et al., Figure 1

Kogure et al., Figure 2

Kogure et al., Figure 3

Kogure et al., Figure 4

Kogure et al., Figure 5

Kogure et al., Figure 7

Kogure et al., Figure 8